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The Fermi-Hubbard model is one of the key models of condensed matter physics, which holds
a potential for explaining the mystery of high-temperature superconductivity. Recent progress in
ultracold atoms in optical lattices has paved the way to studying the model’s phase diagram using
the tools of quantum simulation, which emerged as a promising alternative to the numerical calcu-
lations plagued by the infamous sign problem. However, the temperatures achieved using elaborate
laser cooling protocols so far have been too high to show the appearance of antiferromagnetic and
superconducting quantum phases directly. In this work, we demonstrate that using the machin-
ery of dissipative quantum state engineering, one can efficiently prepare antiferromagnetic order in
present-day experiments with ultracold fermions. The core of the approach is to add incoherent
laser scattering in such a way that the antiferromagnetic state emerges as the dark state of the
driven-dissipative dynamics. In order to elucidate the development of the antiferromagnetic order
we employ two complementary techniques: Monte Carlo wave function simulations for small systems
and a recently proposed variational method for open quantum systems, operating in the thermody-
namic limit. The controlled dissipation channels described in this work are straightforward to add
to already existing experimental setups.

PACS numbers: 67.85.-d, 75.10.Jm, 71.10.Fd

I. INTRODUCTION

Experimental progress with ultracold fermions in op-
tical lattices [1, 2] leads the way to achieving one of the
key goals of quantum simulation [3] – mimicking realis-
tic condensed matter systems. To date, the experiments
covered a broad range of systems and interaction regimes,
from probing the BEC-BCS crossover in lattices [4], to
the observation of a fermionic Mott insulator [5, 6], to
studying short range magnetism [7] and multiflavor spin
dynamics [8], to realizing topological Haldane model [9]
and artificial graphene sheets [10]. These discoveries pave
the way to use ultracold atoms to reveal the properties of
the repulsive Fermi-Hubbard model [11, 12]. The latter is
of particular importance since it represents a playground
to get insight into the physics of high-temperature su-
perconductivity and related phenomena observed in the
cuprates [13].

In the case of one particle per site and large on-site
interaction, U , the Fermi-Hubbard model exhibits the
transition to the Mott-insulating state [5, 6] around the
temperature T ∼ U . If the temperature is decreased
further and reaches the so-called ‘Néel temperature,’
TN ∼ 4t2/U , where t gives the hopping rate between
neighboring sites, the transition to the antiferromagnetic
(AF) phase is expected [14, 15]. Currently the temper-
atures achievable in experiment are slightly above the
Néel temperature where AF correlations can already be
observed, for instance, T/TN ≈ 1.42 has been reached in
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Ref. [14]. Ultimately, in order to study the superconduct-
ing phase or other phenomena related to pairing in high-
temperature superconductors, the temperature needs to
be substantially lower. Therefore, due to the experimen-
tal limitations inherent to the standard laser cooling tech-
niques, it is crucial to develop alternative approaches to
preparation of quantum phases in optical lattices.

In this work, we propose an efficient scheme for the
preparation of antiferromagnetic order in optical lattices
of fermionic atoms, based on the ideas of dissipative
state engineering which have recently emerged in the con-
text of many-particle systems [16–35] and have been im-
plemented experimentally [36–42]. In such scenarios, a
many-body state of interest is prepared as a steady state
of the quantum master equation governing the open sys-
tem dynamics, as opposed to the ground state of the
Hamiltonian. Such steady state can undergo quantum
phase transitions to an ordered state of matter, which
can be classified in close analogy to equilibrium sys-
tems [25, 43–50].

As opposed to the previously reported coherent and
dissipative strategies towards the preparation of antifer-
romagnetic ordering [21, 23, 25, 51–58], in the tech-
nique described here the dissipative dynamics takes place
on top of the unitary evolution governed by the Fermi-
Hubbard model. In particular, fermions remain mobile
in the optical lattice system during the entire dissipative
preparation stage. Consequently, no adiabatic switching-
on of the fermion hopping terms is required. Further-
more, the dissipation channels of our scheme are imple-
mented using the level structure of fermionic 40K, cur-
rently used in several laboratories [7, 8, 15, 59–61]. Con-
sequently, the presented scheme can be readily imple-
mented into already existing experimental setups.
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Theoretical description of open many-body quantum
systems represents a challenging task and is currently an
active field of research [49, 62–67]. In our analysis of
the dissipative Fermi-Hubbard model we use two com-
plementary techniques: the Monte Carlo wave function
(MCWF) [68–70] and the variational method [49, 63],
which is generalized here to the description of fermionic
systems at half-filling. By using these two methods
we demonstrate that a substantial AF magnetization is
present in the system both for an exact solution on a 3×3
lattice, as well as in the thermodynamic limit.

II. THE DISSIPATIVE FERMI-HUBBARD
MODEL

We start with the Fermi-Hubbard Hamiltonian

Ĥ =
∑
i,j,σ

tij ĉ
†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓, (1)

which has been experimentally realized in a range of sys-
tems such as 6Li [14] and 40K [6]. Our goal is to design
dissipative processes in such a way that the state with
an AF order is the dark state of the dissipative dynamics
and the time evolution of the open system will drive it
towards such a dark state.

The dynamics of an open quantum system is governed
by the master equation for the system’s density matrix

ρ̇ = −i
[
Ĥ, ρ

]
+
∑
i,j,σ,α

′
(
ĵ
(α)
ij,σ ρ ĵ

(α)†

ij,σ −
1

2

{
ĵ
(α)†

ij,σ ĵ
(α)
ij,σ, ρ

})
,

(2)
where the primed sum runs over nearest-neighbor sites.
Since we start with a disordered sample, all possible
nearest-neighbor configurations, including | ↑; ↑〉, | ↓; ↓〉,
and | ↓↑; 0〉 will be present. The jump operators, there-
fore, need to convert the latter into those with the local
antiferromagnetic order, | ↑; ↓〉.

We choose the jump operators to be as follows:

ĵ
(1)
ij,↑ =

√
γ1| ↓↑; 0〉〈↑; ↑ |, ĵ

(2)
ij,↑ =

(
ĵ
(1)
ij,↑

)†
, (3)

ĵ
(1)
ij,↓ =

√
γ1| ↓↑; 0〉〈↓; ↓ |, ĵ

(2)
ij,↓ =

(
ĵ
(1)
ij,↓

)†
, (4)

ĵ
(3)
ij =

√
γ2| ↓; ↑〉〈0; ↓↑ |. (5)

The two labels of | . . . 〉 and 〈. . . | refer to the nearest-
neighbor sites i and j, while γ1, γ2 are the dissipation
rates. Their combined action, schematically shown in
Fig. 1(a), leads to turning the configurations, | ↑; ↑〉,
| ↓; ↓〉, and | ↑↓; 0〉, into those with the AF order, | ↑; ↓〉.
We note that the jump operators ĵ

(3)
ij break the SU(2)

symmetry, as the down-spin atom becomes more mo-
bile. This, however, does not constitute a limitation of
our scheme. Moreover, it is possible to reestablish the
symmetry by using additional auxiliary states to induce
hopping of the | ↑〉-state atom away from the double-
occupancy configuration.

As we discuss in the following section, such choice of
the jump operators is straightforward to realize in exper-
iment using incoherent laser scattering.

III. EXPERIMENTAL IMPLEMENTATION OF
THE JUMP OPERATORS

Simulating the Fermi-Hubbard model requires map-
ping the two spin states, | ↑〉 and | ↓〉, onto the fine or
hyperfine components of the ground electronic state man-
ifold of an ultracold atom. The on-site interaction be-
tween the spin components, U , can be tuned using a Fes-
hbach resonance [71]. We exemplify the scheme using the
atomic level structure of fermionic 40K [72] , with the lev-
els | ↑〉 ≡ |F = 7

2 ;mF = − 7
2 〉 and | ↓〉 ≡ | 92 ;− 7

2 〉. Further-
more, in order to realize the dissipative part of the dy-
namics, we introduce an auxiliary state, |X〉 ≡ | 92 ;− 9

2 〉,
belonging to the 2S1/2 manifold, as well as an electroni-

cally excited 2P3/2 state, |e〉 ≡ |112 ;− 9
2 〉.

The first-stage jump operators, ĵ
(1)
ij,σ and ĵ

(2)
ij,σ, can

be implemented using Raman-assisted hopping, as illus-
trated in Fig. 1(b). If the Raman beams, Ωr1,...,r3, are
not phase-locked such hopping processes are dissipative.
Since the Raman-assisted hopping takes place directly
between the initial and final states of the jump opera-
tors, the related dissipative processes are bidirectional.
Therefore, we need to avoid populating the | ↑; ↓〉 state
at this stage. Otherwise, the jump operators would also
lead from the | ↑; ↓〉 state back to the | ↑; ↑〉 and | ↓; ↓〉
states. The on-site interaction energy U (which we as-
sume to be on the order of a few kHz) can be used for this
purpose. We note that this step can be implemented in a
coherent way as well, however, the required phase-locking
of the lasers would introduce an additional complication
into the experimental setup.

In order to implement the second-stage jump opera-

tors, ĵ
(3)
ij , in a one-directional fashion, we use Raman-

assisted hopping from the | ↑↓; 0〉 state to the | ↑;X〉
configuration with an auxiliary |X〉 state. This |X〉 state
is then pumped to an excited |e〉 state, which can decay
to the | ↓〉 state completing the process, as illustrated in
Fig. 1(c). The |e〉 state cannot decay to the | ↑〉 state be-
cause of selection rules on the F quantum number. The
Zeeman splitting, ∆X↓, and the energy, U + ∆X↓, dif-
ferentiate among the three states from the lower band in
Fig. 1(c). In order to resolve between these three states
it is sufficient to use selection rules. To resolve between
the | ↑;X〉 and | ↑ X; 0〉 states as the final states of the
Raman-assisted hopping process we need nonzero on-site
interaction between the | ↑〉 and |X〉 states. The typical
values of the background scattering lengths, a = 105 a0,
in units of the Bohr radius a0 [72, 73], should be suffi-
cient for this purpose. Spontaneous emission from the
|e〉 state ensures that the resulting dissipative processes
are unidirectional and take place from the | ↑↓; 0〉 to the
| ↑; ↓〉 state with AF ordering.
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FIG. 1. (a) Action of the jump operators on the nearest-neighbor sites; and (b, c) their implementation using Raman-assisted
hopping. The Raman beams are labelled as Ωr1, ...,Ωr5, the pumping beam by Ω, and the decay rate is given by γ; ∆↑↓ gives
the hyperfine splitting between the | ↑〉 and | ↓〉 states, ∆X↓ gives the Zeeman splitting between the |X〉 and | ↓〉 states, while
U denotes the on-site interaction between the | ↑〉 and | ↓〉 states.

Due to the hyperfine splitting between the F = 9/2
and F = 7/2 levels, the optical trapping potential for
the | ↑〉 state needs to be implemented separately from
the one for the | ↓〉 and |X〉 states. The hoppings of the
| ↑〉 and | ↓〉 states can be made equal by adjusting the
strengths of the two lattice potentials. For the | ↓〉 and
|X〉 states using a single trapping potential can lead to
a state-dependent lattice [1, 2, 74–76]. This is however
not a limitation, since the hopping of the |X〉 state is not
involved in our scheme and the only requirement is its
small magnitude as compared to the rate of decaying to
the | ↓〉 state.

The values of γ1 and γ2 are unrelated to the hopping
integral t, however, all three of them are proportional to
certain integrals involving two Wannier functions on the
nearest-neighboring sites. Therefore, we consider t, γ1,
and γ2 to be on the same order of magnitude.

IV. TIME EVOLUTION AND STEADY-STATE
PROPERTIES

In order to reveal the properties of the system we use
two complementary techniques: the Monte Carlo wave
function (MCWF) technique [68–70] on a 3 × 3 lattice
and the variational method [49, 63] in the thermody-
namic limit. While the latter was originally formulated
for bosons, here we extend it to fermionic systems. In
both methods we start from the Jordan-Wigner trans-
formation in two spatial dimensions [77, 78]. The re-
lated Wigner strings restrict the applicability of our vari-
ational scheme to the situation with one particle per site

(half-filling). Experimentally, this is the most interesting
regime as it corresponds to the maximal Néel tempera-
ture.

A. Monte Carlo wave function

We study the dynamics of the driven-dissipative sys-
tem governed by Eq. (2) using the MCWF method im-
plemented in the QuTiP numerical library [79, 80]. We
consider only the nearest-neighbor hopping tij ≡ −t (we
use t as the unit of energy hereafter) and study the time
evolution of the half-filled 3×3 lattice as a function of the
parameters γ1, γ2, and U . Since the lattice dimensions
are odd numbers, we use the antiperiodic boundary con-
ditions. For example, when the hopping process takes
place across the boundary, we introduce an additional

spin-flip (ĉ†iσ ĉjσ). The initial states for the MCWF re-
alizations were chosen with randomly-positioned spin-up
or spin-down particles (also allowing for double occupan-
cies), however, the steady-state properties were found to
be independent on the initial conditions.

The time evolution of the system’s properties is shown
in Fig. 2. One can see that the steady state is reached for
τ/t ≈ 50 − 100, which corresponds to 1 − 2 seconds for
t = 50 Hz. Even for a large value of the on-site interac-
tion, U = 100, a small number of double occupancies is
still present in the system, D ≈ 0.04, see Fig. 2(a). These
states are involved in the dissipation processes as an in-
termediate step towards preparation of the AF ordered
phase, cf. Fig. 1(a). Non-zero double occupancies can
lead to inelastic losses of atoms [11], which however are
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FIG. 2. (a) Time-evolution of the total number of spin-up,
N↑, and spin-down, N↓, atoms per site, the double occupancy
probability, D, and the spin-structure factor IAF for U = 100,
γ1 = 1, and γ2 = 2. (b) The von Neumann entropy per
particle for selected values of (U, γ1, γ2), as labelled in the
graph.

more problematic for the attractive [81], than for the re-
pulsive [6] potassium gas. In the latter case the inelastic
decay time for atoms on doubly occupied sites was re-
ported [6] to exceed 850 ms. Consequently, such inelastic
losses should not constitute a limitation of our scheme.

To quantify the AF ordering of the system, we evaluate
the spin-structure factor, as defined by

I(Q) ≡ 4

N2

∑
i,j

ei(Ri−Rj)Q〈σzi σzj 〉. (6)

In the case of the AF ordering, the relevant spin-structure
factor is given by IAF ≡ I(Q = [π, π]). For the steady-
state it can be as large as IAF ≈ 0.8 (cf. also Fig. 3),
quite close to the fully polarized Néel state.

Figure 2(b) illustrates the decrease of the system’s en-
tropy per particle, S ≡ Stot/N = −1/N Trρ log ρ, with
time. The resulting steady-state entropy per particle can
be as low as S ≈ 0.1 − 0.3 (cf. also Fig. 3). Due to the

large size of the density matrix ρ, in our numerical calcu-
lations we use the equivalent formula, Stot = −TrA logA.
Here Aij = 〈ψi|ψj〉 is the matrix of overlaps of wave func-
tions obtained from single realizations of the Monte Carlo
algorithm. The relaxation time (usually below one sec-
ond) increases with the increasing on-site interaction, U .
For larger systems the relaxation times can be longer,
due to possible formation of domains, as it is the case for
coherent preparation strategies.

A slightly different number of spin-up, N↑, and spin-
down, N↓, atoms in the steady state is related to break-

ing of the SU(2) symmetry by the jump operators ĵ
(3)
ij .

As a result, the spin-down atom becomes more ‘mobile’.
Additionally, in the 3 × 3 lattice the number of sites is
odd. Therefore, inherently in the steady state there is a
spin-direction imbalance with N↑ > N↓. For a larger sys-
tem, as well as for a system with even number of sites we
would have N↑ ≈ N↓. This, however, does not preclude
the formation of the AF order.

Fig. 3 shows the steady-state properties: the entropy
per particle and spin-structure factor as a function of the
parameters. In the employed range of parameters these
features turn out to be strongly dependent on γ2 and U ,
cf. Figs. 3(b) and 3(c), however, only weakly dependent
on γ1, cf. Fig. 3(a). Furthermore, while IAF grows sub-
stantially with increasing U and γ2, for γ1 a saturation
effect is observed and increasing the magnitude above
γ1 ≈ 0.5 does not improve the efficiency of the scheme
significantly. These observations can be qualitatively un-
derstood from Fig. 1(a). Namely, when the system is
close to the AF phase most of the nearest-neighbor con-
figurations are of the | ↑; ↓〉 type. The processes that
drive the system away from the ordered state are related
to coherent hopping from the | ↑; ↓〉 state to the | ↑↓; 0〉
state. In the large-U limit, the timescale of such processes
is given by 4t2/U . Therefore, increasing U reduces the
contribution of the processes that destroy AF ordering.
Increase of IAF with γ2 is expected, as the related dis-
sipative processes drive the system directly into the AF
ordered state. The saturation effect for γ1 can be due
to the bidirectional character of the related dissipative
processes. For sufficiently large γ1, the value of the spin-
structure factor is determined by an interplay between
the dissipative processes related to γ2 and coherent hop-
ping processes with a time scale governed by 4t2/U .

While the values of U required for an efficient prepa-
ration of the AF order are quite large, they are within
experimental reach, e.g. U/t = 180 was reported in
Ref. [6]. Increasing U even further might lead to appear-
ance of non-standard terms on top of the Fermi-Hubbard
model [82].

B. Variational scheme

In order to describe the steady-state properties in the
thermodynamic limit, we use the variational scheme pro-
posed recently [49, 63]. In this method, we minimize the
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FIG. 3. Steady-state properties: spin-structure factor, IAF,
and entropy per particle, S, as a function of magnitudes of
jump operators, γ1 and γ2, and the on-site repulsion energy,
U . The error bars of IAF are calculated as the standard er-
ror for the results of single Monte-Carlo realizations, whereas
those of S are obtained using the standard deviation of the
Monte-Carlo results averaged over time.

upper bound of the variational norm of the master equa-
tion (2),

||ρ̇|| = || − i[H, ρ] +D(ρ)|| ≤
∑
〈ij〉

Tr|ρ̇ij | → min . (7)

Here D is the dissipative part as given by Eq. (2) and the
reduced two-site operators are defined as ρ̇ij = Tr6i6j ρ̇.
We perform the Jordan-Wigner transformation to a sys-
tem of bosons and consider variational states of the
product-state type, ρ = ρp =

∏
i ρi. It is sufficient to

minimize the norm ||ρ̇ij || of a single bond, which for the
case of an AF order can be expressed as

||ρ̇ij || ≡ ||ρ̇AB || = Tr|ρ̇AB |, (8)

ρ̇AB = −i[HAB , ρAB ] +DAB(ρAB) + (9)∑
A′

TrA′ {−i[HBA′ , ρABA′ ] +DBA′(ρABA′)}+∑
B′

TrB′ {−i[HB′A, ρB′AB ] +DB′A(ρB′AB)} .

Here A and B label the two sublattices and, e.g., ρABA′ ≡
ρA⊗ ρB ⊗ ρA′ , while DAB gives the dissipative part with
the jump operators acting on the sites A and B. The first
two terms of Eq. (9) correspond to an exact treatment of
a single bond, which already goes beyond the mean-field
description, whereas the next ones describe interaction
with the surrounding sites treated on the mean-field level,
as visualized by the dashed lines in Fig. 4(a).

In Fig. 4(b) we compare the spin-structure factor
obtained from our variational scheme and the MCWF
method as a function of magnitude of the jump operators
(which we set equal here without the loss of generality).
According to the results of both methods, the system ex-
hibits substantial ordering (e.g. with spin-structure fac-
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spin-structure factor, as a function of the magnitude of the
jump operators. The variational results (red solid line) are
compared to the MCWF method (green dashed line).

tor larger than 0.5) when γ1 = γ2 & 1. Although the vari-
ational method contains terms going beyond mean field,
its results do not depend on the value of U , as opposed
to the exact approach. This happens due to restriction
of the density matrices to the form of product states.
Moreover, the variational method overestimates the AF
ordering due to the absence of fluctuations in our varia-
tional manifold. Therefore, the employed approaches are
complementary to each other, and both indicate the for-
mation of an AF order of substantial magnitude in the
steady state.

V. CONCLUSIONS

In this paper, we proposed a scheme for dissipa-
tive preparation of antiferromagnetic order in ultracold
fermions trapped in an optical lattice. We demonstrated
that by using a combination of two dissipative processes
based on Raman-assisted hopping it is possible to engi-
neer the dissipative dynamics in such a way that the AF
phase emerges as its dark state. By using a combination
of an exact and variational approaches, we observed the
formation of a strong AF order on the timescales achiev-
able in present-day experiments.

We note that the technique presented here can be read-
ily implemented in the setups already used to search for
the AF order [15], and thereby paves the way to an exper-
imental realization of the AF phase in the Fermi-Hubbard
model. While we exemplified the approach using the
atomic level structure of 40K [6], the method is general
and can be also applied to other fermionic atoms cur-
rently available in laboratory, such as 6Li [14], Er [83],
Dy [84], Yb [85], and Cr [86]. After preparation of the
AF phase with low entropy it should be possible to ex-
plore the phase diagram of the Hubbard model, including
the pseudogap regime, by coherently removing a fraction
of the atoms from the trap thereby introducing hole car-
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riers into the system. Finally, extending these ideas to
single-site addressable lattices as offered by the fermionic
quantum gas microscopes [59–61, 87], opens the door to
preparation of more sophisticated many-particles states.
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Büchler, A Rydberg Quantum Simulator, Nat. Phys. 6,
382 (2010).

[21] S. Diehl, W. Yi, A. J. Daley, and P. Zoller, Dissipation-
Induced d-Wave Pairing of Fermionic Atoms in an Opti-
cal Lattice, Phys. Rev. Lett. 105, 227001 (2010).

[22] S. Diehl, E. Rico, M. A. Baranov, and P. Zoller, Topology
by Dissipation in Atomic Quantum Wires, Nat. Phys. 7,
971 (2011).

[23] W. Yi, S. Diehl, A. J. Daley, and P. Zoller,
Driven-Dissipative Many-Body Pairing States for Cold
Fermionic Atoms in an Optical Lattice, New J. Phys.
14, 055002 (2012).

[24] A. F. Alharbi and Z. Ficek, Deterministic Creation of
Stationary Entangled States by Dissipation, Phys. Rev.
A 82, 054103 (2010).
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