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Abstract. We study the L1 median for locationally uncertain points
with discrete distributions. That is, each point in a data set has a discrete
probability distribution describing its location. The L1 median is a robust
estimator, useful when there are outliers in the point set. However given
the probabilistic nature of this data, there is a distribution describing
the L1 median, not a single location. We show how to construct and
estimate this median distribution in near-linear or quadratic time in 1
and 2 dimensions.

1 Introduction

Most statistical or machine learning models of noisy data start with the assump-
tion that a data setX is drawn iid (independent and identically distributed) from
a single distribution Φ. Since such distributions often represent some true phe-
nomenon plus some noisy observation step, approaches that mitigate the noise
involving robust statistics or regularization have become commonplace.

However, many modern data sets are clearly not generated iid, rather each
data element represents a separate object or a region of a more complex phe-
nomenon. For instance, each data element may represent a distinct person in a
population or an hourly temperature reading. Yet, this data can still be noisy;
for instance, multiple GPS locational estimates of a person, or multiple tem-
perature sensors in a city. The set of data elements may be noisy and there
may be multiple inconsistent readings of each element. To model this noise, the
inconsistent readings can naturally be interpreted as a probability distribution.

Given such locationally noisy, non-iid data sets, there are many unresolved
and important analysis tasks ranging from classification to regression to sum-
marization. In this paper, we initiate the study of robust estimators [18, 26] on
locationally uncertain data. More precisely, we consider an input data set of size
n, where each data point’s location is described by a discrete probability distri-
bution. We will assume these discrete distributions have a support of at most k
points in R

d; and for concreteness and simplicity we will focus on cases where
each point has support described by exactly k points, each are equally likely.
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Although algorithms for locationally uncertain points have been studied in
quite a few contexts over the last decade [15, 24, 21, 6, 19, 5, 3, 4, 32] (see Section
1.1), few have directly addressed the problem of noise in the data. As the un-
certainty is often the direct consequence of noise in the data collection process,
this is a pressing concern. As such we initiate this study focusing on the most
basic robust estimators: the median for data in R

1, and its generalization the L1

median for data in R
2. Both estimators can be defined as the point x∗ which min-

imizes x over cost(x,Q) = 1
|Q|
∑

q∈Q ‖q−x‖ for a data set Q. Being robust refers

to the fact that if less than 50% of the data points (the outliers) are moved from
the true distribution to some location infinitely far away, the estimator remains
within the extent of the true distribution [25].

In this paper, we generalize the L1 median to locationally uncertain data,
where the outliers can occur not just among the n data points, but also as part
of the discrete distributions representing their possible locations.

The main challenge is in modeling these robust estimators. As we do not have
precise locations of the data, there is not a single minimizer of cost(x,Q); rather
there may be as many as kn possible input point sets Q (the combination of all
possible locations of the data). And the expected value of such a minimizer is
not robust in the same way that the mean is not. As such we build a distribution
over the possible locations of these cost-minimizers. In R

1 this distribution is of
size at most O(nk), the size of the input, but in R

2 it may be as large as kn.
Thus, we design algorithms to create an approximate support of these median

distributions. We create small sets T such that each possible median mQ from
a possible point set Q is within a distance ε · cost(mQ, Q) of some x ∈ T . Under
reasonable assumptions we can create a set T of size O(k/ε) in R inO(nk log(nk))
time. The size O(k/ε) is essentially tight since there may be k large enough
modes of these distributions, each requiring Ω(1/ε) points to represent. In R

2

our bound on |T | is O(k2/ε2) under similar assumptions, or O(d/ε2) in R
d when

we don’t need to cover sets of medians mQ which occur with probability less
than ε. Then we can map weights onto this support set T exactly in O(n2k)
time in R

1 or approximately in either case in O(1/ε2) time.
Another goal may be to then construct another single-point estimator of

these distributions: the median of these median distributions. In R
1 we can show

that this process is stable up to cost(mQ, Q) where mQ is the resulting single-
point estimate. However, in either case, we also show that such single point
estimates are not stable with respect to the weights in the median distribution,
and then hence not stable with respect to the probability of any possible location
of an uncertain point. That is, infinitesimal changes to such probabilities can
greatly change the location of the single-point estimator. As such, we argue the
approximate median distribution (which is stable with respect to these changes)
is the best robust representation of such data.

Formalization of model and notation. We consider a set of n locationally
uncertain points P = {P1, . . . , Pn} so that each Pi has k possible locations
{pi,1, . . . , pi,k} ⊂ R

d. Let Pflat = ∪i{pi,1, . . . , pi,k} represent all positions of all
points in P. We consider each pi,j to be an equally likely (with probability 1/k)
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location of Pi, and can extend our techniques to non-uniform probabilities and
uncertain points with fewer than k possible locations. For an uncertain point set
P we say Q ⋐ P is a traversal of P if Q = {q1, . . . qn} has each qi in the domain
of Pi (e.g., qi = pi,j for some j).

We are particularly interested in the case where n can be quite large, but k
could be small. For technical simplicity we assume here that the number kn (the
number of possible traversals of point sets) can be computed in O(1) time and
fit in O(1) words of space under an extended version of the RAM model.

Given a set Q = {q1, q2, . . . , qn} ⊂ R that w.l.o.g. satisfies q1 ≤ q2 ≤ . . . ≤ qn,
we define the median mQ as qn+1

2
when n is odd and qn

2
when n is even. There

are several ways to generalize the median to higher dimensions [8], herein we
focus on the L1 median. Define cost(p,Q) = 1

n

∑n
i=1 ‖p− qi‖ where ‖ · ‖ is the

Euclidian norm. Given a set Q = {q1, q2, . . . , qn} ⊂ R
d, the L1 median is defined

as mQ = argminp∈Rd cost(p,Q). It is typically computed approximately using
iterative [31] or other discrete approaches [11, 10]; its true solution may not have
a closed form [9].

Main ideas. Since there are kn possible traversals Q ⋐ P, we want to avoid
enumerating all of them. Moreover, given a point x ∈ T , we need to determine
which other possible mQ for Q ⋐ P are ε-approximated by x. To do this we
introduce a function ˆcost(x) ≤ cost(x,Q) for any Q; it is defined

ˆcost(x) =
1

n

n∑

i=1

min
1≤j≤k

‖x− pi,j‖.

This function can be computed efficiently for all pi,j ∈ Pflat, and then be used as a
conservative proxy for cost. We then create a small set T using greedy approaches
which are within a constant factor of optimal. The Lipschitz property of cost

and ˆcost are essential for the analysis; this property is imperative for robust loss
functions (e.g., L1 and Huber), but not present in non-robust ones like L2.

Calculating the weights ŵ : T → [0, 1], is easy once we know the probability
each point pi,j ∈ Pflat is the median. We devise a dynamic program to calculate
these weights in R

1, that works by carefully tracking the expansion of a poly-
nomial. In R

2 we can no longer use the fact that each mQ is some pi,j ∈ Pflat.
Instead our high probability solution randomly instantiates traversals Q ⋐ P,
computes their L1 medians mQ, and builds an approximate probability distri-
bution from the result.

1.1 Related Work on Uncertain Data

The algorithms and computational geometry communities have recently gener-
ated a large amount of research in trying to understand how to efficiently process
and represent uncertain data [15, 24, 21, 6, 19, 22, 5, 3, 4, 32, 1], not to mention
some motivating systems and other progress from the database community [7,
27, 17, 16, 14, 13]. Some work in this area considers other models, with either
worst-case representations of the data uncertainty [29] which do not naturally
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allow probabilistic models, or when the data may not exist with some probabil-
ity [19, 22, 6]. The second model can often be handled as a special case of the
locationally uncertain model we study. Among locationally uncertain data, most
work focuses on data structures for easy data access [12, 16, 28, 32, 4] but not the
direct analysis of data. Among the work on analysis and summarization, such
as for histograms [13], convex hulls [6], or clustering [15] it usually focuses on
quantities like the expected or most likely value, which may not be stable with
respect to noise. This includes estimation of the expected median in a stream
of uncertain data [20] or the expected L1 median as part of k-median cluster-
ing of uncertain data [15]. We are are not aware of any work on modeling the
probabilistic nature of locationally uncertain data to construct robust estima-
tors of that data, robust to outliers in both the set of uncertain points as well
as probability distribution of each uncertain point.

2 Approximating the Median Distribution Support

In this section we describe how to construct T an approximate support of the
median distribution. Recall that given a set of uncertain points P, the set T
should have the property that for every median mQ of every traversal Q ⋐ P,
there exists some x ∈ T such that ‖x−mQ‖ ≤ εcost(mQ, Q), for a chosen error
parameter ε > 0.

We first observe in R
1 that T ⊂ Pflat since we have defined the median so it

must be one of the data points; hence |T | ≤ nk. We then show how to reduce
|T | to O(k/ε) under reasonable assumptions on how P is generated. In R

2 we
can construct T which is within a constant factor of the optimal size and at
most O(k2/ε2) under similar assumptions. Later, in Section 3.1, in R

d we show
a randomized construction of size O(d/ε2) with weaker covering guarantees.

cost approximation. The key to these constructions is the function ˆcost(x) =
1
n

∑n
i=1 min1≤j≤k ‖x − pi,j‖, which clearly satisfies ˆcost(mQ) ≤ cost(mQ, Q) for

any Q ⋐ P. The following important lemma relates ˆcost(x) to cost(mQ, Q).

Lemma 1. For any Q ⋐ P, x ∈ R, ε > 0, if |x − mQ| ≤ ε
1+ε

ˆcost(x), then we

have |x−mQ| ≤ ε ˆcost(mQ) ≤ εcost(mQ, Q) where mQ is the median of Q.

Proof. We can use the Lipschitz property

| ˆcost(x)− ˆcost(y)| ≤ |x− y|, ∀ x, y ∈ R,

to show

ˆcost(x) − ˆcost(mQ) ≤ | ˆcost(x)− ˆcost(mQ)| ≤ |x−mQ| ≤
ε

1 + ε
ˆcost(x),

which implies

1

1 + ε
ˆcost(x) = (1− ε

1 + ε
) ˆcost(x) ≤ ˆcost(mQ).
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Rearranging these expressions we can show the following, as desired,

|x−mQ| ≤
ε

1 + ε
ˆcost(x) ≤ ε ˆcost(mQ).⊓⊔

2.1 Computing T in R
1

To compute T , we first observe that we can compute ˆcost(pi,j) for all pi,j ∈ Pflat

in O(nk log(nk)) time. ˆcost has at most n(2k − 1) critical points where it is not
differentiable: It is the sum of n functions ˆcosti(x) = min1≤j≤k ‖x− pi,j‖. Each
ˆcosti(x) is the lower envelope of k functions each with a single critical point

at x = pi,j , and when the lower envelope transitions between two consecutive
functions at (pi,j + pi,j+1)/2 where pi,j and pi,j+1 are adjacent in sorted order.

We can compute all of these critical points P̃flat = ∪n
i=1P̃i in O(nk) time after

sorting in O(nk log(nk)) time. Furthermore, we can calculate the value ˆcost(p̃)

for all p̃ ∈ P̃flat in another O(nk) time by scanning the points from smallest to
largest, and maintaining ˆcosti(x) for each i.

Now on the basis of Lemma 1, we can use a greedy algorithm to construct
an ε-approximation of the support of P with T . After taking the smallest valued
point (p1 ∈ Pflat), and setting it to x, it recursively takes the next smallest point
pi ∈ Pflat such that pi > x + ε

1+ε
ˆcost(x), and sets pi = x. Sorting Pflat takes

O(nk log(nk)) time, and we have used O(nk log(nk)) time to compute and store
ˆcost(pi) for all pi ∈ Pflat, so in all it takes O(nk log(nk)) time.

Size of T . We now analyze the size of T as a function of n, k, ε. Ideally, we
would like it to show that |T | depends only on complexity of the distributions
k and the error ε; we show this holds under some reasonable assumptions. In
fact, if there exists a constant α > 0 such that minx∈[0,L] ˆcost(x) ≥ L

αk
, then the

distances between points in T is at least εL
(1+ε)αk . From our construction of T we

immediately have the following theorem.

Theorem 1. Suppose Pflat ⊂ [0, L], T is as described above and there exists a
constant α > 0 such that minx∈[0,L] ˆcost(x) ≥ L

αk
, then we have |T | ≤ αk 1+ε

ε
=

O(αk/ε).

Intuitively, this condition on α says that we cannot have some traversalQ ⋐ P

such that all points in Q are very close together relative to L, the diameter of
Pflat. Moreover, the use of L is for convenience of formal proof statements; a
set of κ outliers beyond the range [0, L] can clearly be covered by κ additional
points to T (or fewer since if κ < k, then ˆcost will be very high).

Moreover, we observe two common situations where the (α,L)-assumption
holds. First, if some uncertain points Pi are disjoint and well-separated from each
other (e.g. for most pairs i 6= i′ the convex hull of {pi,1, pi,2, . . . , pi,k} is disjoint
with a sufficient separation from the convex hull of {pi′,1, pi′,2, . . . , pi′,k}), then
α will be sufficiently small, since ˆcost will be at least that gap over k. Second,
if each discrete set of locations for Pi is drawn iid from the some (reasonably
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bounded) distribution, which could be different from each other Pi′ , then again
α will be sufficiently small with high probability.

We say a random variable X is C0-bounded if its the cumulative distribution
function (cdf)

F (t) =





0 if t < 0

ϕ(t) if 0 ≤ t ≤ L

1 if t > L

,

satisfies1 ϕ ∈ C([0, L]) ∩ W 1,∞([0, L]) such that ϕ(0) = 0, ϕ(L) = 1 and
‖ϕ′‖L∞([0,L]) ≤ C0 (i.e., the slope if its cdf F is at most C0). We now provide
the following technical lemma, proved in Appendix A.

Lemma 2. If each Pi is drawn iid from a distribution represented by C0-bounded
random variable Xi (each Xi could be different) with domain [0, L], α = LC0, and
n > 8α2(k+1)2 ln(2/δ), then with probability at least 1−δ we have minx ˆcost(x) ≥
1/(4C0(k + 1)) and |T | = O(LC0k/ε) = O(αk/ε).

Now we argue that the value LC0 is typically constant since it is reasonable
for random variables to be C0-bounded over the domain [0, L]. For example a
uniform random variable over [0, L] has C0 = 1/L and LC0 = 1. More generally,
distributions with all values at most a constant η times as likely as they would be
under a uniform random variable have LC0 = η. Basically, a distribution is only
not C0-bounded for a constant C0 if it has a non-zero probability of instantiating
at a specific point.

2.2 The Construction of T in R
2

Given n uncertain points P in R
2, two sets A1, A2 ⊂ R

2, and a1 ∈ A1, a2 ∈ A2,
for ε > 0 we say a1 can ε-cover a2 if ‖a1 − a2‖ ≤ ε ˆcost(a1); A1 can ε-cover A2

if for any a2 ∈ A2 there exists a1 ∈ A1 such that ‖a1 − a2‖ ≤ ε ˆcost(a1).

For ˆcost(·) defined on R
2, we can use the method in the proof Lemma 1 to

obtain a similar result: for any Q ⋐ P, x ∈ R
2, for ε > 0 if ‖x−mQ‖ ≤ ε

1+ε
ˆcost(x)

then ‖x−mQ‖ ≤ εcost(mQ, Q), where mQ is the L1 median of Q. Therefore, if
we find a set T which can ( ε

1+ε
)-cover CH(Pflat), the convex hull of Pflat, then T

should be an ( ε
1+ε

)-cover of the set of all possible medians, as desired. However,
CH(Pflat) is an infinite set, and we only want to cover finite points. To solve this
problem, we assume minx∈R2 ˆcost(x) ≥ ̺(P) > 0, and define the lattice

S(P) = CH(Pflat) ∩ {(βi, βj) | i, j ∈ {0,±1,±2, · · · }} (1)

where β = ε

2
√
2(1+ε)

̺(P). From the definition of S(P) we know, for any x ∈
CH(Pflat) there exists s ∈ S(P) such that ‖s− x‖ ≤

√
2β = ε

2(1+ε)̺(P). If T can

1 C([0, L]) = {f : [0, L] 7→ R | f is continuous}, and Sobolev space W 1,∞([0, L]) =
{

g : [0, L] 7→ R | g is weakly differentiable and g′ ∈ L∞([0, L])
}

(cf. [2]).
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ε
2(1+ε) -cover S(P), then there exists z ∈ T such that ‖z− s‖ ≤ ε

2(1+ε)
ˆcost(z). So,

we have

‖z−x‖ ≤ ‖z−s‖+‖s−x‖ ≤ ε

2(1 + ε)
ˆcost(z)+

ε

2(1 + ε)
̺(P) ≤ ε

(1 + ε)
ˆcost(z) (2)

which implies T can ( ε
1+ε

)-cover CH(Pflat), so we only need to find a set T to
ε

2(1+ε) -cover S(P).

After constructing CH(Pflat) in O(nk log(nk)) time, to compute S(P) we
need a ˆcost lower bound ̺(P). It can be obtained in O(nk2) time according to
Lemma 3, by considering only any one uncertain point, or the bound can be
improved by a factor n by considering all uncertain points in O(n2k2) time.

Lemma 3. Given a set of n uncertain points P = {P1, . . . , Pn}, if ̺(P) =
1

n+1 min1≤j≤k ˆcost(p1,j), then we have minx∈R2 ˆcost(x) ≥ ̺(P).

Proof. Suppose x∗ = argminx∈R2 ˆcost(x), and

ˆcost(x∗) =
1

n

n∑

i=1

‖x∗−pi,ji‖ where ji = arg min
1≤j≤k

‖x∗−pi,j‖, ∀ i ∈ {1, 2, · · · , n}.

Thus using the Lipschitz property of ˆcost

ˆcost(p1,j1)− ˆcost(x∗) ≤ | ˆcost(p1,j1)− ˆcost(x∗)| ≤ ‖x∗ − p1,j1‖ ≤ n ˆcost(x∗)

which implies ˆcost(p1,j1) ≤ (n+ 1) ˆcost(x∗). So, we obtain

min
x∈R2

ˆcost(x) = ˆcost(x∗) ≥ 1

n+ 1
ˆcost(p1,j1) = ̺(P).⊓⊔

Now, to construct T , we arbitrarily add points from S to T one at a time,
among the points in S which are not already ( ε

2(1+ε) )-covered by other points

in T ; details are provided in Algorithm B.1 in Appendix B. We can show
(see Appendix B) the set T has size within a constant factor of the size of
the optimal such domain T ∗. Let R be half the diameter of Pflat. Alterna-
tively, we can show (in Appendix C) the size of T is at most O(αk2/ε2); here
α2 = (R/k)/minx∈CH(Pflat)

ˆcost(x). Moreover, we can show under similar C0-
bounded assumption on n distributions from which each Pi is drawn iid, that
roughly α = C2

0R
2; again under reasonable assumptions (as in R

1), we can
assume α is constant.

3 Assigning a Weight to T

In this section, we show how to assign a weight to T which approximates the
probability distribution of medians. We provide an optimal algorithm in R

1, and
an unrestricted randomized algorithm.
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Define the weight of pi,j ∈ Pflat asw(pi,j) =
1
kn |{Q ⋐ P | pi,j is the median of Q}|.

Suppose T is constructed by our greedy algorithm for R
1. For pi,j ∈ Pflat, let-

ting x = maxx̃∈T {x̃ ≤ pi,j} and y = minỹ∈T {ỹ > pi,j}, we introduce a map
fT : Pflat → T ,

fT (pi,j) =

{
y if |pi,j − y| ≤ ε

1+ε
ˆcost(y) and |pi,j − y| < |pi,j − x|

x otherwise.

Intuitively, this maps each pi,j ∈ Pflat onto the closest point x ∈ T , unless it
violates the ε-approximation property which another further point satisfies.

Now for each x ∈ T , define weight of x as ŵ(x) =
∑

{pi,j∈Pflat|fT (pi,j)=x}
w(pi,j).

So we first compute the weight of each point in Pflat and then obtain the weight
of points in T on another linear sweep. Our ability to calculate the weights w
for each point in Pflat is summarized in the next lemma, with corollary about ŵ
following. The algorithm, explained in detail within the proof, is a dynamic pro-
gram that expands a specific polynomial, where in the final state, the coefficients
correspond with the probability of each point being the median.

Lemma 4. We can outputs w(pi,j) for all points in Pflat in R
1 in O(n2k) time.

Proof. For any pi0 ∈ Pi0 , we define

lj =

{
|{p ∈ Pj | p ≤ pi0}| if 1 ≤ j ≤ i0 − 1

|{p ∈ Pj+1 | p ≤ pi0}| if i0 ≤ j ≤ n− 1
, rj =

{
|{p ∈ Pj | p ≥ pi0}| if 1 ≤ j ≤ i0 − 1

|{p ∈ Pj+1 | p ≥ pi0}| if i0 ≤ j ≤ n− 1
.

Then, if n is odd, we have

w(pi0 ) =
1

kn

∑

S1∩S2=∅
S1∪S2={1,··· ,n−1}

(li1 · li2 · . . . · lin−1
2

· rj1 · rj2 · . . . · rjn−1
2

)

where S1 = {i1, i2, · · · , in−1
2
} and S2 = {j1, j2, · · · , jn−1

2
}, and if n is even, we

have

w(pi) =
1

kn

∑

S1∩S2=∅
S1∪S2={1,··· ,n−1}

(li1 · li2 · . . . · lin
2

−1
· rj1 · rj2 · . . . · rjn

2
)

where S1 = {i1, i2, · · · , in
2 −1} and S2 = {j1, j2, · · · , jn

2
}.

We next describe the algorithm for n odd; the case for n even is similar. To
compute

∑
S1∩S2=∅

S1∪S2={1,··· ,n−1}
(li1 · li2 · . . . · lin−1

2

· rj1 · rj2 · . . . · rjn−1
2

), we construct

the following polynomial:

(l1x+ r1)(l2x+ r2) · · · (ln−1x+ rn−1), (3)

and
∑

S1∩S2=∅
S1∪S2={1,··· ,n−1}

(li1 · li2 · . . . · lin−1
2

· rj1 · rj2 · . . . · rjn−1
2

) is the coeffi-

cient of x
n−1

2 . We define ρi,j (1 ≤ i ≤ n − 1, 0 ≤ j ≤ i) as the coefficient

8



of xj in the polynomial (l1x + r1) · · · (lix + ri) and then it is easy to check
ρi,j = liρi−1,j−1 + riρi−1,j , so we can use dynamic programming to compute
ρn−1,0, ρn−1,1, · · · , ρn−1,n−1.

Algorithm 3.1 Compute ρn−1,0, ρn−1,1, · · · , ρn−1,n−1

Let ρ1,0 = r1, ρ1,1 = l1, ρ1,2 = 0.
for i = 2 to n− 1 do

for j = 0 to i do

ρi,j = liρi−1,j−1 + riρi−1,j

ρi,i+1 = 0
return ρn−1,0, ρn−1,1, · · · , ρn−1,n−1.

In Algorithm 3.1, ρn−1,n−1
2

=
∑

S1∩S2=∅
S1∪S2={1,··· ,n−1}

(li1 · li2 · . . . · lin−1
2

· rj1 · rj2 ·
. . . · rjn−1

2

). Suppose for pi0 ∈ Pi0 we have obtained ρn−1,0, ρn−1,1, . . . , ρn−1,n−1

by Algorithm 3.1, and then we consider pi′0 = min{p ∈ Pflat − Pi0 | p ≥ pi0}. We
assume pi′0 ∈ Pi′0

, and if i′0 < i0, we construct a polynomial

(l1x+ r1) · · · (li′0−1x+ ri′0−1)(l̃i′0x+ r̃i′0 )(li′0+1x+ ri′0+1) · · · (ln−1x+ rn−1) (4)

and if i′0 > i0, we construct a polynomial

(l1x+ r1) · · · (li′0−2x+ ri′0−2)(l̃i′0−1x+ r̃i′0−1)(li′0x+ ri′0) · · · (ln−1x+ rn−1) (5)

where l̃i′0 = l̃i′0−1 = |{p ∈ Pi0 | p ≤ pi′0}|, r̃i′0 = r̃i′0−1 = |{p ∈ Pi0 | p ≥ pi′0}|.
It is easy to check, the weight of pi′0 is w(pi′0 ) =

1

kn
ρ̃n−1,n−1

2
where 1

kn ρ̃n−1,n−1
2

is the coefficient of x
n−1
2 in (4) if i′0 < i0 or (5) if i′0 > i0. Since (3) and (4)

have only one different factor, we obtain the coefficients of (4) from the coeffi-
cients of (3) in O(n) time. We recover the coefficients of (l1x+ r1) · · · (li′−1x+
ri′−1)(li′0+1x + ri′0+1) · · · (ln−1x + rn−1) from ρn−1,0, ρn−1,1, · · · , ρn−1,n−1, and
then use these coefficients to compute the coefficients of (4). Similarly, if i′0 > i0,
we obtain the coefficients of (5) from the coefficients of (3). Therefore, we can
use O(n2) time to compute the weight of the first point in Pflat and then use O(n)
time to compute the weight of other points. The whole time is O(n2)+nkO(n) =
O(n2k). ⊓⊔

Corollary 1. We can assign ŵ(x) to each x ∈ T in R
1 in O(n2k) time.

3.1 Simultaneous Randomized Domain T and Weight

Each point mQ ∈ {mQ is an L1 median of Q | Q ⋐ P}may take a distinct value.
Thus even calculating that set, let alone their weights in the case of duplicates,
would require at least Ω(kn) time. Rather, here we show how to randomly endow
the set T constructed in the previous section with approximate weights.
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First define MP = {q is the L1 median of Q| Q ⋐ P}, and the map fT :
MP 7→ T :

fT (q) = argmin
{
‖q − z‖ | z ∈ T, z can

ε

1 + ε
-cover q

}

The minimum value point in
{
‖q − z‖ | z ∈ T, z can ε

1+ε
-cover q

}
may be not

unique, in this case, we choose z = argmin
{
‖q − z‖ | z ∈ T, z can ε

1+ε
-cover q

}

with minimum coordinates as the value of fT (q), to ensure the uniqueness of
fT (q). Being more careful, in R

d for d > 1 we cannot compute q exactly, but can
within any factor φ < ε [31, 11, 10]. So we need to relax the above definitions so
that q is the φ-approximate result, and then we ensure that z can ( ε−φ

1+ε−φ
)-cover

q in the map fT . This will still provide a valid cover for our purposes and does
not affect the resulting bounds. For simplicity, we omit the discussion of φ from
the remaining description.

Now, for i ∈ {1, 2 · · · ,m}, we define the weight of zi

ŵi =
∑

q∈MP,fT (q)=zi

w(q)

where w(q) = 1
kn |{Q ⋐ P | q is the L1 median of Q}|.

Our goal will be to approximate these weights, for which we use Algorithm
3.2 to obtain approximate values ŵi. Initially let ci = 0 be the weight for each
zi ∈ T , and proceed in a series of N = O( 1

ε2
(d+ log 1

δ
)) rounds (in R

d). In each
round, we create a random traversal Q ⋐ P, compute its (φ-approximate) L1

median mQ, and assign and increment by 1/N the weight of the (appropriately
defined) zj ∈ T which ε-covers mQ.

Algorithm 3.2 Approximate the weight of points in T

Input: P, ε

1+ε
ˆcost(zi) for each zi ∈ T , and a positive integer N

Initialize ci = 0 for i = 1, 2, · · · ,m
for j = 1 to N do

Randomly choose Q ⋐ P

q = the L1 median of Q
zi = fT (q)
ci = ci + 1

return
ci
N

as the approximate value of ŵi for i = 1, 2, · · · ,m

Below in Theorem 2, we show that the approximated weight of each zi ∈ T
is within ε of what should be its true weight with probability at least 1− δ (via
straight-forward application of a VC-dimension theory [30, 23]). Alternatively,
we can skip the construction of T and simply let the set of medians {mQ}
constructed through this iterative process represent T . Note that in both cases,
points zj ∈ T with ŵ(zj) ≤ ε might be given a weight 0 and not be part of T ,
even if they are required to cover a median mQ which may occur, albeit, with a
very small probability.

10



Theorem 2. Suppose ε > 0, δ ∈ (0, 1) and {c1, c2, · · · , cm} is obtained from
Algorithm 3.2. If in Algorithm 3.2 N = O((1/ε2)(d+ log(1

δ
))), then we have

Pr

[
max
i∈[m]

|ci − ŵi| ≤ ε

]
> 1− δ.

Proof. We use Vapnik-Chervonenkis theory [30], considering a family R of queries
(with bounded VC-dimension, for instance balls of any size in R

d have VC-
dimension ν = O(d)), for instance let R be all balls. Now consider any probabil-
ity distribution µ defined over Rd and N = O((1/ε2)(ν + log(1/δ))) iid samples
X from µ. Then we know [23] that, with probability at least 1− δ, the empirical
distribution µX defined by X satisfies

max
R∈R

|R(µ)−R(µX)| ≤ ε,

where R(µ) is the measure of µ restricted to that range R. For discrete distribu-
tions µ defined on some point set Z, we can consider balls R ∈ R small enough
to distinguish each z ∈ Z.

Now to complete the proof, we simply realize that each step of the for loop in
Algorithm 3.2 constructs q which is a iid random sample from the distribution
of medians of P. Thus the set of these points constitutes X in the above VC-
dimension result, and the claim follows. ⊓⊔

4 Constructing a Single Point Estimate

Given a discrete domain X ⊂ R
1 (a point set) and a probability distribution

defined by function ω : X → [0, 1], we can compute its weighted median. As-
suming X is sorted, this takes O(|X |) time by scanning from smallest to largest
until the sum of weights reaches 0.5.

There are two situations whereby we obtain such a discrete weighted domain.
First is the set T described by the greedy approximation algorithm from Section
2.1, and the resulting weight ŵ from Section 3. Let the resulting single point
estimate be mT . The second domain is the set Pflat of all possible locations of P,
and its weight w where w(pi,j) is the fraction of Q ⋐ P which take pi,j as their
median (possibly 0). Let the resulting single point estimate be mP.

Theorem 3. |mT −mP| ≤ ε ˆcost(mP) ≤ εcost(mQ, Q), Q ⋐ P is any traversal
with mP as its median.

Proof. We can divide R into |T | intervals, one associated with each x ∈ T , as
follows. Each z ∈ R is in an interval associated with x ∈ T if z is closer to x
than any other point y ∈ T , unless |z− y| ≤ ε

1−ε
ˆcost(y) but |z−x| ≥ ε

1−ε
ˆcost(x).

Thus a point pi,j whose weight w(pi,j) contributes to ŵ(x), is in the interval
associated with x.

Thus, if pi,j = mP, then all weights of all points greater than pi,j is at most
0.5, and all weights of points less than pi,j is less than 0.5. Hence if mP is in
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an interval associated with x ∈ T , then the sum of all weights of points pi,j in
intervals greater than that of x must be at most 0.5 and those less than that of
x must be less than 0.5. Hence mT = x, and |x− pi,j | ≤ ε

1+ε
ˆcost(x) ≤ ε ˆcost(mP)

as desired. ⊓⊔

4.1 Non-Robustness of Single Point Estimates

Unfortunately, the L1 median of the set {mQ is an L1 median of Q | Q ⋐ P} is
not stable under small perturbations in weights; it stays within the convex hull
of the set, but otherwise not much can be said, even in R

1. Consider the example
with n = 3 and k = 2, where p1,1 = p1,2 = p2,1 = 0 and p2,2 = p3,1 = p3,2 = ∆
for some arbitrary ∆. The median will be at 0 or ∆, each with probability 1/2,
depending on the location of P2. We can also create a more intricate example
where ˆcost(0) = ˆcost(∆) = 0. As these examples have mQ at 0 or ∆ equally likely
with probability 1/2, then canonically in R

1 we would have the median of this
distribution at 0, but a slight change in probability (say from sampling) could
put it all the way at ∆. This indicates that a representation of the distribution
of medians (as we provide in Sections 2 and 3) is more appropriate for noisy
data.

5 Conclusion

We initiate the study of robust estimators for uncertain data, by studying the
L1 median on locationally uncertain data points. We show how to efficiently
create approximate distributions for the location of these medians in R

1, and
generalize these approaches to R

2, and also via a simple randomized algorithm
to R

d. We also argue that although we can use such distributions to calculate
a single-point representation of these distributions, it is not very stable to the
input distributions, and serves as a poor representation when the true scenario
is multi-modal; hence further motivating our distributional approach.
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APPENDIX

A The proof of Lemma 2

Recall that C([0, L]) = {f : [0, L] 7→ R | f is continuous}, and Sobolev space
W 1,∞([0, L]) =

{
g : [0, L] 7→ R | g is weakly differentiable and g′ ∈ L∞([0, L])

}

(cf. [2]).
We first show the following lemma which depends on a couple of technical

lemmas. We will show that this implies Lemma 2 and then return to prove the
technical lemmas.

Lemma 5. For each i ∈ {1, 2, . . . , n}, suppose Xi,1, Xi,2, . . . , Xi,k are indepen-
dent and identically distributed C0-bounded random variables. For any x ∈ [0, L],
i ∈ {1, 2, · · · , n}, suppose Yi is given by Yi(x) = min0≤j≤k{|x − Xi,j |} and
Y1, Y2, · · · , Yn are mutually independent.

If Y n(x) =
1
n

∑n
i=1 Yi(x), then for any η > 0 and δ ∈ (0, 1) we have

Pr
[

min
0≤x≤L

Y n(x) ≥
1

2C0(k + 1)
− η
]
> 1− δ, ∀ n >

L2

2η2
ln

2

δ
.

Proof. By Chernoff-Hoeffding inequality, for any x ∈ [0, L], we have

Pr
[
|Y n(x)−E(Y n(x))| > η

]
≤ 2 exp

( −2η2∑n
i=1(

1
n
L)2

)
= 2 exp(

−2nη2

L2
) < δ.

where the last line follows from n > L2

2η2 ln
2
δ
. For any fixed x ∈ [0, L], the

condition |Y n(x) −E(Y n(x))| ≤ η implies

Y n(x) ≥ −η +E(Y n(x)) ≥ −η + min
0≤x′≤L

E(Y n(x
′)) ≥ −η +

1

2C0(k + 1)
,

with the last step following from Lemma 7. Thus, we obtain

Pr
[
− η +

1

2C0(k + 1)
≤ Y n(x)

]
> 1− δ, ∀ n >

L2

2η2
ln

2

δ
, ∀ x ∈ [0, L].

If the value of Xi,j is given for all 1 ≤ i ≤ n and 1 ≤ j ≤ k, then Y n(x)
is a continuous function of x on the closed interval [0, L], so we can assume
min0≤x≤L Y n(x) = Y n(x0) where x0 ∈ [0, L] depends on Xi,j . Combining these
results, we prove the following as desired

Pr
[
− η +

1

2C0(k + 1)
≤ Y n(x0) = min

0≤x≤L
Y n(x)

]
> 1− δ, ∀ n >

L2

2η2
ln

2

δ
.

⊓⊔
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If for all i ∈ {1, 2, . . . , n} the set of possible locations {pi,1, pi,2, . . . , pi,k}
of each uncertain point Pi are drawn iid from separate C0-bounded random
variables (namely Xi), then we can use Lemma 5 to provide an upper bound
for α, a lower bound for ˆcost(x), and hence upper bound on |T |, with prob-
ability at least 1 − δ. In this case, the quantity Ȳn(x) = ˆcost(x), so we have
Pr[min0≤x≤L ˆcost(x) ≥ 1

2C0(k+1) − η] ≥ 1 − δ for n sufficiently large as n >

L2

2η2 ln
2
δ
. Setting η = 4C0(k + 1) we obtain

min
0≤x≤L

ˆcost(x) = min
0≤x≤L

Y n(x) ≥
1

2C0(k + 1)
− η >

1

4C0(k + 1)
≥ L

α4(k + 1)
.

Hence, letting α = LC0, and considering n ≥ 8α2(k + 1)2 ln 2
δ
, via Theorem 1

we have Pr[|T | = O(αk/ε) = O(LC0k/ε)] > 1− δ. Thus showing Lemma 2.

Technical Lemmas. Since in Lemma 2 we assume k points are independently
sampled from a distribution and only require the cumulative distribution func-
tion of this distribution weakly differentiable, to prove Lemma 2 we need to
generalize some integration formula to weakly differentiable functions.

Lemma 6. Suppose f ∈ C(R) = {f : R 7→ R| f is continuous}, and x = g(t)
satisfies g ∈ C([t1, t2]) ∩ W 1,∞([t1, t2]) or g ∈ C([t2, t1]) ∩ W 1,∞([t2, t1]), then
we have ∫ g(t2)

g(t1)

f(x)dx =

∫ t2

t1

f(g(t))g′(t)dt (6)

where g′ is the weak derivative of g.

Proof. Without loss of generality, we assume t1 < t2 and then define

j(x) =

{
c0e

− 1
1−x2 if |x| < 1

0 if |x| ≥ 1
, jδ(x) =

1

δ
j(
x

δ
),

where δ > 0 and constant c0 satisfies
∫
R
j(x)dx = 1. We extend g to make it

satisfy g ∈ C([t1 − 1, t2 + 1]) ∩W 1,∞([t1 − 1, t2 + 1]), and for δ ∈ (0, 1) define

gδ(t) =

∫

R

g(t′)jδ(t− t′)dt′, ∀ t ∈ [t1, t2].

From the properties of mollifier jδ, we know gδ ∈ C∞([t1, t2]) and

lim
δ→0

‖gδ − g‖C([t1,t2]) = 0, lim
δ→0

g′δ(t) = g′(t) a.e. [t1, t2]. (7)

Since ∫ gδ(t2)

gδ(t1)

f(x)dx =

∫ t2

t1

f(gδ(t))g
′
δ(t)dt, (8)

letting δ → 0 in (8), by (7) and Lebesgue’s dominated convergence theorem, we
obtain (6). ⊓⊔
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Now, using Lemma 6, we can give the proof of Lemma 7. Recall, we say a
random variable X is C0-bounded if its the cumulative distribution function

F (t) =





0 if t < 0

ϕ(t) if 0 ≤ t ≤ L

1 if t > L

,

satisfies ϕ ∈ C([0, L])∩W 1,∞([0, L]) such that ϕ(0) = 0, ϕ(L) = 1 and ‖ϕ′‖L∞([0,L]) ≤
C0.

Lemma 7. Suppose X1, X2, . . . , Xk are independent and identically distributed
C0-bounded random variables. For x ∈ [0, L], if Y (x) = min1≤j≤k{|x−Xj|}, then
we have

min
0≤x≤L

E(Y (x)) ≥ 1

2C0(k + 1)
, (9)

where E(Y (x)) is the expected value of Y (x).

Proof. If 0 ≤ x ≤ 1
2L, then by a direct computation we have

E(Y (x)) =

∫ x

0

(1 − ϕ(x+ y) + ϕ(x − y))kdy +

∫ L−x

x

(1− ϕ(x + y))kdy. (10)

For any y ∈ [0, x], from 0 ≤ ϕ′(x+ y) + ϕ′(x− y) ≤ 2C0, we have

(1−ϕ(x+y)+ϕ(x−y))k(ϕ′(x+y)+ϕ′(x−y)) ≤ (1−ϕ(x+y)+ϕ(x−y))k2C0,

which implies
∫ x

0

(1−ϕ(x+y)+ϕ(x−y))k(ϕ′(x+y)+ϕ′(x−y))dy ≤
∫ x

0

(1−ϕ(x+y)+ϕ(x−y))k2C0dy.

(11)
Letting τ = 1− ϕ(x + y) + ϕ(x − y), by Lemma 6 and (11), we obtain

∫ x

0

(1−ϕ(x+y)+ϕ(x−y))kdy ≥ 1

2C0

∫ 1

1−ϕ(2x)

τkdτ =
1

2C0(k + 1)

(
1−(1−ϕ(2x))k+1

)
.

(12)
Similarly, we have

∫ L−x

x

(1− ϕ(x + y))kϕ′(x+ y)dy ≤
∫ L−x

x

(1− ϕ(x+ y))kC0dy

which implies

∫ L−x

x

(1−ϕ(x+ y))kdy ≥ 1

C0

∫ 1−ϕ(2x)

0

τkdτ =
1

C0(k + 1)
(1−ϕ(2x))k+1. (13)

From (10), (12) and (13), we obtain

E(Y (x)) ≥ 1

2C0(k + 1)

(
1− (1− ϕ(2x))k+1 + 2(1− ϕ(2x))k+1

)
≥ 1

2C0(k + 1)
.

(14)
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For x ∈ (12L,L], we can use a similar approach to prove

E(Y (x)) ≥ 1

2C0(k + 1)
. (15)

Therefore, from (14) and (15) we have

E(Y (x)) ≥ 1

2C0(k + 1)
, ∀ x ∈ [0, L],

which implies (9).

⊓⊔

B Size Bound of T in R
2

Here we analyze the size of T resulting from running Algorithm B.1.

Algorithm B.1 Construct T from P in R
2

Input: P and ε > 0
Compute ̺(P) = 1

2
min1≤j≤k ˆcost(p1,j)

Construct S = S(P) according to (1)
T = ∅
while S 6= ∅ do

Choose z ∈ S arbitrarily
T = T ∪ {z}
S = S \ {s ∈ S | z can ( ε

2(1+ε)
)-cover s}

return T .

Our main theorem shows that T (P) is within a constant factor of the optimal
size such cover.

Theorem 4. For a set of n uncertain points P in R
2 and ε ∈ (0, 1], suppose

minx∈R2 ˆcost(x) > 0 and T (P) is constructed from Algorithm B.1, then there
exists a constant C∗ independent of P and ε such that

|T (P)| ≤ C∗|T ∗(P)|, ∀ P in R
2

where

T ∗(P) = argmin

{
|T |

∣∣∣ T ⊂ R
2, T can

ε

2(1 + ε)
-cover S(P)

}
,

and S(P) is given by (1).
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Proof. Suppose T (P) = {z1, z2, · · · , zm} is constructed as described above, and
if j > i then zi is put into T (P) before zj . We consider adaptively-sized balls
around each zi defined as

B(zi, ri) = {x ∈ R
2 | ‖x− zi‖ ≤ ri} where ri =

ε
2(1+ε)

ˆcost(zi).

Recall, it is the union of these balls that must cover S(P). Since j > i implies
zi is put into T before zj, from Algorithm B.1 we know zj is not ε

2(1+ε) -covered

by zi, which implies
‖zj − zi‖ > ri, ∀ j > i ≥ 1. (16)

From the Lipschitz property of ˆcost and ε ∈ (0, 1] we have

−1

4
≤ ri − rj

‖zi − zj‖
≤ 1

4
, ∀ i 6= j. (17)

Now, we divide the proof of this theorem into several steps. The first two are
structural results about pairs of points zi, zj ∈ T . The third result shows that no
single ball B(zi, ri) can intersect too many other balls. The fourth result relates
this to the largest independent set I from the result of any run of our algorithm,
showing it must have size at least 1

118 of the size of T (P). The fifth step shows
that any ball B(x, r) does not intersect too many balls from the indpendent set.
Finally, the sixth step combines these result to bound the size of any run to the
optimal run.

Step 1 (pairs are not too close). If j 6= i and B(zj , rj)∩B(zi, ri) 6= ∅, then we
have

4

5
ri ≤ ‖zj − zi‖ ≤ 8

3
ri (18)

and

rj ≥
3

5
ri. (19)

We prove this with some algebraic manipulation of (17). If j > i, from (16)
we have ‖zj − zi‖ > ri >

4
5ri. If j < i, we assume ‖zj − zi‖ < 4

5ri which implies

‖xj − xi‖ < ri −
1

4
‖zj − zi‖. (20)

From (17) we have

ri −
1

4
‖zj − zi‖ ≤ rj . (21)

From (20) and (21) we obtain

‖zj − zi‖ < rj

which is contradictory to j < i and (16). So, we have ‖zj − zi‖ ≥ 4
5ri.

To prove the other inequality in (18), we assume ‖zj−zi‖ > 8
3ri which implies

ri <
3

8
‖zj − zi‖ (22)
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From (17) and (22) we have

rj ≤
1

4
‖zj − zi‖+ ri <

1

4
‖zj − zi‖+

3

8
‖zj − zi‖ =

5

8
‖zj − zi‖. (23)

From (22) and (23) we obtain

rj + ri <
5

8
‖zj − zi‖+

3

8
‖zj − zi‖ = ‖zj − zi‖

which is contradictory to B(zi, ri) ∩B(zj , rj) 6= ∅. So we have ‖zj − zi‖ ≤ 8
3ri.

To prove (19), we assume rj <
3
5ri which implies

ri <
5

2
(ri − rj). (24)

From (17) and (24) we have

ri <
5

2
(ri − rj) ≤

5

2
· 1
4
‖zj − zi‖ =

5

8
‖zj − zi‖. (25)

So, from the assumption rj <
3
5ri and (25) we obtain

rj + ri <
3

5
ri + ri =

8

5
ri <

8

5
· 5
8
‖zj − zi‖ = ‖zj − zi‖

which is contradictory to B(zi, ri) ∩B(zj , rj) 6= ∅. So we have (19).

Step 2 (shrunken balls will not intersect). For any i 6= j, we have

B(zi,
4

9
ri) ∩B(zj ,

4

9
rj) = ∅. (26)

This follows easily from the results of Step 1. Without loss of generality, we
assume j > i, so from (16) we have

2ri < 2‖zj − zi‖. (27)

From (17) we have

rj − ri ≤
1

4
‖zj − zi‖. (28)

Adding (27) and (28), we obtain

rj + ri <
9

4
‖zj − zi‖

which is equivalent to 4
9 (rj + ri) < ‖zj − zi‖ implies (26).
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Step 3 (no ball intersects too many others). For any i ∈ {1, 2, · · · ,m}, if
Ji = {j ∈ {1, 2, · · · ,m} | B(zj , rj) ∩B(zi, ri) 6= ∅, j 6= i}, then we have

|Ji| ≤ 117. (29)

To prove (29), we use an area argument derived from the Step 2 fact that if
we shrink balls enough they cannot intersect. To start, we define

A
(
zi,

8

15
ri,

44

15
ri
)
=
{
x ∈ R

2
∣∣ 8

15
ri ≤ ‖x− zi‖ ≤ 44

15
ri
}

For j ∈ Ji, from (18) we have

B(zj ,
4

15
ri) ⊂ A

(
zi,

8

15
ri,

44

15
ri
)

(30)

From (19) we have B(zj ,
4
15ri) ⊂ B(zj ,

4
9rj), so from (30) we obtain

m

(
B(zj ,

4

9
rj) ∩ A

(
zi,

8

15
ri,

44

15
ri
))

≥m

(
B(zj ,

4

15
ri) ∩ A

(
zi,

8

15
ri,

44

15
ri
))

= m

(
B(zj ,

4

15
ri)

)
= π

( 4

15
ri
)2

(31)

where m(·) represents the area of a set.
Moreover, from (26) for any j′ 6= j we have

B(zj ,
4

9
rj) ∩B(zj′ ,

4

9
rj′ ) = ∅. (32)

From (31) and (32) we obtain

|Ji|π(
4

15
ri)

2 ≤
∑

j∈Ji

m

(
B(zj ,

4

9
rj) ∩ A

(
zi,

8

15
ri,

44

15
ri
))

= m




⋃

j∈Ji

(
B(zj ,

4

9
rj) ∩ A

(
zi,

8

15
ri,

44

15
ri
))




≤ m

(
A
(
zi,

8

15
ri,

44

15
ri
))

= π(
44

15
ri)

2 − π(
8

15
ri)

2 = 117π(
4

15
ri)

2

which implies (29).

Step 4 (existence of large independent set). There exists I ⊂ {1, 2, · · · ,m}
such that

B(zi, ri) ∩B(zj , rj) = ∅, ∀ i, j ∈ I, (33)

and

|I| ≥ 1

118
|T (P)|. (34)
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To prove the existence of I, we convert T (P) = {z1, z2, · · · , zm} to a graph
G = (V,E) where V = {v1, v2, · · · , vm} and E = {(vi, vj)| vi, vj ∈ V, B(zi, ri)∩
B(zj , rj) 6= ∅}. From (29) we know

max
1≤i≤m

degree(vi) ≤ 117. (35)

By (35) and Brook’s theorem we know χ(G), the chromatic number of G, satisfies

χ(G) ≤ max
1≤i≤m

degree(vi) + 1 ≤ 118. (36)

Suppose V ′ is the largest independent set ofG. We define I = {i ∈ {1, 2, · · · ,m}| vi ∈
V ′} and obviously I satisfies (33) and |I| = |V ′|. From (36) and the relationship
between |V ′| and χ(G), we obtain

|I| = |V ′| ≥ |V |
χ(G)

≥ |V |
118

=
|T (P)|
118

. (37)

Step 5 (small intersection of B(x, r) with independent set). For any x ∈ R
2,

r > 0 satisfying

−1

4
‖x− zi‖ ≤ r − ri ≤

1

4
‖x− zi‖ ∀ i ∈ I, (38)

we define I(x,r) = {i ∈ I | B(zi, ri) ∩ B(x, r) 6= ∅} where I ⊂ {1, 2, · · · ,m}
satisfies (33), then we have

|I(x,r)| ≤ 30. (39)

Using the method in Step 1, from (38), we can obtain

‖zi − x‖ ≤ 8

3
r and ri ≥

3

5
r, ∀ i ∈ I(x,r)

which implies

B(zi,
3

5
r) ⊂ B(zi, ri) and B(zi,

3

5
r) ⊂ B(x,

49

15
r), ∀ i ∈ I(x,r). (40)

So, from (40) we have

m

(
B(zi, ri) ∩B(x,

49

15
r)

)
≥ m

(
B(zi,

3

5
r) ∩B(x,

49

15
r)

)
= m

(
B(zi,

3

5
r))

)
= π(

3

5
r)2, ∀ i ∈ I(x,r).

(41)
Since I satisfies (33), from (41) we obtain

|I(x,r)|π(
3

5
r)2 ≤

∑

i∈I(x,r)

m

(
B(zi, ri) ∩B(x,

49

15
r)

)
= m




⋃

i∈I(x,r)

(
B(zi, ri) ∩B(x,

49

15
r)
)



≤m

(
B(x,

49

15
r)

)
= π(

49

15
r)2 ≤ 30π(

3

5
r)2

which implies (39).
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Step 6 (putting it all together). Suppose T ⊂ R
2 can ε

2(1+ε) -cover S(P). For

any x ∈ T and r = ε
2(1+ε)

ˆcost(x), we know x and r satisfy (38), which implies

|I(x,r)| ≤ 30. This means each point in T can ε
2(1+ε) -cover at most 30 points in

{zi ∈ T (P)|i ∈ I}. Since T must ε
2(1+ε) -cover {zi ∈ T (P) | i ∈ I} ⊂ S(P), we

have

|I| ≤ 30|T |. (42)

From (37) and (42) we have

|T | ≥ |I|
30

≥ 1

30
· 1

118
|T (P)| = 1

3540
|T (P)|, ∀ T ⊂ R

2 and T can
ε

2(1 + ε)
-cover S(P).

(43)
Setting C∗ = 3540, from (43) we complete the proof. ⊓⊔

Remark: In the proof of Theorem 4, we set C∗ = 3540. However, since the
bounds in (29) and (42) are not tight, as well as the argument in Step 6, the
true value of C∗ is likely much smaller than 3540.

C Expected Lower Bound of ˆcost under C0-bounded iid

Assumption in R
2

In this section we provide show that if the uncertain points are each drawn iid
from separate C0-bounded distributions, then the size of T is small (specifically
O(αk2/ε2), where α is a constant that depends on C0) with high probability.

Before discussing the the existence of the constant α in more detail, we
establish a lemma which is similar to the R1 case and is the basis for estimating
the lower bound of the expected value of ˆcost(x).

Lemma 8. Suppose (X1, Y1, ), (X2, Y2), · · · , (Xk, Yk) are independent and iden-
tically distributed two dimensional random variables. The joint density function
of (X1, Y1) is f(x̃, ỹ) which satisfies

f(x̃, ỹ) ∈ L∞(R2), ‖f‖L∞(R2) ≤ C0, and f(x̃, ỹ) = 0, ∀ (x̃, ỹ) /∈ B((0, 0), R)

where R and C0 are positive constants. For any fixed (x, y) ∈ B((0, 0), R), if
Zj(x, y) and Z(x, y) are defined by

Zj(x, y) =
√
(Xj − x)2 + (Yj − y)2, j = 1, 2, · · · , k ,

Z(x, y) = min{Z1(x, y), Z2(x, y), · · · , Zk(x, y)} ,

then we have

min
(x,y)∈B((0,0),R)

E(Z(x, y)) ≥ 1

4πRC0(k + 1)
. (44)
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Proof. We first assume f ∈ C∞(B((0, 0), R)). A direct computation yields the
cumulative distribution function of Z(x, y):

FZ(x,y)(z) =





0 if z ≤ 0

1−
(
1−

∫∫
B((x,y),z)

f(x̃, ỹ)dx̃dỹ
)k

if 0 < z ≤ R−
√
x2 + y2

1−
(
1−

∫∫
B((x,y),z)∩B((0,0),R)

f(x̃, ỹ)dx̃dỹ
)k

if R−
√
x2 + y2 < z ≤ R+

√
x2 + y2

1 if z > R+
√
x2 + y2

and its expected value E(Z(x, y)) = I1 + I2, where

I1 =

∫ R−
√

x2+y2

0

(
1−

∫∫

B((x,y),z)

f(x̃, ỹ)dx̃dỹ
)k

dz,

I2 =

∫ R+
√

x2+y2

R−
√

x2+y2

(
1−

∫∫

B((x,y),z)∩B((0,0),R)

f(x̃, ỹ)dx̃dỹ
)k

dz.

Now, we estimate the lower bound of I1 and I2 respectively. Using the polar
coordinates

{
x̃ = x+ r cos θ

ỹ = y + r sin θ
, (45)

we have

∫∫

B((x,y),z)

f(x̃, ỹ)dx̃dỹ =

∫ z

0

∫ 2π

0

f(x+ r cos θ, y + r sin θ)rdθdr. (46)

To estimate I1, we introduce the transformation

1−
∫∫

B((x,y),z)

f(x̃, ỹ)dx̃dỹ = τ1. (47)

From (46) and (47) we have

dτ1 = −
(∫ 2π

0

f(x+ z cos θ, y + z sin θ)zdθ
)
dz
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which implies

I1 =

∫ 1

1−
∫∫

B((x,y),R−

√
x2+y2)

f(x̃,ỹ)dx̃dỹ

τk1∫ 2π

0 f(x+ z cos θ, y + z sin θ)zdθ
dτ1

≥ 1

2πC0(R −
√
x2 + y2)

∫ 1

1−
∫∫

B((x,y),R−

√
x2+y2)

f(x̃,ỹ)dx̃dỹ

τk1 dτ1

≥ 1

2πC0R(k + 1)

(
1−

(
1−

∫∫

B((x,y),R−
√

x2+y2)

f(x̃, ỹ)dx̃dỹ
)k+1

)
.

(48)

To estimate I2, using the polar coordinates (45), we have

B((x, y), z) ∩B((0, 0), R)

=
{
(x+ r cos θ, y + r sin θ)|θ1(z) ≤ θ ≤ θ2(z), 0 ≤ r ≤ z

}

∪
{
(x + r cos θ, y + r sin θ)|θ2(z) ≤ θ ≤ θ1(z) + 2π, 0 ≤ r ≤ r(θ)

}
(49)

where

r(θ) = −(x cos θ + y sin θ) +
√
(x cos θ + y sin θ)2 + (R2 − x2 − y2) ,

and θ1(z), θ2(z) (θ1(z) < θ2(z)) are two roots of

(x+ z cos θ)2 + (y + z sin θ)2 = R2

and satisfy

(x+z cos θ, y+z sin θ) ∈ B((0, 0), R), ∀ θ ∈ (θ1(z), θ2(z)), z ∈ (R−
√
x2 + y2, R+

√
x2 + y2).

Moreover, it is easy to check

r(θ1(z)) = r(θ2(z)) = z. (50)

Thus, from (49) we obtain

∫∫

B((x,y),z)∩B((0,0),R)

f(x̃, ỹ)dx̃dỹ

=

∫ θ2(z)

θ1(z)

∫ z

0

f(x+ r cos θ, y + r sin θ)rdrdθ +

∫ θ1(z)+2π

θ2(z)

∫ r(θ)

0

f(x+ r cos θ, y + r sin θ)rdrdθ.

(51)

Introducing the transformation

1−
∫∫

B((x,y),z)∩B((0,0),R)

f(x̃, ỹ)dx̃dỹ = τ2 ,
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from (50) and (51) we have

−dτ2
dz

=

∫ θ2(z)

θ1(z)

f(x+ z cos θ, y + z sin θ)zdθ

which implies

I2 =

∫ 1−
∫∫

B((x,y),R−

√
x2+y2)

f(x̃,ỹ)dx̃dỹ

0

τk2∫ θ2(z)

θ1(z)
f(x+ z cos θ, y + z sin θ)zdθ

dτ2

≥ 1

2πC0(R+
√
x2 + y2)

∫ 1−
∫∫

B((x,y),R−

√
x2+y2)

f(x̃,ỹ)dx̃dỹ

0

τk2 dτ2

≥ 1

4πC0R(k + 1)

(
1−

∫∫

B((x,y),R−
√

x2+y2)

f(x̃, ỹ)dx̃dỹ
)k+1

.

(52)

Therefore, from (48) and (52) we have

E(Z(x, y)) = I1 + I2 ≥ 1

2πC0(k + 1)

( 1
R

− 1

2R

)
=

1

4πRC0(k + 1)
.

For the case f /∈ C∞(B((0, 0), R)), we can use a sequence of smooth func-
tions to approximate f , and obtain (44) for each smooth function and then use
Lebesgue’s dominated convergence theorem to show f also satisfies (44). Thus,
the proof of this lemma is completed.

On the basis of this lemma, using Chernoff-Hoeffding inequality, we can ob-
tain a lower bound of the expected value of ˆcost(x) in Theorem 5, and the proof
is similar to that of Lemma 5.

Theorem 5. Suppose for fixed i ∈ {1, 2, · · · , n}, (Xi,1, Yi,1), (Xi,2, Yi,2), · · · , (Xi,k, Yi,k)
are independent and identically distributed two dimensional random variables.
The joint density function of (Xi,1, Yi,1) is fi(x̃, ỹ) which satisfies

fi(x̃, ỹ) ∈ L∞(R2), ‖fi‖L∞(B((0,0),R)) ≤ C0, and fi(x̃, ỹ) = 0, ∀ (x̃, ỹ) /∈ B((0, 0), R)

where R and C0 are positive constants. For any fixed (x, y) ∈ B((0, 0), R), sup-
pose Zi(x, y) is given by

Zi(x, y) = min
1≤j≤k

{√
(Xi,j − x)2 + (Yi,j − y)2

}
,

and Z1, Z2, · · · , Zn are mutually independent.
If Zn(x, y) ,

1
n

∑n
i=1 Z

i(x, y), then for any η > 0 and δ ∈ (0, 1) we have

Pr

[
min

(x,y)∈B((0,0),R)
Zn(x, y) ≥

1

4πRC0(k + 1)
− η

]
> 1− δ, ∀ n >

2R2

η2
ln

2

δ
.

(53)
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Remark: Under the condition of Theorem 5, we know there exists a constant α =
(R2C0)

2 such thatPr
[
|T (P)| = O(αk2 1

ε2
)
]
> 1−δ for any n > 128α2(k+1)2 ln 2

δ
.

In fact, if n > 128R4C2
0 (k + 1)2 ln 2

δ
, then we can find η0 ∈ (0, 1

8RC0(k+1) ) such

that n > 2R2

η2
0
ln 2

δ
> 128R4C2

0 (k + 1)2 ln 2
δ
. Moreover, since η0 ∈ (0, 1

8RC0(k+1) ),

we have

min
(x,y)∈B((0,0),R)

Zn(x, y) ≥
1

4πRC0(k + 1)
− η0

⇒ |T (P)| ≤ O

(
R2

(
ε

1+ε
minx∈B((0,0),R) ˆcost(x)

)2

)
= O

(
R2(1

ε
)2

(
min(x,y)∈B((0,0),R)Zn(x, y)

)2

)

≤O

(
R2(1

ε
)2

(
− η0 + (4πRC0(k + 1))−1

)2

)
= O

(
R4C2

0k
2 1

ε2

)

⇒ |T (P)| = O

(
αk2

1

ε2

)

which implies

Pr

[
|T (P)| = O(αk2

1

ε2
)

]
≥ Pr

[
min

(x,y)∈B((0,0),R)
Zn(x, y)

]
. (54)

Since n > 2R2

η2
0
ln 2

δ
, from (53) and (54) we obtain

Pr

[
|T | = O(αk2

1

ε2
)

]
> 1− δ.
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