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GENERALIZATION OF SCARPIS’S THEOREM ON HADAMARD
MATRICES

DRAGOMIR Z. POKOVIC

ABSTRACT. A {1, —1}-matrix H of order m is a Hadamard matrix if HHT =
mly,, where T is the transposition operator and I, the identity matrix of
order m. J. Hadamard published his paper [I] on Hadamard matrices in 1893.
Five years later, Scarpis [4] showed how one can use a Hadamard matrix of
order n = 1+ p, p = 3 (mod 4) a prime, to construct a bigger Hadamard
matrix of order pn. In this note we show that Scarpis’s construction can be
extended to the more general case where p is replaced by a prime power q.

1. INTRODUCTION

We fix some notation which will be used throughout this note. By ., we denote
the set of Hadamard matrices of order m. Let ¢ = 3 (mod 4) be a prime power
and set n =1+ ¢. Let F; be a finite field of order g.

Given a bijection a: {1,2,...,q} — F,, we shall construct a map

©Og,a t Hn = Hen.
Consequently, the following theorem holds.

Theorem 1. Let ¢ = 3 (mod 4) be a prime power. If there exists a Hadamard
matriz of order n = 1+ q then there exists also a Hadamard matriz of order gn.

In the special case, where ¢ is a prime, this theorem was proved by Scarpis [4].
For a nice and short description of the original Scarpis’s construction see [2].

By the well known theorem of Paley [3], the hypothesis of the above theorem is
always satisfied. Thus we have

Corollary 1. If ¢ = 3 (mod 4) is a prime power, then there exists a Hadamard
matriz of order q(1 + q).

We shall describe a procedure whose input is a Hadamard matrix A = [a; ;] of
order n = 1 + ¢ and output a Hadamard matrix B = ¢q,4(A) of order gn. For
convenience, we set «; = «/(i).

2. CONSTRUCTION OF B

Step 1: If @31 = —1 then replace A by —A. From now on a;,; = 1.

Step 2: For each i € {2,3,...,n} do the following: if a;; = —1 then multiply
the row 7 of A by —1, and if a;; = —1 then multiply the column ¢ of A by —1.
The resulting matrix A is independent of the order in which these operations are
performed.

Note that A is now normalized, i.e., a;1 = a1,; = 1 for each 7. Denote by C' its
core, i.e., the submatrix of A obtained by deleting the first row and the first column
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of A. Fori € {1,2,...,q}, we denote by ¢; the row i of C. For convenience, we also
set c(a;) = ¢;.

The tensor product X ® Y of two matrices X = (z; ;) and Y is the block matrix
[,Ti)j Y]

Let j be the row vector of length ¢ all of whose entries are 1. We view j also as
a 1 X ¢ matrix.

Step 3: We partition B into n blocks of size ¢ x gn:

By
By

B=1| .

By

We set By = A’ ® j where A’ is the submatrix of A obtained by deleting the first

row of A.
Step 4: For r € {1,2,...,q}, we partition B, into n blocks of size ¢ X ¢:

B’I" = [BT,O Br,l e Br,q] .

We set B,.o = jT & ¢,

It remains to define the blocks B,.; for {r,i} C {1,2,...,q}.

Step 5: For {r,i} C {1,2,...,q}, we define B, ; by specifying that its row k is
c(ajar + ag). Thus B, ; = P, ;C where P,; is a permutation matrix.

This completes the definition of B.

It remains to prove that B is a Hadamard matrix.

3. PROOF THAT B 1S A HADAMARD MATRIX

As B is a square {1, —1}-matrix of order gn, it suffices to prove that the dot
product of any pair of rows of B is 0. There are four cases to consider.

(i) Two distinct rows of By. They are orthogonal because two distinct rows of
A’ are orthogonal.

(ii) Two distinct rows of B, r # 0. Since A is normalized, the dot product ¢, - ¢,
is ¢ when r = s, and —1 otherwise. Hence, the same is true for each of the blocks
B, ; for i # 0. On the other hand, the dot product of any two rows of B, is q. It
follows that the dot product of any pair of rows of B, is 0.

(iii) A row of By and a row of By, s # 0.

The row k of By is [j ¢ ®j ] and the row [ of B is

[ clas) clasaq + o) clasay + az) -+ clasar + aq) .

Since all row sums of C' are —1, it follows that the dot product of the two rows
above is 0.

(iv) A row of B, and a row of B, 0 <1 < s.

The dot product of the row k of B, and the row [ of By is

q
clay) - elas) + Z clajar + ag) - clajas + ap).
i=1
Note that c(a;a + ag) - c(azas + @) is equal to —1 for all ¢ except that it is equal
to g for the unique i € {1,2,...,¢} for which a;a, + ar = ;a5 + ;. Since also
clay) - c(as) = —1, it follows that the rows of B, are orthogonal to the rows of Bs.
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We have shown that B € Hy,. This completes our construction of ¢g «.

The smallest ¢ which satisfies the condition of Theorem [l but is not a prime (so
Scarpis’s theorem does not apply) is ¢ = 27. It gives a Hadamard matrix of order
4189 = 756.

We conclude with an open problem: Find an analog of our procedure which uses
prime powers ¢ =1 (mod 4).
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