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Abstract

Lattice systems and discrete networks with dissipative interactions are successfully employed
as meso-scale models of heterogeneous solids. As the application scale generally is much
larger than that of the discrete links, physically relevant simulations are computationally
expensive. The QuasiContinuum (QC) method is a multiscale approach that reduces the
computational cost of direct numerical simulations by fully resolving complex phenomena
only in regions of interest while coarsening elsewhere. In previous work (Beex et al., J. Mech.
Phys. Solids 64, 154–169, 2014), the originally conservative QC methodology was generalized
to a virtual-power-based QC approach that includes local dissipative mechanisms. In this
contribution, the virtual-power-based QC method is reformulated from a variational point of
view, by employing the energy-based variational framework for rate-independent processes
(Mielke and Roub́ıček, Rate-Independent Systems: Theory and Application, Springer-Verlag,
2015). By construction it is shown that the QC method with dissipative interactions can be
expressed as a minimization problem of a properly built energy potential, providing solutions
equivalent to those of the virtual-power-based QC formulation. The theoretical considera-
tions are demonstrated on two simple examples. For them we verify energy consistency,
quantify relative errors in energies, and discuss errors in internal variables obtained for dif-
ferent meshes and two summation rules.

Keywords: lattice model, quasicontinuum method, variational formulation, plasticity,
multiscale modelling

1. Introduction

Conventional continuum theories discretized by Finite Element (FE) approaches become
problematic at small length-scales and complex material behaviours. In these cases, the un-
derlying microstructure or even the atomistic crystal structure comes into play. This intro-
duces nonlocality, and requires discrete simulations such as structural lattice computations
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or Molecular Statics (MS) in order to capture the physics properly. Discrete conservative
systems are in their full description conveniently formulated within a variational framework,
in which their behaviour follows a minimization of a potential energy E , i.e.

r = arg min
r̂∈R

E(r̂), (1)

where r̂ ∈ R denotes an arbitrary admissible vector collecting the positions of all lattice
atoms (or particles), R denotes a configuration space, and r ∈ R a suitable minimizer, see
e.g. Tadmor and Miller (2011), Section 6. For application-scale problems, the construction
of E and the solution of (1) entails excessive computational efforts because of two facts:

F1. A large number of atoms and bonds contained in fully-resolved systems leads to consid-
erable expenses associated with the solution of the Euler–Lagrange equations involving
large-scale energy gradients and Hessians.

F2. For the assembly of energies, gradients, and Hessians, all atoms or bonds have to be
individually taken into account.

The QuasiContinuum (QC) methodology, originally formulated by Tadmor et al. (1996), and
extended in various aspects later on, e.g. Curtin and Miller (2003); Miller and Tadmor (2002,
2009), overcomes F1 and F2 in two steps. First, interpolation, based on a number of selected
representative atoms, or repatoms for short, constrains the displacements of the remaining
atoms in the lattice,

r = I(rrep), (2)

where rrep ∈ Rrep stores the positions of all the repatoms, and Rrep denotes a subspace of the
original configuration space R. Because the dimension of Rrep is usually much smaller than
that of R, deficiency F1 is mitigated. The second involves summation, in which the energy
and governing equations of the reduced model are determined by collecting the contributions
only from so-called sampling atoms, in analogy to numerical integration of FE method. As
a result, an approximation Ê to E in (1) is minimized, which resolves F2. Section 3 of
this paper presents a more detailed discussion of the two QC approximation steps. Other
techniques and further details can be found e.g. in Tadmor and Miller (2011); Mrinal and
Vikram (2011); Luskin and Ortner (2013).

Also at length scales larger than the nanoscale (atomistic length scale), many materials
possess discrete underlying structures—regular, irregular, or random—at the micro- or meso-
scale; typical representatives are fibrous materials such as paper (Kulachenko and Uesaka,
2012; Liu et al., 2010) or textile (Potluri and Manan, 2007). In such materials the bonds
between the fibres (or yarns) take the role of atoms in atomistics. However, since the involved
length-scales are larger, the interactions of these ”atoms” (i.e. particles) often comprise
dissipative processes. Hence, the original QC formulation developed for purely conservative
interactions cannot be employed. Initial theoretical developments to lift this limitation have
been provided by Beex et al. (2014b,c) for fibre plasticity and bond-sliding failure. For the
derivation the authors have used a non-variational thermodynamically-consistent framework
that employs the following virtual-power statement

˙̂r
T
f int = ˙̂r

T
f ext, ∀ ˙̂r. (3)
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In Eq. (3), the dot denotes the derivative with respect to time; the vectors f int and f ext store
components of resulting internal and external forces. This means that the left- and right-
hand sides can be identified as the internal and external powers; for further details see Beex
et al. (2014b), Section 2.1. Let us note that in the ideal, smooth and consistent case, the
formulation of Eq. (3) would be connected to the one of (1) via the relation f int − f ext =
∂E(r̂)/∂r̂. Throughout this paper, the QC approach based on Eq. (3) will be referred to
as the virtual-power-based QC. The virtual-power-based QC framework has been employed
in various contexts and proven to be efficient while accurate, see e.g. Beex et al. (2014b).
However, from this formulation, it is not entirely clear whether the governing equations
derived from Eq. (3) are also energetically consistent; it may happen that some terms are
missing, cf. e.g. Rokoš et al. (2016), Tab. 1, for an example in continuum gradient plasticity.
Variational approaches may furthermore be considered to provide finer information about
system evolution such as microstructure pattern formation or phase transition, see e.g. Ortiz
and Repetto (1999), Carstensen et al. (2002), and Schröder and Hackl (2013). Finally, they
allow to extend the conservative QC methodology to an entire class of rate-independent
internal mechanisms in a natural way.

The goal of this paper is therefore to reformulate the virtual-power-based QC framework
for internal dissipative processes in terms of variational principles and show that the obtained
solutions coincide for both formulations in the case of plasticity with isotropic hardening.
To that end, a suitable potential Π will be constructed such that

q ∈ arg min
q̂∈Q

Π(q̂), (4)

describing the state of the system in analogy to (1). Here, however, q denotes a general state
variable that also includes internal dissipative variables. Furthermore, Q is an abstract state
space, and the inclusion sign ∈ indicates that the potential Π is generally nonsmooth or may
have multiple minima. In analogy to standard QC, a reduced variable qred ∈ Qred and an

approximate energy Π̂ will be introduced in order to alleviate F1 and F2. In what follows,
the approach based on Eq. (4) will be referred to as the variational QC. Its construction
falsifies the statement presented in Beex et al. (2014b), Section 1, claiming that the solution
to Eq. (3) cannot be obtained by direct minimization of an energy potential.

In order to construct the full energy potential Π, we employ the variational formulation
of rate-independent processes as introduced in an abstract setting by Mielke and Roub́ıček
(2015) that is closely related to applications in continuum mechanics. Earlier studies were
provided e.g. by Francfort and Marigo (1993), Han and Reddy (1995), Francfort and Marigo
(1998), and Charlotte et al. (2000). Section 2 of this paper first briefly introduces definitions
and basic principles of the theory. Second, the approach is reformulated in the particular
context of discrete lattice systems.

The governing equations associated with (4) will be addressed in Section 4, where we
recall the Alternating Minimization (AM) method, see also Bourdin et al. (2000). Since the
energy potential Π for plasticity is nonsmooth, we will also briefly discuss the return-mapping
algorithm suitable for its minimization.
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Before closing this contribution by a summary and conclusions in Section 6, we perform
numerical tests on two benchmark examples presented in Section 5, which have been adopted
from Beex et al. (2014b), Section 4, and Beex et al. (2015), Section 4.2. We demonstrate that
both approaches, represented by Eqs. (3) and (4), lead to energetically-consistent solutions
for the exact and central summation rules presented in Beex et al. (2011) and Beex et al.
(2014a). In addition, we show that despite the significant dimension reduction and time
savings achieved by the QC method, the obtained errors in stored and dissipated energies
due to interpolation and summation are rather low: the relative errors in energies do not
exceed 3 %, while the simulation time is decreased by a factor of 4 – 16 depending on the
triangulation, loading, and geometry.

2. Rate-Independent Variational Plasticity

2.1. General Considerations

The variational formulation for rate-independent processes comprises several steps and
relies on two principles (S) and (E), which are described below (for details see Mielke and
Roub́ıček, 2015; Mielke and Theil, 2004). The state of the system within a fixed time
horizon [0, T ] is described in terms of a non-dissipative variable r(t) ∈ R, and a dissipative
component z(t) ∈ Z . The latter specifies all irreversible processes at time t ∈ [0, T ],
where t denotes a pseudo-time parametrizing the quasi-static evolution process. The state
of the system is fully characterized by the state variable q(t) = (r(t), z(t)) ∈ Q = R ×Z .
Furthermore, we consider the total free (Helmholtz type) energy of the system E : [0, T ] ×
Q → R together with the dissipation distance D(z2, z1), D : Z × Z → R+ ∪ {+∞}
which specifies the minimum amount of energy spent by the continuous transition between
two consecutive states z1 and z2. Then, the process q : [0, T ] → Q is called an energetic
solution to the initial-value problem described by (E ,D, q0) if it satisfies the following two
principles (S) and (E), together with an initial condition (I):

(S) Global stability: for all t ∈ [0, T ] and for all q̂ ∈ Q

E(t, q(t)) ≤ E(t, q̂) +D(ẑ, z(t)), (S)

which requires the solution to be the global minimum of the sum E + D. To see this
recall that the definition of the global minimum of E +D reads

E(t, q(t)) +D(z(t), z(s)) ≤ E(t, q̂) +D(ẑ, z(s)), (5)

where q(s) ∈ Q denotes previous configuration at time s ≤ t. As D is an extended-
quasidistance function (for definition see e.g. Mielke and Roub́ıček 2015, Section 2.1.1),
it satisfies the triangle inequality D(ẑ, z(s)) ≤ D(z(t), z(s)) + D(ẑ, z(t)), which used
in (5) provides (S).

(E) Energy equality: for all t ∈ [0, T ]

E(t, q(t)) + VarD(q; 0, t) = E(0, q(0)) +

∫ t

0

P(s) ds, (E)
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which expresses the energy balance in terms of the internal energy, the dissipated
energy VarD, and the time-integrated power of external forces P .

(I) Initial condition:
q(0) = q0. (I)

In the second principle (E), the dissipation along a curve q is expressed as

VarD(q; 0, t) = sup

{
n∑

k=1

D(z(tk), z(tk−1))

}
, (6)

where the supremum is taken over all n ∈ N and all partitions of the time interval [0, t],
0 = t0 < t1 < · · · < tn = t. Introducing a time discretization of [0, T ], the two principles (S)
and (E) along with initial condition (I) naturally give rise to an

(IP) Incremental problem: for k = 1, . . . , nT

q(tk) ∈ arg min
q̂∈Q

Πk(q̂; q(tk−1)) (IP)

amenable to a numerical solution in which each step is realized as a minimization problem
of an incremental energy

Πk(q̂; q(tk−1)) = E(tk, q̂) +D(ẑ, z(tk−1)). (7)

The main conceptual difficulty with (IP) is that it represents a global minimization problem,
which is computationally cumbersome for non-convex energies. It is reasonable, however,
to assume that stable solutions of (IP) are associated with local minima. Then, multiple
minimizers can exist, but only the ones satisfying (E) are adopted as proper solutions. It
has been shown that as long as the solution q(t) remains continuous in time, the energy
balance holds (see Pham et al. 2011; Pham and Marigo 2013). In the examples in Section 5
we verify that this is indeed the case for hardening plasticity, thereby justifying the local
minimization approach adopted in this work. As a result, the energy balance (E) need not
be enforced explicitly.

The variational approach offers many advantages, among which we emphasize that it
provides a suitable framework for a variational formulation of a QC methodology for regular
structures including dissipation.

2.2. Lattices with Dissipative Internal Processes

To specify the above formulation for lattice systems, we start by introducing a geometrical
setting and necessary notation (depicted in Fig. 1), followed by explicit definitions of energies.
Before doing so, let us mention that the term ”atoms” is meant to represent individual
particles or nodes of the underlying (non-atomistic) lattice, consistently with the original
QC methodology developed for atomistic systems. Furthermore, for clarity we confine our
exposition to two spatial dimensions; the extension to three dimensions is straightforward.

5



rβ(t)

rα(t)
rβ0rα0

z

yx

r(t) = χ(t, r0)

Ω(t)

Bα

Ω0

DeformedReference

(a) configurations and kinematics

Hardening variable zαβc (t)

Plastic elongation zαβp (t)

rαβ(t) = rαβel (t) + zαβp (t)

βα Single bond

(b) single bond

Figure 1: Sketch of (a) geometric variables and two system configurations, reference Ω0 and
current Ω(t), and (b) single bond setup.

2.2.1. Geometry and Internal Variables

The domain Ω0 ⊂ R2 in a reference configuration contains a set Nato of nato = #Nato

atoms, where #• returns the cardinality of a set •. The reference spatial position of each
atom α ∈ Nato is specified by a vector rα0 ∈ R2, and can be expressed as a linear combina-
tion of primitive vectors in analogy to the Bravais lattices since we confine our attention to
regular structures only. Moreover, we only incorporate nearest-neighbour interactions. All
positions rα0 are collected in a column matrix r0 = [r1

0, . . . , r
nato
0 ]T, r0 ∈ R2nato , for con-

venience. Note that throughout this paper, Greek indices refer to atom numbers whereas
Latin indices are reserved for spatial coordinates or other integer parametrizations. Each
atom α is further attributed with a set Bα ⊂ Nato of its nearest neighbours; recall that for
the truss structures of interest, the Verlet list—i.e. the lists of all the neighbours Bα for all
atoms α ∈ Nato—does not change in time. The distance between two atoms α and β and
the list of all inter-atomic distances in the reference configuration are denoted as

rαβ0 (r0) = ||rβ0 − rα0 ||2, (8a)

{rαβ0 (r0)} = {rαβ0 |α = 1, . . . , nato, β ∈ Bα, duplicity removed}, (8b)

where || • ||2 represents the Euclidean norm. Since rαβ0 = rβα0 , the set {rαβ0 } in (8b) consists
of nbon components, where nbon is the number of all the bonds of the system collected in
a set Nbon, i.e. #Nbon = nbon. Throughout this paper we employ the symbol αβ in two
contexts: in the context of atoms, rαβ0 means the distance in the reference configuration
between two atoms α, β ∈ Nato (as used above), whereas in the context of bonds the same
symbol rαβ0 means the length of the p-th bond in the reference configuration, p = αβ, p ∈
Nbon, with end atoms α, β ∈ Nato; a similar convention applies to other physical quantities.

Deformation mapping χ(t, r0) transforms Ω0 from the reference to the current configura-
tion Ω(t) ⊂ R2, where the locations of the atoms are specified by position vectors rα(t), α =
1, . . . , nato. In analogy to r0, we collect all rα in a column matrix r(t) = [r1(t), . . . , rnato(t)]T,
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r(t) ∈ R2nato , that represents also the abstract non-dissipative variable1. Furthermore,
we introduce the distance measure between two atoms rαβ(r(t)), and the set of all dis-
tances {rαβ(r(t))}, cf. Eq. (8). Due to the time-dependent Dirichlet boundary conditions and
possible kinematic constraints, R(t) is a function of time and it forms a manifold in R2nato .

Each bond is further endowed with two internal variables: the plastic slip or elongation
of the bond zαβp (t), and the cumulative plastic slip (a hardening variable) zαβc (t). For clarity,
we introduce column matrices zp(t) and zc(t), both in Rnbon , collecting zαβp (t) and zαβc (t) of
all bonds. Then, the abstract dissipative variable can be specified as z(t) = (zp(t), zc(t)),
and Z as R2nbon (recall that z(t) ∈ Z ).

2.2.2. Definition of Energies

Having described the physical variables, we proceed to the formal definitions of the
energies. Because no external forces will be used, the elastic part of the incremental energy
is not an explicit function of time t and reads as

E(q̂) = Vint(r̂, ẑp) + Vhard(ẑc). (9)

Note that hatted variables •̂ represent an arbitrary admissible configuration of the system,
whereas the absence of hats indicates that these state variables are minimizers of (IP), see
also Eq. (7). The interatomic potential energy Vint in (9) specifies a recoverable part of the
energy stored in all atom interactions. It is sufficient to adhere to pair potentials, for which

Vint(r̂, ẑp) = Vint({r̂αβ(r)}, ẑp) =
1

2

∑

α,β∈Bα

φαβ(r̂αβ, ẑαβp ), (10)

where the first equality holds as a consequence of the principle of potential invariance. Note
that permutation symmetry requires φαβ = φβα, and that φαβ corresponds to the elastic
portion of the energy stored in a single bond stretched to a length r̂αβ with a plastic elon-
gation ẑαβp . Further,

Vhard(ẑc) =
1

2

∑

α,β∈Bα

hαβ(ẑαβc ) (11)

reflects an unrecoverable part of the stored energy, locked in all bonds due to hardening
effects, where hαβ(•) denotes the hardening pair potential of a single bond. The dissipation
distance for a single bond, Dαβ, between two different states ẑ1 and ẑ2 is defined as

Dαβ(ẑ2, ẑ1) =

{
fαβ0 |ẑαβp,2 − ẑαβp,1| if ẑαβc,2 ≥ ẑαβc,1 + |ẑαβp,2 − ẑαβp,1|
+∞ otherwise,

αβ = 1, . . . , nbon, (12)

1Strictly speaking, the non-dissipative component should consist of rαβel for appropriate α and β,

where rαβel = rαβ − rαβ

rαβ z
αβ
p . Because such an affine transformation does not affect the results, we adopt rαβ

instead of rαβel as our primal variables from now on for convenience.
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where fαβ0 > 0 is an initial yield force. The total dissipation distance then collects the
contributions of all bonds, namely

D(ẑ2, ẑ1) =
1

2

∑

α,β∈Bα

Dαβ(ẑ2, ẑ1). (13)

Note that setting Vhard = D = 0 and z(t) = 0 reduces (IP) to standard MS defined in
Eq. (1); for further details we refer the interested reader to, e.g., Tadmor and Miller (2011),
Chapter 6.

Let us close this section with the observation that the total incremental energy Πk can
be expressed in two equivalent forms: as a sum over all atom sites such as described above,
or as a sum over all bonds. This allows us, therefore, to introduce the incremental bond,
π̃kαβ, and site, π̂kα, energies of the form

π̃kαβ(q̂; q(tk−1)) = φαβ(r̂αβ, ẑαβp ) + hαβ(ẑαβc ) +Dαβ(ẑ, z(tk−1)), αβ = 1, . . . , nbon, (14a)

π̂kα(q̂; q(tk−1)) =
1

2

∑

β∈Bα

π̃kαβ(q̂, q(tk−1)), α = 1, . . . , nato, (14b)

and write

Πk(q̂; q(tk−1)) =

nbon∑

αβ=1

π̃kαβ(q̂; q(tk−1)) =
nato∑

α=1

π̂kα(q̂; q(tk−1)). (15)

The reason for introducing two equivalent expressions for Πk is that the site energies (14b)
are convenient for the minimization of (IP) with respect to the kinematic variable r̂, whereas
the bond energies (14a) are more suitable for the minimization with respect to the internal
variable ẑ.

3. Quasicontinuum Methodology

Let us proceed to the two QC steps introduced to mitigate excessive computational
demands implied by F1 and F2 that are inherently associated with the minimization prob-
lems (1) and (IP) for conservative and dissipative systems. In the two sections below, on
interpolation and summation, we explain how these steps apply on the incremental energy Πk.

3.1. Interpolation

Upon specifying a subset of atoms Nato
rep ⊆ Nato, #Nato

rep = nrep � nato that determine
the deformation state of the system, one can reconstruct the positions of all the remaining
atoms through interpolation:

r̂ = Φr̂rep, (16)

cf. Eq. (2). Here, r̂rep ∈ Rrep(t) represents a column matrix of all representative atoms’
position vectors for any admissible configuration, and the matrix Φ stores the basis vectors
spanning Rrep(t) by columns. Analogously, r0,rep represents a vector of repatoms’ positions
in the reference configuration. Eq. (16) basically introduces a geometric equality constraint
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for r̂ which, upon substitution into Eq. (7), entails that the incremental energy becomes a
function of r̂rep and rrep(tk−1), i.e.

Πk(r̂, ẑp, ẑc; r(tk−1), zp(tk−1), zc(tk−1)) = Πk(Φr̂rep, ẑp, ẑc; Φrrep(tk−1), zp(tk−1), zc(tk−1)),
(17)

reducing the number of degrees of freedom associated with the kinematic state of the system
from 2nato to 2nrep, which is substantial if nrep � nato. Minimization in (IP) with respect
to r̂ ∈ R(t) then changes to a minimization over the subspace Rrep(t) which, due to the
linearity in (16), effectively yields a projection of the full solution to that subspace. In order
to specify Φ, one usually introduces a triangulation of Ω0 equipped with piecewise-affine
shape functions with compact support (in analogy to the FE methodology, where the nodes
are the repatoms). This triangulation is finely resolved (to fully recover the underlying
lattice) in the region of interest and coarsely elsewhere. Evaluations of these shape functions
at the positions of all atoms then provide the base vectors,

Φ = Φ(2α−1)(2j−1) = Φ(2α)(2j) = ϕβj(r
α
0 ), α ∈ Nato, βj ∈ Nato

rep , j = 1, . . . , nato
rep, (18)

where βj = Nato
rep (j) denotes the j-th element of the set Nato

rep , and ϕβ(rα0 ) represents a
shape function associated with a repatom β that is evaluated for an atom α in the unde-
formed configuration. Naturally, the shape functions satisfy the Kronecker-delta property,
i.e. ϕβ(rγ0) = δβγ for β, γ ∈ Nato

rep , as well as partition-of-unity property, i.e.
∑

β∈Nato
rep
ϕβ(rα0 ) =

1 for each α ∈ Nato. Note that higher-order polynomial approximations are possible as well,
see e.g. Beex et al. (2015) and Yang and To (2015).

Similarly, we could introduce internal variables associated with repbonds Nbon
rep ⊆ Nbon,

and through interpolation represent all the remaining internal variables of the system,

ẑ• = Ψẑ•,rep, (19)

where • stands either for ”p” or ”c”. Eq. (19) then would constrain the admissible vector
of either plastic elongations ẑp or cumulative plastic elongations ẑc. This approach would,
however, lead to a different technique than introduced by Beex et al. (2014b), with possi-
ble benefits in error estimation, cf. e.g. Chen et al. (2014), since the procedure treats all
unknowns equally and resembles the Reduced-Order-Modelling method, cf. e.g. Quarteroni
and Gianluigi (2014). Some similarities with the models for bond-sliding by Beex et al.
(2014c) can be observed. However, let us emphasize that in their case, the internal variables
associated with sliding are attributed to nodes rather than to bonds, so that they can be
approximated in the same way as the displacements. Within the virtual-power-based QC
framework for lattices with plasticity, only a subset of unknowns (denoted ẑ•,sam) is sought
as well, but this is an assumption of the summation rule, yielding an approximation to incre-
mental energy Πk rather than a geometrical constraint, see Section 3.2 below. Equation (19)
is therefore not included in further considerations and is left as a possible future challenge.

3.2. Summation

The interpolation step with piece-wise affine shape functions ensures that all atomic
bonds inside triangles follow a homogeneous deformation, and therefore yields constant site

9
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Figure 2: Site energies of a simple QC system uniformly stretched along x-axis with an
inhomogeneity in the central region; energy peaks near the inhomogeneity are trimmed for
visualisation purposes. In the x-y plane below the surface, contour lines are indicated for
better clarity.

energies for atoms that have all their nearest neighbours inside the same triangle, cf. Fig. 2.
This observation was significantly used during the construction of summation rules briefly
recalled below.

Let us express the approximation to the incremental energy defined in Eqs. (7) and (15)
as

Πk ≈ Π̂k = ΣTπ̂, (20)

where Σ in general has the form Σ = [w1, . . . , wnato ]T, wα ≥ 0, and π̂ = [π̂k1 , . . . , π̂
k
nato

]T stores
all individual incremental site energies. Choosing weight factors wα = 1, α = 1, . . . , nato,
clearly recovers the full sum presented in (15). Introducing a set of sampling atoms Sato

such that wα > 0 for α ∈ Sato and wβ = 0 for β ∈ Nato\Sato, #Sato = nato
sam � nato, one can

rewrite (20) also as

Π̂k =
∑

α∈Sato

wαπ̂
k
α. (21)

Analogously to sampling atoms, we introduce a set of sampling bonds, Sbon, #Sbon = nbon
sam,

defined as those bonds that are connected to all the sampling atoms Sato with removed
duplicity, recall Eq. (8b). The approximation of the incremental energy can then be expressed
again as a sum over all sampling atoms (Eq. (21)) or as a sum over all sampling bonds
(in analogy to Eq. (15)). Consequently, the dimensionality of the internal variable reduces
from 2nbon to 2nbon

sam, because all variables associated with Nbon\Sbon become irrelevant. The
reduced dissipative variable is denoted as zsam(t) = (zp,sam(t), zc,sam(t)) ∈ Zsam, where Zsam

is identified with R2nbon
sam .

Let us recall Eq. (19) and the discussion related to it. From that, it may be clear that a
mapping from zsam back to the full solution z (i.e. zsam → z in analogy to Eq. (19)) is not
necessarily unique. The reduction of the global state variable from q(t) = (r(t), z(t)) ∈ Q
to qred(t) = (rrep(t), zsam(t)) ∈ Qred = Rrep(t)×Zsam is thus formed by the combination of
the two QC steps that cannot be separated.
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Figure 3: Schematic representation of the two sets of sampling atoms contained in Sato;
small black dots denote ordinary atom sites and larger magenta dots emphasize the sampling
atoms. The triangulation is depicted in the blue colour.

In order to compute the total energy exactly (i.e. to integrate the site energy function
in Fig. 2 exactly), it is necessary to incorporate all variations along the triangles’ edges.
For a large triangle, the energy of only one atom site multiplied by the number of atoms
within that triangle suffices to represent the plateau, whereas the atoms near the edges and
in the fully resolved region must all be taken into account explicitly. This yields the so-
called exact summation rule proposed by Beex et al. (2011), in which the explicit procedure
how to compute weight factors wα (α ∈ Sato) and how to determine the set of sampling
atoms Sato can be found. Another sampling scheme focuses on the centres of the triangles
and is therefore referred to as central summation rule, as only the plateaus and vertex atoms
are sampled. See Beex et al. (2014a) or Amelang et al. (2015) for further details and Fig. 3 for
a schematic representation of the two summation rules. Compared to the exact summation
rule, the central summation rule is cheaper, but introduces approximation errors.

4. Numerical Solution Strategies

Directly approaching (IP) with respect to both variables r̂ and ẑ can be cumbersome.
Instead, it is relatively straightforward to perform the minimization in a staggered way, i.e.
with respect to kinematic and internal variables sequentially, resulting in the AM method.
This scheme appears in the literature also under names such as Block-Nonlinear Gauss–
Seidel Method or Block-Coordinate Descent Method. For the original formulation the reader
is referred to Csiszár and Tusnády (1984), for recent works to e.g. Byrne (2011, 2013), and
for applications in variational fracture to e.g. Bourdin et al. (2000).

In the context of the variational QC method, the AM procedure needs to be applied to
the incremental problem (IP) with the incremental energy defined by Eq. (7). For a fixed
time step tk, it results in the following scheme

(i) Initialization: r0 = r(tk−1), z0
p = zp(tk−1), and z0

c = zc(tk−1)

11



(ii) General iteration: l = 0, 1, . . . , until convergence

rl+1 = arg min
r̂∈R(tk)

Πk(r̂, zlp, z
l
c; q(tk−1)), (AMa)

zl+1
p ∈ arg min

ẑp∈Rnbon

Πk(rl+1, ẑp, z
l
c; q(tk−1)), (AMb)

zl+1
c ∈ arg min

ẑc∈Rnbon

Πk(rl+1, zl+1
p , ẑc; q(tk−1)). (AMc)

In the first time increment, i.e. for k = 1, the initial condition (I) is used.

4.1. Full-Lattice Computation

For hardening plasticity, i.e. for dhαβ(ẑc)
dẑc

> 0 and d2hαβ(ẑc)
dẑ2

c
> 0, the minimization in (AMc)

can be performed in closed form. For arbitrary time step tk and iteration l, the solution reads

zαβ,l+1
c = zαβc (tk−1) + |zαβ,l+1

p − zαβp (tk−1)|, αβ = 1, . . . , nbon. (23)

This relation follows from the bond-wise formulation of the energy in Eqs. (14a) and (15),
and from the definition of the dissipation distance in Eq. (12). The minimization then
decomposes into independent problems

zαβ,l+1
c ∈ min

ẑαβc ∈R
π̃kαβ(rαβ,l+1, zαβ,l+1

p , ẑαβc ; q(tk−1)), αβ = 1, . . . , nbon (24)

solved by (23). Substituting (23) into definition (7) provides the reduced incremental energy,
cf. Mielke and Roub́ıček (2015), Section 3.1.2,

Πk
red(r̂, ẑp; q(tk−1)), (25)

and the AM algorithm simplifies to steps (AMa) – (AMb) for Πk
red.

Continuing with step (AMa), Πk
red is sufficiently smooth with respect to r̂, so that the

standard Newton’s algorithm can be employed. In what follows, two nested iteration cycles
will be used where l relates to AM and i to Newton’s algorithm. Assuming that ẑp = zlp
and, tk and l are fixed in (25), the second-order Taylor expansion in r̂, in the vicinity of r̂i,
is applied to obtain the following stationarity conditions

Ki(r̂i+1 − r̂i) + f i = 0, (26)

where

f i = f(r̂i) =
∂Πk

red(r̂, zlp; q(tk−1))

∂r̂

∣∣∣∣∣
r̂=r̂i

, (27a)

Ki = K(r̂i) =
∂2Πk

red(r̂, zlp; q(tk−1))

∂r̂∂r̂

∣∣∣∣∣
r̂=r̂i

. (27b)
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Condition (26) supplies a system of linear equations for increments r̂i+1− r̂i. Iterating (26)
and (27) until convergence of ||f i||2 then yields rl+1. As usual, Dirichlet boundary conditions
are imposed through known increments for constrained atoms. For tying conditions, the
constrained primal-dual minimization procedure is applied, cf. Section 5. We refer also to
Tadmor and Miller (2011), Section 6.4.4, for similar approaches used for MS systems. The
gradients f i and Hessians Ki are provided in detail in Eqs. (A.1) – (A.4) in Appendix A
for the reader’s convenience.

Before dealing with the non-smooth step (AMb), the energy is again rewritten into the
bond-wise form, cf. Eqs. (14a) and (15). Consequently, (AMb) can be treated in analogy
to (24), i.e.

zαβ,l+1
p ∈ min

ẑαβp ∈R
π̃kred,αβ(rαβ,l+1, ẑαβp ; q(tk−1))⇐⇒

0 ∈ ∂ π̃kred,αβ(rαβ,l+1, zαβ,l+1
p ; q(tk−1)), αβ = 1, . . . , nbon,

(28)

where ∂ denotes the subdifferential with respect to ẑαβp , cf. e.g. (Roub́ıček, 2005) or (Bonnans
et al., 2006, Section 8.1), and π̃kred,αβ represents a reduced bond energy. In mechanics terms,
Eq. (28) represents the Karush–Kuhn–Tucker complementarity conditions of a stretched
uniform bar with isotropic hardening, and can thus be solved with the standard return-
mapping algorithm described in detail e.g. in Simo and Hughes (2000), Section 1.4.2.

4.2. QC Computation

Instead of minimizing the exact incremental energy Πk
red, its approximation Π̂k

red in terms
of the reduced variable qred ∈ Qred is minimized in the variational QC formulation. Using
the chain rule in the Taylor series expansion applied in step (AMa), recall Eqs. (17) and (21),
provides the stationarity conditions

H i(r̂i+1
rep − r̂irep) +Gi = 0, (29)

with

Gi = G(r̂irep) = ΦT
∂Π̂k

red(r̂, zlp; qred(tk−1))

∂r̂

∣∣∣∣∣
r̂=Φr̂irep

, (30a)

H i = H(r̂irep) = ΦT
∂2Π̂k

red(r̂, zlp; qred(tk−1))

∂r̂∂r̂
Φ

∣∣∣∣∣
r̂=Φr̂irep

, (30b)

where the partial derivatives are expressed as

∂Π̂k
red(r̂, zlp; qred(tk−1))

∂r̂
=
∑

α∈Sato

wα
∂π̂kred,α(r̂, zlp; qred(tk−1))

∂r̂
=
∑

α∈Sato

wαf
α
int(r̂), (31a)

∂2Π̂k
red(r̂, zlp; qred(tk−1))

∂r̂∂r̂
=
∑

α∈Sato

wα
∂2π̂kred,α(r̂, zlp; qred(tk−1))

∂r̂∂r̂
=
∑

α∈Sato

wαK
α(r̂). (31b)

13



For definitions and explicit expressions of fαint and Kα see Eqs. (A.1) and (A.3). The
converged solution of (29) is denoted by rl+1

rep .
In order to minimize in (AMb), again the bond-wise version of the approximate incre-

mental energy is employed, yielding

zαβ,l+1
p ∈ min

ẑαβp ∈R
wαβπ̃

k
red,αβ(rαβ,l+1, ẑαβp ; qred(tk−1))⇐⇒

0 ∈ ∂ wαβπ̃kred,αβ(rαβ,l+1, zαβ,l+1
p ; qred(tk−1)), αβ ∈ Sbon,

(32)

where wαβ, αβ ∈ Sbon, denotes the weight factor associated with a bond. Because the
problems in (32) are independent, the weights wαβ are irrelevant (though they can be easily
established from wαβ) and the problem can be solved sequentially using the return-mapping
algorithm in analogy to Eq. (28), but only over a subset of bonds Sbon ⊆ Nbon.

Interestingly, the resulting governing equations exactly coincide with those provided
by Beex et al. (2014b), indicating that the virtual-power-based formulation is also variationally-
consistent. Let us note that the introduction of constraints for the dissipative variables, as
outlined in Eq. (19), would lead to coupled systems of equations for zp,rep and a different
(non-local) minimization strategy would be needed instead.

5. Numerical Examples and Comparison

This section demonstrates the previously discussed theory for two benchmark examples,
originally introduced in Beex et al. (2014b) and Beex et al. (2015). The results will show that
the energy balance (E) holds along the entire loading paths for all computed solutions. In
both cases, we employ the following pair potential (in Eqs. (33) – (35), the superscripts αβ
are dropped for brevity)

φ(r̂, ẑp) =
1

2

EA

r0

(r̂ − r0 − ẑp)2, (33)

i.e. the bond stiffness reads EA/r0, in accordance with the standard truss theory. Note that
this definition corresponds to the rotated engineering deformation measure. The hardening
potential reads as

h(ẑc) =
1

ρ+ 1
Aσ0Hr0

(
ẑc

r0

)ρ+1

, (34)

which—by virtue of (28) and (32)—yields the power-law hardening rule in the form

fY = Aσ0

[
1 +H

(
zc

r0

)ρ]
. (35)

Here, fY denotes the current yield force of a bond connecting atoms α and β, whereas the
initial yield force reads f0 = Aσ0. All physical constants used throughout this section are
specified in Tab. 1.
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Table 1: Dimensionless material and geometric parameters for both test examples.

Physical parameters Value

Young’s modulus, E 1

Cross-sectional area, A 1

Yield stress, σ0 0.01

Hardening modulus, H 10

Hardening exponent, ρ 0.5

5.1. Uniaxial Loading Test

As the first example a uniform loading test is presented. The domain Ω0 occupies 100×
100 lattice spacings of 1 unit length; the fully resolved system consists of 10, 201 atoms
and 40, 200 bonds. A stiff region occupying 6 × 6 lattice spacings in the centre represents
an inhomogeneity within an otherwise homogeneous medium. The Young’s modulus of the
springs in the stiff domain is 100 times larger than elsewhere and the initial yield force f0 is
infinite to prevent plastic yielding. All bonds on the boundary ∂Ω0 =

⋃4
i=1 Γi (see Fig. 4),

have cross-sectional areas reduced to 1/2. The boundary conditions are set according to Beex
et al. (2014b), Section 4.1:

ry(Γ1) = r0,y(Γ1) = −50,

rx(Γ2) = r0,x(Γ2) + 10t = 50 + 10t, t ∈ [0, 1],

rx(Γ4) = r0,x(Γ4) = −50, (36a)

r(Γ1 ∩ Γ4) = r0(Γ1 ∩ Γ4) =

[
−50
−50

]
,

ry(Γ3) = ry(Γ3 ∩ Γ4), (36b)

where r(Γ) denotes the deformed configurations of all the atoms lying on line segment Γ
(rα = [rαx , r

α
y ]T). Time interval [0, 1] is divided uniformly into 100 increments (i.e. nT = 100

and T = 1, cf. (IP)). The numerical example is performed for the exact and central sum-
mation rules, utilizing nine meshes; eight of them are depicted in Fig. 5 while the ninth one
represents the fully-resolved lattice. In order to demonstrate the importance of the mesh
quality, we use two groups of triangulations: structured ”S” (Figs. 5a – 5d) and unstruc-
tured ”U” (Figs. 5e – 5h), constructed such that the number of repatoms (nrep) is pairwise
nearly the same, see Tab. 2. For the unstructured meshes, the coarsening immediately starts
outside the fully-refined region with a mild coarsening gradient that yields relatively large
transition regions. Consequently, the sizes of the fully-resolved regions differ.

Concerning the implementation of step (AMa), the Dirichlet boundary conditions (36a)
are applied in the standard way. The tying condition (36b) is enforced by first collecting all
atoms or repatoms lying on the Γ3 part of the boundary (except for the r(Γ3 ∩Γ4) atom) in
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Figure 4: Scheme of the uniaxial loading test: geometry and boundary conditions.
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Figure 5: Eight triangulations for the uniaxial loading test: (a) – (d) structured ”S” meshes,
used also in Beex et al. (2014b), and (e) – (h) unstructured ”U” meshes. The sizes of
the fully-resolved regions, the numbers of repatoms, sampling atoms, and sampling bonds
corresponding to these meshes are provided in Tab. 2.
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Table 2: Uniaxial loading test: sizes of the fully-resolved regions ”size full”, numbers of
repatoms nrep, sampling atoms nato

sam, and sampling bonds nbon
sam for meshes depicted in Fig. 5;

”Ex” relates to exact and ”C” to central summation rule, ”S” to structured and ”U” to
unstructured meshes.

Quantity Sa Ua Sb Ub Sc Uc Sd Ud full

size full 14×14 8×8 20×20 12×12 26×26 20×20 32×32 24×24 100×100

nrep 349 337 597 537 893 969 1,277 1,113 10,201

nato
sam

{
Ex 5,113 5,621 5,425 8,209 5,889 8,169 6,217 8,161

10,201
C 597 593 929 1,193 1,245 1,541 1,697 1,875

nbon
sam

{
Ex 25,389 27,076 26,814 36,360 28,373 36,288 29,474 36,504

40,200
C 3,492 3,536 5,076 7,636 6,482 8,544 8,396 10,388

a set NΓ3 . Then, Eq. (36b) is rewritten as

ry(Γ3 ∩ Γ4)− rαy = 0, α ∈ NΓ3 , (37)

which are globally assembled to
Cr = 0, (38)

and imposed by Lagrange multipliers, i.e. by the primal-dual formulation. This yields an
iterative solution of saddle-point problems (cf. Bonnans et al. (2006), Section 14), that reads

[
Ki CT

C 0

][
r̂i+1 − r̂i

λ̂
i

]
= −

[
f i

Cr̂i

]
(39)

for time step tk and AM iteration l, providing us with rl+1 and λl+1 upon convergence.
The energy profiles corresponding to the loading program (36) for all the meshes and

both summation rules are depicted in Fig. 6a. Here we notice that the curves corresponding
to the individual solutions are identical and that the errors are extremely small. Moreover,
we can check that all solutions satisfy the energy balance (E) along the entire loading paths,
since the thin dotted line corresponding to

∫ t
0
P(s) ds lies on top of the thick dashed line

representing E + VarD. Upon zooming in (Fig. 6b, where only the results for the mesh Sa

are presented for clarity), we observe that the exact summation rule increases the system’s
energy with respect to the full lattice simulation, whereas the central summation rule causes
the energy to be slightly lower. This behaviour is not surprising as the overall energy
increases when geometric constraints by the QC system are introduced (while using the
exact summation rule). Further, since the site energies of atoms lying near the triangles’
edges are higher compared to internal atoms (recall Fig. 2), the approximate energy for the
central summation rule is slightly lower.
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Figure 6: Results for the uniaxial loading test: (a) total energy evolution paths for all meshes
and both summation rules, (b) zoom in of only mesh Sa (Fig. 5a) for the exact and central
summation rule.

Because the exact and approximate energy profiles are indistinguishable by the naked
eye, we introduce a relative error measure L2([0, 1]) for E(t),VarD(t), and E(t) + VarD(t).
Namely,

ε�̃ =
||�QC −�full||L2

||�full||L2

, (40)

where � either stands for E(t),VarD(t), or E(t) + VarD(t), and �̃ stands for E ,VarD, or E +
VarD. The subscript ”QC” denotes results obtained from the QC simulations, whereas the
subscript ”full” represents the results computed for the fully-resolved system. The error
measure ε�̃ is presented for the various meshes in Fig. 7. We further distinguish between
the error due to interpolation (denoted as ”Int.”) and the total error due to interpolation
plus summation (denoted as ”Tot.”). Thus, ”Int.” relates to the error obtained for the exact
summation rule, whereas ”Tot.” relates to the error obtained for the central summation
rule. The largest value amounts to 1.43× 10−3 and corresponds to the dissipation VarD, cf.
Fig. 7b. Whilst the error due to interpolation behaves in a reasonable way, i.e. decreases
with an increasing dimension of the projection basis, the interpolation plus summation error
surprisingly behaves in the opposite way (see Fig. 7), i.e. increases with an increasing
number of sampling atoms. Since the total error is dominated by summation, this behaviour
can be related to the mesh topology. Namely, to the number of triangles for which the
central sampling atom and all its neighbours are not contained in the same triangle.2 Such a
conjecture is supported by the perfect match between the total error profiles in Fig. 7c and the
mesh characteristics in Fig. 8. Numerically quantified, the Pearson’s correlation coefficient
for these data amounts to 0.998 (structured mesh) and 0.963 (unstructured mesh). This

2Note that in accordance with the QC convention, a triangular element is considered as a closed set.
Consequently, the atoms lying on element’s edges or vertices are contained in that triangle.
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Figure 7: Results for the uniaxial loading test: relative error ε�̃ (Eq. (40)) for the meshes
presented in Fig. 5. ”Int.” relates to interpolation (exact summation rule) and ”Tot.” to
interpolation plus summation (central summation rule).

result supports the idea of a direct transition between the fully-resolved and interpolated
regions, or motivates the use of rapid mesh coarsening rather than a mild one. On the other
hand, the overall error magnitude is so small that this behaviour can also be deemed singular.
Finally, let us note that while the energy errors (global error measures) are negligible, the
relative errors of the internal variables (local error measures) are still noticeable, cf. Beex
et al. (2014b), Section 4.3. But this is consistent with one’s expectations as the QC aims to
closely approximate the global incremental energy Πk, recall Section 3.2.

Concerning the mesh types, we conclude from Fig. 7 that the performance in terms of
the interpolation error is nearly the same, though the unstructured meshes are slightly more
accurate. In terms of the total error, however, the structured meshes perform evidently
better. The structured ones are also more efficient, as for them the corresponding numbers
of sampling atoms (nato

sam) and sampling bonds (nbon
sam) are systematically lower, see Tab. 2.

Recall that the number of repatoms (nrep) remains comparable. Such behaviour can be again
related to the mesh topology and the size of the transition region. Combined results from
Fig. 7 and Tab. 2 reveal that by accepting errors in energies up to 2 %, the number of degrees
of freedom reduces up to the factor of 30. In the case of the sampling atoms, the reduction
is up to the factor of 17.

The highly accurate energy reconstruction of the QC method for the uniform loading test
is attributed to two aspects. First, the (plastic) deformation field is more or less piecewise
constant over the deformed domain Ω(t). Hence, it is well captured by constant approxima-
tions within triangles. Second, perturbations near the inhomogeneity are resolved accurately
by all employed meshes. Consequently, the summation error outweighs the interpolation er-
ror. These two reasons and the example presented in Beex et al. (2015), Sections 4.2 and 5.2
motivate the following test, where the deformation field due to bending is linear rather than
constant and more pronounced differences due to interpolation are expected.
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Figure 8: Results for the uniaxial loading test: number of triangles for which the central
sampling atoms do not have all their neighbours within the same triangle; meshes from Fig. 5
used.

5.2. Pure Bending Test

In this example, the domain Ω0 is exposed to pure bending around the z-axis, cf. Fig. 9.
An inhomogeneity of 6×6 lattice spacings is situated at the bottom edge, in which the trusses
have a 100-times higher Young’s modulus and an infinite initial yield force f0 prevents plastic
yielding. The entire domain occupies 200 × 100 lattice units and comprises 20, 301 atoms
connected by 80, 300 bonds. The boundary conditions for ∂Ω0 =

⋃4
i=1 Γi read as follows

rx(Γ4) = r0,x(Γ4) = −100,

r(Γ1 ∩ Γ4) = r0(Γ1 ∩ Γ4) =

[
−100
−50

]
, (41a)

r
αj+1
x − rαjx
r
αj+1
y − rαjy

= tan θ, j = 1, . . . , nΓ2 − 1, (41b)

where we have collected nΓ2 atoms or repatoms on Γ2 in the set NΓ2 ; note that αj =
NΓ2(j) denotes the j-th element of NΓ2 . All atoms in NΓ2 are sorted from bottom to top,
i.e. r

αj+1
y > r

αj
y , hence rα1 = r(Γ1 ∩ Γ2) and r

αnΓ2 = r(Γ2 ∩ Γ3). Condition (41b) therefore
requires that r(Γ2) follows a straight line that is allowed to freely move in space and has a
slope θ, cf. Fig. 9b; note that atoms can slide frictionlessly along this line but cannot move
in the perpendicular direction. Equation (41b) can then be rewritten as

rαj+1
x − rαjx + (rαjy − rαj+1

y ) tan θ = 0, j = 1, . . . , nΓ2 − 1, (42)

and globally assembled as
C(θ)r = 0, (43)

in analogy to Eqs. (37) and (38). Since the constraints now depend on θ(t) through Eq. (44)
below, matrix C changes for each time step tk. To accomodate this, C is replaced by Ck =
C(θ(tk)) in Eq. (39). The overall deformation process is finally parametrized as

θ(t) =
π

6
t, t ∈ [0, 1], (44)

20



Bonds with extreme
plastic deformations

y

x

X-braced lattice

Stiff region

Ω0

Γ4

Γ3

Γ2

Γ1

(a) geometry

θ

y
x

(b) deformed state

Figure 9: Scheme of the pure bending test: geometry, boundary conditions, and deformed
state

and the time interval is divided into 100 uniform increments (i.e. nT = 100, T = 1). The
numerical example is again studied for the two summation rules, but now only for five
unstructured meshes. Four of them are shown in Fig. 10, the fifth one represents the full
lattice. The corresponding numbers of atoms, repatoms, and sampling bonds can be found
in Tab. 3.

The energy evolution paths for all meshes are shown in Fig. 11 for the exact summation
rule, and in Fig. 12 for the central summation rule. Here, in both cases, the differences
between solutions are more pronounced compared to the previous example, though they
are still quite small. The results show that the energy equality (E) holds again. Upon
zooming in, we notice that the interpolation error (Fig. 11b) is smallest for the mesh Bb,
which has the least overall element size. So the error is dominated by the limitation of
constant strain triangles to capture bending, and is almost insensitive with respect to the
size of the fully-resolved region. Instead of refining the triangulation in the coarse part of
the domain, an alternative approach for decreasing the interpolation error would be to use
higher-order approximations, as shown e.g. in Beex et al. (2015). Furthermore, the total
error due to interpolation and summation (Fig. 12b) is smaller in magnitude compared to
the interpolation error alone, meaning that the two errors partially compensate.

The relative integral error measure ε�̃, defined in Eq. (40), can be found in Fig. 13 for the
four meshes and the two summation rules. The best agreement achieved for mesh Bb is due
to finer mesh resolution over the entire domain Ω; the largest error amounts to 28.98× 10−3

attained for mesh Ba, for dissipation VarD presented in Fig. 13b. Comparing the increase in
the number of repatoms with respect to error, we conclude from Fig. 13 and Tab. 3 that by
accepting an error in energies less than 3 %, we gain the reduction in the number of degrees
of freedom up to the factor of 40, and in the number of sampling atoms up to the factor
of 22. The dependency of the error in Fig. 13 on the mesh topology is more complicated
than in the previous example. Specifically, the Pearson’s correlation coefficient between the
number of triangles with central sampling atoms that do not have all the neighbours in the
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Figure 10: The four triangulations for the pure bending test; the sizes of fully-resolved
regions, the numbers of repatoms, sampling atoms, and sampling bonds are presented in
Tab. 3.

Table 3: Data for pure bending test: sizes of the fully-resolved regions ”size full”, numbers
of repatoms nrep, sampling atoms nato

sam, and sampling bonds nbon
sam for meshes depicted in

Fig. 10; ”Ex” relates to exact and ”C” to central summation rule.

Quantity Ba Bb Bc Bd full

size full 14×10 20×13 26×16 32×19 200×100

nrep 507 812 894 1,194 20,301

nato
sam

{
Ex 10,709 13,989 10,693 11,301

20,301
C 941 1,558 1,342 1,872

nbon
sam

{
Ex 51,094 66,990 51,136 52,432

80,300
C 5,789 9,574 7,215 10,120
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Figure 11: Results for the pure bending test: (a) total energy evolution paths, (b) zoom in;
the different meshes from Fig. 10 using exact summation rule are compared to full-lattice
solution.
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Figure 12: Results for the pure bending test: (a) energy evolution paths, (b) zoom in; the
different meshes from Fig. 10 using the central summation rule are compared to full-lattice
solution.
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Figure 13: Results for the pure bending test: relative errors ε�̃ defined in Eq. (40) for various
meshes depicted in Fig. 10. ”Int.” relates to interpolation (exact summation rule) and ”Tot.”
to interpolation plus summation (central summation rule).

same triangle and the ”Tot.” error in Fig. 13c drops to −0.051, indicating no dependence.
Finally, the following quantity is examined

εzp(t) =
||zQC

p,sam(t)||∞ − ||zfull
p (t)||∞

||zfull
p (t)||∞

, (45)

measuring the relative error between full-lattice ”full” and approximate ”QC” solutions for
extreme plastic deformations attained at Γ1 alongside the inhomogeneity, cf. Fig. 9a. Recall
that for some z ∈ Rn, the norm employed in Eq. (45) reads as ||z||∞ = max{|z1|, . . . , |zn|}.
Quantity εzp(t = 1) is presented for the different meshes and summation rules in Fig. 14. It
can be seen that the size of the fully resolved region again does not improve the accuracy
as much as mesh refinement in the coarse domain does. Because the interpolation increases
the energy of the system and the summation slightly underestimates it, the two effects again
cancel each other to some extent. Notice that this does not hold for mesh Bb where the
summation error dominates.

6. Summary and Conclusions

An analysis of the QuasiContinuum (QC) approach for regular lattice systems with inter-
nal dissipative processes is presented based on the variational, energy-consistent formulation
of Mielke and Roub́ıček (2015). The main results can be summarized as follows:

1. The virtual-power-based QC method introduced by Beex et al. (2014b) can be equiv-
alently derived from an appropriate energy potential. As both QC schemes satisfy
the energy balance, the variational structure of the virtual-power-based QC method is
confirmed by this study.

2. As a consequence of the central summation rule, the number of internal variables is
highly reduced. An alternative approach may be to introduce geometrical constraints
for the internal variables, possibly allowing a unique reconstruction of all unknowns
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Figure 14: Results for the pure bending test: relative error εzp(t = 1) defined in Eq. (45) for
various meshes depicted in Fig. 10. ”Int.” relates to interpolation (exact summation rule)
and ”Tot.” to interpolation plus summation (central summation rule).

(instead of only the kinematic variables). We have outlined briefly this perspective and
emphasized the differences from the summation rule assumption.

3. In the section describing the solution strategies, an alternating minimization method
for nonsmooth potentials was specified for the QC framework.

4. The example section has demonstrated the energy consistency of different QC schemes
for two benchmark examples involving uniform loading and pure bending. In spite
of large computational savings, all approximate solutions for both examples proved
to be in a very good agreement with the full-lattice solution in terms of stored and
dissipated energies (by accepting errors in energies only up to 3 %, the number of
degrees of freedom may be reduced up to the factor of 40).

The presented variational QC framework generalizes the original energy-based conserva-
tive quasicontinuum methodology for an entire class of rate-independent interactions and
can easily be adjusted to incorporate e.g. damage phenomena merely by appropriate modi-
fications of the energies.

Appendix A. Explicit Forms of Gradients and Hessians

For the sake of completeness, we provide in this appendix the derivatives of Πk
red, recall

Eq. (25), with respect to r̂ explicitly. The internal force associated with atom α, fαint ∈
R2nato , reads as

fαint(r̂) =
∂π̂kred,α(r̂, ẑp; q(tk−1))

∂r̂
=

1

2

∑

β∈Bα

∂φαβ(r̂αβ, ẑαβp )

∂r̂γ
=

=
1

2

∑

β∈Bα

φ′
r̂αβ

r̂αβ
(δβγ − δαγ), γ = 1, . . . , nato,

(A.1)
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where π̂kred,α denotes the reduced incremental site energy of atom α with condensed vari-
able ẑc, see also Eqs. (14b) and (25). The global force is then expressed as

f(r̂) =
nato∑

α=1

fαint(r̂). (A.2)

Note that if external force vector f ext is present, it is simply subtracted from the right-hand-
side of Eq. (A.2). The stiffness matrix associated with an atom site α, Kα ∈ R2nato×R2nato ,
reads as

Kα(r̂) =
∂2π̂kred,α(r̂, ẑp; q(tk−1))

∂r̂∂r̂
=

1

2

∑

β∈Bα

∂2φαβ(r̂αβ, ẑαβp )

∂r̂γ∂r̂δ
=

=
1

2

∑

β∈Bα

[
φ′

r̂αβ
δmn +

(
φ′′

(r̂αβ)2
− φ′

(r̂αβ)3

)
r̂αβ ⊗ r̂αβ

]
(δβγ − δαγ)(δβδ − δαδ),

m, n = 1, 2, γ, δ = 1, . . . , nato,

(A.3)

whereas global stiffness is expressed as

K(r̂) =
nato∑

α=1

Kα(r̂). (A.4)

Here, we have used the relation

∂r̂αβ

∂r̂γm
=
r̂αβm
r̂αβ

(δβγ − δαγ), m = 1, 2, (A.5)

and for brevity we have denoted

φ′ =
∂φαβ(r̂αβ, ẑαβp )

∂r̂αβ
, φ′′ =

∂2φαβ(r̂αβ, ẑαβp )

∂(r̂αβ)2
. (A.6)

Above, m,n relate to spatial dimensions, α, β relate to atoms, δmn denotes the Kronecker-
delta product with respect to spatial coordinates, δαβ denotes the Kronecker-delta product
with respect to atoms, and a⊗ b = ambn denotes the tensor product of vectors a and b.
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