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Abstract

We study effects of a rippling gravitational background on a scalar field with a double

well potential, focusing on the analogy with the well known dynamics of the Kapitza’s

pendulum. The ripples are rendered as infinitesimal but rapidly oscillating perturbations

of the scale factor. We find that the resulting dynamics crucially depends on a value of

the parameter ξ in the ξ Rφ2 vertex. For the time-dependent perturbations of a proper

form the resulting effective action is generally covariant, and at a high enough frequency

at ξ < 0 and at ξ > 1/6 the effective potential has a single minimum at zero, thereby

restoring spontaneously broken symmetry of the ground state. On the other side, at

0 < ξ < 1/6 spontaneous symmetry breaking emerges even when it is absent in the non

perturbed case.
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1 Introduction

Oscillating gravitational backgrounds attract attention of theoretical physicists in various con-

texts starting from quantum decoherence [1, 2] and finishing some cosmological [3] and extra

dimensional constructions [4–6]. Effects of a rippling scale factor on a minimally coupled quan-

tized scalar field were studied in [7]. One can also find some interesting consequences of rippling

parameters in [8]. The first famous example of a rippling background, however, is not related to

quantum physics or cosmology - it is the famous Kapitza’s pendulum [9,10], i.e. a classical pen-

dulum whose suspension point rapidly oscillates with a small amplitude. The highly nontrivial

and counterintuitive classical dynamics of this simple object inspired us to write this article.

As we show below already at classical level small but rapidly oscillating perturbations of the

scale factor may affect the ground states of physically relevant models in a quite interesting

way.

In this paper we study the effect of the rapidly oscillating gravitational field gµν on a classical

dynamics of the scalar field φ. The latter is described by the most general action1

Sg [φ] =

∫
d4x
√
−g

{
1

2
φ
(
−∇2

g − ξRg + µ2
)
φ− 1

4!
λφ4

}
, (1.1)

which leads to renormalizable2 quantum field theory in four dimensions. Such an action is of

special importance, since the Higgs field of the Standard Model is described by the action of

such a form. We consider the metric tensor given by the product of the slowly varying bare3

metric ḡµν and the highly oscillating conformal factor, which is very close to one:

gµν = ḡµνe
2α cos (ωt), (1.2)

where the dimensionless amplitude α is much smaller than 1, the frequency ω is much larger

than µ and invariants of the metric tensor ḡµν (and its derivatives) of the dimension [L−1].

The main goal of the present paper is to generalize the result of Kapitza to this model. In

particular, we show that solutions of the equation of motion, which comes out from the action

(1.1), split into two parts

φ = φ̄+ δφ, (1.3)

where δφ is a rapidly oscillating and small correction, which approaches to zero as ω−1 in the

high frequency limit, while the dynamics of the slowly varying field φ̄ is described by the classical

action, which we establish. Surely due to a manifest frame dependence of the perturbation law

(1.2), the effective action generally speaking depends on the choice of the coordinates, which

are used to perturb the bare metric tensor ḡµν .

1Hereafter the lower index specifies which metric tensor is used in order to construct a given quantity.
2This statement refers to quantum field theory on a classical gravitational background.
3In what follows the word “bare” is addressed to the non perturbed theory i.e. at ω = 0.
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The most interesting result is related to the situation, when the oscillating metric takes the

simple form (1.2) in the comoving frame4. In such a case the effective action has exactly the

same structure (1.1), where the quantities gµν and φ are replaced correspondingly by ḡµν and

φ̄,

Seff
ḡ

[
φ̄
]

=

∫
d4x
√
−ḡ

{
1

2
φ̄
(
−∇2

ḡ − ξRḡ + µ2
eff

)
φ̄− 1

4!
λφ̄4

}
, (1.4)

therefore it is generally covariant, and the only effect of the oscillations is an additive renor-

malization of the mass parameter µ2. A sign of the correction ∆µ2 ≡ µ2
eff − µ2 nontrivially

depends on a choice of the coupling constant ξ, and this is probably the most interesting result

of the paper.

We find that at ξ < 0 and at ξ > 1/6 the correction ∆µ2 is always negative, and at the high

enough frequency ω it can easily compensate the bare mass parameter, what quite naturally

implies that the effect of the rapid oscillations is similar to an increase in temperature: the

effective potential (in contrast to the original one) has just a single minimum at φ = 0, and

spontaneous symmetry breaking of the bare theory vanishes. All particles which obtain their

mass due to the Higgs mechanism become massless.

In the another regime 0 < ξ < 1/6 the situation changes qualitatively. The correction

∆µ2 ≡ µ2
eff − µ2 becomes negative, and even when the mass parameter is absent in the bare

theory5, it appears in the effective one. Such an effect can be regarded as some sort of emergent

spontaneous symmetry breaking. At ξ = 1/6 (naturally) and ξ = 0 (less naturally) the effect

is absent.

An influence of time dependent (but not oscillating) gravitational backgrounds on the vac-

uum state of a scalar field was studied in the context of inflation in [11], and the result crucially

depends on the non minimal coupling ξ as well, in particular at ξ = 1/6 the influence is mini-

mal. Nevertheless, the effects discussed in [11] and here are different, since in contrast to our

setup in the framework of [11] at ξ = 0 the vacuum expectation value grows up exponentially

with time.

This paper is organized as follows. In Sec. 2 we briefly describe relevant aspects of the

dynamics of the Kapitza’s pendulum in order to apply the same technique in the forthcoming

discussion. In Sec. 3 we derive the effective action (1.1) and establish the renormalized mass

parameter µ2
eff . Sec. 4 is devoted to numerical illustrations of the results obtained for the flat

bare metric ḡµν . Sec. 5 contains the conclusions and outlook.

4Actually the result holds for a bigger class of perturbations, see the discussion in Sec. 3.
5or it is negative
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2 Kapitza’s pendulum: a brief technical review

The mathematical pendulum is described by the following equation of motion

f̈ + g sin (f) = f̈ + gf +O
(
f 3
)

= 0, (2.1)

where f(t) is the angular coordinate (we consider the length to be equal to one), and g > 0 is

the free-fall acceleration; hereafter the dot stands for differentiation with respect to time. The

only stable equilibrium position is located at f = 0, but the situation changes dramatically,

when the pivot vibrates with the high frequency ω. In such a case the equation of motion reads

f̈ +
(
g + αω2 cos (ω t)

)
sin (f) = 0, (2.2)

where the constant α stands for the amplitude of the oscillations of the suspension, and it is

supposed to be small6. The most amazing fact is the appearance of a new stable equilibrium

point in the inverted position i.e. at f = π. More precisely the solution of the equation of

motion is given by a sum of the two functions f̄(t) and δf(t), where the former satisfies some

“effective” equation of motion, which in particular exhibits slow oscillations in the vicinity of

f = π, when the frequency ω is high enough. The latter is a rapidly oscillating correction of the

order7 of O (ω−1). It is remarkable that one can relatively easily give a precise mathematical

description of such a nontrivial and unexpected phenomenon. Below we present a derivation

of this well known result in the form which is the most suitable and clear for the forthcoming

analysis of the scalar field in a rapidly oscillating gravitational background.

Step 1. Proper ansatz.

A numerical analysis of the equation (2.2) hints us, that its solution splits into the slowly

varying part f̄(t) and the rapidly oscillating but small correction δf . It is natural to expect

that the correction δf oscillates with the same frequency ω, therefore let us look for the solution

in a form of an asymptotic expansion in inverse powers of ω

f = f̄ +
1

ω
(A sin(ωt) +B cos(ωt)) +O

(
1

ω2

)
, (2.3)

where the (yet undetermined) functions A(t) and B(t) vary slowly8. Substituting the ansatz

(2.3) and α = γ ·ω−1 in the equation of motion (2.2) we obtain at the leading order at large ω:

0 = F(t) = ω
{

sin
(
f̄ (t)

)
γ cos (ω t)−B (t) cos (ω t)− A (t) sin (ω t)

}
+O(ω0), (2.4)

6Note that according to the relativity principle one can say, that the (Newtonian) gravitational potential,

which enters via g, oscillates with the large frequency ω but the small amplitude, which is proportional to α.
7Actually this asymptotic takes place in the double limit α→ 0, and ω →∞, while their product α · ω ≡ γ

is a constant.
8At this point this is just an assumption to be checked aposteriori, after all the functions are found.
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what defines A(t) = 0 and B(t) = γ sin
(
f̄
)
. From this moment on the ansatz (2.3) contains

just one undetermined function f̄ .

Step 2. Averaging over rapid oscillations.

Substituting A(t) = 0 and B(t) = γ sin
(
f̄
)

in the next to the leading order of our asymptotic

expansion (2.4) we immediately arrive to the equation which determines f̄(t).

0 = F(t) = ¨̄f + sin
(
f̄
)
g− 2 cos

(
f̄
) ˙̄fγ sin (ω t) + cos

(
f̄
)
γ2 (cos (ω t))2 sin

(
f̄
)

+O(ω−1) (2.5)

Now let us average the function F (t) over the period of rapid oscillations 2π
ω

:

〈F〉(t) ≡ ω

2π

∫ 2π
ω

0

dτF (τ + t). (2.6)

Since by our assumption the quantity f̄ and its derivative vary slowly during the period of rapid

oscillations, one can easily compute the integral (2.6) in the limit ω →∞, and the answer reads:

¨̄f + sin
(
f̄
)
g +

1

2
cos
(
f̄
)
γ2 sin

(
f̄
)

= 0, γ ≡ ω · α� ω. (2.7)

The equation (2.7) is autonomous and it does not contain large parameters anymore, therefore

f̄ is indeed slowly varying function9 , what justifies all our assumptions.

Small deviations of f̄ from zero satisfy the standard pendulum equation (2.1) where g is

replaced by geff

gdown
eff = g +

1

2
α2ω2, (2.8)

thus in the vicinity of this equilibrium point one has an additive (finite) renormalization of the

free fall acceleration constant g. On the other side, and this is even more interesting, small

deviations from f̄ = π satisfy linearized version of Eq. (2.1) with

gup
eff = −g +

1

2
α2ω2 > 0, at |ω · α| >

√
2g, (2.9)

therefore in this regime the pendulum starts to oscillate near its upper position with the slow

frequency Ω ≡
√
−g + 1

2
α2ω2 � ω. Below we consider the system described by the action (1.1)

along similar lines, and we find that it shares some similarities with the Kapitza’s pendulum.

3 Scalar field in oscillating gravitational background

Now we study the effect of the rapid oscillations defined by (1.2) on the dynamics of the scalar

field φ, which obeys the classical equation of motion

− 1√
−g

δSg [φ]

δφ
=
(
∇2
g + ξRg − µ2

)
φ+

1

3!
λφ3 = 0. (3.1)

9Unless one chooses large initial velocity.

5



The gravitational background is considered to be given, and we assume that the back-reaction

of the scalar field on its dynamics is negligibly small. We simplify the forthcoming analysis

substituting

φ = e−α cos(ωt)φ̃. (3.2)

On the one hand, due to the local Weyl invariance of the action (1.1) at ξ = 1
6

the equation

(3.1) rewritten in terms of φ̃ has simpler dependence on α and ω. On the other hand, we are

interested in the evolution of the slowly varying part of φ, which coincides for φ̃ and φ.

In order to carry out the computations it makes sense to rewrite the equation of motion

splitting explicitly rapidly and slowly varying quontities(
ḡµν∂2

µν + Y µ∂µ + ξRḡ − µ2
)
φ̃+

1

3!
φ̃3 + fα = 0, (3.3)

where ḡµν , Y µ ≡ 1√
−ḡ (∂ν ḡ

µν
√
−ḡ) and Rḡ vary slowly by construction. The function fα absorbs

all influence of the rapidly oscillating exponential factor in (1.2), and it is defined by

fα ≡
[
(6ξ − 1)

(
−ω2α ḡ00

(
cos(ωt)− α sin2(ωt)

)
− ωαY 0 sin(ωt)

)
+ µ2

(
1− e2α cos(ωt)

)]
φ̃. (3.4)

Below we study the leading asymptotic at large ω and small α keeping α = γ/ω = O(ω−1) by

analogy with the Kapitza’s pendulum.

Step 1. Proper ansatz.

Inspired by the example discussed in the previous section we look for the solution in a form of

the following asymptotic ansatz:

φ̃ = φ̄+
1

ω
(T cos(ωt) +W sin(ωt)) +O

(
1

ω2

)
, (3.5)

where T and W are slowly varying functions of all coordinates. We do not write the tilde over

φ̄, since, as we said above, in the limit of infinitely large ω (and infinitely small α) the quantities

φ and φ̃ coincide. Substituting the ansatz (3.5) in the equation of motion (3.3) we immediately

determine T and W :

0 = F ≡ ω
(
−6 ξ γ ḡ00 cos (ω t) Φ− ḡ00T cos (ω t)

− ḡ00W sin (ω t) + γ ḡ00 cos (ω t) Φ
)

+O
(
ω0
)
, (3.6)

what implies

T = (1− 6ξ)γφ̄, W = 0. (3.7)

As in the “canonical” example there is just one undetermined function φ̄.
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Step 2. Averaging over rapid oscillations.

Exactly as we did in the previous section, substituting (3.7) in the next to the leading order of

our asymptotic expansion (3.6) we derive the equation which determines φ̄.

0 = F ≡
(
ḡµν∂2

µν + Y µ∂µ + ξRḡ − µ2
)
φ̄+

1

3!
φ̄3 + 2(6ξ − 1)γ ḡµ0

(
∂µφ̄
)

sin(ωt)

+ (6 ξ − 1) γ2 ḡ00 Φ
(
6 (cos (ω t))2 ξ − cos(2ωt)

)
+O

(
1

ω

)
(3.8)

Averaging over the period of rapid oscillations (c.f. Eq. (2.6)) and passing to the limit of large

ω we obtain the final effective equation for φ̄:

0 = lim
ω→∞
〈F〉 =

(
∇2
ḡ + ξRḡ − µ2 + 3 γ2ḡ00 ξ (6 ξ − 1)

)
φ̄+

1

3!
λφ̄3. (3.9)

The structure of Eq. (3.9) immediately suggests us, which oscillations of the form (1.2) are

the most interesting. Surely we wish to obtain a generally covariant expression by the end

of the day, what happens if and only if the simple perturbation equation (1.2) is written in

the frame where ḡ00 does not depend on coordinates e.g. the comoving frame. We emphasize

that we are talking about preferred ways of perturbation of the bare metric ḡµν rather than

preferred coordinate systems. Starting from now we assume that the perturbations are “good”

in the mentioned above sense, and10 the coordinates in Eq. (1.2) are chosen in such a way that

ḡ00 = +1, so we arrive to the manifestly generally covariant equation

0 =
(
∇2
ḡ + ξRḡ − µ2

eff

)
φ̄+

1

3!
λφ̄3 = − 1√

−ḡ
δSeff

ḡ

[
φ̄
]

δφ̄
, (3.10)

which holds for an arbitrary coordinate system11, and has exactly the same structure as

Eq. (3.1). The effective mass parameter is given by

µ2
eff = µ2 + 3α2ω2ξ (1− 6 ξ) � ω2. (3.11)

As we announced in the introduction, this quantity can be either positive or negative depending

on the ratios between the parameters, what may dramatically affect the spontaneous symmetry

breaking. The particular form (3.11) of the additive renormalization of the mass parameter µ2

suggests us to consider two different regimes of the non minimal scalar-tensor coupling, defined

by the dimensionless coupling constant ξ.

• At ξ < 0 and ξ > 1/6 the correction to the mass parameter is negative, and at

|ω · α| > µ√
3ξ(6ξ − 1)

, µ2 > 0, (3.12)

10In principle ḡ00 must not be necessary positive and it can be either negative or zero (e.g. the light front

coordinates). In the former case the effect changes its sign, and in the latter case it is absent.
11Surely, for an arbitrary frame one has to rewrite Eq. (1.2), which defines the perturbations, according to

the tensor transformation law.
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the effective mass parameter becomes negative, what restores a spontaneously broken

symmetry of the ground state. This effect is similar to the dynamical stabilization of the

upper equilibrium position of the Kapitza’s pendulum, c.f. Eq. (2.9).

• At 0 < ξ < 1/6 the correction is positive, what is similar to the effective renormalization

of the free fall acceleration in the context of the Kapitza’s pendulum oscillating near

its lower equilibrium, c.f. (2.8). This regime becomes more interesting when the “bare

theory” is not spontaneously broken, i.e. at µ2 = −m2 < 0. In such a situation at

|ω · α| > m√
3ξ(1− 6ξ)

, m2 ≡ −µ2 > 0, (3.13)

the effective mass parameter µ2
eff becomes positive in contrast to the bare one µ2, what

implies emergent spontaneous symmetry breaking. One can easily see, that this effect

reaches its maximum at ξ = 1/12.

If for some application one prefers to avoid the mentioned above effects, one has to work with

the minimal ξ = 0 or the conformal ξ = 1/6 couplings.

Remark We notice that the coordinate x0 ≡ t must not be necessary the conformal time, but

it can be also the comoving time tc. Let us fix the gauge by the following condition

ḡ00 = 1, ḡ0j = 0, j = 1, 2, 3, (3.14)

so the square of the infinitesimal four interval reads (c.f. Eq. (1.2)):

ds2 =
(
dt2 − d~x2

)
e2α cos (ω t) = dt2c −

(
d~x2
)
e2α cos (ω tc), (3.15)

where d~x2 ≡ ḡijdx
idxj, i, j = 1, 2, 3. In other words instead of consideration of the fluctuations

of the form (1.2) we could have considered

g00 = ḡ00, gij = ḡije
2α cos(ω t), i, j = 1, 2, 3 (3.16)

from the very beginning12, what is more natural for Friedmann-Lemâıtre-Robertson-Walker

metric. All the results viz the final effective equation (3.10), the renormalization of the mass

paremeter (3.11) and the conditions (3.12), (3.13), which define the phase transitions, remain

absolutely the same. Note that in (3.16) we wrote t instead of tc, since up to a correction of

the order of O (ω−1) these two quantities (but not their derivatives!) coincide:

t =

∫ tc

0

dze−2α cos(ωz) = tc +O
(
ω−1

)
, α ≡ γ

ω
� 1. (3.17)

12upon the condition (3.14)
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So far we discussed the ripples along the time direction t ≡ x0. One can easily elaborate

the oscillations along some spatial direction e.g. z ≡ x3 in a similar manner. Replacing t by z

in the oscillating conformal factor in (1.2) and repeating all the discussion we arrive to (3.9),

where ḡ00 is replaced by ḡ33. The effective equation becomes generally covariant if and only if

the (modified) perturbation law (1.2) is written in the coordinate system, where ḡ33 = const,

for example in the Gaussian normal coordinates in respect to the hypersurface of constant z.

It is worth noting that for such a choice of coordinates in the perturbation law the effect of this

“spatial” rippling has the opposite sign with respect to the time-dependent rippling introduced

in the comoving frame, since ḡ33 = −1 in the Gaussian normal coordinates.

In the next section we illustrate numerically how this mechanism works on a few examples.

4 Numerical illustrations

As we have seen in the previous section the behavior of the scalar field in a rapidly oscillating

gravitational background crucially depends on two entries: the parameter γ ≡ α · ω, which

comprises the information on the perturbation, and the parameter ξ, which is responsible for

the non minimal tensor-scalar coupling.

Below we solve numerically the exact (3.1) and the effective (3.10) equations of motion for

various values of the parameters γ and ξ. The slowly varying background metric is chosen to

be flat ḡµν = δµν , and the perturbations are taken of the form (3.16). Since the metric gµν
depends just on time, for the sake of simplicity we consider the field φ to be independent on

the spatial coordinates, i.e. φ = φ(t); the generalization is trivial. In such a setup the exact

and the effective equations correspondingly read:

φ̈− 3 γ sin (ω t) φ̇+
(
−6 ξ ωγ cos (ω t) + 6 ξ γ2 − 6 ξ γ2 cos (2ω t)− µ2

)
φ+

1

3!
λφ3 = 0, (4.1)

and

φ̈−
(
µ2 + 3γ2ξ(1− 6ξ)

)︸ ︷︷ ︸
µ2

eff

φ+
1

3!
λφ3 = 0, (4.2)

where γ ≡ α · ω. For both (4.1) and (4.2) we choose the initial conditions as follows:

φ(0) = 0.2, φ̇(0) = 0. (4.3)

On the figures Fig. 1, Fig. 2, Fig. 3 and Fig. 4 numerical solutions of the exact and the effective

equations are undistinguishable in agreement with the fact that the difference between the

exact and the effective solutions is of the order of ω−1 ∼ 10−3 for our choice of ω. Throughout

this section13 γ0 ≡ |µ|√
|3ξ(6ξ−1)|

stands for the critical value of the parameter γ.

13c.f. Eq. (3.12) and Eq. (3.13)
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Figure 1: Emergent symmetry restoration, γ dependence. The solid lines represent φ(t) for

various choices of the parameter γ in the vicinity of its critical value γ0. Above each solid curve the

deviation ∆γ ≡ γ − γ0 from the critical value is specified. The dotted line represents the solution

of the bare equation of motion. The parameters are chosen as follows: ξ = − 1
12 , µ = 0.18, hence

γ0 ' 0.294; λ = 0.75, ω = 2500; for each curve α = (γ0 + ∆γ)/ω.

Figure 2: Emergent symmetry restoration, ξ dependence. The dotted and the solid lines represent

correspondingly the bare and the perturbed solutions. The parameters are chosen as follows: µ = 0.18,

λ = 0.75, γ ≡ ω · α = 0.4, ω = 2500.
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Figure 3: Emergent spontaneous symmetry breaking, γ dependence. The solid lines represent

φ(t) for various choices of the parameter γ in the vicinity of its critical value γ0. The dotted line

represents the solution of the bare equation. Above each solid curve the deviation ∆γ ≡ γ − γ0 from

the critical value is specified. The parameters are chosen as follows: ξ = + 1
12 , µ = 2i, hence γ0 ' 5.657;

λ = 4, ω = 2500; for each curve α = (γ0 + ∆γ)/ω.

Figure 4: Emergent spontaneous symmetry breaking, ξ dependence. The dotted and the solid

lines represent correspondingly the bare and the perturbed solutions. The parameters are chosen as

follows: µ = 2i, λ = 4, γ ≡ ω · α = 5.8, ω = 2500.
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Figure 5: Exact and approximate solutions: high resolution. The dash and the solid lines

represent solutions of the effective and the exact equations respectively. The parameters are chosen

as follows: µ = 2i, λ = 4, γ ≡ ω · α = 5.7569, ω = 2500.

Let us consider the system which is spontaneously broken14 at ω = 0. Varying the parameter

γ ≡ α · ω above and below its critical value we solve numerically the equations (4.1), (4.2),

(4.3); corresponding solutions are presented on Fig. 1. As one would have expected for small

negative deviations ∆γ of γ from the critical value γ0 the effect of rapid oscillations results

in a shift of the frequency of slow oscillations and a shift of the (nonzero) equilibrium point.

When ∆γ ≥ 0 the solutions with high precision are described by slow oscillations around the

symmetric ground state φ = 0, so effectively at the scales of length much higher than ω−1 the

system behaves as non spontaneously broken.

Corresponding dependence on the non minimal scalar-tensor coupling ξ is presented on

Fig. 2. Inside the interval 0 < ξ < 1/6 the only effect is a shift of the frequency of small

oscillations around the shifted equilibrium point φ 6= 0. At ξ = 0 and ξ = 1
6

the effect is absent:

the bare (ω = 0) and the perturbed curves (up to small deviations ∼ ω−1) coincide. Finally at

ξ < 0 and at ξ > 1
6

for a high enough γ the emergent symmetry restoration takes place.

Now let us elaborate in a similar fashion the spontaneously unbroken15 system at ω = 0.

For various choices of the parameter γ ≡ α · ω above and below its critical value numerical

solutions of (4.1), (4.2), (4.3) are presented on Fig.3. Again for small negative deviations ∆γ

of γ from the critical value γ0 the effect of rapid oscillations results in a shift of the frequency

of slow oscillations around the equilibrium point φ = 0. When ∆γ ≥ 0 the solutions with high

precision are described by slow oscillations around the ground state at φ 6= 0, which corresponds

14 i.e. µ2 > 0
15i.e. µ2 = −m2 ≤ 0

12



to spontaneously broken symmetry. Thus we conclude that effectively at the scales of length

much higher than ω−1 the system behaves as spontaneously broken.

On Fig. 4 we illustrate the dependence on the parameter ξ for this situation. At ξ ≤ 0 and

ξ ≥ 1/6 the only effect is a change of the frequency of slow oscillations around the symmetric

ground state φ = 0, in particular at ξ = 0 and ξ = 1/6 at the scales much higher than ω−1

there is no any effect at all. Inside the interval 0 < ξ < 1/6 for sufficiently high values of γ one

has the phase transition - emergent spontaneous symmetry breaking.

In conclusion we present typical solutions of the exact (4.1) and the effective (4.2) equations

accompanied by the initial conditions (4.3) at small scales, which are comparable with ω−1,

see Fig. 5. One can see that the former oscillates with the frequency ω, while the difference

between the two16 is indeed of the order of ω−1 ∼ 10−3.

5 Conclusions and outlook.

In this paper we studied effects of a rapidly oscillating gravitational background on a dynamics

of a scalar field, and we have found that the time dependent perturbations of the scale factor

of the form17 (3.16) lead to simple but nontrivial consequences for the dynamics of the scalar

field.

At the scales of length much higher than ω−1 the dynamics is described by the classical

action on the bare gravitational background ḡµν , and the only effect of the rapid oscillations is

the additive renormalization of the mass parameter

µ2 −→ µ2
eff � ω2,

where the effective mass parameter µ2
eff does not necessary have the same sign as the bare mass

parameter µ2, see (3.11), what in principle may lead to the phase transition, which is defined by

relations between the parameters γ ≡ α ·ω and ξ. While the former tells us whether the phase

transition is present or not (c.f. (3.12) and (3.13)), the latter tells us which kind of the phase

transition one may expect: spontaneous symmetry breaking in a theory with the symmetric

ground state or the ground state symmetry restoration in a spontaneously broken theory. A

summary of the main results is presented on Fig. 6.

It is remarkable that the effective mass parameter appears even when the bare one is absent

i.e. when the action (1.1) is scale invariant. In other words the rippling of the gravitational

background ḡµν introduces in a scale invariant theory the effective mass scale

µ2
0 eff = 3α2ω2ξ (1− 6 ξ) � ω2.

16Since deriving the effective equation we passed to the limit ω → ∞, we neglected by terms of the order of

O
(
ω−1

)
, thus the mean value of the precise solution and the effective solution may slightly differ, however this

difference if of the order of O
(
ω−1

)
.

17This result takes place for more general class of perturbations, see the discussion in Sec.3.
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Figure 6: The influence of the rippling gravitational field gµν on the grand state of the scalar

field φ. The parameters are defined as follows: γ ≡ α · ω and γ0 ≡ |µ|√
|3ξ(6ξ−1)|

, c.f. Eq. (3.12)

and Eq. (3.13).

A low18 energy observer can see just the bare field φ̄ which evolves on the bare gravitational

background ḡµν being described by the scale non invariant effective action (1.4). This property

may be useful in the context of scale invariant extensions of the Standard Model. So far the

radiative corrections were usually used in order to introduce scales in classically scale invariant

extensions of the Standard Model [12–15]. These approaches rely on the Coleman-Weinberg

potential [16] ( see also [17]), which exploits the scale non invariance at quantum level due to

the Weyl anomaly. Instead, in our formalism the scale parameter enters in truly scale invariant

theory via the background: the action (1.1) at µ = 0 is invariant upon the following global

Weyl transformation

gµν −→ e2Φgµν φ −→ e−Φφ, Φ = const. (5.1)

We obtained the result for the classical theory. In quantum scale invariant theories, when the

anomalies upon the transformation (5.1) are absent or cancel each other, our mechanism still

may bring emergent effective low energy scales.19 Therefore our result can be seen as the first

18The scale which distinguishes “low” and “high” energy regions is defined by the frequency ω of the rapid

oscillations of the metric tensor.
19Surely in the quantum case one has to deal with an effective quantum potential and the mean fields rather

than with classical fields.
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step towards the construction of truly20 scale invariant extensions of the Standard Model.

This is not the only example of appearance of scales in truly scale invariant models: it is

well known that each solution of the Einstein equations solves also the Bach equations, which

come out from the scale invariant Weyl action. This property allows to think of the Einsteinian

gravity without the Einstein-Hilbert action [18]. In such an approach the scales (e.g. the

gravitational and the cosmological constants) enter in the theory via proper conditions for the

fourth order differential equations of motion.

It is also interesting to study effects of rippling gravitational backgrounds in quantum theo-

ries beyond the scope of scale invariant generalizations of the Standard Model. Note that in our

classical consideration the rippling gravitational background affects just the mass parameter21

but not the quartic coupling constant λ, i.e. the only dimensionful parameter in the action

(1.1). It is known that the observed Higgs mass at 125 GeV [19, 20] is compatible with the

Standard Model if the running quartic coupling constant λ(s) becomes negative at the energy

scales s ∼ 1010 GeV, thereby creating the vacuum instability problem [21,22]. Non triviality of

the beta function of the quartic coupling of the Standard Model may lead to a bigger influence

of rippling gravitational backgrounds on the quadric vertex of the Higgs potential. It would be

very interesting to figure out whether (and how) it really affects the vacuum stability, but this

is beyond the scope of the present paper.
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