
ar
X

iv
:1

60
1.

00
63

5v
1 

 [
m

at
h.

C
O

] 
 4

 J
an

 2
01

6

GENERALIZATION OF SCARPIS’S THEOREM ON HADAMARD

MATRICES

DRAGOMIR Ž. D̄OKOVIĆ

Abstract. A {1,−1}-matrix H of order m is a Hadamard matrix if HHT =
mIm, where T is the transposition operator and Im the identity matrix of
order m. J. Hadamard published his paper [1] on Hadamard matrices in 1893.
Five years later, Scarpis [4] showed how one can use a Hadamard matrix of
order n = 1 + p, p ≡ 3 (mod 4) a prime, to construct a bigger Hadamard
matrix of order pn. In this note we show that Scarpis’s construction can be
extended to the more general case where p is replaced by a prime power q.

1. Introduction

We fix some notation which will be used throughout this note. By Hm we denote
the set of Hadamard matrices of order m. Let q ≡ 3 (mod 4) be a prime power
and set n = 1 + q. Let Fq be a finite field of order q.

Given a bijection α : {1, 2, . . . , q} → Fq, we shall construct a map

ϕq,α : Hn → Hqn.

Consequently, the following theorem holds.

Theorem 1. Let q ≡ 3 (mod 4) be a prime power. If there exists a Hadamard

matrix of order n = 1 + q then there exists also a Hadamard matrix of order qn.

In the special case, where q is a prime, this theorem was proved by Scarpis [4].
For a nice and short description of the original Scarpis’s construction see [2].

By the well known theorem of Paley [3], the hypothesis of the above theorem is
always satisfied. Thus we have

Corollary 1. If q ≡ 3 (mod 4) is a prime power, then there exists a Hadamard

matrix of order q(1 + q).

We shall describe a procedure whose input is a Hadamard matrix A = [ai,j ] of
order n = 1 + q and output a Hadamard matrix B = ϕq,α(A) of order qn. For
convenience, we set αi = α(i).

2. Construction of B

Step 1: If a1,1 = −1 then replace A by −A. From now on a1,1 = 1.
Step 2: For each i ∈ {2, 3, . . . , n} do the following: if ai,1 = −1 then multiply

the row i of A by −1, and if a1,i = −1 then multiply the column i of A by −1.
The resulting matrix A is independent of the order in which these operations are
performed.

Note that A is now normalized, i.e., ai,1 = a1,i = 1 for each i. Denote by C its
core, i.e., the submatrix of A obtained by deleting the first row and the first column
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of A. For i ∈ {1, 2, . . . , q}, we denote by ci the row i of C. For convenience, we also
set c(αi) = ci.

The tensor product X ⊗Y of two matrices X = (xi,j) and Y is the block matrix
[xi,jY ].

Let j be the row vector of length q all of whose entries are 1. We view j also as
a 1× q matrix.

Step 3: We partition B into n blocks of size q × qn:

B =











B0

B1

...
Bq











.

We set B0 = A′ ⊗ j where A′ is the submatrix of A obtained by deleting the first
row of A.

Step 4: For r ∈ {1, 2, . . . , q}, we partition Br into n blocks of size q × q:

Br = [Br,0 Br,1 · · · Br,q] .

We set Br,0 = jT ⊗ cr.
It remains to define the blocks Br,i for {r, i} ⊆ {1, 2, . . . , q}.
Step 5: For {r, i} ⊆ {1, 2, . . . , q}, we define Br,i by specifying that its row k is

c(αiαr + αk). Thus Br,i = Pr,iC where Pr,i is a permutation matrix.
This completes the definition of B.
It remains to prove that B is a Hadamard matrix.

3. Proof that B is a Hadamard matrix

As B is a square {1,−1}-matrix of order qn, it suffices to prove that the dot
product of any pair of rows of B is 0. There are four cases to consider.

(i) Two distinct rows of B0. They are orthogonal because two distinct rows of
A′ are orthogonal.

(ii) Two distinct rows of Br, r 6= 0. Since A is normalized, the dot product cr ·cs
is q when r = s, and −1 otherwise. Hence, the same is true for each of the blocks
Br,i for i 6= 0. On the other hand, the dot product of any two rows of Br,0 is q. It
follows that the dot product of any pair of rows of Br is 0.

(iii) A row of B0 and a row of Bs, s 6= 0.
The row k of B0 is [ j ck ⊗ j ] and the row l of Bs is

[ c(αs) c(αsαl + α1) c(αsαl + α2) · · · c(αsαl + αq) ].

Since all row sums of C are −1, it follows that the dot product of the two rows
above is 0.

(iv) A row of Br and a row of Bs, 0 < r < s.
The dot product of the row k of Br and the row l of Bs is

c(αr) · c(αs) +

q
∑

i=1

c(αiαr + αk) · c(αiαs + αl).

Note that c(αiαr +αk) · c(αiαs + αl) is equal to −1 for all i except that it is equal
to q for the unique i ∈ {1, 2, . . . , q} for which αiαr + αk = αiαs + αl. Since also
c(αr) · c(αs) = −1, it follows that the rows of Br are orthogonal to the rows of Bs.
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We have shown that B ∈ Hqn. This completes our construction of ϕq,α.

The smallest q which satisfies the condition of Theorem 1 but is not a prime (so
Scarpis’s theorem does not apply) is q = 27. It gives a Hadamard matrix of order
4 · 189 = 756.

We conclude with an open problem: Find an analog of our procedure which uses
prime powers q ≡ 1 (mod 4).
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