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Introduction.

In modern non-commutative algebraic geometry as formalized for example
by M. Kontsevich and Y. Soibelman [KS], algebraic varieties are replaced
by associative unital DG algebras A q considered up to a derived Morita
equivalence. The role of differential forms is played by Hochschild homol-
ogy classes of A q, and de Rham cohomology corresponds to periodic cyclic
homology HP q(A q). Periodic cyclic homology is related to Hochschild ho-
mology by a standard spectral sequence. If A q is derived Morita-equivalent
to a smooth algebraic variety X, then the spectral sequence reduces to the
classical Hodge-to-de Rham spectral sequence of P. Deligne. Because of this,
one also calls it the Hodge-to-de Rham spectral sequence in the general case.

If the smooth variety X is also proper, and the base ring is a field of
characteristic 0, then the Hodge-to-de Rham spectral sequence degenerates.
This is Deligne’s reformulation of the classical Hodge theory, and there is
also an alternative purely algebraic proof due to Deligne and L. Illusie [DI].

Motivated by this, Kontsevich and Soibelman conjectured in [KS] that
if a general DG algebra A q over a field of characteristic 0 is homologically
smooth and homologically proper, then the Hodge-to-de Rham spectral se-
quence degenerates.

This conjecture has been largely proved in [Ka2], by an adaptation of
the method of Deligne and Illusie. However, the argument in that paper
suffers from two related drawbacks:

• One has to impose an additional assumption that the DG algebra A q

is question is concentrated in non-negative homological degrees (that
is, Ai = 0 for i > 0).

• To pass form algebras to DG algebras, one uses Dold-Kan equivalence
and simplicial methods. This is what forces one to impose the assump-
tion above, and this is what makes a large part of the argument very
hard to understand.

In this paper, we revisit the subject, and we give a proof of Kontsevich-
Soibelman Degeneration Conjecture free from any additional technical as-
sumptions.

Our method is still the same — it is based on reduction to positive char-
acteristic and adapting the approach of [DI]. In principle, one could remove
the assumption (•) by using simplicial-cosimplicial objects as e.g. in [Ka3].
However, this would make the argument even more opaque. Instead, we
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opt for an earlier approach tried in the unpublished preprint [Ka1]. This is
much closer to [DI], in that it uses explicitly two different spectral sequences
that exist in positive characteristic — the Hodge-to-de Rham spectral se-
quence, on one hand, and the so-called conjugate spectral sequence on the
other hand. The spectral sequences are completely different, but they have
the same first page and the same last page. So, what one actually proves is
that the conjugate spectral sequence degenerates, under some assumptions;
the Hodge-to-de Rham sequence then degenerates for dimension reasons.

For associative algebras of finite homological dimension, it is relatively
easy to construct a non-commutative version of the conjugate spectral se-
quence, and this has been essentially done in [Ka1]. However, for general
DG algebras, the question is much more delicate. It took a while to realize
that the sequence in question simply does not exist — or rather, it does
exist, but does not converge to periodic cyclic homology. What it converges
to is a completely new additive invariant of DG algebras and DG categories
constructed in [Ka5] under the name of co-periodic cyclic homology and de-
noted HP q(A q). In retrospect, this state of affairs has been also suggested
by Kontsevich 10 years ago [Ko1, Ko2], but the major push for actually
developing the theory has been given by recent works of A. Beilinson [Be]
and B. Bhatt [Bh]. Whatever the origins of the theory are, now we know
that co-periodic cyclic homology does exist, it has a conjugate spectral se-
quence converging to it, and for a homologically smooth and homologically
bounded DG algebra A q, there is a comparison theorem providing a canon-
ical isomorphism HP q(A q) ∼= HP q(A q). Therefore a Deligne-Illusie type of
argument for degeneration should still be possible. This is what the present
paper provides.

A couple of words about the organization of the paper. Out of necessity,
a large part of it is a recapitulation of my earlier papers. In particular,
Section 1 and Section 2 contain the relevant results of [Ka5]. Section 1
is concerned with general results about co-periodic cyclic homology, sum-
marized in Theorem 1.3, and Section 2 contains the construction of the
conjugate spectral sequence. Section 3 starts with some general results on
Tate (co)homology of finite groups. Everything is completely standard but
we do not know any good references (there are some intersections with [Ka6,
Subsection 6.3]). Then we apply the results to define a relative version of
Tate cohomology, and use it to prove results about co-periodic cyclic homol-
ogy. In particular, this includes a degeneration criterion (Proposition 3.6).
At this point, we can already prove all out degeneration results; however,
we make a detour and use the opportunity to correct one fault of [Ka5] —
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namely, we construct the conjugate spectral sequence in characteristic 2,
the case excluded in [Ka5] for reasons explained in [Ka5, Subsection 5.5].
This is the subject of Section 4. The technology used is a combination of
some splitting results of [Ka6, Section 6] and the notion of a trace functor of
[Ka3]. Finally, in Section 5, we prove our degeneration results. This includes
Theorem 5.4 equivalent to the Degeneration Conjecture of [KS].

Acknowledgement. For several reasons at once, it is a great pleasure to
dedicate this paper to Maxim Kontsevich. It was him who posed the orig-
inal problem. He then actively encouraged my earlier work on it, and at
the same time, was consistently unhappy about the unnecessary technical
complications of [Ka2]. In retrospect, it was also him who showed a better
way to approach the subject, although at the time, I didn’t quite understand
what he meant. Another mathematician to whom this paper owes a lot is
Vadim Vologodsky. In particular, he always insisted that the notion of a
conjugate spectral sequence omitted in [Ka2] should be an integral part of
the story. Moreover, a crucial technical idea that appears in [Ka6, Section 6]
is also due to him. I am also very grateful to David Kazhdan and Vladimir
Hinich for their interest in this work, and for encouraging me to try to set-
tle the question once and for all. Finally, in the years that passed since
[Ka2], I had an opportunity to discuss the subject with many people; I want
to specifically mention very useful conversations with Alexandre Beilinson,
Bhargav Bhatt, Boris Feigin, and Boris Tsygan.

1 Co-periodic cyclic homology.

In this section, we recall main facts about co-periodic cyclic homology in-
troduced in [Ka5], together with some terminology and notation.

1.1 Mixed complexes. A mixed complex 〈V q, B〉 in an abelian category
E is a complex V q in E equipped with a map of complexes B : V q → V q[−1]
such that B2 = 0 (we will drop B from notaton when it is clear from the
context). The periodic expansion Per(V q) of a mixed complex V q is the
complex

Per(V q) = V q((u)),

with the differential d + Bu, where d is the differential in the complex V q,
u is a formal generator of cohomological degree 2, and V q((u)) is shorthand
for “formal Laurent power series in u with coefficients in V q”. Analogously,
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co-periodic and polynomial periodic expansions Per(V q), per(V q) are given by

Per(V q) = V q((u−1)), per(V q) = V q[u, u−1],

again with the differential d+ uB. By definition, the space of Taylor power
series V q[[u]] ⊂ V q((u)) is a subcomplex in the periodic expansion Per(V q);
the expansion Exp(V q) is the quotient complex

Exp(V q) = V q[u−1] = V q((u))/uV q[[u]].

Multiplication by u induces an invertible degree-2 endomorphism of the
complexes Per(V q), Per(V q), per(V q) and a non-invertible periodicity map
u : Exp(V q)→ Exp(V q)[2]. We have

(1.1) Per(V q) ∼= lim
u
←

Exp(V q).

Since a Laurent polynomial in u is a Laurent power series both in u and in
u−1, we have natural functorial maps

(1.2) Per(V q) ←−−−− per(V q) −−−−→ Per(V q)

for any mixed complex V q. If V q is concentrated in a finite range of degrees,
then both maps are isomorphisms, but in general, they are not.

Example 1.1. Assume given a module E over a ring R, and assume that
a cyclic group Z/nZ of some order n acts on E, with σ : E → E being the
generator. Then the length-2 complex

(1.3) E
id−σ
−−−−→ E

has a natural structure of a mixed complex, with the map B given by

B = id+σ + · · ·+ σn−1 : Eσ → Eσ.

The expansion of the complex (1.3) is the standard homology complex
C q(Z/nZ, E), and the periodic expansion is the standard Tate homology
complex Č q(Z/nZ, E).

1.2 Small categories. In a sense, the standard example of a mixed com-
plex that appears in nature combines the complexes of Example 1.1 for all
integers n ≥ 1. To package the data, it is convenient to use the technology
of homology of small categories. For any small category I and ring R, we
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denote by Fun(I,R) the abelian category of functors from I to R-modules,
with the derived category D(I,R), and for any functor γ : I → I ′ between
small categories, we denote by γ∗ : Fun(I ′, R) → Fun(I,R) the pullback
functor. The functor γ∗ is exact, and it has a left and a right adjoint that
we denote by γ!, γ∗ : Fun(I,R) → Fun(I ′, R). For any E ∈ Fun(I,R), the
homology H q(I,E) of the category I with coefficients in E is by definition
given by

Hi(I,E) = Liτ!E,

where τ : I → pt is the tautological projection to the point category pt.
The specific small category that we need is A. Connes’ cyclic category

Λ of [C]. We do not reproduce here the full definition (see e.g. [L]), but
we do recall that objects of Λ correspond to cellular decompositions of the
circle S1, and morphisms correspond to homotopy classes of cellular maps
of a certain type. We call 0-cells vertices, and we call 1-cells edges. For any
n ≥ 1, there is exactly one decomposition with n vertices and n edges. The
corresponding object in Λ is denoted [n], and we denote by V ([n]) the set
of its vertices. Any map f : [n′] → [n] in Λ induces a map f : V ([n′]) →
V ([n]). For any v ∈ V ([n]), the preimage f−1(v) ⊂ V ([n′]) carries a natural
total order. We have Aut([n]) = Z/nZ, the cyclic group, so that for any
E ∈ Fun(Λ, R), E([n]) is naturally an R[Z/nZ]-module. Moreover, we have
a natural embedding j : ∆o → Λ, where as usual, ∆ is the category of finite
non-empty totally ordered sets, and ∆o is the opposite category. To keep
notation consistent with the embedding j, we denote by [n] ∈ ∆ the set with
n elements.

By definition, the category Fun(∆o, R) is category of simplicial R-modu-
les, and for any E ∈ Fun(∆o, R), we have the standard chain complex
CH q(E) with terms CHi(E) = E([i + 1]), i ≥ 0, and the differential
di : CHi(E)→ CHi−1(E) given by

(1.4) di =
∑

0≤j≤i

δij ,

where δ
q

q
are the face maps. Moreover, we also have another complex

CH ′
q
(E) with the same terms as CH q(E), but with the differential given

by (1.4) with the summation extended over j from 0 to i − 1 (that is, we
drop the last term). Then the complex CH q(E) computes the homology
H q(∆o, E), while the complex CH ′

q
(E) is acyclic — in fact, canonically con-

tractible.
Now, for any object E ∈ Fun(Λ, R), we have the simplicial object j∗E ∈

Fun(∆o, R), and it is well-known that the complexes (1.3) for E([n]), n ≥ 1
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fit together into a single bicomplex

(1.5) CH ′
q
(E)

id−σ†

−−−−→ CH q(E),

where for any [n] ∈ Λ, σ ∈ Aut([n]) is the generator of the cyclic group
Z/nZ, and σ† = (−1)n+1σ. We denote by CH q(E) the total complex of
the bicomplex (1.5). Furthermore, it is also well-known that the maps B of
Example 1.1 fit together into a single map B : CH q(E)→ CH q(E)[−1] that
turns CH q(E) into a mixed complex.

It will be convenient to recast this construction in a slightly different
way. For any [n] ∈ Λ, denote by K q([n]) the standard celluar chain complex
computing the homology of the circle S1 with respect to the decomposition
correcponding to [n]. Then it turns out that K q is functorial with respect
to morphisms in Λ, so that we obtain an exact sequence

(1.6) 0 −−−−→ Z
κ1−−−−→ K1 −−−−→ K0 −−−−→ Z

κ0−−−−→ 0

in the category Fun(Λ,Z). For any E ∈ Fun(Λ, R), denote K q(E) = K q⊗E.
Then K q(E) is a mixed complex in Fun(Λ, R), with the map B given by

(1.7) B = (κ1 ◦ κ0)⊗ id .

Now for any E ∈ Fun(Λ, R), denote by cc q(E) the cokernel of the natural
map (1.5). Then one can show that we have natural identifications

CH q(j∗E) ∼= cc q(K0(E)), CH ′
q
(j∗E) ∼= cc q(K1(E)),

and the mixed complex CH q(E) is then given by

(1.8) CH q(E) ∼= cc q(K q(E)),

with the map B induced by the map B of (1.7).
Finally, observe that if we are given a complex E q in the category

Fun(Λ, R), then we can apply cc q(−) and CH q(−) to E q termwise. We
denote by cc q(E q), CH q(E q) the sum-total complexes of the resulting bi-
complexes. Explicitly, we have

(1.9) ccj(E q) =
⊕

n≥1

Ej+n([n])σ† , j ∈ Z,

with the differential induced by the differential (1.4) and the differential in
the complex E q.
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1.3 Cyclic homology. We can now define periodic and co-periodic cyclic
homology.

Definition 1.2. Assume given a ring R and a complex E q in the cate-
gory Fun(Λ, R). Then the cyclic homology complex CC q(E q), the periodic
cyclic homology complex CP q(E q), the co-periodic cyclic homology complex
CP q(E q), and the polynomial periodic cyclic homology complex cp q(E q) are
given by

(1.10)
CC q(E q) = Exp(CH q(E q)), CP q(E q) = Per(CH q(E q)),

CP q(E q) = Per(CH q(E q)), cp q(E q) = per(CH q(E q)).

The periodic resp. co-periodic cyclic homology HP q(E q) resp. HP q(E q) is
the homology of the complexes CP q(E q) resp. CP q(E q).

We note that the first line in (1.10) is completely standard; it is the
second line that defines new theories introduced in [Ka5]. The homology
of the complex CC q(E q) is the usual cyclic homology HC q(E q), and it is
well-known that we have a natural identification

(1.11) HC q(E q) ∼= H q(Λ, E q),

where E q in the right-hand side is understood as the corresponding object
in the derived category D(Λ, R). One can combine this with (1.1) to express
HP q(−). Co-periodic cyclic homology functor HP q(−) does not admit such
a homological expression, and in fact, it is not true that quasiisomorphic
complexes have isomorphic HP q. For any complex E q, we do have functorial
maps

(1.12) CP q(E q) ←−−−− cp q(E q) −−−−→ CP q(E q)

induced by the maps (1.2), but in general, these maps are not quasiisomor-
phisms. We also note that we have a natural functorial map

(1.13) α : CC q(E q)→ cc q(E q),

and in general, this map is not a quasiisomorphism either. One example
where it is a quasiisomorphism is E q = K q(E′

q
) for some complex E′

q
in

Fun(Λ, R). In this case, by [Ka5, Lemma 3.11], α induces a natural isomor-
phism

(1.14) HC q(K q(E′
q
)) ∼= HH q(E′

q
),
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where HH q(E′
q
) is the homology of the complex CH q(E′

q
) (or equivalently,

of the complex CH q(j∗E′
q
)).

Assume now given a Noetherian commutative ring k and a DG algebra A q

termwise-flat over k. Then one defines a complex A♮
q
in Fun(Λ, k) as follows.

For any [n] ∈ Λ, A♮
q
([n]) ∼= A⊗kn

q
, with terms of the product numbered by

vertices v ∈ V ([n]). For any map f : [n′] → [n], the corresponding map
A♮

q
(f) is given by

(1.15) A♮
q
(f) =

⊗

v∈V ([n])

mf−1(v),

where for any finite set S, mS : A⊗kS
q
→ A q is the multiplication map in

the DG algebra A q. Then by definition, cyclic homology and periodic cyclic
homology of the DG algebra A q are the cyclic homology and the periodic
cyclic homology of the complex A♮

q
, and we define co-periodic and polynomial

periodic cyclic homology HP q(A q), hp q(A q) in the same way: we set

HP q(A q) = HP q(A♮
q
), hp q(A q) = hp q(A♮

q
).

Here are, then, the main two results about HP q(A q) proved in [Ka5].

Theorem 1.3. (i) Co-periodic cyclic homology functor HP q(−) extends
to an additive invariant of small DG categories (in particular, a quasi-
isomorphism fo DG algebras induces an isomorphism of their co-peri-
odic cyclic homology groups).

(ii) Assume that k⊗Q = 0 and A q is homologically smooth and homologi-
cally bounded over k. Then the maps (1.12) for E q = A♮

q
are quasiiso-

morphisms, so that we have

HP q(A q) ∼= hp q(A q) ∼= HP q(A q).

Proof. The first statement (i) is [Ka5, Theorem 6.6], and the second state-
ment (ii) is contained in [Ka5, Theorem 6.7]. �

In Theorem 1.3 (ii), homologically smooth as usual means that A q is
perfect as an A q-bimodule (that is, Ao

q
⊗k A q-module). If k is a field, then

homologically bounded simply means that the complex A q has a finite number
of non-trivial homology groups. In the general case, this must hold for A q⊗k,
where k is any residue field of the ring k.
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2 Conjugate spectral sequence.

For any mixed complex 〈V q, B〉 in an abelian category E , the u-adic filtration
on Per(V q) ∼= V q((u)) induces a convergent spectral sequence

H q(V q)((u))⇒ H q(Per(V q)),

where H q(−) stands for homology objects. In particular, for any ring R and
complex E q ∈ Fun(Λ, R), we have a convergent spectral sequence

(2.1) HH q(E q)((u))⇒ HP q(E q).

If E q = A♮
q
for a DG algebra A q over a commutative ring k, HH q(A♮

q
)

is naturally identified with the Hochschild homology HH q(A q) of the DG
algebra A q, so that (2.1) reads as

(2.2) HH q(A q)((u))⇒ HP q(A q).

This is the Hodge-to-de Rham spectral sequence.
For co-periodic cyclic homology, no analog of (2.1) is currently known,

but under some assumptions, we do have a version of (2.2). This was inro-
duced in [Ka5] under the name of the conjugate spectral sequence. In this
section, we briefly recall the construction.

2.1 Filtrations. The main technical tool used in [Ka5] for studying co-
periodic cyclic homology is the use of filtrations and filtered derived cate-
gories. Filtrations are decreasing and indexed by all integers — that is, a
filtered complex in an abelian category E is a complex E q equipped with a col-
lection of subcomplexes F iE q ⊂ E q, i ∈ Z such that F iE q ⊂ F jE q for i ≥ j.
A filtration F

q

is termwise-split if for any i and j, the embedding F iEj → Ej

admits a one-sided inverse Ej → F iEj. The stupid filtration F
q

on a com-
plex E q is obtained by setting F jEi = Ei if i+ j ≤ 0 and 0 otherwise; it is
tautologically termwise-split. For any filtration F

q

and any integer n ≥ 1,
the n-th rescaling F

q

[n] of F
q

is given by F i
[n] = F in, i ∈ Z, and the shift by n

F
q

n is given by F i
n = F i+n. A map 〈E′

q
, F ′

q
〉 → 〈E q, F q〉 of filtered complexes

is a filtered quasiisomorphism if for any i, the induced map griF ′ E′q → griF E q

of associated graded quotients is a quasiisomorphism (there is no require-
ment on the map E′

q
→ E q nor on the maps F iE′

q
→ F iE q). Inverting

filtered quasiisomorphisms in the category of filtered complexes, we obtain
the filtered derived category DF (E).
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The completion Ê q of a filtered complex 〈E q, F
q

〉 is given by

Ê q = lim
i
←

lim
j
→

F jE q/F iE q

∼= lim
j
→

lim
i
←

F jE q/F iE q,

where the limit is over all integers i ≥ j, with i going to ∞ and j to −∞. If
a map E′

q
→ E q is a filtered quasiisomorphism, the induced map Ê′

q
→ Ê q

of completions is a quasiisomorphism. The converse is not true: two very
different filtrations can have the same completion. Specifically, say that two
filtrations F

q

1 , F
q

2 on the same complex E q are commensurable if for any
integers i, j, there exist integers j1 ≤ j ≤ j2 such that F j2

2 Ei ⊂ F j
1Ei ⊂

F j1
2 Ei and F j2

1 Ei ⊂ F j
2Ei ⊂ F j1

1 Ei. Then two commensurable filtrations on

a complex E q obviously give the same completion Ê q.
Every shift F

q

n and every rescaling F
q

[n] of a filtration F
q

is obviously
commensurable to F

q

. For a more non-trivial example, assume given a
filtered complex 〈E q, F

q

〉, and define its filtered truncations by setting

(2.3)
τF≥nEi = d−1(Fn+1−iEi−1) ∩ Fn−iEi ⊂ Ei,

τF≤nEi = Ei/(F
n+1−iEi + d(Fn−iEi+1))

for any integer n. Denote also τF[n,m] = τF≥nτ
F
≤m for any integers n ≤ m.

Then the subcomplexes τF≥nE q ⊂ E q for varying n give a filtration τ
q

on E q,
and this filtration is commensurable to F

q

.

Example 2.1. Assume that E q is the sum-total complex of a bicomplex
E q, q, and let F

q

be the stupid filtration with respect to the first coordinate.
Then τF≥nE q, τF≤nE q are canonical truncations with respect to the second
coordinate.

In the general case, the truncation functors τF are also related to the
canonical filtrations: for any integers i, j, we have natural isomorphisms

gr
j
F τF≥iE q

∼= τ≥i−j gr
j
F E q, gr

j
F τF≤iE q

∼= τ≤i−j gr
j
F E q,

where τ≥n, τ≤n are the usual canonical truncations. In particular, the func-
tors τF preserve filtered quasiisomorphisms and descend to the filtered de-
rived category DF (E), where they become truncation functors with respect
to the well-known t-structure of [BBD] (the heart of this t-structure is the
category of complexes in E). However, it will be useful to have the truncation
functors already on the level of filtered complexes.

We note that since the filtrations F
q

and τ
q

are commensurable, griτ E q

is complete with respect to F
q

for any integer i, so that for any filtered

11



quaiisomorphism f : 〈E′
q
, F ′

q
〉 → 〈E q, F q〉 is also a filtered quasiisomorphism

with respect to the filtrations τ . Thus sending 〈E q, F
q

〉 to 〈E q, τ
q

〉 descends
to an endofunctor

(2.4) DF (E)→ DF (E)

of the filtered derived category DF (E). We also note that for any integer i
and filtered complex 〈E q, F

q

〉, griτ E q is quasiisomorphic (but not isomorphic)
to τF[i,i]E q.

Now, for any ring R and any complex E q in the category Fun(Λ, R)
equipped with a termwise-split filtration F

q

, define the standard filtration
on the complex cc q(E q) by setting

(2.5) F iccj(E q) =
⊕

n≥1

F i+nEj+n([n])σ† , i, j ∈ Z,

where we use the decomposition (1.9) of the complex cc q(E q). By virtue of
(1.8), the standard filtration extends to the complex CH q(E q) and then to
its periodic expansions CP q(E q), cp q(E q).

Lemma 2.2 ([Ka5, Lemma 3.8]). Equip a complex E q in Fun(Λ, R) with
the stupid filtration F

q

. Then the co-periodic complex CP q(E q) is isomor-
phic to the completion of the polynomial periodic complex cp q(E q) with re-
spect to the standard filtration. �

By virtue of this result, one can reduce the study of CP q(E q) to the
study of cp q(E q) equipped with the standard filtration.

Let us now do the following. Fix an integer p ≥ 1, and for any complex
E q in Fun(Λ, R) equipped with the stupid filtration, denote by cp q(E q)[p] the
complex cp q(E q) equipped with the p-th rescaling of the standard filtration
of (2.5).

Definition 2.3. The conjugate filtration V
q

on cp q(E q) is given by

(2.6) V ncp q(E q) = τ≥2n−1cp q(E q)[p], n ∈ Z.

Note that since the complex cp q(E q) is by definition 2-periodic, the con-
jugate filtration is periodic: we have

(2.7) V ncp q(E q) ∼= V 0cp q(E q)[2n]

12



for any integer n. By definition, the conjugate filtration is a shift of a rescal-
ing of the filtration τ

q

, so that it is commensurable to the p-th rescaling of
the standard filtration on cp q(E q). This is in turn commensurable to the
standard filtration itself. Therefore by Lemma 2.2, the co-periodic cyclic
homology complex CP q(E q) is isomorphic to the completion of the com-
plex cp q(E q) with respect to the conjugate filtration (2.6). We then have a
convergent spectral sequence

(2.8) H q(gr0V cp q(E q))((u−1))⇒ HP q(E q),

where as before, H q(−) stands for homology objects, u is a formal generator
of cohomological degree 2, and we have used the identifications (2.7).

2.2 Edgewise subdivision. In general, the spectral sequence (2.8) does
not seem to be particularly useful, since its initial term is rather obscure.
However, under some assumptions, it can be computed explicitly. The first
step in this computation is the so-called edgewise subdivision.

Recall that for any integer l, the category Λ has a cousin Λl correspond-
ing to the l-fold cover S1 → S1. Objects in Λl are objects [nl] ∈ Λ, n ≥ 1,
equipped with the order-l automorphism τ = σn : [nl] → [nl], and mor-
phisms are morphisms in Λ that commute with the automorphism τ . It is
convenient to number objects in Λl by positive integers, so that [n] ∈ Λl cor-
responds to [nl] ∈ Λ. We have the forgetful functor il : Λl → Λ, [n] 7→ [nl],
and we also have a natural projection πl : Λl → Λ that sends [nl] to the
object [n] considered as an induced cellular decomposition of S1 ∼= S1/τ .
The functor πl : Λl → Λ is a Grothendieck bifibration with fiber ptl, the
groupoid with one object with automorphism group Z/lZ. The functor
il induces the pullback functor i∗l : Fun(Λ, R) → Fun(Λl, R), classically
known as “edgewise subdivision functor”, and the functor πl induces functors
πl!, πl∗ : Fun(Λl, R)→ Fun(Λ, R). We will need a slightly more complicated
functor πl♭ that sends complexes in Fun(Λl, R) to complexes Fun(Λ, R). It
is given by

(2.9) πl♭E q = per(πl!(i
∗
lK q ⊗ E q)).

Equivalently, one can use πl∗ — we have a natural trace map πl! → πl∗, and
when evaluated on the complex i∗lK q⊗E q, this map is an isomorphism. The
functors i∗l and πl♭ extend to filtered complexes in the obvious way.

Now assume that our base ring R is annihilated by a prime p, and restrict
our attention to the p-fold cover Λp. Then we have the following result.

13



Proposition 2.4 ([Ka5, Proposition 4.4]). Assume given a complex E q

in Fun(Λ, R) equipped with some filtration F
q

, and denote by E[p]
q

the same
complex equipped with the p-the rescaling F

q

[p] of the filtration. Then there
exists a functorial map

νp : cc q(πp♭i
∗
pE

[p]
q
)→ cp q(E q)[p],

and this map is a filtered quasiisomorphism with respect to the standard
filtrations. �

For the next step, we need to impose a condition on the complex E q.
Recall that we have assumed pR = 0. Therefore the cohomology algebra
H

q

(Z/pZ, R) of the cyclic group Z/pZ is given by

(2.10) H
q

(Z/pZ, R) ∼= R[u]〈ε〉,

where u is a generator of degree 2, and ε is a generator of degree 1. The
relations are: u commutes with ε, and

(2.11) ε2 =

{
u, p = 2,

0, p is odd.

In particular, for any R[Z/pZ]-module E and any integer i, we have a natural
map

(2.12) εi : Ȟi(Z/pZ, E)→ Ȟi−1(Z/pZ, E),

where Ȟ q(Z/pZ,−) is the Tate homology of Z/pZ. Since the Tate homology
of the cyclic group is 2-periodic, we have εi = εi+2n for any n, so that εi
only depends on the parity of the integer i.

Definition 2.5. An R[Z/pZ]-module E is tight if ε1 is an isomorphism. A
complex E q of R[Z/pZ]-modules is tight if Ei is a tight R[Z/pZ]-module
when i is divisible by p and a projective R[Z/pZ]-module otherwise. A
complex E q in the category Fun(Λp, R) is tight if for any [n] ∈ Λp, E q([n])
is a tight complex with respect to the action of the group Z/pZ generated
by τ ∈ Aut([n]).

Note that if p is odd, then (2.11) shows that for a tight R[Z/pZ]-module
E, we have ε0 = 0. Conversely, if p = 2, ε0 is also an isomorphism, and in
fact the tightness condition is always satisfied (both for an object and for a
complex).
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Lemma 2.6. (i) Assume given a tight complex E q of R[Z/pZ]-modules,
and denote by E[p]

q
the complex E q equipped with the p-th rescaling of

the stupid filtration. Denote by Č q(Z/pZ, E[p]
q
) the sum-total complex

of the Tate homology bicomplex of the group Z/pZ with coefficients in
E q equipped with the filtration F

q

induced by the filtration on E[p]
q
. Let

I(E q) = τF[0,0]Č q(Z/pZ, E[p]
q
).

Then the induced filtration F
q

on I(E q) is the stupid filtration, and for
any integer i, we have a natural filtered isomorphism

(2.13) τF[i,i]Č q(Z/pZ, E[p]
q
) ∼= I(E q)[i].

(ii) Assume given a tight complex E q in Fun(Λp, R), and denote by E[p]
q

the complex E q equipped with the p-th rescaling of the stupid filtration.
Consider the induced filtration on the complex πp♭E

[p]
q
, and let I(E q) =

τF[0,0]πp♭E
[p]
q
. Then for any [n] ∈ Λ, we have I(E q)([n]) ∼= I(E q([n])),

and for any integer [i], the isomorphisms (2.13) induce an isomorphism

(2.14) τF[i,i]πp♭E
[p]
q

∼= I(E q)[i].

Proof. Almost all of the statements are obvious; the non-obvious ones are
[Ka5, Lemma 5.3]. �

Explicitly, the isomorphisms (2.13) can be described as follows. By pe-
riodicity, we have an isomorphism

u : Č q(Z/pZ, E[p]
q
) ∼= Č q(Z/pZ, E[p]

q
)[2]

corresponding to the action of the generator u of the cohomology algebra
(2.10). Twists by powers of u provide isomorphisms (2.13) for even i. To
obtain the isomorphisms for odd i, one considers the action of the generator
ε. This gives natural maps

(2.15) εi : τ
F
[i,i]Č q(Z/pZ, E[p]

q
)→ τF[i−1,i−1]Č q(Z/pZ, E[p]

q
),

a filtered refinement of (2.12). Since E q is tight, εi is a filtered isomorphism
for any odd i.

All of this works relatively over the category Λ; in particular, we have
natural maps

(2.16) εi : τ
F
[i,i]πp♭E

[p]
q
→ τF[i−1,i−1]πp♭E

[p]
q

for any tight complex E q in Fun(Λp, R), and these maps are invertible for
odd i.
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2.3 Localized conjugate filtration. Now, as it turns out, for a complex
E q in Fun(Λ, R) with tight edgewise subdivision i∗pE q, we can localize the
conjugate filtration (2.6) with respect to the category Λ and express it in
terms of the complex πp♭i

∗
pE q. Namely, introduce the following.

Definition 2.7. For any complex E q in Fun(Λp, R), the conjugate filtration
V

q

on the complex πp♭E q is given by

(2.17) V nπp♭E q = τF≥2nπp♭E
[p]
q
,

where E[p]
q

stands for E q equipped with the p-the rescaling of the stupid
filtrarion.

We can then take a complex E q in Fun(Λ, R), consider the corresponding
complex πp♭i

∗
pE q equipped with the conjugate filtration (2.17), and apply to

it the cyclic homology complex functor CC q(−). Since the functor CC q(−)
is exact, the conjugate filtration induces a filtration V

q

on CC q(πp♭i
∗
pE q).

We denote by ĈC q(πp♭i
∗
pE q) the completion of the complex CC q(πp♭i

∗
pE q)

with respect to the filtration V
q

.
Consider now the composition

(2.18) CC q(πp♭i
∗
pE q)

α
−−−−→ cc q(πp♭i

∗
pE q)

νp
−−−−→ cp q(E q)

of the map α of (1.13) and the natural map νp of Proposition 2.4.

Lemma 2.8. (i) Assume that the complex i∗pE q in Fun(Λp, R) is tight in
the sense of Definition 2.5. Then the map (2.18) extends to a quasi-
isomorphism

ĈC q(πp♭i
∗
pE q) ∼= CP q(E q).

(ii) Moreover, assume that the prime p is odd. Then (2.18) itself is a
filtered quasiisomorphism with respect to the filtrations V

q

of (2.17)
resp. (2.6).

(iii) In addition, still assuming that p is odd, let I(i∗pE q) be canonical com-
plex of Lemma 2.6. Then we have a natural isomorphism

(2.19) gr0V πp♭i
∗
pE q

∼= K(I(i∗pE q))

in the derived category D(Λ, R).
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Proof. (i) is [Ka5, Lemma 5.19], (ii) is [Ka5, Lemma 5.9], and (iii) is [Ka5,
Lemma 5.7]. �

By virtue of this result, for an odd prime p, we can rewrite the spectral
sequence (2.8) as

(2.20) CC q(gr0V πp♭i
∗
pE q)((u−1))⇒ HP q(E q),

where we have used the obvious counterpart of the periodicity isomorphism
(2.7) for the filtration (2.17). Moreover, by (1.11), (2.19), and (1.14), we
can further rewrite (2.21) as

(2.21) HH q(I(i∗pE q))((u−1))⇒ HP q(E q),

where as in (2.8), u is a formal generator of cohomological degree 2.

2.4 DG algebras. To make the spectral sequence (2.21) useful, it remains
to compute the complex I(i∗pE q). In order to do this, we need to assume
further that E q comes from a DG algebra A q. We thus assume given a
commutative ring k annihilated by an odd prime p. We denote by k(1) the
Frobenius twist of k — that is, k considered as a module over itself via
the absolute Frobenius map k → k. For any flat k-module V , we denote
V (1) = V ⊗k k

(1).

Proposition 2.9 ([Ka5, Proposition 6.10]). Assume that the ring k is
Noetherian. Then for any complex V q of flat k-modules, the complex V ⊗kp

q

of k[Z/pZ]-modules is tight in the sense of Definition 2.5, and we have a
natural identification

I(V ⊗kp
q

) ∼= V (1)
q

,

where I(−) is the canonical complex provided by Lemma 2.6. �

Corollary 2.10. Assume given a DG algebra A q termwise-flat over a com-
mutative ring k annihilated by an odd prime p. Then the complex i∗pA

♮
q
in

the category Fun(Λp, k) is tight in the sense of Definition 2.5, and we have
a natural identification

I(i∗pA
♮
q
) ∼=

(
A♮

q

)(1)
.

Proof. This is [Ka5, Lemma 6.19]. �

By virtue of this corollary, we have a natural identification

HH q(I(i∗pA
♮
q
)) ∼= HH(1)

q
(A q),
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where for any complex E q in Fun(Λ, k) termwise-flat over k, HH(1)
q
(E q)

denotes the homology of the Frobenius twist CH q(E q)(1) of the Hochschild
homology complex CH q(E q). If the commutative ring k is finitely generated
and regular, so that k(1) is flat over k, then we have

HH(1)
q
(A q) ∼= HH q(A(1)

q
),

where A(1)
q

is the Frobenius twist of the DG algebra A q. Then (2.21) takes
its final form — what we have is a spectral sequence

(2.22) HH q(A(1)
q
)((u−1))⇒ HP q(A q).

This is the conjugate spectral sequence for the DG algebra A q.

We finish the section with an alternative description of the complex
i∗pA

♮
q
in terms of the p-tensor power algebra A⊗kp

q
; this goes back to [Ka2,

Subsection 2.2], and we will need it later in Section 3.
For any small category C, sending an object [n] ∈ Λ to CV ([n]) defines

a contravariant functor from Λ to the category of small categories, and the
Grothendieck construction [G] associates a category fibered over Λ to this
functor. We will denote the category by C≀Λ, and we will denote the fibration
by π : C ≀ Λ → Λ. Then for any DG algebra A q in the category Fun(C, k)
— or equivalently, for any functor from C to DG algebras over k — the
construction of the complex A♮

q
of Subsection 1.3 admits a straightforward

refinement that produces a complex A♮
q
in the category Fun(C ≀ Λ, k).

Consider the case C = ptp, the groupoid with one object with automor-
phism group G = Z/pZ. Then a DG algebra in Fun(ptp, k) is simply a DG
algebra A q over k equipped with an action of the group G, and what we
obtain is a complex A♮

q
in the category Fun(ptp ≀Λ, k). The categories Λ and

ptp ≀ Λ have the same objects, and for any such object [n], we have

A♮
q
([n]) = A⊗kn

q
,

with the natural action of Gn. By base change [Ka2, Lemma 1.7], we have

(2.23) π∗A
♮
q
([n]) ∼=

(
A♮

q
([n])

)Gn

= A
♮
q
([n]),

where we denote by A q = AG
q
⊂ A q the subalgebra of G-invariants. Taken

together, these identifications produce an isomorphism

(2.24) π∗A
♮
q

∼= A
♮
q
.
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Now note that we also have a natural embedding

(2.25) λ : Λp → ptp ≀ Λ

that induces the diagonal embedding ptp → ptnp on the fiber over any object
[n] ∈ Λ. Then for any DG algebra A q over k, we have natural isomorphism

(2.26) i∗pA
♮
q

∼= λ∗
(
A⊗kp
q

)♮
,

where in the right-hand side, the p-th power A⊗kp
q

is equipped with the
natural G-action by the longest permutation.

3 Tate cohomology.

To analyze the conjugate spectral sequence (2.22), we need a more invariant
definition of the functor πp♭ of (2.9). The relevant conceptual formalism is
that of Tate cohomology.

3.1 Relative Tate cohomology. Assume given a ring k, a finite group
G, and a bounded complex E q of k[G]-modules. Recall that the Tate coho-
mology of the group G with coefficients in E q is given by

(3.1) Ȟ
q

(G,E q) = Ext
q

D(k[G])/Dpf (k[G])(k,E q),

where k is the trivial k[G]-module, and D(k[G])/Dpf (k[G]) is the quotient
of the derived category D(k[G]) of all k[G]-modules by its full subcategory
Dpf (k[G]) ⊂ D(k[G]) spanned by perfect complexes of k[G]-modules. In or-
der to compute Tate cohomology, it is convenient to introduce the following
(we use the same notation and terminology as in [Ka6, Subsection 6.3]).

Definition 3.1. (i) Resolution data for a finite group G is a pair ν =
〈P q, I

q

〉 of a left free resolution P q and a right free resolution I
q

of the
trivial Z[G]-module Z.

(ii) For any associative unital ring k, any bounded complex E q of k[G]-
modules, and any resolution data ν, the Tate cohomology complex of
G with coefficients in E q is given by

(3.2) Č
q

(G, ν,E q) =
(
E q ⊗ P q ⊗ I

q
)G

,

where P q is the cone of the augmentation map P q → Z.
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(iii) For any associative unital ring k, any bounded complex E q of k[G]-
modules, and any resolution data ν, the reduced Tate cohomology com-
plex of G with coefficients in E q is given by

(3.3) Č
q

red(G, ν,E q) =
(
E q ⊗ P̃ q

)G
,

where P̃ q is the cone of the natural map P q → Z→ I
q

.

Remark 3.2. Here as well as elsewhere, we use homological and coho-
mological indexes for complexes interchangeably, with the convention that
Ei = E−i.

Resolution data form a category in the obvious way, and this category is
connected (for example, every ν is obviously connected by a chain of maps
to a functorial resolution data set ν ′ obtained by taking bar resolutions).
For any resolution data ν, we have a natural map P̃ q → P q ⊗ I

q

, and the
induced map

Č
q

red(G, ν,E q)→ Č
q

(G, ν,E q)

of Tate cohomology complexes is a quasiisomorphism for any bounded com-
plex E q. Moreover, a map of resolution data induces a map of Tate com-
plexes, and these maps are also quasiisomorphisms. Therefore we can drop
ν from notation and obtain a well-defined object Č q(G,E q) ∼= Č q

red(G,E q)
in the derived category of k-modules. Its cohomology modules are then
canonically identified with Tate cohomology groups Ȟ

q

(G,E q).

It is obvious from (3.1) that Ȟ
q

(G, k) is an algebra, and for any bounded
complex E q, Ȟ

q

(G,E q) is a module over Ȟ
q

(G, k). To lift it to the dervied
category level, one chooses resolution data ν = 〈P q, I

q

〉 that are multiplica-
tive in the following sense: both I

q

and P q are DG algebras, and the natural
maps Z→ I

q

, Z→ P q are algebra maps. Multiplicative resolution data ex-
ist. For each multiplicative ν, Č

q

(G, ν, k) is a DG algebra, and Č
q

(G, ν,E q)
is a module over this DG algebra. Passing to the derived category, we obtain
well-defined multiplication maps

Č
q

(G, k)
L

⊗ Č
q

(G,E q)→ Č
q

(G,E q)

that do not depend on the choice of the resolution data ν.

Assume now given small categories C, C′ and a functor π : C′ → C.
Assume further that π is a Grothendieck bifibration in the sense of [G], and
that the fibers of this bifibrations are equivalent to ptG, the groupoid with
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one object with automorphism group G. By base change [Ka2, Lemma 1.7],
for any object c′ ∈ C′ with c = π(c′) ∈ C, and any functor E ∈ Fun(C′, k),
we have natural isomorphisms

(3.4) π!E(c′) ∼= E(c′)G, π∗E(c) ∼= E(c′)G,

where G acts on E(c′) via the embedding ptG → C
′ of the fiber over c ∈ C.

Then one can obviously make the constructions above work “relatively over
C”. Namely, one defines resolution data for π as pairs ν = 〈P q, I

q

〉 of a left
and a right resolution of the constant functor Z ∈ Fun(C′,Z) such that for
any c ∈ C, ν restricted to the fiber ptG ⊂ C

′ over c gives resolution data
in the sense of Definition 3.1. One shows easily that resolution data exist
(e.g. take the bar resolutions) and that the category of resolution data is
connected. Then for any resolution data ν, one defines

(3.5) π♭
ν(E) = π∗(E ⊗ P q ⊗ I

q

), π♭♭
ν (E) = π∗(E ⊗ P̃ q),

where P q is as in (3.2), and P̃ q is as in (3.3). By (3.4), we have a natural
quasiisomorphism π♭

ν(E) ∼= π♭♭
ν (E), and both complexes do not depend on

the choice of ν. All in all, we obtain a well-defined object

π♭(E) ∈ D(C, k)

in the derived category D(C, k). For any object c′ ∈ C′ with c = π(c′) ∈ C,
(3.4) gives a natural identification

π♭(E)(c) ∼= Č
q

(G,E(c′)).

Moreover, as in [Ka6, Subsection 6.3], one can choose multiplicative resolu-
tion data for π. This shows that π♭(k) is an algebra object in D(C, k), and
for any E, we have natural action maps

(3.6) π♭(k)
L

⊗ π♭(E)→ π♭(E)

that turn π♭(E) into a module object over the algebra π♭(k).
Finally, we observe that all of the above can be repeated verbatim for a

bounded complex E q instead of a single object E in Fun(C′, k). Moreover,
assume given a filtered complex 〈E q, F

q

〉 in Fun(C′, k), and assume that the
filtration F

q

is termwise-split, and griF E q is bounded for any integer i. Then
again, (3.5) gives an object

(3.7) π♭E q ∈ DF (C, k)

in the filtered derived category DF (C, k), and as such, it does not depend
on the choice of the resolution data ν.
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3.2 Conjugate filtration. We now want to apply relative Tate cohomol-
ogy to the study of the conjugate filtration of Definition 3.2. We assume
that the base ring k is commutative and annihilated by a prime p. For sim-
plicity, we also assume right away that k is finitely generated and regular,
so that the absolute Frobenius map k → k is finite and flat. Now, consider
the natural projection

πp : Λp → Λ.

This is a Grothendieck bifibration, and its fiber is ptp, the groupoid with one
object with automorphism group Z/pZ. Therefore for any filtered complex
〈E q, F

q

〉 in Fun(Λp, k) such that the filtration F
q

is termwise-split and griF E q

is bounded for any i, (3.7) provides a natural object

(3.8) π♭
pE q ∈ DF (Λ, k).

We note that we have a natural isomorphism

(3.9) π♭♭
ν E q

∼= πp♭E q[1],

where πp♭E q is the complex of (2.9), and ν is the pair of resolutions of Z
obtained by periodization of the complex K q of (1.6). Therefore the object
(3.8) coincides with πp♭E q up to a homological shift.

In particular, let E q be an arbitrary complex in Fun(Λp, k), and let E[p]
q

be E q equipped with the p-th rescaling of the stupid filtration. Then all the
assumptions on the filtration are satisfied, so that we have a well-defined
object π♭

pE
[p]
q

in DF (Λ, k). We also have the action map

(3.10) π♭
pk

L

⊗ π♭
pE

[p]
q
→ π♭

pE
[p]
q

induced by the map (3.6).

Lemma 3.3 ([Ka4, Lemma 3.2]). We have a canonical isomorphism

(3.11) πp♭k ∼= K q(k)((u)) =
⊕

i∈Z

K q(k)[2i]

of complexes in Fun(Λ, k). �

By (3.9), this gives an isomorphism τ[i,i]π
♭
pk
∼= k[i] for any integer i.

Since the filtered truncation functors (2.3) are obviously compatible with
the tensor products, the map (3.10) then induces a map

εi : τ[1,1]π
♭
pk ⊗ τF[i,i]π

♭
pE

[p]
q

∼= τF[i,i]π
♭
pE

[p]
q
[1]→ τF[i+1,i+1]π

♭
pE

[p]
q
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for any integer i. These are exactly the maps (2.16). In particular, εi only
depends on the parity of i, and if E q is tight in the sense of Definition 2.5,
then ε1 is an isomorphism. In this case, for any integer j, (3.10) also induces
an isomorphism

(3.12) I(E q)[j] = τ[j,j]π
p
♭ k ⊗ τF[0,0]π

♭
pE

[p]
q

∼= τF[j,j]π
♭
pE

[p]
q
,

a version of the isomorphism (2.13).
If p is odd, tightness of E q further implies that ε0 = 0. One immediate

corollary of this is a short construction of the quasiisomorphism (2.19) of
Lemma 2.8, for odd p. Indeed, since ε2 = ε0 = 0 and the filtered truncations
are multiplicative, the map (3.10) induces a natural map

K(I(E q))[1] = K q[1]⊗ I(E q) ∼= τ[1,2]π
♭
pk ⊗ τF[0,0]π

♭
pE

[p]
q
→

→ τF[1,2]π
♭
pE

[p]
♭
∼= gr0V πp♭E q[1],

and since the maps (3.12) are isomorphisms, this map is a quasiisomorphism.
However, we will need another corollary. Namely, keep the assumption

that E q is tight, let

(3.13) π♭
pE q = τF≥0π

♭
pE

[p]
q
,

and consider this complex as an object in the filtered derived category
DF (Λ, k) by equipping it with the filtration τ

q

, via the functor (2.4). We
then have the augmentation map

(3.14) a : π♭
pE q → τ[0,0]π

♭
pE

[p]
q

= I(E q)

in DF (Λ, k), where I(E q) is placed in filtered degree 0.

Lemma 3.4. Assume that the map a of (3.14) admits a one-sided inverse
s : I(E q)→ π♭

pE q, s ◦ a = id in the filtered derived category DF (Λ, k). Then
the spectral sequence (2.21) degenerates.

Proof. By definition, we have a natural embedding π♭
pE q → π♭

pE q. Compos-
ing it with s, we obtain a map

I(E q)→ π♭
pE q,

and by (3.10), this map induces a map

b : π♭
pk ⊗ I(E q) ∼= π♭

pE q.

For any integer i, the associated graded quotient griτ (b) is the isomorphism
(2.14) of Lemma 2.6, so that b is a filtered quasiisomorphism. By the direct
sum decomposition (3.11), this implies that the conjugate filtration on πp

♭E q

splits. �
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3.3 Splitting for DG algebras. Now keep the assumptions of the pre-
vious subsection, and assume given a DG algebra A q termwise-flat over the
commutative ring k. Recall that by Corollary 2.10, the corresponding com-
plex i∗pA

♮
q
is tight in the sense of Definition 2.5, so that Lemma 3.4 applies.

To finish the section, we prove one corollary of this fact.
Choose resolution data ν = 〈P q, I

q

〉 for the group G = Z/pZ that are
multiplicative, so that for any DG algebra B q termwise-flat over k and
equipped with a G-action, the Tate cohomology complex Č q(G,B q) is a
DG algebra over k. Consider the p-fold tensor product A⊗kp

q
, and let Z/pZ

act on it by the longest permutation. Moreover, equip this tensor product
with the p-the rescaling of the stupid filtration.

Definition 3.5. The DG algebra P q(A q) is given by

P q(A q) = τF≥0Č
q

(Z/pZ, ν, A⊗kp
q

),

where A⊗kp
q

is equipped with the p-th rescaling of the stupid filtration.

As for the complex (3.13), we equip P q(A q) with the filtration τ
q

and
treat it as a filtered DG algebra. Since the filtered truncation functors
τF≥ q

are multiplicative, P q(A q) is well-defined, and up to a filtered quasi-
isomorphism, it does not depend on the choice of resolution data ν. By
Proposition 2.9, we have

(3.15) griτ P q(A q) ∼= A(1)
q
[i]

for any integer i ≥ 0. In particular, we have an augmentation map

a : P q(A q)→ A(1)
q
,

and it is a filtered DG algebra map (where A(1)
q

is in filtered degree 0).

Proposition 3.6. Assume that the prime p is odd, and that there exists a
filtered DG algebra A′

q
over k and a filtered DG algebra map s : A′

q
→ A(1)

q

such that the composition s ◦ a : A′
q
→ A(1)

q
is a filtered quasiisomorphism.

Then the spectral sequence (2.22) for the DG algebra A q degenerates.

Proof. Fix multiplicative resolution data 〈P q, I
q

〉 for the group G = Z/pZ,
and consider the cone P q of the augmentation map P q → Z. By definition,
both I

q

and P q are DG algebras over k equipped with a G-action.
For every integer n ≥ 1, the complex P

⊗n
q

is concentrated in non-negative
homological degrees, its degree-0 term is Z, while all the other terms are free
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Z[G]-modules. Therefore P
⊗n
q

= P
n
q
for some free left resolution Pn

q
of the

trivial module Z. The complex I
q⊗n is a right free resolution of Z, so that

〈Pn
q
, I

q⊗n〉 also gives resolution data for G in the sense of Definition 3.1.
Now, since both P q and I

q

are DG algebras equipped with a G-action, we

have natural complexes P
♮
q
, (I

q

)♮ in the category Fun(ptp ≀Λ, k). Restricting
them to Λp ⊂ ptp ≀ Λ with respect to the embedding (2.25), we obtain
complexes

P
λ
q
= λ∗P

♮
q
, I

q

λ = λ∗(I
q

)♮

in the category Fun(Λp, k), and for any object [n] ∈ Λp, we have natural
identifications

P
λ
q
([n]) ∼= P

⊗n
q
, I

q

λ([n])
∼= I

q⊗n.

Thus we can put together resolution data 〈Pn
q
, I

q⊗n〉, n ≥ 1 for the group
G into resolution data 〈P λ

q
, I

q

λ〉 for the bifibration πp : Λp → Λ such that

P λ
q

∼= P
λ
q
, and these resolution data can be then used for computing the

relative Tate cohomology functor π♭
p. This gives a natural identification

(3.16) π♭
pi
∗
pA

♮ ∼= πp∗

(
i∗pA

♮
q
⊗ P

λ
q
⊗ I

q

λ

)
.

Now denote B q = A⊗kp
q
⊗ P q ⊗ I

q

, and consider it as a G-equivariant DG
algebra over k. Then by virtue of (2.26), we can rewrite (3.16) as

(3.17) π♭
pi
∗
pA

♮
q

∼= πp∗λ
∗B♮

q
.

Note that we have a natural map

(3.18) π∗B
♮
q
→ πp∗λ

∗B♮
q
,

where π : ptp ≀Λ→ Λ is the natural fibration. At each object [n] ∈ Λ, we can

evaluate π∗B
♮
q
by (2.23), and then this map is just the natural embedding

(
BG

q

)⊗kn =
(
B⊗kn

q

)Gn

→
(
B⊗kn

q

)G
.

Moreover, by (2.24) and (3.17), the map (3.18) actually gives a natural map

(3.19) B
♮
q

∼= π∗B
♮
q
→ π♭

pi
∗
pA

♮
q
.

where B q ⊂ B q is the subalgebra of G-invariants.
Now equip A⊗kp

q
with the p-the rescaling of the stupid filtration, and

consider the corresponding filtrations on the algebras B q, B q. Then since
τF≥0 is a multiplicative functor, the natural map (3.19) induces a map

(3.20) (τF≥0B q)♮ → τF≥0π
♭
pi
∗
pA

♮
q
= πp

♭ i
∗
pA

♮
q
.

25



By construction, if we compose this map with the projection

π♭
pi
∗
pA

♮
q
→ gr0τ π

♭
pi
∗
pA

♮
q

∼= I(i∗pA
♮
q
) ∼= A(1)♮

q
,

then the resulting map is induced by the augmentation map

τF≥0B q → τF[0,0]B q

∼= A(1)
q
.

It remains to spell out the notation. By definition, we actually have

B q = Č q(G, ν,A⊗kn),

where ν stands for our original resolution data 〈P q, I
q

〉. Therefore τF≥0(B q) ∼=
P q(A q), and the map (3.20) is a map

P q(A q)♮ → A
(1)
♮ .

If there exists a filtered DG algebra A′
q
and a filtered DG algebra map

s : A′
q
→ P q(A q) satisfying the assumptions of the Proposition, then we also

have a filtered map A
′♮
q
→ P q(A q)♮, and the composition map

A
′♮
q
−−−−→ P q(A q) −−−−→ π♭

pi
∗
pA

♮
q
−−−−→ A(1)♮

q

is a filtered quasiisomorphism. Then we are done by Lemma 3.4. �

4 Characteristic 2.

We now make a digression and explain how to modify the arguments of
[Ka5] to obtain the conjugate spectral sequence (2.22) in characteristic 2.
The problem here is Lemma 2.8: while (i) is true in any characteristic, (ii)
is definitely wrong in characteristic 2, and it is currently unknown whether
(iii) is true or not. However, there is the following weaker result.

Proposition 4.1. For any DG algebra A q over a perfect field k of positive
characteristic p, there exists a natural isomorphism

(4.1) HC q(gr0V πp♭i
∗
pA

♮
q
) ∼= HH q(A(1)

q
).

While weaker than (2.19), this identification still allows one to rewrite
(2.20) in the form (2.22), at least for DG algebras over a perfect field. For
degeneration questions, this is irrelevant; the reader who is only integerested
in degeneration of the spectral sequences can safely skip this section.
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4.1 Trace functors. To get a better handle on the complex πp♭i
∗
pA

♮
q
, we

use the formalism of trace functors of [Ka3, Section 2]. Here are the basic
ingredients.

One starts by “categorifying” the construction of the object A♮ of Sub-
section 1.3. To every small monoidal category C, one associates a covariant
functor from Λ to the category of small categories that sends [n] ∈ Λ to
CV ([n]), and sends a morphism f : [n′]→ [n] to the product of multiplication
functors mf−1(v) : C

f−1(v) → C, v ∈ V ([n]) induced by the monoidal struc-
ture on C, as in (1.15). Applying the Grothendieck construction, one obtains
a category C♮ and a cofibration ρ : C♮ → Λ. This is somewhat similar to the
wreath product construction C ≀Λ, except that the functor is covariant, not
contravariant, and the projection ρ : C♮ → Λ is a cofibration, not a fibration.

Explicitly, objects of C♮ are pairs 〈[n], {cv}〉 of an object [n] ∈ Λ and a
collection {cv} of objects in C numbered by vertices v ∈ V ([n]). A morphism
from 〈[n′], {c′v}〉 to 〈[n], {cv}〉 is given by a morphism f : [n′] → [n] and a
collection of morphisms

fv :
⊗

v′∈f−1(v)

c′v′ → cv, v ∈ V ([n]).

A morphism is cartesian if all the components fv are invertible. Note that
stated in this way, the definition makes perfect sense even when the category
C is not small.

Definition 4.2. A trace functor from a monoidal category C to some cate-
gory E is a functor F : C♮ → E that sends cartesian maps in C♮ to invertible
maps in E .

Explicitly, a trace functor is given by a functor F : C → E and a collection
of isomorphisms

(4.2) τM,N : F (M ⊗N) ∼= F (N ⊗M), M,N ∈ C

satisfying some compatibility constraints (see [Ka3, Subsection 2.1]). A
trivial example of a trace functor is obtained by fixing a commutative ring k,
and taking C = E = k-mod, the category of of k-modules, with τ−,− being the
standard commutativity isomorphisms. There are also non-trivial examples.
One such was considered in [Ka3] in detail. We still take C = E = k-mod,
fix an integer l ≥ 1, and let

(4.3) F (V ) = V ⊗kl
σ ,
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where σ : V ⊗kl → V ⊗kl is the order-l permutation. The maps (4.2) are
given by τM,N = τ ′M,N ◦ (σM ⊗ id), where τ ′M,N are the commutativity maps,

and σM is the order-n permutation acting on M⊗kl.
Every algebra object A in the monoidal category C defines a section

α : Λ→ C♮ of the cofibration ρ : C♮ → Λ, and composing this section with a
trace functor F gives a natural functor

FA♮ = F ◦ α : Λ→ E .

If C = E = k-mod, what we obtain is an object FA♮ in the category Fun(Λ, k)
associated to any associative unital algebra A over k. If F is the identity
functor with the tautological teace functor structure, then this just the ob-
ject A♮ of Subsection 1.3. In general, we obtain a version of cyclic homology
twisted by the trace functor F , the main object of study in [Ka3].

Another way to express this is to say that a trace functor F : C → k-mod
defines an object F ♮ ∈ Fun(C♮, k), and we have FA♮ = α∗F ♮. Analogously, a
trace functor from C to the category C q(k) of complexes of k-modules gives
a complex F ♮ in Fun(C♮, k), and FA♮ = α∗F ♮ is a complex in Fun(Λ, k).

Remark 4.3. Strictly speaking, when C is not small, Fun(C♮, k) is not a
well-defined category (Hom-sets might be large). A convenient solution is to
only consider functors that commute with filtered colimits. Then each such
functor from say k-mod to k-mod is completely determined by its restriction
to the full subcategory spanned by finitely generated projective k-modules,
and since this category is small, the problem does not arise. The same works
for complexes (and the subcategory of perfect complexes). In our example,
all large monoidal categories will be of this sort, so we will adopt this point of
view. By abuse of notation, we will still use notation of the form Fun(C♮, k)
for the category for functors that commute with filtered colimits.

Let us now construct the cyclic power trace functor (4.3) more canoni-
cally. Fix a monoidal category C and an integer l ≥ 1, and define a category
C♮l by the cartesian square

(4.4)

C♮l
πl−−−−→ C♮

ρl

y
yρ

Λl
πl−−−−→ Λ.
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Then the functor il : Λl → Λ fits into a commutative square

(4.5)

C♮l
il−−−−→ C♮

ρl

y
yρ

Λl
il−−−−→ Λ.

Explicitly, C♮l is the category of pairs 〈[n], {cv}〉, [n] ∈ Λl, cv ∈ C, v ∈ V ([n]).
Then the top arrow in (4.5) is the functor sending a sequence {cv}, v ∈ V ([n])
to the same sequence repeated l times. In particular, it sends cartesian maps
to cartesian maps.

We now observe that for any trace functor F from C to the category of k-
modules, with the corresponding object F ♮ ∈ Fun(C♮.k), the objects πl!i

∗
l F

♮,
πl∗i

∗
l F

♮ also correspond to trace functors from C to k-mod. If C = k-mod
and F is the tautological functor, πl!i

∗
l F

♮ corresponds to the cyclic power
trace functor (4.3).

4.2 Quotients of the conjugate filtration. We now fix a perfect field
k of characteristic p, and we let C = C q(k) be the category of complexes
of k-vector spaces. Moreover, denote by I q the complex in Fun(C♮, k) cor-
responding to the identity trace functor C q(k) → C q(k), and denote by I [p]

q

the complex I q equipped with the p-the rescaling of the stupid filtration.
Then the projection πp : C♮p → C♮ of (4.4) is a bifibration with fiber

ptp, so that we can consider relative Tate cohomology functor π♭
p. By base

change [Ka2, Lemma 1.7], we have ρ∗ ◦ π♭
p
∼= π♭

p ◦ ρ
∗, so that (3.11) yields a

direct sum decomposition

(4.6) π♭
pk
∼= ρ∗K q(k)[1]((u)) =

⊕

i∈Z

ρ∗K q(k)[2i + 1]

in the derived category D(C♮, k). We also have the multiplication map (3.10)
and all that it entails — in particular, the isomorphisms (3.12) for complexes

E q in Fun(C♮p, k) that are tight in the obvious sense. We note that the
pullback i∗pI q of the tautological complex I q is tight.

Now fix some resolution data for πp, so that π♭
p is defined as a complex,

and consider the complex

C q = τF[0,1]π
♭
pi
∗
pI

[p]
q

in the category Fun(C♮, k). It must correspond to some trace functor from
C = C q(k) to itself. Explicitly, the trace functor sends a complex V q to the
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complex

(4.7) C q(V q) = τF[0,1]Č
q

(Z/pZ, V ⊗kp
q

),

where we equip V ⊗kp
q

with the p-th rescaling of the stupid filtration. By
Proposition 2.9, we have a natural sequence

(4.8) 0 −−−−→ V (1)
q

[1]
b

−−−−→ C q(V q)
a

−−−−→ V (1)
q
−−−−→ 0

of functorial complexes of k-vector spaces that is quasiexact in the sense of
[Ka6, Definition 1.2] — this means that a ◦ b = 0, the map a is surjective,
the map b is injective, and the complex Ker a/ Im b is acyclic. The map a
corresponds to a map

a : C q → I(1)
q

in the category Fun(C♮, k), where I(1)
q

is the Frobenius twist of the tautolog-
ical complex I q.

Moreover, consider the ring W2(k) of second Witt vectors of the field
k, and let C1 = C q(W2(k)) be the category of complexes of flat W2(k)-
modules. Denote by q : C1 → C the quotient functor sending a complex
V q to its quotient V q/p. Note that C1 is a monoidal category, and q is a
monoidal functor. Moreover, extend (4.7) to W2(k)-modules by setting

(4.9) C q(V q) = τF[0,1]Č
q

(Z/pZ, V ⊗W2(k)
p

q
)

for any complex V q ∈ C1, where as in (4.7), we equip V ⊗W2(k)
p

q
with the

p-th rescaling of the stupid filtration. Then we have the following somewhat
surprising result.

Lemma 4.4. (i) For any complex V q ∈ C1, we have a short exact sequence
of complexes

0 −−−−→ C q(V q/p)
p

−−−−→ C q(V q)
q

−−−−→ C q(V q/p) −−−−→ 0,

where p stands for multiplication by p, and q is the quotient map.

(ii) For any V q ∈ C, let C q(V q) be the kernel of the map a of (4.8), and for
any V q ∈ C1, let C̃ q(V q) = C q(V q)/pC q(V q/p). Then the composition
map

C̃ q(V q)
q

−−−−→ C q(V q/p)
a

−−−−→ V (1)
q

is a quasiisomorphism, and the functor C̃ q : C1 → C1 factors through
the quotient functor q : C1 → C.
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Proof. (i) is [Ka6, Lemma 6.9], and (ii) is [Ka6, Proposition 6.11]. �

We note that C̃ q(−) is the cokernel of a map of trace functors, thus itself
inherits the structure of a trace functor. Then Lemma 4.4 (ii) implies that
this trace functor is actually defined on C — namely, we have the following.

Corollary 4.5. Let C̃ q be the complex in Fun(C♮1,W2(k)) corresponding to

the trace functor C̃ q(−) of Lemma 4.4 (ii). Then there exists a complex
W q ∈ Fun(C,W2(k)) such that

C̃ q

∼= q∗W q,

where q : C♮1 → C
♮ is induced by the monoidal quotient functor q : C1 → C.

Proof. The quotient functor q is surjective on isomorphism classes of ob-
jects, so that it suffices to prove that the action of morphisms in C♮1 on C̃ q

canonically factors through q. For cartesian morphisms, this is clear, so it
suffices to check it for morphisms in the categories CV1 ([n]), [n] ∈ Λ. This
immediately follows from Lemma 4.4 (ii). �

Proof of Proposition 4.1. Every k-vector space can be considered as aW2(k)-
module via the quotient map W2(k), so that we have a natural functor from
k-vector sapces to W2(k)-module. Moreover, for any small category I, we
can apply this pointwise and obtain a functor

ξ : Fun(I, k)→ Fun(I,W2(k)).

This functor is exact and fully faitful. It induces a functor ξ : D(I, k) →
D(I,W2(k)), and for any complex E q in Fun(I, k), we have a natural quasi-
isomorphism

H q(I, ξ(I q)) ∼= ξ(H q(I,E q)).

In particular, we can take I = Λ. Then by (1.11) and (1.14), to construct
an isomorphism (4.1), it suffices to construct a functorial isomorphism

ξ(gr0V πp♭i
∗
pA

♮
q
) ∼= ξ(K(A(1)♮

q
))

in the derived category D(Λ,W2(k)).
Consider first the universal situation. Denote

R q = τF[1,2]π
♭
pi
∗
pI

[p]
q
[−1],
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and recall that we have the multiplication map (3.10) for the bifibration

πp : C♮p → C♮. This map is compatible with filtered truncations, so by (4.6),
it yields a map

ρ∗K q(k) ⊗k C q

∼= τ[1,2]π
♭
pk[−1] ⊗k τ

F
[0,1]π

♭
pi
∗
pI

[p]
q
→ τ[1,2]π

♭
pi
∗
pI

[p]
q
[−1] = R q.

This map induces a map

ρ∗K q ⊗ ξ(C q)→ ξ(R q).

On the other hand, we have the complex W q of Corollary 4.5 and the natural
map q : W q → ξ(C q). Denote by b the composition map

ρ∗K q ⊗W q

id⊗q
−−−−→ ρ∗K q ⊗ ξ(C q) −−−−→ ξ(R q).

Then b is filtered, hence compatible with the filtration τ
q

. Moreover, since
the compositionW q → ξ(C q)→ ξ(I(1)

q
) is a quasiisomorphism by Lemma 4.4,

the source and the target of the map b only have two non-trivial associated
graded quotients griτ , for i = 0 and 1, and in both cases, griτ (b) is one
of the isomorphisms (3.12) for the tight complex I [p]

q
. Therefore b is an

isomorphism in the derived category D(C♮,W2(k)).
Now let α : Λ → C♮ be the section of the projection ρ : C♮ → Λ corre-

sponding to the DG algebra A q, and consider the induced isomorphism

α∗(b) : K q(α∗W q) ∼= α∗(ρ∗K q ⊗W q)→ α∗ξ(R q).

Then the right-hand side is exactly ξ(gr0V πp♭i
∗
pA

♮
q
), and the left-hand side is

naturally isomorphic to K q(α∗ξ(I(1)
q
)) ∼= K q(ξ(A(1)♮

q
)) ∼= ξ(K q(A(1)♮

q
)). �

5 Degeneration.

We now turn to degeneration results for the spectral sequences for cyclic ho-
mology. There are two statements: one for the conjugate spectral sequence
(2.22), and one for the Hodge-to-de Rham spectral sequence (2.2).

5.1 Conjugate degeneration. Recall that for any field k, a square-zero
extension A′

q
of a DG algebra A q over k by an A q-bimodule M q is a filtered

DG algebra 〈A′
q
, τ

q

〉 such that τ0A′
q
= A′

q
, τ2A′

q
= 0, gr0τ A

′
q

∼= A q, and gr1τ A
′
q

is quasiisomorphic to M q as a bimodule over gr0τ A
′
q

∼= A q. Recall also that
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up to a quasiisomorphisms, square-zero extensions are classified by elements
in the reduced Hochschild cohomology group

HH
2
(A q,M q) = Ext1Ao

q⊗A q

(I q,M q),

where I q is the kernel of the augmentation map Ao
q
⊗kA q → A q (see e.g. [Ka2,

Subsection 4.3] but the claim is completely standard). Reduced Hochschild
cohomology groups are related to the usual ones by the long exact sequence

(5.1) HH
q

(A q,M q) −−−−→ HH
q

(A q,M q) −−−−→ M q −−−−→

In particular, if HH
2
(A q,M q) = 0 for some M q, then every square-zero ex-

tension A′
q
of A q by M q splits — there exists a DG algebra A′′

q
and a map

A′′
q
→ A′

q
such that the composition map A′′

q
→ A′

q
→ A q is a quasiisomor-

phism.

Now fix a perfect field k of some positive characteristic p = char k, and
assume given a DG algebra A q over k.

Theorem 5.1. Assume that the DG algebra A q over the field k satisfies the
following two properties:

(i) There exist a DG algebra Ã q over the second Witt vectors ring W2(k)

and a quasiisomorphism Ã q

L

⊗W2(k) k
∼= A q.

(ii) The reduced Hochschild cohomology HH
i
(A q) vanishes for i ≥ 2p.

Then the conjugate spectral sequence (2.22) degenerates at first trem, so that
there exists an isomorphism HP q(A q) ∼= HH q(A(1)

q
)((u−1)).

Remark 5.2. By Proposition 4.1, the spectral sequence (2.22) also exists
for p = 2, and Theorem 5.1 holds in this case, too. Of course in this case,
the condition (ii) is pretty strong.

Proof. By Proposition 3.6, it suffices to construct a filtered DG algebra
A′

q
over k and a filtered map A′

q
→ P q(A q) such that the composition map

A′
q
→ A(1)

q
is a filtered quasiisomorphism (the assumption “p is odd” in

Proposition 3.6 is only needed to insure that the conjugate spectral sequence
is well-defined, and it is not used in the proof).

To define the DG algebra P q(A q), we need to choose multiplicative res-
olution data for the group G = Z/pZ, and we are free to do it in any way
we like. Note that the G-action on the DG algebra A⊗kp

q
extends to the
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action of the symmetric group Σp. In particular, we have an action of the

normalizer Ĝ = (Z/pZ) ⋊ (Z/pZ)∗ ⊂ Σp of G ⊂ Σp. Choose some multi-

plicative resolution data for Ĝ, and restrict it to G ⊂ G. Then the resulting
DG algebra P q(A q) carries a natural action of (Z/pZ)∗ = Ĝ/G. This action
preserves the filtration τ

q

, and the augmentation map

a : P q(A q)→ gr0τ P q(A q) ∼= A(1)
q

is (Z/pZ)∗-invariant. For i ≥ 1, we have the isomorphisms (3.15) induced
by the isomorphisms (2.13); invariantly, they can be written as

griτ P q(A q) ∼= A(1)
q
[i]⊗k Ȟ

−i(G, k),

where the group (Z/pZ)∗ acts on the right-hand side via its action on the
Tate comology group Ȟ−i(G, k).

Now, the cohomology H
q

(G, k) is given by (2.10). The group (Z/pZ)∗

acts trivially on the generator ε, and it acts on the generator u via its
standard one-dimensional representation given by the action on Z/pZ ⊂ k.
Therefore we have

Ȟ−i(G, k)(Z/pZ)
∗ ∼= k

if i = 0, 1 mod 2(p− 1), and 0 otherwise. We conclude that if we denote

P q(A q) = P q(A q)(Z/pZ)
∗

⊂ P q(A q)

and equip this DG algebra with the filtration induced by τ
q

, then we have

(5.2) griτ P q(A q) ∼=

{
A(1)

q
[i], i = 0, 1 mod 2(p − 1),

0, otherwise.

If we denote by e : P q(A q) → P q(A q) the embedding map, then griτ (e) is a
quasiisomorphism for i = 0, 1 mod 2p, and griτ (e) = 0 otherwise.

To prove degeneration, it suffices to construct a filtered DG algebra A′
q

and a filtered map s : A′
q
→ P q(A q), since then we can simply compose it

with the embedding e. Moreover, a filtered algebra 〈A′
q
, τ

q

〉 is completely
defined by its quotients An

q
= A′

q
/τn+1A′

q
, n ≥ 0, together with the quotient

maps rn : An+1
q
→ An

q
, and by assumption, A0

q
must be identified with the

Frobenius twist A(1)
q

of the DG algebra A q. Thus if we denote

Pn
q
= P q(A q)/τn+1P q(A q), n ≥ 1,

and denote by pn : Pn+1
q
→ Pn

q
the quotient maps, then it suffices to con-

struct a collection of DG algebras An
q
over k for all n ≥ 1, equipped with

DG algebra maps rn : An+1
q
→ An

q
, sn : An

q
→ Pn

q
such that

34



• for every n ≥ 1, we have sn ◦ rn = pn ◦ sn+1, and the composition map
a ◦ e ◦ sn : An

q
→ A(1)

q
is a quasiisomorphism.

We use induction on n. To start it, we take n = 1; we need to find a DG
algebra A1

q
over k and a map s1 : A1

q
→ P 1

q
such that a ◦ e ◦ s1 : A1

q
→ A(1)

q

is a quasiisomorphism. By [Ka6, Proposition 6.13], this is possible precisely
because the DG algebra A q satisfies the assumption (i) of the Theorem.

For the induction step, assume given An−1
q

and sn−1 : An−1
q
→ Pn−1

q
,

and consider the DG algebra A′′
q
defined by the cartesian square

A′′
q
−−−−→ An−1

qy
ysn−1

Pn
q

pn−1
−−−−→ Pn−1

q
.

Then up to a quasiisomorphism, A′′
q
is a square-zero extension of A(1)

q
by

grnτ P q(A q), and findingAn
q
with the maps sn, rn−1 satisfying (•) is equivalent

to finding a DG algebra An
q
and a map An

q
→ A′′

q
such that the composition

map

An
q
−−−−→ A′′

q
−−−−→ A(1)

q

is a quasiisomorphism. In other words, we have to split the extension A′′
q
.

The obstruction to doing this lies in the reduced Hochschild cohomology

group HH
2
(A(1)

q
, grnτ P q(A q)). By (5.2), this group vanishes unless i = 0, 1

mod 2p, and in this case, we have

HH
2
(A(1)

q
, grnτ P q(A q)) ∼= HH

2+n
(A(1)

q
).

Since n ≥ 2 and n = 0, 1 mod 2(p− 1), we have n ≥ 2(p− 1), and then this
reduced Hochschild cohomology group vanishes by the assumption (ii). �

Remark 5.3. The condition (ii) of Theorem 5.1 is slightly unnatural: while
Hochschild homology and the conjugate spectral sequence are derived Mori-
ta-invariant, reduced Hochschild cohomology groups are not (because of the
third term in (5.1)). One would like to have the same statement but with
HH

q

(−) instead of HH
q

(−). The simplest way to obtain such a statement
would be to repeat the whole argument for DG categories instead of DG
algebras. In fact, [Ka5] also deals with the DG category case, so that this
looks like a straightforward exercise. However, since our main interest is in
degeneration in char 0, we do not go into it to save space.
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5.2 Hodge-to de Rham degeneration. We now fix a field K of char-
acteristic 0, and a DG algebra A q over K. In this case, a Hodge-to-de Rham
degeneration theorem is an immediate corollary of Theorem 2.22, and the
argument is exactly the same as in [Ka2, Subsection 5.3]. We reproduce it
for the sake of completeness and for the convenience of the reader.

Theorem 5.4. Assume that the DG algebra A q is homologically smooth and
homologically proper. Then the Hodge-to-de Rham spectral sequence (2.2)
degenerates, so that there exists an isomorphism HP q(A q) ∼= HH q(A q)((u)).

We recall that homologically proper simply means that A q is a perfect
complex over K (in particular, it is homologically bounded).

Proof. By a theorem of B.Toën [T], there exists a finitely generated subring
R ⊂ K and a homologically smooth and homologically proper DG algebra

AR
q
over R such that A q

∼= AR
q

L

⊗R K. Since R is finitely generated, the
residue field k = R/m for any maximal ideal m ⊂ R is a finite, hence
perfect field of some characteristic p. Since AR

q
is homologically proper

and homologically smooth, there is at most a finite number of non-trivial
Hochschild homology groups HH q(AR

q
) and reduced Hochschild cohomology

groups HH
q

(AR
q
), and these groups are finitely generated R-modules. Then

there exists a constant N such that HH
i
(AR

q
) = 0 for i ≥ N . Moreover,

localizing R if necessary, we can further assume thatHHi(A
R
q
) is a projective

finitely generated R-module for every i, and that for any maximal ideal
m ⊂ R, p = charR/m is non-trivial in m/m2 (that is, p is unramified in
R), and 2p > N . Then for any m ⊂ R with k = R/m, the DG algebra

Ak
q
= AR

q

L

⊗R k satisfies the assumptions of Theorem 2.22. Therefore we
have an isomorphism

HP q(Ak
q
) ∼= HH q(Ak

q
)(1)((u−1))

of finite-dimensional graded k-vector spaces. SinceHH q(Ak
q
) is concentrated

in a finite range of degrees, we can replace Laurent power series in u−1 with
Laurent power series in u, and since AR

q
is homologically smooth and proper,

Ak
q
is also homologically smooth and proper. In particular, it is cohomolog-

ically bounded, so that Theorem 1.3 (ii) allows us to replace HP q(Ak
q
) with

HP q(Ak
q
). We thus have an isomorphism

HP q(Ak
q
) ∼= HH q(Ak

q
)(1)((u))

of finite-dimensional graded k-vector spaces, so that the Hodge-to-de Rham
spectral sequence (2.2) for Ak

q
degenerates for dimension reasons.
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Finally, since all the Hochschild homology R-modules HHi(A
R
q
) are

finitely generated and projective, and any differential in the Hodge-to-de
Rham spectral sequence for AR

q
vanishes modulo any maximal ideal m ⊂ R,

the differential must vanish identically. Thus the Hodge-to-de Rham spec-
tral sequence for the DG algebra AR

q
degenerates, and then so does the

Hodge-to-de Rham spectral sequence for A q = AR
q

L

⊗R K. �
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