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Abstract

We overview the main features of mobile impurities moving in one-dimensional superfluid back-

grounds by modeling it as a mobile Josephson junction, which leads naturally to the periodic

dispersion of the impurity. The dissipation processes, such as radiative friction and quantum

viscosity, are shown to result from the interaction of the collective phase difference with the back-

ground phonons. We develop a more realistic depleton model of an impurity-hole bound state

that provides a number of exact results interpolating between the semiclassical weakly-interacting

picture and the strongly interacting Tonks-Girardeau regime. We also discuss the physics of a

trapped impurity, relevant to current experiments with ultra cold atoms.
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I. INTRODUCTION

The motion of mobile impurities in superfluid environments is a fascinating subject with

a long history. The field first came to prominence in the late forties with experiments on

4He – 3He mixtures. It was noticed that the super flow through the supra-surface film does

not involve He3, leading to a substantial purification of 4He leaking out of the container

[1]. The phenomenon was initially attributed to the absence of superfluidity in 3He. Soon

after, Landau and Pomeranchuk [2] realized that the effect has actually nothing to do with

the quantum statistics of the impurities, but rather with the fact that foreign atoms cannot

exchange energy and momentum with the superfluid fraction. Instead, the rare impurities

ought to contribute to the normal fluid fraction. The nature of their interactions with the

normal fraction was not elucidated in the initial 1948 short paper [2], and was dealt with

in subsequent publications of Landau and Khalatnikov [3, 4] and Khalatnikov and Zharkov

[5]. The latter authors realized that at small temperatures the dominant interaction process

is two phonon scattering by 3He atoms, leading to impurity diffusion and equilibration with

the normal fraction. Since the scattering mechanism relies on the absorption of thermal

phonons, the diffusion coefficient is sharply divergent at small temperature, T , and the

corresponding linear in velocity, V , viscous friction force scales as Ffr ∼ T 8V . The theory

was further developed in a number of influential papers [6–10] and verified experimentally

through precision measurements of the velocity and attenuation of sound [11]. The subject

was revived in the seventies in the context of the storage of cold neutrons in superfluid 4He

[12–14].

Recently the field has received growing attention due to advances in cold atom experi-

ments. Through a number of techniques it became possible to place various impurity atoms

in Bose-Einstein condensates (BEC) of alkali atoms, manipulate their mutual scattering

strength and apply forces selectively to the impurity atoms. The Cambridge group [15] has

used microwave pulses to flip the hyperfine state of a few spatially localized atoms in the

BEC of magnetically levitated 87Rb, turning them into mobile impurities. The impurities,

created in the hyperfine mF = 0 state, were then accelerated through the BEC by the grav-

itational force, not compensated by the magnetic trap. The Innsbruck [16] and Bonn [17]

groups have placed 133Cs impurities in a BEC of 87Rb, and magnetically tuned their mutual

scattering length with a Feshbach resonance. The Florence group [18] created mixtures of
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41K and 87Rb, and manipulated the two components with species-selective optical poten-

tials. Another line of research [19–21] deals with inserting a single ion into a BEC of neutral

atoms using a linear Paul trap to control the ion and study the mutual ion-atom interaction.

Although at the moment the ion micromotion leads to a continuous depletion of BEC atoms

from the trap [19, 21], this setup offers a potential benefit in terms of easy manipulations

with the help of electrostatic fields.

One of the great advantages of the modern ultra cold atomic experiments is the control

over their dimensionality by placing atoms into one, two or three dimensional optical lattices.

In particular, it has become possible to study impurity dynamics in a one-dimensional (1D)

atomic background, where the transverse motion is fully quantized and only the lowest

transverse sub-band is occupied by the atoms [15, 18, 22]. The peculiarity of the 1D setup

is that every impurity atom effectively “cuts” the host liquid, creating an effective tunneling

Josephson junction (JJ) between the two superfluids. Unlike a conventional JJ, however,

the impurity is mobile and is characterized by its coordinate and momentum, in addition

to the Josephson phase, Φ, across it. As we explain below, the Josephson physics (and

in particular the periodic dependence of energy on Φ) leads to a qualitative change of the

impurity dispersion relation, which goes far beyond a simple mass renormalization usually

considered in higher dimensions. The actual energy-momentum relation E(P, n) of a mobile

impurity in a 1D superfluid with density n is a periodic function of the total momentum P

with the period 2π~n. This periodicity is due to the fact that in a system of size L with

nL particles, the momentum nL × (2π/L) = 2πn may be transferred to the 1D Galilean

invariant host liquid with the energy cost nL × (2π/L)2/(2m), negligible in the L → ∞

limit (here and below we set ~ = 1 and m is the atomic mass of the host superfluid).

Therefore, the groundstate of a large system whose momentum is an integer multiple of 2πn

corresponds to a super-flowing host and an impurity at rest with respect to it. We note that

these considerations are not applicable in dimensions larger than one.

By following the dispersion curve E(P, n) adiabatically through the application of a

small external force F to the impurity, one expects to see Bloch oscillations with period

2πn/F in the absence of any periodic lattice. The mechanism behind these oscillations, first

predicted in Ref. [23], was attributed to the emergence of an effective crystalline order of

the background atoms, robust against thermal fluctuations for sufficiently low temperatures

as well as phonon radiation for sufficiently small external forces.
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Although the dynamics of mobile impurities in 1D atomic condensates has attracted a lot

of attention [23–34], a systematic pedagogical exposition of the consequences of the above

mentioned periodic dispersion is still missing. This paper serves to fulfill this gap. Here we

investigate the dynamics of mobile impurities in a 1D quantum liquid, exploring similarities

and differences with the Josephson physics. Our particular focus is on the conditions where

the Bloch oscillations may be observed. To this end we consider the thermal friction (i.e.

due to the normal fraction) along with the acceleration induced phonon radiation losses.

We also put a special emphasis on the consequences of being close to exactly integrable

points in the parameter space of impurity mass and impurity-host interaction strength. An

amazing consequence of dealing with Galilean invariant 1D systems is that a number of

exact results are available even away from such integrable points. We will show below that

the dispersion relation E(P, n), a static quantity available numerically or analytically in a

number of limiting cases, determines many dynamic characteristics exactly, including those

going beyond the linear response theory. Finally, we apply our results obtained for trans-

lationally invariant systems to the trap geometry with an external adiabatic potential. We

give a number of estimates for systems whose parameters are taken from recent experiments

[15, 18] as well as their immediate extensions.

The paper is organized as follows: in Section II we illustrate the main ideas behind

the physics of quantum impurities with a simple, yet a non-trivial, model of a moving

Josephson Junction (mJJ). In Section III we introduce the coupling of an impurity to the

background modeled as an elastic medium (phonons). We discuss the mechanism of energy

and momentum losses induced by such coupling and derive the expression for the mobility.

The simple model is then generalized to describe the impurity dynamics in any interacting

quantum liquid at the expense of introducing an additional coupling to density fluctuations

in Section IV. We illustrate this formalism in Section V by deriving our previous results for

the impurity dynamics in a weakly interacting background. We then consider the background

consisting of impenetrable bosons (the Tonks-Girardeau gas) where the impurity becomes

a heavy polaron. We derive the first main result of the paper for the mobility of heavy

polarons in Section VI. The second main result corresponds to the description of impurities

in a harmonically trapped background and is presented in Section VII. We conclude and

discuss open questions in Section VIII.
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FIG. 1. Mobile impurity modeled by a moving Josephson Junction. The interaction between the

impurity and the host liquid creates a distortion of the local density and phase fields n(x, t), φ(x, t)

of the host. When the impurity is driven out of equilibrium it excites phonons that propagate away

at the sound velocity, and the phase drop Φ(t) becomes a dynamical quantity. The density and

phase profiles are displaced vertically for clarity and represent, from top to bottom, snapshots of

the fields as time evolves.

II. MOVING JOSEPHSON JUNCTION MODEL

The essential physics of a mobile impurity is most easily illustrated by a strongly repulsive

impurity moving in a background of weakly interacting bosons. It can be modeled by a

weak link located at the position X separating two condensates [35]. The phase difference

Φ between the two condensates, Fig. 1, gives rise to the Josephson term in the energy

Hd(Φ) = −nVc cos Φ + µN (1)

The critical velocity is denoted by Vc, which depends on the impurity-background interaction.

The last term in Eq. (1) takes into account the number of particles N depleted by the

impurity. Here we are working in the grand-canonical ensemble with the chemical potential

µ ≈ gn fixed by the background density n and interaction parameter g.

The phase drop Φ inevitably creates a small background supercurrent nΦ/mL. While the

contribution of the supercurrent to the total energy is of the order of 1/L, its contribution

to the total momentum P is independent of the system size, and is given by nΦ. The total
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energy of the moving Josephson Junction (mJJ) is thus the combination of the Josephson

term, Eq. (1) and the kinetic energy of the localized impurity,

H(P,X,Φ) =
1

2M
(P − nΦ)2 + U(X) +Hd(Φ). (2)

where M = M −mN is the total mass of the impurity, including the mass of N particles

it depletes from its vicinity. We have also included an external potential U(X), e.g. of

gravitational or optical origin, acting on the impurity.

The phase drop Φ represents a collective coordinate characterizing the state of the im-

purity’s depletion cloud. In equilibrium its value is determined from the requirement of the

minimum of the total energy (2):

(P − nΦ)/M = Vc sin Φ , (3)

The physical meaning of this condition is the matching between the current I = nV of the

background particles moving with velocity V = (P −nΦ)/M across mJJ and the Josephson

current nVc sin Φ. Equation (3) admits a solution Φ(P, n) that may be substituted into the

Hamiltonian (2) to obtain the dispersion curve H(P,Φ(P, n)) = E(P, n) of the mJJ in the

absence of the external potential U . Using the minimum condition Eq. (3) one may show

that the velocity of the impurity satisfies

V = (P − nΦ)/M = ∂E/∂P , (4)

which defines the group velocity of the impurity dressed by the depletion cloud.

One may notice a close similarity of the mobile impurity Hamiltonian (2) and the SQUID

or phase qubit [36]. In this analogy n2/M plays the role of the inductance of the SQUID loop,

while the dimensional ratio P/n is a direct analog of the external flux (in units of the flux

quantum), permeating the loop. As in the case of the SQUID, the thermodynamic quantities

are periodic functions of the external flux with the period 2π, implying the periodicity of

the dispersion relation E(P + 2πn, n) = E(P, n), see Fig. 2. For example, in the case of

a strong repulsive impurity, Vc � c, we have from Eq. (3): Φ(P, n) ≈ P/n and E(P, n) ≈

−nVc cos(P/n) + µN .

Periodicity of the impurity’s energy–momentum relation has dramatic consequences for

its dynamics: if the momentum is linearly increased P = Ft by an external force F = −∂XU ,

the velocity of the impurity does not increase indefinitely but changes periodically, exhibiting
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FIG. 2. Schematic dispersion relation for a mobile impurity in a 1D quantum liquid. Left panel:

When the impurity mass is subcritical M < Mc the dispersion is smooth, and the energy function

H(P,Φ) has a unique minimum at Φ(P ). At low temperatures, two-phonon scattering processes

(red arrows) lead to energy and momentum relaxation of the impurity. Right panel: For M > Mc

the groundstate develops singular cusps at odd integer multiples of πn, and the function H(P,Φ)

acquires metastable minima (the dashed lines in E(P, n) represent local maxima of H(P,Φ)).

Bloch oscillations with the period τB = 2πn/F , [23, 25]. This spectacular phenomenon is

a close relative of the AC Josephson effect: under an applied constant force (voltage), the

impurity velocity (current) is an oscillatory function of time. The mechanism is that once

the time-dependent phase shift Φ(t) reaches π, the system undergoes a phase slip from

π → −π, which channels momentum 2πn into the superfluid background flow, and reverses

the direction of the impurity’s motion.

Another useful analogy is that of an impurity propagating in a periodic potential with

the period n−1 (this would be the case if the host gas forms a rigid 1D crystal). The

energy spectrum of the impurity in such a lattice consists of Bloch bands periodic across

the Brillouin zone with the width 2πn. Despite the fact that the background liquid is not

actually a lattice, the groundstate energy of the liquid with an impurity is nevertheless a

periodic function of the total momentum P , analogous to the lowest Bloch band in a periodic

potential. The difference is that in the liquid there is a continuum of gapless excitations

above the groundstate E(P, n), which are due to the presence of the phononic modes. In the

case of the rigid lattice, excited states at fixed momentum are separated by an energy gap,

so the leading deviation from adiabaticity in the presence of an external force is given by
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exponentially weak Landau-Zener tunneling processes. The gapless modes of the superfluid

background modify the adiabatic picture of Bloch oscillations in a much more substantial

way. To capture the dynamics of a driven impurity we must generalize the static picture

to the situation where Φ is a dynamical variable. This is achieved in the next section by

introducing the coupling of the impurity to phonons.

We mention that Eq. (3) may admit several distinct solutions when the impurity mass

exceeds a critical value (i.e. for MVc/n > 1). This corresponds to multiple metastable

minima of the function H(P,Φ), which, for the case of a SQUID, represent trapped flux

states in a system with large inductance. This feature has the distinguishing property that

the groundstate is degenerate when the momentum is an odd multiple of πn (the two states

reflect the two independent solutions for Φ at this point). The corresponding level crossing

leads to a cusp in the groundstate energy [37] as the momentum varies past πn, see Fig. 2,

and qualitatively changes the dynamics of a driven impurity, as discussed in Ref. [26].

Another remarkable phenomenon is the macroscopic quantum tunneling of phase between

successive minima of H(P,Φ) [38]. It leads to the possibility of an impurity, trapped in such

a meta-stable state, to transfer its energy and momentum to the host and thus experience

an effective friction force Ffr even at zero temperature. Such a friction force appears to be

a highly non-linear function of the impurity velocity [39, 40]. It may seem to contradict the

notion, discussed in the introduction, that only the normal fraction exerts friction on the

impurity. The reason is that the condensate is, strictly speaking, absent in 1D even at T = 0

due to long wavelength fluctuations of the phase. Moreover, once a heavy impurity reaches

the lowest minimum of H(P,Φ) it moves indefinitely (super flows) with a small velocity up

to ∼ πn/M , without any friction at T = 0. A light impurity, MVc/n < 1, does not exhibit

metastable minima and is bound to relax to its only stable minimum E(P, n), where it does

not experience any T = 0 friction, linear or non-linear.

Another frequent misconception associated with a light mobile impurity, as opposed to

a static impurity or a tunneling barrier, is the interaction-induced renormalization of its

tunneling transparency. To make an extreme version of the argument, consider an impurity

in a repulsively interacting Fermi gas. According to Kane and Fisher [41] the tunneling

transparency renormalizes to zero in the limit of zero temperature, independent of the initial

bare value. This seemingly suggests that such an impenetrable impurity cannot move and its

dispersion must be flat. The flaw in this argument is that the Kane-Fisher renormalization
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is based on the 2kF = 2πn backscattering processes, which for a finite mass impurity are

associated with the recoil energy ER = (2πn)2/(2M). The renormalization thus terminates

at this finite energy scale [42], leaving the tunneling transparency and dispersion bandwidth

finite. As a result, a finite mass impurity has a non-flat (2πn periodic) dispersion relation

E(P, n) even in a repulsive Fermi gas.

Below, we focus on the experimentally most relevant case, where the mass is subcritical

and the dispersion is a smooth periodic function of momentum, while H(P,Φ) has a unique

stable minimum at Φ = Φ(P, n). For the case of impurities with a supercritical mass we

refer the reader to Ref. [26].

III. IMPURITY-PHONON COUPLING AND DISSIPATION

The static picture of the previous section needs to be modified if the Josephson phase

Φ becomes time-dependent. Since instanteneoous changes of the phase in the left/right

condensates are impossible, one must take into account the generated gradients of the phase

field, i.e. local currents which, in turn, lead to the density transport in the form of phononic

excitations, as illustrated in Fig. 1.

For nonzero phononic fields, the impurity is subject to the modified local supercurrent.

The Josephson Hamiltonian (1) should be modified by the tilting term

Hint = −δIΦ , (5)

where δI = (δṄL− δṄR)/2 is the current through the impurity, given by the rate of change

of the excess number of particles to the left, δNL, and to the right, δNR, of the impurity.

Expressing these numbers via the integral of the density field,

δNL = −δNR =

∫ X

−∞
ρ(x, t)dx =

1

π
ϑ(X, t), (6)

and using the standard bosonization definition [43] ρ = ∂xϑ/π of the field ϑ(x, t), we obtain

Hint = − 1

π
Φ

d

dt
ϑ(X, t) =

1

π
Φ̇(t)ϑ(X, t) , (7)

where the full time derivative was omitted. Obviously, this term is only relevant for a time-

dependent Josephson phase Φ̇ 6= 0. Notice that it does not involve any coupling constants

and thus represents a universal coupling of the collective variable Φ to the phononic degrees

of freedom described by the field ϑ(x, t) and its canonical conjugate superfluid phase field
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ϕ(x, t). Their dynamics can be linearized near equilibrium, resulting in the Luttinger liquid

Hamiltonian [43]

Hph =
c

2π

∫
dx

[
1

K
(∂xϑ)2 +K (∂xϕ)2

]
. (8)

Here K = πn/mc is the Luttinger parameter, proportional to the compressibility of the

background liquid. For a weakly interacting superfluid K � 1, while for impenetrable

bosons K = 1.

We now integrate out the phononic degrees of freedom using the Keldysh technique [44]

as explained in Ref. [25]. As a result we obtain a quantum dissipative action, similar to that

of the Caldeira-Leggett model [38]. The dissipation arises naturally from the continuous

spectrum of phonons with a constant density of states at small energy, described by Eq. (8).

This procedure results in a generically time non-local effective action for the impurity degrees

of freedom X(t) and P (t), coupled to the collective variable Φ(t).

A. Zero-temperature dynamics and nonlinear mobility

Postponing a discussion of fluctuation effects until Section III B, we focus here on the

deterministic part of the corresponding equations of motion, which are obtained by variation

of the effective action with respect to the “quantum” components [25] of Φ(t) and X(t)

degrees of freedom. The phase variable exhibits over-damped dynamics with the effective

“friction” coefficient K/2π,

K

2π
Φ̇ = −∂H

∂Φ
, (9)

where the Hamiltonian H is given by Eq. (2). If the initial phase drop is off-equilibrium, it

will evolve towards the value which minimizes H by radiating away the excess phase differ-

ence in the form of phonons, see Fig. 1. This results in an energy loss with the instantaneous

rate

W =
∂H

∂Φ
Φ̇ = −K

2π
Φ̇2 . (10)

In addition to the energy loss, the radiation of phonons also leads to the loss of momentum,

i.e. a radiation friction force, Frad. The equation for the momentum for the mobile impurity

becomes

Ṗ = F + Frad = − ∂U
∂X
− K

2π

V

c2
Φ̇2 . (11)
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FIG. 3. Schematic velocity as a function of time for various forces listed in the legend (F in units

of Fmax = 2nmc2). As F increases, the drift velocity and frequency of oscillations increases.

The main effects of the energy and momentum losses are to renormalize the period of

oscillations τB and to introduce a finite drift velocity VD, Ref. [25]. The latter can be

obtained from calculating the power radiated to the phononic bath averaged over one period

of oscillations and equating it to the work done by the external force:

FVD = −〈W 〉τB = − 1

τB

∫ τB

0

K

2π
Φ̇2 dt . (12)

Using Φ̇ = (∂Φ/∂P )Ṗ and Ṗ ≈ F , we see that the drift velocity is proportional to the

external force VD = σF . The proportionality coefficient is the nonlinear mobility σ, given

by the integral over the Bloch oscillation period

σ =
1

2πn

∫ 2πn

0

K

2π

(
∂Φ

∂P

)2

dP ≈ K

2πn2
, (13)

where the last approximate equality is obtained assuming that Φ ≈ P/n. This result can

be interpreted as an inverse resistance using the analogy with electrical current: in the co-

moving frame the impurity experiences current I = nVD and the power dissipated on the

impurity should be supplied by the external force, I2R = FVD, hence 1/R = n2σ = K/2π.

It is exactly the electrical resistance of a clean Luttinger liquid [43], R = h/e2K, if one uses

units such that ~ = e = 1 [45].

By no means should Eq. (13) be interpreted in terms of linear response theory: the drift

motion of the impurity is superimposed with the non-linear Bloch oscillations, see Fig. 3.

The modified period of the oscillations can be calculated from the relation

2πn =

∫ τB

0

Ṗ dt = τB(F − 〈Frad〉τB) . (14)
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Using 〈Frad〉τB/F ≈ σ2F 2/c2 we obtain the renormalized period

τB =
2πn

F

1

1− (F/Fmax)2
. (15)

This expression can be trusted only for small forces F . Fmax, where the characteristic force

Fmax is given by

Fmax =
c

σ
≈ 2mc2n . (16)

Beyond this characteristic force the drift velocity exceeds the speed of sound c and impurity

emits Cherenkov radiation of phonons, which dramatically increases its energy and momen-

tum losses. Since the Bloch oscillations do not take place in this regime, we shall not discuss

it here.

We note that for the experiment of Ref. [15], which used two hyperfine states of 87Rb

for the impurities and background gas, the coupling is rather strong mg/n ∼ 7. In this

case the mobility is close to σ = K/2πn2 ≈ 1/2πn2. The external force is provided by

the gravitational field, which gives a drift velocity VD/c ∼ 8. The gravitational force thus

exceeds the maximal force Fmax = 2π2n3/m by a factor of 8, and our low-energy theory

is inapplicable. The Bloch oscillations do not occur, and instead the impurities become

supersonic before exiting the gas. However, owing to the strong density dependence of Fmax,

a gas twice as dense (or sufficiently lighter, e.g. Li and Na) would provide a maximal force

comparable to the gravitational one and Bloch oscillations become possible, see Table III A.

The crossover between strong and weak force at F = Fmax was studied numerically in

Ref. [28], whose results are consistent with our theoretical predictions.

B. Fluctuations

So far we have considered the zero temperature dynamics of an accelerated impurity.

We turn now to the finite temperature regime and focus on the thermal fluctuations of the

host liquid. In doing so we shall assume that the liquid is at thermal equilibrium with

temperature T in the laboratory reference frame, and thus acts as a bath for the impurity.

In a generic (non-integrable) case one expects that an excited impurity should thermalize

by losing its excess energy and momentum to the bath in the form of phonon emission.

The problem, however, is that due to the velocity mismatch, V < c, the emission of a

single phonon is energetically forbidden since |E(P, n)− E(P ± ω/c, n)| < ω (here ± refers
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Li Na K Rb Cs

Fmax/Fgrav 25 1.7 0.54 0.12 0.05

ncrit [µm−1] 0.22 0.55 0.80 1.32 1.75

TABLE I. Typical parameters for various quantum gases in which impurities are created in the

mF = 0 hyperfine state. Top row: Ratio of the maximal force over the gravitational force assuming

a density of background particles n = 0.65µm−1 in the strong coupling regime γ ≈ 7 (as used in

Ref. [15] for Rb) where Fmax ≈ 8n3/m. At this density, Bloch oscillations are expected to occur

for Li and Na, corresponding to Fmax/Fgrav > 1 (bold entries). Bottom row: Critical density of

various gases at fixed coupling γ = 7. For n > ncrit Bloch oscillations are expected to occur.

absorption of a right/left moving phonon with energy ω). The leading process of energy

and momentum exchange is therefore the two-phonon process. In this case the impurity

first absorbs a thermal phonon with energy ω ≈ T , bringing it to the virtual state with

momentum P ±ω/c, and then emits a Doppler shifted phonon with the energy ω± ≈ c∓V
c±V ω,

see Fig. 2. One notices that, while both processes happen at the same rate, there is a net

momentum loss between them in the amount (ω−−ω+)/c ∝ V ω/(c2−V 2). At small velocity

V � c, this implies a linear in velocity thermal friction force

Ffr = −κ(T )V (17)

acting on the impurity.

The above considerations indicate that: (i) since the two-phonon process relies on thermal

phonons, the friction coefficient κ(T ) is strongly temperature dependent and vanishes at

T = 0; (ii) the thermalization process is not uni-directional, but is rather diffusive with a

drift in the momentum space. Indeed, the same procedure of integrating out the phonons,

described in Sec. III, leads naturally to the additional stochastic terms in the equations of

motion. They originate from the parts of the action that are quadratic in the “quantum”

Keldysh components of the fields ϑ(X, t) and ϕ(X, t), evaluated at the impurity coordinate.

These fields can be conveniently decomposed into two independent (chiral) auxiliary fields

ξ±(t), whose equilibrium correlation functions〈
ξ±(ω)ξ±(−ω)

〉
= Kω coth

ω

2T±
(18)
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depend on the Doppler-shifted temperature T± = T (1∓ V/c). The corresponding equations

of motions for the phase Φ(t) and momentum P (t) are modified to become

K

2π
Φ̇ = −∂H

∂Φ
+
(
ξ+ + ξ−

)
, (19)

Ṗ = F − K

2π

V

c2
Φ̇2 +

1

c
Φ̇
(
ξ+ − ξ−

)
. (20)

Notice that, since the impurity interacts with the liquid through the time dependent phase

shift, Eq. (7), the stochastic term in its equation of motion also comes with the multiplicative

Φ̇ factor, understood in the sense of Ito calculus. The friction force, due to the two-phonon

processes discussed above, may be obtained from Eqs. (19), (20) as follows. We solve Eq. (19)

as a frequency (time-derivative) expansion as KΦ̇/2π = −Γ
2
(ξ̇+ + ξ̇−)− Γ2

4

(
ξ̈+ + ξ̈−

)
+ . . . ,

where Γ−1 = −(π/K)∂2
ΦH, or according to Eq. (2), Γ ≈ −KM/πn2. Substituting this

expansion into the last term of Eq. (20) and averaging over the noise according to Eq. (18),

one finds to the leading order in V/c

Ffr =
πΓ2

2Kc

[
〈ξ+ξ̈+〉 − 〈ξ−ξ̈−〉

]
' −Γ2

4c

∫ ∞
0

dω

2π

ω4

sinh2 ω
2T

V

cT
= − 2π3

15c2
Γ2T 4V. (21)

As a result the friction coefficient in Eq. (17) is given by

κ(T ) =
2π3

15c2
Γ2 T 4. (22)

The T 4 dependence of the friction coefficient in 1D, at low temperatures, was first found

by Castro-Neto and Fisher [42]. This result is a 1D generalization of 3D Khalatnikov’s T 8

result [3–10], mentioned in the Introduction. We will show below that, beyond the simple

model discussed here, the amplitude Γ may be expressed exactly in terms of the impurity

dispersion relation E(P, n). One can then check explicitly that for all known exactly solvable

models Γ = 0, consistent with the idea that integrable systems do not thermalize.

At finite temperature we therefore have two distinct regimes: for F < Fmin = κ(T )Vc

Bloch oscillations do not occur and after some initial acceleration the impurity attains a

steady state with the drift velocity VD = F/κ(T ) = σKuboF . In the low temperature

regime considered here, the linear Kubo mobility σKubo � σ is large, see Table III B. In

the range Fmin < F < Fmax, Bloch oscillations appear with the renormalized period τB =

2πn/
√
F 2 − F 2

min, while the corresponding drift velocity is approximately given by VD ≈

σF + σKuboF
2
min/2F . As a result, the drift velocity is a non-monotonous function of the

applied force with a sharp local maximum VD ≈ Vc at F ≈ Fmin. Alternatively at a fixed
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Li Na K Rb Cs

Fmin/Fgrav[×10−5] 7.4 0.69 0.22 0.05 0.02

σ[µm2/~] 2.4 2.4 2.4 2.4 2.4

σKubo[µm2/~× 105] 1.5 1.5 1.5 1.5 1.5

TABLE II. Ratio of the minimal force over the gravitational force and mobilities for various quan-

tum gases. We assume the impurity is created in a distinct hyperfine state of the gas with the

impurity-gas scattering length differing from the gas-gas scattering length by 10% (when they are

equal, or if the background gas is in the Tonks-Girardeau limit Fmin = 0, σKubo = ∞ due to

integrability). In all cases we have assumed a temperature T = 0.5mc2, density n = 0.65µm−1

and coupling strength γ = 7. Due to the closeness to integrability, the gravitational force always

greatly exceeds the minimal force, and gives rise to Bloch oscillations if Fgrav < Fmax (see Table I).

force, the drift velocity is a non-monotonous function of temperature with a maximum

attained when κ(T ) = F/Vc.

An additional consequence of the noise terms in Eqs. (19), (20) is dephasing of the

oscillations even at zero temperature due to quantum fluctuations. Using the last term in

Eq. (20), together with Φ ≈ P/n, we have

Φ(t) ' 1

n

∫ t

0

dt′Ṗ (t′) ' F

n

[
t+

1

c

∫ t

0

dt′
(
ξ+ − ξ−

)]
. (23)

As a result, the oscillatory part of the noise-averaged velocity decays as a power law:

〈V (t)〉 = VD + Vc〈sin Φ(t)〉 = VD +
Vc

(µt)α
sin

Ft

n
, (24)

where α = (4π/K)(F/Fmax)2.

The behavior of the impurity velocity is illustrated in Fig. 4. At finite temperature the

same calculation results in the exponential decay for the envelope of the Bloch oscillations:

〈V (t)〉 ≈ VD + Vc exp(−παTt) sin(Ft/n), which may lead to complete blurring of Bloch

oscillation phenomenon, in contrast to the power law dephasing at T = 0.
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FIG. 4. Schematic noise-averaged velocity as a function of time including the effects of fluctuations.

For F < Fmin the impurity velocity saturates below the critical velocity and Bloch oscillations do

not occur. For Fmin < F < Fmax Bloch oscillations occur, but are attenuated in time due to

dephasing, see Eq. (24).

IV. MOBILE IMPURITY IN A GENERIC SUPERFLUID BACKGROUND: THE

DEPLETON MODEL

The phenomenology and the formalism, outlined above, are in no way restricted to the

mJJ model. The generic description is obtained by acknowledging that in addition to the

phase Φ(t) there is another collective degree of freedom, which may be chosen as the number

of depleted particles N(t). The presence of two slow collective variables follows from the

presence of two conservation laws: momentum and particle number. For a system condi-

tioned to fixed values of Φ and N , all other degrees of freedom equilibrate quickly on the

timescale µ−1 to form an optimal depletion cloud. On the other hand, changing Φ and N is

only possible by channeling momentum and particles into excitations of the liquid. When

the time variation of Φ, N is slow (e.g. due to a small external force), these excitations

consist of soft phonons whose wavelength greatly exceed the size of the depletion cloud ξ

leading to the appearance of a fast time scale ξ/c. This time scale, being compared with the

period of Bloch oscillations τB = 2πn/F , provides the upper bound on the external force F .

This bound is identical to the previously formulated condition F < Fmax and we use such an

adiabatic approach to develop an analytically tractable theory for the low-energy impurity

dynamics [25]. Recently this adiabatic approach was critisized in Refs.[29, 30, 33], based on

the absence of the gap to lowest excitations. We note here, however, that these excitations

are phonons, traveling fast away from the depleton and thus leaving it in a state of local
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equilibrium, sufficient for using the adiabatic approach.

The Hamiltonian (2) is generalized to

H(P,X,Φ, N) =
1

2

(P − nΦ)2

M −mN
+ U(X) + µN +Hd(Φ, N) . (25)

The quantity Hd(Φ, N) is the so-called depleton energy and is constructed in such a way that

the minimization of H(P,Φ, N) (without U(X)) with respect to Φ, N for fixed momentum

P and density n yields the equilibrium dispersion E(P, n) of the impurity. Conversely, if the

exact groundstate energy E(P, n) is known, Φ(P, n) and N(P, n) can be determined from

the partial derivatives of E(P, n) by solving the equations

∂E

∂P
=

P − nΦ

M −mN
= V ;

∂E

∂n
= −V Φ +

mc2

n
N. (26)

The first of Eqs. (26) is identical to Eq. (4), while the second relation in Eq. (26) follows from

taking the density partial derivative of Eq. (25) in equilibrium, defined by ∂NH = ∂ΦH = 0.

The equilibrium values of N(P, n), Φ(P, n) are also directly related to the edge expo-

nents of the impurity spectral function A(P, ω), which represents the probability for an

impurity with momentum P and energy ω to tunnel into the ground state of the liquid

[37, 46–52]. Because E(P, n) defines the lower edge of the many-body spectrum in the

presence of the impurity, we have A(P, ω) ∝ Θ(ω − E(P, n)) [ω − E(P, n)]β(P,n), where

β = 2K [(Φ/2π)2 + (N/2K)2] − 1. The power law behavior at the spectral threshold is

a consequence of the orthogonality catastrophe and was discussed extensively in the review

[52] in terms of the phonon scattering phase shifts δ±/
√
π = −

√
K/πΦ∓

√
π/K N . These

relations provide an interpretation of the phase drop Φ and the number of depleted particles

N beyond the semiclassical regime of weakly interacting bosons. Indeed, the phase shifts

δ± of the chiral low energy excitations across a moving impurity may be defined for any

interaction strength.

The coupling, Eq. (7), must now be generalized to include the dynamics of N . The form

of the coupling remains universal and is given by

Hint =
1

π
Φ̇ϑ(X, t) + Ṅϕ(X, t) . (27)

Together with the Hamiltonian in Eq. (25) the last equation defines the depleton model.

Integrating out the phononic modes leads to the coupled dynamical equations for P,X,Φ, N .
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Their solution in the limit F → 0 yields the exact nonlinear mobility

σ =
1

2πn

πn∫
−πn

dP

(
c2

c2 − V 2

)[
K

2π

(
∂Φ

∂P

)2

+
V

c

(
∂N

∂P

)(
∂Φ

∂P

)
+

π

2K

(
∂N

∂P

)2
]
. (28)

For the thermal friction force one finds

Ffr = − 2π3

15c2

∣∣Γ∣∣2(c2 + V 2

c2 − V 2

)
T 4V . (29)

It has the same form as Eq. (21) with the only difference that the phononic backscattering

amplitude Γ depends on derivatives of both collective variables,

Γ(P, n) = −1

c

(
M

m

∂Φ

∂P
+ Φ

∂N

∂P
−N ∂Φ

∂P
+
∂N

∂n

)
. (30)

As discussed below, the backscattering amplitude and therefore the thermal friction force

vanish for integrable models.

It is remarkable that finding dynamical quantities, such as σ and σKubo, only requires

knowledge of the dispersion E(P, n), which is a purely thermodynamic quantity! The latter

may be evaluated in various limiting cases. The previously considered mJJ model can be

obtained by considering a particle moving in a weakly interacting bosonic gas by taking

the limit of strong repulsion between the impurity and the atoms in the background. The

latter can be modeled semiclassically by a Bose-Einstein condensate as we explain in the

next section. In this case the depleton parameters N and Φ are obtained directly from the

solution of the Gross-Pitaevskii equation. In the case of a strongly interacting background,

quantum fluctuations play a dominant role and one has to use a full quantum-mechanical

calculation for the dispersion E(P, n). This can be done in the extreme Tonks-Girardeau

limit which is equivalent to free fermions as we show in Section VI.

V. IMPURITY IN A WEAKLY INTERACTING BACKGROUND

For the case of a weakly interacting background the energy and momentum of the impurity

can be determined using the classical solution X(t) = V t of the impurity’s coordinate. Here

the the condensate wavefunction acquires the traveling wave form Ψ(x, t) = Ψ(x − V t) in

the frame moving with the impurity and satisfies the Gross-Pitaevskii equation (GPE)

− iV ∂xΨ = − 1

2m
∂2
xΨ− g

(
n− |Ψ|2

)
Ψ +Gδ(x)Ψ , (31)
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FIG. 5. Solution of Eq. (31) obtained by matching two grey solitons. Left panel: the density

profile. Right panel: the phase profile. The collective variables N and Φ are shown.

where g is the interaction coupling constant between the background atoms and G is the

impurity-background interaction constant. Due to the presence of the repulsive contact

interaction term, the moving impurity creates a depletion cloud which is effectively bound

to it.

The shape of the depletion cloud can be obtained by constructing a solution from two

impurity free solutions (i.e. those with G = 0) that satisfy the proper boundary conditions

at location of the impurity: Ψ′(0+) − Ψ′(0−) = 2mGΨ(0). This strategy is facilitated by

the fact that for V < c the bare GPE (G = 0 in Eq. (31)) admits a one-parameter family of

soliton [53, 54] solutions:

Ψs(x) =
√
n

(
V

c
− i

√
1− V 2

c2
tanh

x

l

)
, (32)

where l−1 = m
√
c2 − V 2. The solitons can be visualized as a density dip having a core size

l, as well as a corresponding phase drop. By appropriately matching two solitonic solutions

at the impurity location one solves Eq. (31) [25] as illustrated in Fig. 5.

From the solution Ψ(x − V t) the equilibrium values of the collective coordinates N, Φ

can be computed directly in terms of the coupling G and velocity V , as shown in Fig. 5.

As expected, these values are in complete agreement with the thermodynamic definitions in

Eqs. (26). This can be shown by first solving for the energy E(V, n) and momentum P (V, n)
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as functions of V using the equations

E = MV 2/2 +

∫
dx

[
1

2m
|∂xΨ|2 +

g

2

(
n− |Ψ|2

)2
]

+G|Ψ(0)|2, (33)

P = MV + i

∫
dxΨ∗∂xΨ + nΦ . (34)

By inverting Eq. (34) one finds V (P, n), which can be substituted into the energy to yield the

dispersion E(V (P, n), n) = E(P, n). The same procedure independently yields the equilib-

rium values of the collective coordinates N(P, n), Φ(P, n) as functions of the total momen-

tum, which allows one to check that the thermodynamic relations (26) are indeed fulfilled.

With the impurity dispersion now in hand, one can proceed to compute the nonlinear

mobility σ using Eq. (28) and the backscattering amplitude Γ given by (30). For a weak

impurity, G � c, the main contribution to Eq. (28) comes from the regions of momentum

where the velocity is maximal V ≈ Vc ≈ c, leading to

σ ≈ 1

nmG
, G/c� 1 . (35)

which is enhanced compared to Eq. (13) obtained for mJJ model. This enhancement of mo-

bility can be attributed to the fact that in the present case the impurity is almost transparent

to phononic excitations.

For calculation of the backscattering amplitude we can concentrate on P ∼ 0 region and

use the perturbation theory in G/c to obtain N ≈ G/g, Φ ≈ PG/Mc2. Then Eq. (30) leads

to the backscattering amplitude

Γ(P, n) =
1

mc2

(
G

c

)(
mG

Mg
− 1

)
, (36)

vanishing identically for the integrable case M = m, G = g.

In the case of a strongly repulsive impurity, G � c, the critical velocity Vc = c2/G � c

is small and we have N = 2n/mc, Φ = P/n for essentially any momentum P , due to the

small bandwidth of the impurity dispersion. The nonlinear mobility

σ ≈ K

2πn2

(
1− 1

8

c2

G2

)
, G/c� 1 . (37)

is only slightly different from the mJJ result Eq. (13). For the same reason the backscattering

amplitude is approximately momentum independent and given by

Γ(P, n) =
1

mc2

(
1− Mc

n

)
. (38)

Assuming Mc/n � 1 leads to Γ = 1/mc2 which coincides with the value Γ = −KM/πn2

derived in Sec. III B for the mJJ model with M = −mN = −2n/c.
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VI. IMPURITY IN TONKS-GIRARDEAU GAS

In the case of a weakly interacting bosonic gas, the formation of the depleton and its

corresponding periodic dispersion law can be understood as a consequence of the binding of

a soliton to the impurity. The large number of depleted particles N ∝ K � 1 allows one

to develop a semiclassical description of this binding, in which the density and phase fields

can be described using the mean-field Gross-Pitaevskii equation.

As the bosonic gas becomes more strongly interacting the number of missing particles

in the depletion cloud diminishes and the mean-field description becomes inappropriate:

both the soliton and its binding to the impurity must be treated quantum mechanically. As

long as the impurity mass is sub-critical (see Section II) the transition from weak to strong

coupling is a smooth crossover and the impurity-soliton bound state remains intact. In this

section we illustrate this continuity by considering the extreme case of bosons with infinite

repulsion, widely known as the Tonks-Girardeau (TG) gas [55].

One may represent the TG gas of nL hard-core bosons by free fermions with momen-

tum creation/annihilation operators satisfying {cp, c†p′} = δpp′ . This leads to the following

Hamiltonian

Ĥ = − 1

2M

∂2

∂X2
+
∑
p

p2

2m
c†pcp +

G

L

∑
p,q

c†pcp+qe
iqX . (39)

We note that the above mapping to free fermions is valid for interactions of the density-

density type, which we have assumed to be local in space.

To understand the low-energy properties of Eq. (39), consider a state of the system with

total momentum P > 0. If P < P0 ≡ min{MvF , kF}, the low energy states are those where

most of the momentum is carried by the impurity. Indeed, the impurity kinetic energy

P 2/2M is less than that of soft particle-hole excitations above the Fermi sea ∼ vFP . On

the other hand, for P > P0 the low energy states are those where hole excitations carry a

significant fraction of the entire momentum P . The many-body ground state adiabatically

connects between these two limits, thus signaling strong impurity-hole hybridization at P &

P0. As we show below, the strong hybridization manifests itself in the formation of an

impurity-hole bound state. This non-perturbative process is responsible for the smoothness

of the impurity dispersion relation, which in turn gives rise to Bloch oscillations under the

application of an external force.

To illustrate this effect, it is sufficient to consider a subspace of the full many-body
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space containing a single hole excitation with momentum 0 < k < 2kF , in addition to the

impurity with momentum P − k. This restriction is justified in the limit of weak coupling,

G� vF , where the number of particle-hole pairs created by the impurity in the ground-state

is suppressed. The basis vectors of this subspace are

|k;P 〉 = ei(P−k)Xc†kF ckF−k|ΨFS〉 , (40)

where |ΨFS〉 denotes the unperturbed Fermi sea ground-state. The corresponding Schrödinger

equation
∑

k′〈k;P |Ĥ|k′;P 〉ψP (k′) = EψP (k) takes the form of a two-particle problem with

an attractive delta-interaction (formally the attraction arises from anti-commuting the

fermionic operators in the last term in Eq. (39)),

[
(P − k)2

2M
+Eh(k) + nG

]
ψP (k)−G

2kF∫
0

dk′

2π
ψP (k′)=EψP (k). (41)

Here Eh(k) = vFk − k2/2m is the hole kinetic energy (we measure E relative to NEF/3).

This problem admits a unique bound-state solution, whose energy E = Eb(P )+nG is found

from the integral equation

2kF∫
0

dk′

(P−k′)2
2M

+ Eh(k′)− Eb(P )
=

2π

G
. (42)

The resulting bound-state dispersion, shown in Fig. 6, is a smooth periodic function of the

total momentum, which is split from the scattering continuum Eh(k) + (P − k)2/2M by the

gap ∆.

The hard gap between the bound-state and the continuum is an artifact of restricting

the particle in Eq. (40) to be created right at the Fermi momentum kF . Allowing for slight

deviations c†kF → c†kF+p, enlarges the Hilbert space to include, in addition to the bound-state,

low energy, ∼ vFp, particle-hole excitations. It is well known [37, 48, 52] that interactions

with these excitations transforms the bound-state into the quasi bound-state with the power-

law (instead of the pole) spectral function A(P, ω). These low energy excitations are also

responsible for radiation losses and thus for the finite mobility σ. As long as the external

force is sufficiently small, F < Fmax, they do not destroy the Bloch oscillations associated

with the impurity following the quasi bound-state.
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FIG. 6. (Color online) The bound-state Eb(P ), Eq. (42), (thick black line) and scattering continuum

(P−k)2

2M + Eh(k) for a set of k (thin gray lines) for the light impurity M/m = 1/2 (a) and heavy

impurity M/m = 2 (b). In both cases mG/n = 0.7.

A. Results for the exactly integrable model M = m

It is worth noticing that the one-hole bound-state solution (42) is in quantitative agree-

ment with the available exact results. For example, for M = m, the integrability of the

model given by Eq. (39) allows one to determine the exact ground-state energy E(P, n) [37].

It is defined implicitly through the integral relations

E(Λ) =
k2
F

2m
+

kF∫
−kF

dk

2π

4mG

(mG)2 + 4(k − Λ)2

[
k2

2m
− k2

F

2m

]
,

P (Λ) = −2

kF∫
−kF

dk

2π
arctan

2(k − Λ)

mG
, (43)

where one must eliminate Λ in the upper equation using Λ(P ) from the lower equation.

In the vicinity of P ∼ kF , where the one-hole bound-state is expected to be valid,

one finds E(P → kF ) = EF − 2πvF
3G

(P−kF )2

2m
. One may indeed verify from Eq. (42) that

Eb(P → kF ) + nG ≈ E(P → kF ). The effective mass of the bound-state, M∗ = − 3mG
2πvF

,

therefore agrees with the exact result (up to perturbative corrections of O(G2) which are

subleading for G � vF ). This shows that the single hole binding to the impurity is indeed

the leading physical effect in the weak coupling limit.

At strong coupling the impurity becomes dressed by multiple particle-hole pairs and

the above one-hole ansatz loses its quantitative applicability. Nevertheless, the concept of
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the depleton as the impurity-hole bound state is expected to survive, in the sense that

the impurity drags with it a depletion cloud with precisely one missing particle (i.e., a

localized hole). This statement can be made precise by studying the ground-state pair

correlation function 〈n(x)ni(0)〉, which measures the fermion density a distance x away

from the impurity (here ni is the impurity density operator).

For the integrable case M = m the pair correlation function was studied analytically by

McGuire [56], with the strong coupling G� vF result

〈n(x)ni(0)〉 = n

(
1− sin2kFx

k2
Fx

2

)
. (44)

Integrating the deviation of Eq. (44) from the background density n over all space yields

the number of depleted particles N =
∫
x

(n− 〈n(x)ni(0)〉) = 1.

McGuire also studied the pair correlation function and ground-state energy E for arbi-

trary coupling, in the case of zero momentum P = 0. It is interesting to note that from

McGuire’s solution the number of depleted particles, as defined through the pair correlation

function
∫
x

(n− 〈n(x)ni(0)〉), is identical to the thermodynamic expression ∂µE (µ =
k2F
2m

is

the chemical potential of the background fermions)

N = ∂µE =

∫
x

(n− 〈n(x)ni(0)〉) =
2

π
arctan

G

2vF
. (45)

This result substantiates our intuition that N , as defined through the thermodynamic re-

lation (26) (at P = 0 in the present case), is indeed related to the real space depletion of

particles in the vicinity of the impurity, despite the absence of its semiclassical description.

The corresponding lengthscale ξ of the depletion cloud is of course just the Fermi wavelength,

cf. Eq (44), in agreement with the general expectation ξ = 1/mc [25]

B. Exact Nonlinear Mobility

The above results confirm the idea that the ground-state properties of the model can be

understood in terms of the impurity-hole bound state. The dynamic response of the bound-

state can be described within the depleton framework of Sec. IV, where it was discussed

that the response to an external force F , can be characterized by the purely thermodynamic

quantity E(P, n). By computing the dispersion from the integral equation (43) we may

determine the exact mobility using Eqs. (26), (28). At weak or strong coupling the mobility
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FIG. 7. Nonlinear mobility for the equal mass impurity in a Tonks-Girardeau gas. The dashed

lines are the asymptotic limits given by Eq. (46).

is given by

σ =
1

2πn2


4v2F

G2ln
4vF
G

, G� vF ;

1 + 32
9

v2F
G2 , G� vF .

(46)

These asymptotic formulae provide rather tight bounds on the exact mobility deduced nu-

merically from the integral equations (43), as shown in Fig. 7. One can arrive to Eq. (46) in

the limit of strong coupling G � vF by expanding the functions V (P, n), N(P, n), Φ(P, n)

to the leading order in vF/G. Substitution of the resulting expressions into Eq. (28) gives

the second line of Eq. (46).

In the limit of weak coupling the dispersion acquires a more complicated form: it consists

of essentially unperturbed parabolae centered at momenta P = 2jkF for integer j with weak

anti-crossings at P = (2j + 1)kF . The value of the collective coordinates N(P, n), Φ(P, n)

thus remain close to zero at small momentum P < kF and change rapidly to (N,Φ/π)→ 1

in the vicinity of kF in a window of width mG. The momentum derivatives (∂PN, ∂PΦ/π)

which enter the mobility formula (28) are strongly peaked at P = kF −mG/2, with height
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∝ 1/mG. One may thus approximate for G� vF

σ ≈
∫ kF

kF−mG/2

dP

n

(∂PN)2

1− V 2/v2
F

∼ 1

nmG

1

1− V 2(kF −mG/2)/v2
F

∼ 1

n2

v2
F

G2ln(4vF/G)
, (47)

where V (kF −mG/2)/vF ≈ 1− G
2π2vF

ln4vF
G

can be obtained from second order perturbation

theory, see e.g. Eq. (2) of Ref. [37]. Keeping track of the numerical prefactor in Eq. (47)

leads to the first line of Eq. (46). Deviations away from the integrable point M = m do not

significantly affect Eq. (46) provided |1−M/m| < G/vF . As we shall see in the next section,

however, the backscattering amplitude, and thus the Kubo mobility, is strongly sensitive to

the deviation from integrability.

C. Backscattering amplitude

As shown previously [23, 25] the backscattering amplitude vanishes at points of exact

integrability. For the TG gas this implies that Γ ∝ 1−M/m when M ∼ m. Below we verify

this behavior and obtain the exact prefactor in various limiting cases where the analytic

form is available.

In the limit of strong coupling we may set N = 1 and neglect terms proportional to

1/M∗ ∝ 1/G in Eq. (30). We then find

Γ = − π

mv2
F

(
M

m
− 1

)
, G� vF . (48)

This result is independent of momentum to leading order, owing to the essentially flat

dispersion with bandwidth ∝ 1/G.

At small coupling the backscattering amplitude acquires a complicated momentum de-

pendence and we restrict ourselves to its behavior in the vicinity of the analytically accessible

points P = 0, kF . At small momentum one may resort to second order perturbation theory

to obtain E(P, n) ≈ P 2/2M∗ + µd with M∗(P = 0) = M (1 + (G/πvF )2) and µd = nG.

Substituting this dispersion into Eq. (30) gives

Γ(P = 0) = − 2π

mv2
F

(
G

πvF

)2(
M

m
− 1

)
, G� vF . (49)

At P = kF we instead use E(P = kF ) ≈ k2F
2M

and neglect terms of order (M −mN)/M∗(P =

kF )� 1. Recalling that M∗(P = kF ) ∝ −mG/vF , these approximations are seen to be valid
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for small deviations away from the integrable point, |1−M/m| < G/vF � 1. Substituting

them into Eq. (30) gives

Γ(P = kF ) = − 2π

mv2
F

(
M

m
− 1

)
, G� vF . (50)

In all cases the backscattering amplitude scales as 1−M/m, thus vanishing at the exactly

integrable point M = m. This implies the vanishing of the thermal viscosity and the

divergence of the Kubo mobility σKubo at finite temperature. In this case the response to

even an infinitesimal external force is nonlinear: the velocity exhibits Bloch oscillations

superimposed with the drift VD = σF .

VII. IMPURITY IN A TRAPPED CONDENSATE

We now consider the dynamics of an impurity coupled to a 1D quantum liquid confined by

a weak harmonic potential V (x) = 1
2
mω2x2 with ω � µ, where µ is the chemical potential of

the 1D gas in the trap center. In this case the spatial extent L of the gas is much larger than

the healing length ξ and one may use the local density approximation (LDA), for which

the local chemical potential is given by µ(x) = µ − 1
2
mω2x2 for |x| <

√
2µ
mω2 ≡ L, while

µ(x) = n(x) = 0 for |x| > L. In the LDA, one first solves the homogeneous problem at fixed

density for the depleton dispersion law E(P, n) and then substitutes in it the local density

n(X) to obtain the adiabatic depleton Hamiltonian

Htrap(P,X) = E(P, n(X)) +
1

2
Mω2

IX
2. (51)

Here we introduced an additional harmonic potential, acting on the impurity only, as a

control field that can tune the system into different regimes of stability (this can be achieved

using e.g. a species or state selective potential).

In the limit ωI →∞ the impurity is strongly localized in the trap center, while for ωI → 0

it is instead expelled from the center by the repulsive potential produced by the inhomoge-

neous density profile of the host particles. The transition between these two regimes occurs

at a critical value of the trapping frequency, which can be deduced by expanding Eq. (51)

in small deviations away from X = P = 0

Htrap(P,X) ≈ P 2

2M∗ +
1

2

(
Mω2

I −mNω2
)
X2 + E0, (52)
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FIG. 8. (Color online) Impurity trajectory in a trapped quantum liquid. The black curves represent

schematic constant energy contours of Eq. (51). Left panel: for ωI > ωc the adiabatic orbits are

stable in the vicinity of the energy minimum at (X,P ) = (0, 0). Impurity acceleration leads

to phonon damping and thus a decreasing energy and oscillation amplitude (thick blue curve).

Right panel: for ωI < ωc (ωI = 0 shown) the orbits are instead stable near the energy maximum

(X,P ) = (0, πn). In the case of strong coupling, the maximal displacement on the separatrix orbit

is much smaller than the trap size L. In this case the impurity escapes by radiating phonons in

the running momentum phase (here P is plotted modulo 2πn), where the velocity exhibits Bloch

oscillations plus drift (thick red curve).

where we used Eq. (26) and defined E0 = E(0, N) (note that the inverse effective mass

1/M∗ = ∂2
PE is distinct from 1/M used above, see e.g. Eq. (4)). From Eq. (52) we see that

both the impurity mass and trapping potential are renormalized by interactions with the

background particles, and act to make the motion of the impurity slower (generally N > 0

and M∗ > M near P = 0). The effective oscillation frequency of the impurity is

Ω =

√
Mω2

I −mNω2

M∗ < ωI . (53)

As one lowers ωI , the oscillation frequency Ω decreases and crosses zero at the critical value

of the trapping frequency

ωc =

√
mN

M
ω. (54)

This signals the frequency at which the trap center near P = 0 becomes an unstable max-

imum and here Ω becomes purely imaginary (illustrated by the saddle point in Fig. 8 for
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ωI < ωc). Setting ωI = 0 for simplicity, we see that in the limit of weak coupling, G � c,

the lifetime of the impurity initiated at rest in the trap center can be estimated as Im Ω−1

using Eq. (53). This is appropriate because the maximal displacement from the center on

the separatrix orbit is already roughly the trap size: X ∼
√

Eπ−E0

mNω2 ∼ L, (Eπ −E0 ∼ µN at

weak coupling), thus allowing the impurity to reach the trap edge and escape.

At strong coupling, however, the maximal displacement on the separatrix is much smaller,

X ∼ L
√
c/G� L, owing to the small impurity bandwidth, Eπ−E0 ∼ µN(c/G), see Fig. 8.

This implies that the impurity becomes ‘self-trapped’ in a high energy metastable state

by the background gas, and can only escape by releasing energy into phonon excitations.

This dissipation allows the impurity to rapidly cross the separatrix and enter the running

momentum phase, accompanied by a drift towards the trap edge and small amplitude Bloch

oscillations in the velocity, shown by the thick red curve in Fig. 8. Here, Bloch oscillations

are driven by the gradient of the inhomogeneous density profile of the gas. The timescale

and trajectory of the escape can be estimated by noting that since the force is an increasing

function of the displacement, F = −∂XHtrap ∼ mNω2X, the displacement, in turn, satisfies

the differential equation Ẋ = σF ∼ ω2

µ
X (at strong coupling σ = 1

2nmc
, and one can neglect

the amplitude of velocity oscillations). This leads to the exponential increase of the impurity

displacement, X(t) ∝ eω
2t/µ, on the timescale µ/ω2 ∼ 170 ms for the parameters used in the

experiment of Ref. [18], discussed below. We note that in the extreme limit G→∞ (Vc → 0)

the impurity cannot escape, since the number of particles in the left and right condensates

become conserved quantities. This implies that the lifetime of the trapped impurity sharply

increases beyond µ/ω2 as a function of coupling, once mVc < 1/L. For the system studied in

Ref. [18] this yields a crossover coupling (G/g ∼ 100) that greatly exceeds the experimental

values, so we do not pursue this special limit further.

The above results can be tested experimentally by localizing an impurity in the center

of a trapped gas, and measuring the width of the subsequent impurity distribution 〈X2(t)〉

as a function of time. This was done in Ref. [18] using a species selective dipole potential

to initialize a 41K impurity in a gas of moderately interacting 87Rb atoms (mg ∼ n). The

ratio of the trapping frequencies was fixed at ωI/ω = 1.3, while the K-Rb scattering length

was varied by a magnetic field using a Feshbach resonance. From Eq. (54) we find a critical

coupling strength given by Nc ∼ Gc/g = Mω2
I/mω

2 ∼ 1, above which we have ωI < ωc and

below ωI > ωc.
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At stronger coupling, G > g, we thus expect the self-trapping behavior to become pro-

nounced, which appears consistent with the results of Ref. [18] showing a rapid decrease of

the initial oscillation amplitude for G > g (see Fig. 4 of [18]). The characteristic timescale

for the increase of the width at the largest coupling in Ref. [18] (G/g = 30) is a factor of

∼ 8 faster than µ/ω2. Aside from a possible numerical prefactor (that goes beyond the

accuracy of the above discussion), this discrepancy could also be explained by the fact that

the temperature in Ref. [18] is rather large T ∼ µ, making the thermal dissipation channel

highly relevant (the system is far from integrability due to the K-Rb mass difference), thus

giving a faster decay time. The high temperature makes a quantitative comparison with

Ref.[18] difficult since at weak coupling G � g, T is already substantially larger than the

K-Rb interaction energy nG � T , while at strong coupling G/c � 1 the temperature is

comparable to or exceeds the impurity bandwidth T > nVc. Accessing lower temperatures,

or perhaps closeness to integrability (using e.g. internal hyperfine states of Rb) would make

a direct quantitative comparison to the above theoretical results possible (see also Ref. [57]).

VIII. CONCLUSIONS AND OPEN QUESTIONS

In this paper we have provided an overview of the physics of mobile impurities in 1D

quantum liquids using the simplified mobile Josephson Junction model and generalizing it

to the phenomenological depleton model. Our description is based on the existence of the

equilibrium dispersion relation E(P, n), defined as the ground state of the combined system

of an impurity and the superfluid background, at a given momentum P and background

density n. This dispersion curve can be understood in terms of the thermodynamics of

a quantum liquid flowing past an impurity. We have exploited the periodicity properties

of the dispersion to predict the existence of adiabatic Bloch oscillations in the absence of

an underlying lattice. The interaction of the mobile impurity with low energy phononic

excitations was described in terms of two slow collective variables, which allowed us to

address, in particular, the effects of dissipation and dephasing. Based on these results, we

were able to show that the dynamics of impurities in uniform and trapped systems can be

fully characterized.

Using our exact general results, we have provided model-specific calculations of the linear

(Kubo) and non-linear mobilities in the tractable limits of a weakly interacting and a strongly
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interacting background. It is interesting to see that both these limits lead to a clear physical

picture of a depleton consisting of the repulsive impurity binding to an effective “hole” in

the background. In this way the depleton properties, such as the effective mass, become

strongly interaction and momentum dependent.

A spinless particle interacting with a scalar background represents the simplest case of

a mobile impurity. Including internal degrees of freedom of the impurity and those of the

background particles are expected to change qualitatively the low energy physics, like in the

case of spin 1/2 impurity moving in the background made of spin 1/2 fermions [58]. In this

case the spin-spin interactions become singular at low energy due to the formation of a Kondo

polaron and lead to the mobility behaving as T−2 at low temperatures. Extending these

studies to bosonic backgrounds and other values of spin may result in interesting effects of

entanglement and strong correlations which can be probed experimentally by radio-frequency

pulses.

Our description was limited to small applied forces and low temperatures, where the

concept of remaining close to the equilibrium zero-temperature dispersion remains mean-

ingful. One open question is to understand to what extent our results apply to the cases of

stronger forces or higher temperatures that are typical of current experiments in ultracold

atoms. Another open question is the physics of depleton formation relevant at initial stages

of dynamical experiments with impurities.

ACKNOWLEDGMENTS

The authors would like to thank A. Lamacraft, M. Zvonarev, M. Knap, E. Demler, O.

Lychkovskiy, O. Gamayun, V. Cheianov, T. Giamarchi, I.V. Lerner and B. Horovits for

many enlightening conversations that have contributed to our understanding of impurity

dynamics in reduced dimensions. A.K. was supported by NSF grant DMR1306734. M.S.

was supported by the Danish National Research Foundation and The Danish Council for

Independent Research — Natural Sciences. M.S. and D.G. gratefully acknowledge the hos-

31



pitality of the University of Minnesota.

[1] J. G. Daunt, R. E. Probst, H. L. Johnston, L. T. Aldrich, and A. O. Nier, Phys. Rev. 72,

502 (1947).

[2] L. D. Landau and I. Pomeranchuk, Dokl. Akad. Nauk 59, 669 (1948).

[3] L. D. Landau and I. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 19, 637 (1949).

[4] L. D. Landau and I. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 19, 709 (1949).

[5] I. M. Khalatnikov and V. N. Zharkov, Sov. Phys. JETP 5, 905 (1957).

[6] J. Bardeen, G. Baym, and D. Pines, Phys. Rev. Lett. 17, 372 (1966).

[7] G. Baym, Phys. Rev. Lett. 17, 952 (1966).

[8] G. Baym, Phys. Rev. Lett. 18, 71 (1967).

[9] J. Bardeen, G. Baym, and D. Pines, Phys. Rev. 156, 207 (1967).

[10] G. Baym and C. Ebner, Phys. Rev. 164, 235 (1967).

[11] B. M. Abraham, Y. Eckstein, J. B. Ketterson, and J. H. Vignos, Phys. Rev. Lett. 17, 1254

(1966).

[12] R. Golub and J. M. Pendlebury, Phys. Lett. A 53, 133 (1975).

[13] R. Golub and J. M. Penlebury, Phys. Lett. A 62, 337 (1977).

[14] R. Golub, Phys. Lett. A 72, 387 (1979).

[15] S. Palzer, C. Zipkes, C. Sias, and M. Köhl, Phys. Rev. Lett. 103, 150601 (2009).
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(2010).

[21] S. Schmid, A. Härter, and J. H. Denschlag, Phys. Rev. Lett. 105, 133202 (2010).

32

http://dx.doi.org/ 10.1103/PhysRev.72.502
http://dx.doi.org/ 10.1103/PhysRev.72.502
http://dx.doi.org/10.1103/PhysRevLett.17.372
http://dx.doi.org/10.1103/PhysRevLett.17.952
http://dx.doi.org/10.1103/PhysRevLett.18.71
http://dx.doi.org/10.1103/PhysRev.156.207
http://dx.doi.org/http://dx.doi.org/10.1103/PhysRev.164.235
http://dx.doi.org/10.1103/PhysRevLett.17.1254
http://dx.doi.org/10.1103/PhysRevLett.17.1254
http://dx.doi.org/10.1016/0375-9601(75)90500-9
http://dx.doi.org/10.1016/0375-9601(77)90434-0
http://dx.doi.org/10.1016/0375-9601(79)90505-X
http://dx.doi.org/ 10.1103/PhysRevLett.103.150601
http://dx.doi.org/ 10.1103/PhysRevA.79.042718
http://dx.doi.org/ 10.1007/s00340-011-4868-6
http://dx.doi.org/ 10.1007/s00340-011-4868-6
http://dx.doi.org/10.1103/PhysRevA.85.023623
http://dx.doi.org/ 10.1038/nature08865
http://dx.doi.org/ 10.1103/PhysRevLett.105.133201
http://dx.doi.org/ 10.1103/PhysRevLett.105.133201
http://dx.doi.org/10.1103/PhysRevLett.105.133202


[22] T. Fukuhara, A. Kantian, M. Endres, M. Chenau, P. Schauß, S. Hild, D. Bellem, U. Scholl-

woeck, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, Nature Physics 9, 235 (2013).

[23] D. M. Gangardt and A. Kamenev, Phys. Rev. Lett. 102, 70402 (2009).

[24] D. M. Gangardt and A. Kamenev, Phys. Rev. Lett. 104, 190402 (2010).

[25] M. Schecter, D. M. Gangardt, and A. Kamenev, Ann. of Phys. 327, 639 (2012).

[26] M. Schecter, A. Kamenev, D. M. Gangardt, and A. Lamacraft, Phys. Rev. Lett. 108, 207001

(2012).

[27] C. J. M. Mathy, M. B. Zvonarev, and E. Demler, Nat. Phys. 8, 881 (2012).

[28] M. Knap, C. J. M. Mathy, M. Ganahl, M. B. Zvonarev, and E. Demler, Phys. Rev. Lett.

112, 1 (2014), arXiv:1303.3583v1.

[29] E. Burovski, V. Cheianov, O. Gamayun, and O. Lychkovskiy, Phys. Rev. A 89, 041601 (2014).

[30] O. Gamayun, O. Lychkovskiy, and V. Cheianov, Phys. Rev. E 90, 032132 (2014).

[31] O. Lychkovskiy, Phys. Rev. A 91, 040101 (2015).

[32] M. Schecter, D. M. Gangardt, and A. Kamenev, Phys. Rev. E 92, 016101 (2015).

[33] O. Gamayun, O. Lychkovskiy, and V. Cheianov, Phys. Rev. E 92, 016102 (2015).

[34] C. Castelnovo, J.-S. Caux, and S. H. Simon, arXiv:1506.03082 (2015).

[35] According to the Bogoliubov-Mermin-Wagner theorem the true condensate is absent in one

spatial dimension. Nevertheless, for our purposes the existence of a local superfluid order is

sufficient to define the phase difference across the impurity.

[36] M. H. Devoret, A. Wallraff, and J. M. Martinis, arXiv:cond-mat/0411174 (2004).

[37] A. Lamacraft, Phys. Rev. B 79, 241105 (2008).

[38] A. O. Caldeira and A. J. Leggett, Ann. of Phys. 149, 374 (1983).

[39] G. E. Astrakharchik and L. P. Pitaevskii, Phys. Rev. A 70, 13608 (2004).
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