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Abstract

In this paper, we consider an exotic baryon (pentaquark) as a bound state
of two-particle systems composed of a baryon (nucleon) and a meson.We
used a baryon - meson picture to reduce a complicated five-body prob-
lem to two simpler two-body problems. The homogeneous Lippmann-
Schwinger integral equation is solved in configuration space by using
Yukawa potential. We calculate the masses of pentaquarks θc(uuddc̄),
θb(uuddb̄), θbs(buuds̄), and θcs(cuuds̄).
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1 Introduction

There are two types of hadrons, baryons and mesons. Baryons are equivalent
to the bound states of three quarks, and mesons are known to be the bound
states of a fghquark and an antiquark. However, QCD describes mesons and
baryons even with a more intricate structure; there are anomalous mesons
such as ggg, qq̄g, qq̄qq̄, etc as well as exotic baryons like qqqg, qqqqq̄, etc.
Pentaquarks are baryons with at least four quarks and one antiquark. In
exotic pentaquarks, the antiquark has a flavor different from the other four
quarks.

Exotic hadrons containing at least three valence quarks are being studied
fairly extensively in modern physics. Although there are hundreds of ordinary
hadrons, exotic ones haven’t been found stable yet. However, QCD does not
reject their existence. Pentaquark θ+, studied in photo production experi-
ments [1, 2] is a prototype of exotic hadrons in light and strong quark sector.
Theoretically, hadronic reactions contribute to θ+ production more vividly
than other types of reactions.

The quark model is commonly used to describe hadrons. In this model,
mesons are described as qq̄ and baryons as three-quark composite particles.
In a more microscopic view, QCD usually serves to describe the strong inter-
action. According to Lipkin [3] and Gignoux et al [4], among pentaquarks,
the five-quark anticharmed baryons of the P 0 = [uudc̄s] and p̄ = [uddc̄s] or
similar anti-beauty baryons are the most bound.

A lot of experimental evidence on the existence of exotic hadrons has been
found since 2003. Exotic hadrons’ quantum numbers cannot be justified based
on two- and three-quark bound states. Pentaquarks of qqqqq̄ form are examples
of exotic baryon states. Conjugation quantity of C charge is not an accurate
quantum number for baryons, and all combinations of total spin J and parity
P can exist. However, an exotic baryon combination can be readily identified
by its electric charge Q and its strangeness S. Some evidence has been reported
during the last few years. For example, the pentaquark θ++ was proven to
exist in Hermes experiment in Humburge, Germany [5, 6].
For exotic baryons, we consider the following:
θ+: The existence of this exotic baryon was predicted in chiral solution model
[7]. It has an S = +1, JP = 1/2+ and I = 0. It is a narrow light-mass particle
of 1540 MeV. These attributes initially made θ+ a subject of experimented
observation by LEPS [8] .The most suitable hadronic decay mode to identiy
it is θ+ −→ K0p.
θc and θb: The existence of the bound exotic hadron θc was predicted through
bound Skyrmion approach. This particle has a mass of 2650 MeV, quantum
numbers JP = 1/2+, and I = 0. An experiment [9] showed a positive signal
at a mass of about 3.1 GeV, but it wasn’t confirmed later [10]. In strongly
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bound states, the decay mode K+π−π−p is easy to identify.
Likewise, the mass of θb with the same quantum numbers JP = 1/2+

and I = 0 was predicted to be 5207 MeV. The possible weak decay made
K+π−π− + π+ + p.
θcs: It is the five-quark state with JP = 1/2− and I = 0. In a quark model
which includes color-spin interaction, it can be bound and despite its strong
decay, it becomes stable [11]. The mass depending on the model parameters
is predicted to be 2420 MeV. This state was traced in the Fermilab E791
experiment via φπp mode [12] and K∗0K−p mode [13].

Lippman-Schwinger Equation for two-body bound states is solved in sec
1. We explain Gauss-Legendre method in sec 2. In sec 3, the procedure of the
study is given and pentaquark masses are determined.

2 Lippman-Schwinger equation for two-body

bound states

In this part, the binding energy of the entire system (pentaquark) is calculated
by numerical solution of homogeneous Lippman-Schwinger equation for each
subsystem of bound meson and baryon. Schrodinger equation for a two-body
bound state with the potential V runs as the following integral equation [14]:

| ψb >= G0V | ψb > (1)

G0 is the propagator of a free particle. In configuration space, it turns out as:

ψb(r) = −m
√
π/2

∫
∞

0

dr′r′
2
∫ 1

−1

dx′
∫

0

2π

dφ′
exp(−

√
m|Eb||r − r′|)
|r − r′| V (r′)ψb(r

′)

(2)
where Eb stands for the binding energy of the two-body bound system (me-

son+baryon). The interaction potential considered locally, the wave function
will be:

ψb(r) =

∫
∞

0

dr
′

∫ 1

−1

dx
′

M(r, r
′

, x
′

)ψb(r
′

) (3)

where:

M(r, r
′

, x
′

) = −2πm
√
π/2

exp((−
√
m|Eb|)

√
r2 + ŕ2 − 2rŕx́)√

r2 + ŕ2 − 2rŕx́
V (ŕ2) (4)

Equation (4) is of the following eigenvalue form:

K(Eb)|ψb >= λ(Eb)|ψb > (5)

λ = 1 is the highest positive eigenvalue. The eigenvalue equation is solved
through iteration method (direct method) [15]. To discretize the integrals,
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Gauss-Legendre method [16] is employed. Gauss lattice points for r, r′, x′ are
supposed to be 100 ( The more the points, the more accurate the results,
although this lowers the running speed of the program).

3 Gauss-Legendre Method

In Gauss-Legendre method, each integral of [-1,+1] interval is treated as:

∫ +1

−1

f(x)dx =
n∑

i=1

wif(xi) (6)

where xi are the roots of the type-one order-N Legendre function, and
wi are the functions of point weight. The following variable change is used
to transfer the integralization interval of r′ from [0, rmax] to [−1,+1]. If the
integrals are discretized, then

r = rmax
1 + x

2
(7)

ψb(r) = −2πm
√
π/2

N ′

r∑

j=1

N ′

r∑

i=1

W ′

ri
W ′

xj
r′i

2 exp(−
√
m|Eb|ρ(r, r′i, x′j))
ρ(r, r′i, x

′

j)
V (r′i)ψb(r

′

i)

(8)
Equation (8) could be rewritten as:

ψb(r) =

N
r
′∑

i=1

N(r, r
′

i)ψb(r
′

i) (9)

where

N(r, r′i) = −2πm
√
π/2

N ′

r∑

j=1

W ′

ri
W ′

xj
r′i

2 exp(−
√
m|Eb|ρ(r, r′i, x′j))
ρ(r, r′i, x

′

j)
V (r′i) (10)

Matrix N is diagonized to find λ = 1 in the eigenvalue spectrum. The
energy corresponding to λ = 1 will be the system’s binding energy.

4 Procedure

We consider a pentaquark as a bound state of a two-particle system formed by
a baryon and a meson. The hadronic molecular structure consists of a baryon
and a meson (Figure 1). Table 1 presents the structure of five hadrons.
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Figure 1: Pentaquark

Interaction potential has an essential role in solving the eigenvalue (5). Dif-
ferent potentials have been introduced for meson-baryon interaction. Yukawa
potential (screened coulomb potential) is proposed as one of the appropriate
ones [17, 18]. This study deals with exotic baryon states created by a meson
and a nucleon. The π exchange potential is among the most prominent me-
son exchange forces. π is the lightest hadron that can be exchanged between
meson and nucleon. Therefore, we consider only π exchange, and ρ and ω
meson exchange will be elaborated on in our subsequent works. OPEP is of
the following form[17]:

Vπ(r) = (~IN .~IH)(2S12VT (r) + 4~SN .~SH)Vc(r) (11)

= (I2 − I2N − I2H)(K2 − S2
N − S2

l )Vc(r) (12)

where the central part of the potential is:

Vc(r) =
gHgA
2πf2π

(m2
π)
e−mr

3r
(13)

where, fπ is the pion decay constant and fπ = 135MeV , mπ is the pion mass
and mπ = 138MeV , the axial coupling constant is gA = 13.0215, the heavy-
meson coupling constant is gH = gπ = 0.59, then

Vc(r) = g′2
e−mr

r
(14)

and tensor part is:

VT (r) =
gHgA
2πf2π

(m2
π)
e−mr

6r
(
3

r2
+

3

r
+ 1) (15)
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I is the total isospin of meson-nucleon system and

S12 ≡ 4[3(
−→
S N .r̂)(

−→
S N .r̂)−

−→
S N .(

−→
S N )] (16)

where
gHgA
2πf2π

(m2
π)

1

3
= g′2 = 0.4259 (17)

Inserting IN (nucleon isospin), IH (meson isospin), SN (nucleon spin), Sl (the
lightest quark’s spin in the meson), and K = SN + Sl into the potential,
we obtain the potential’s constant co-efficient (c) for different pentaquarks in
I = 0 state (Table 2).

Vc(r) = cV ′

c (r) (18)

then

Vc(r) = cV ′

c (r) = cg′2
e−mr

r
= −g2 e

−mr

r
(19)

We assume r axe along the direction of ẑ too. Pentaquark binding energy
is defined as the energy used when breaking a pentaquark into its compo-
nents, i.e. meson and baryon, so it is negative. Pentaquark mass is calculated
according to equation (5)

M(pentaquark) = mmeson +mbaryon + Eb (20)

In order to find the binding energy (Eb), first Mont-Carlo approach is em-
ployed to solve Lippman-Schwinger equation for the two-body system. In
this approach, the kernel is diagonized and the eigenvalue spectrum is iden-
tified (spin-spin interaction in the potential and spin splitting are ignored).
According to equation (5), the eigenvalue λ = 1 indicates an appropriate self-
consistent wave function. The energy corresponding with this wave function
will be the Eb. The data required include reduced mass of mesons and nucle-
ons, proposed binding energy, potential co-efficients, and r-cutoff=10 fm. The
masses of hadrons used in the study are presented in Table 3.

5 Results and discussion

In this paper, we solved Lippman-Schwinger equation for pentaquark systems.
We managed to obtain the binding energy and used it to calculate the masses
of these systems. The pentaquark is considered as the bound state of a baryon
and heavy meson. We used a baryon - meson picture to reduce a complicated
five-body problem to two simpler two-body problems. In Table 4, we have
listed our numerical results for masses of pentaquark systems, and pentaquark
masses are compared with the results obtained in [20, 21]. Our results are in
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good agreement with the results derived from complicated relativistic methods
and can be a good replacement for them.

Our method is appropriate for investigating tetraquark systems too. We
study four-body systems consisting of diquarkantidiquark, and we analyze di-
quarkantidiquark in the framework of a two-body (pseudo-point) problem. We
solve LippmanSchwinger equation numerically for charm diquarkantidiquark
systems and nd the eigenvalues to calculate the binding energies and masses
of heavy tetraquarks with hidden charms [22].

Table 1:Hadronic molecular structure of pentaquarks

Hadronic structure (meson+nucleon) pentaquark

θ+ (uudds̄) uud / udd , ds̄ / us̄
θc (uuddc̄) uud / udd , dc̄ / uc̄
θb (uuddb̄) uud / udd ,db̄ / ub̄
θcs (cuuds̄) uud,cs̄
θbs (buuds̄) uud ,bs̄

Table 2: Potential’s constant co-efficient in I=0

Pentaquark c g2

θc(uuddc̄) -3/4 0.3194
θb (uuddb̄) -3/4 0.3194
θcs (cuuds̄) -3/8 0.1597
θbs (buuds̄) -3/8 0.1597
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Table 3: Hadron masses[19]

Hadronic Mass(MeV/c2)

p(uud) 938.272
n(udd) 939.5653
k+(us̄ ) 439.677
k0(ds̄) 497.614
D̄0(uc̄) 1864.63
D̄(dc̄) 1869.60

D̄0
s(cs̄ ) 1968.47

B0(db̄) 5279.50
Bs̄(bs̄) 5366.6

Table 4: Masses (MeV/c2) of pentaquark

Pentaquark hadronic structure M Mass in [20, 21]

uud/dc̄ 2646.54
θc (uuddc̄ ) 2650

udd/uc̄ 2646.554

uud/db̄ 5196.732
θb (uuddb̄ ) 5207

udd/ub̄ 5196.719

θcs (cuuds̄ ) uud/cs̄ 2427.474 2420

θbs (buuds̄) uud/bs̄ 5752.0743 5750

6 Conclusions

In this paper, we investigated pentaquark systems as hadronic composites of
a meson and a nucleon. We used the Yukawa potential and solved Lippman
Schwinger equation for systems consisting of mesons and baryons and obtained
the masses of Pentaquarks in I = 0 state. Our results are in good agreement
with previous research. According to our method, the solution of five-body
systems is reduced to the solution of two-body systems without taking into
account the relativistic corrections. We would like to claim that although
this method is not a precise solution of the five-body system, its important
advantage is the reduction of the complicated five-body problem to a two-
body problem. In our next research, we consider the Tensor part of Yukawa
potential, too.
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