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Abstract

It is unknown whether a bound on axion field ranges exists within quantum gravity.

We study axion field ranges using extended supersymmetry, in particular allowing an

analysis within strongly coupled regions of moduli space. We apply this strategy to

Calabi-Yau compactifications with one and two Kähler moduli. We relate the maxi-

mally allowable decay constant to geometric properties of the underlying Calabi-Yau

geometry. In all examples we find a maximal field range close to the reduced Planck

mass (with the largest field range being 3.25 MP ). On this perspective, field ranges re-

late to the intersection and instanton numbers of the underlying Calabi-Yau geometry.

1

ar
X

iv
:1

60
1.

00
64

7v
1 

 [
he

p-
th

] 
 4

 J
an

 2
01

6



Contents

1 Introduction 2

2 The Dilaton-Axion System 4

3 One Parameter models 6

3.1 The Quintic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 More One-Parameter Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Two parameter models 13

4.1 P4
(1,1,1,6,9)[18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Further examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Connection to (field theory) models of inflation 17

6 Conclusion 18

A Conventions 19

B Period details 20

B.1 P4
(1,1,1,6,9)[18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

B.2 P4
(1,1,2,2,2)[8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B.3 P4
(1,1,2,2,6)[12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

C Decay constants in the multi-moduli setup 23

1. Introduction

In field theory axions provide excellent candidates for models of large field inflation. The

simplest example is natural inflation [1], where to provide sizeable tensor modes the associ-

ated axion decay constant is required to be trans-Planckian. In the case of two (or more)

axions, the UV theory does not have to include trans-Planckian decay constants, but an ef-

fective trans-Planckian decay constant can emerge through either an appropriate alignment

of decay constants [2] or the collective behaviour of many axions (N-flation) [3].
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It is a non-trivial question whether the embedding of such effective field theory models can

be achieved within a theory of quantum gravity. This is also not just a theoretical question;

trans-Planckian field excursions during inflation can generate levels of tensor modes that

would be observable by current and upcoming experiments. It therefore represents an ideal

topic for string phenomenology, as it both has observational content and requires a UV-

complete theory for a sensible analysis.

Over the last few years, there has been much work targeting this question. One direction has

been the attempt to construct direct models of large field inflation [2–16] and, by showing

that these are under control, aiming to produce explicit examples of trans-Planckian field

excursions in string theory. On the other hand, many arguments have been put forward, both

in the context of critical analysis of explicit models and also through more general grounds,

that suggest problems arise with either consistency or backreaction once field ranges become

trans-Planckian. These arguments include field ranges [17, 18], entropy bounds [19] (for a

contrary view see [20]), backreaction [21, 22] and the use of the weak gravity conjecture

[23–35].

While these problems take different forms in different corners of string theory, their repeated

occurrence has led many to contemplate the possibility that deep reasons of quantum gravity

may restrict the axionic field range to be sub-Planckian (although it is left open whether

this would mean strictly below the Planck mass or some multiple of the Planck mass fa <

(2π)nMP ).

How best to analyse this further? One clear difficulty in studying field ranges in the context

of inflationary models in string theory is that these necessarily require compactifications with

supersymmetry broken at a high scale. There are typically also many (hundreds) of moduli

present (see for instance string theoretic attempts to realise N-flation [36]), and it is essential

that none of these have any unstable runaway directions during inflation. Given that models

are often complex and with many moving parts, it is not easy to guarantee control of the

computations, and to ensure that there really are no instabilities present.1

In this paper, we take a different approach. If deep considerations of quantum gravity

ensure a bound on axion field ranges in string theory, this bound should also apply for

models with unbroken and extended supersymmetry. Extended supersymmetry also allows

for exact results, which can be analysed even in normally inaccessible strong coupling regions

dominated by non-perturbative physics. It also allows for precise study of the physics that

truncates the axion decay constant, and for a determination of the maximum axion decay

constant, including factors of π, arising in the various examples studied.

There are certainly disadvantages of this approach. The study of a number of distinct

examples does not imply any general proof. The study of decay constants in models with

1As a minimal point, an absence of instabilities in four-dimensional effective field theory is no guarantee

of an absence of instabilities in the higher-dimensional theory [37].
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unbroken supersymmetry and vanishing potential also does not say anything about the

feasibility of developing an effective trans-Planckian decay constant using (for example)

alignment of the potential for many axions with individually sub-Planckian decay constants.

Nonetheless, we still think it worthwhile to study the precise decay constants that arise in

situations where there is full calculational control. While this has been considered before in

[17], that paper was concerned only with approximate relations and indeed absolved itself

from factors of 16π2. Given that such factors would have a crucial impact of the observability

of tensor modes, we think a quantitative study is important.

To this end, we shall study axionic field ranges for Calabi-Yau compactifications of type IIA

string theory, using the exact results available for the Kähler moduli space that come from

mirror symmetry applied to the complex structure moduli space of type IIB string theory

compactified on the mirror manifold.

The paper is organised as follows. In Section 2 we discuss as a warm-up example the familiar

dilaton-axion system, explaining how the axion field range is bounded by the SL(2,Z) duality

symmetry. We then move in Section 3 to the case of Calabi-Yau manifolds with one Kähler

modulus, analysing a variety of examples and determining the maximal axion field range in

each one. We extend these considerations to models with two Kähler moduli in Section 4.

We make some comments on the connection to field theory models of large field inflation

using axions in Section 5, before concluding in Section 6.

2. The Dilaton-Axion System

We start with a familiar and baby example illustrating the physics that will recur throughout

this paper. By an ‘axion’, we denote in this paper a real scalar field a with a periodicity

a ≡ a+ 2πfa ,

such that the field configurations 〈a〉 = θ and 〈a〉 = θ + 2πfa represent identical states in

the Hilbert space, and such that all intermediary values of 〈a〉 are inequivalent. We are

interested in the maximal value that fa can attain in string theory.

Axions can arise in many different contexts within string theory. In this paper we study the

values of fa attained in regimes that are out of perturbative control, and to this end we will

consider systems with exact supersymmetry. As is well known, extended supersymmetry

highly constrains the effective actions and in some cases allows for exact solutions within the

strongly coupled parts of moduli space.

One of the most universal axions occurring in string theory is that of the dilaton-axion

system. We work in the context of type IIB string theory compactified on a Calabi-Yau

manifold, preserving N = 2 supersymmetry. The classical Kähler potential for the dilaton-
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axion system is

K = −M2
P ln

(
S + S̄

)
, (2.1)

which descends from the ten-dimensional IIB supergravity action, with S = c0+ i
gs
≡ sR+IsI

a combination of the RR 0-form axion and the string coupling. The axionic identification is

S ≡ S + 1. This Kähler potential gives rise to the Lagrangian kinetic terms

M2
P

4s2
I

∂µsI∂µsI +
M2

P

4s2
I

∂µsR∂µsR . (2.2)

At large values of sI , we are in a weakly coupled regime where the field sR has the classical

axion behaviour. The physical size of the axion field range is the length of the displacement

sR → sR + 1, namely

2πfa =
gsMP√

2
. (2.3)

In the ‘classical’ regime of large Im(S) and weak gs, we have the familiar notion of an axion.

In this region the decay constant is also clearly sub-Planckian. As gs increases, the length

of the displacement sR → sR + 1 also increases towards a Planckian field displacement.

What happens as gs increases towards (and beyond) unity? What does not happen is

that large gs-corrections, either perturbative or non-perturbative, destroy the validity of the

effective action of equation (2.1). While it is true that the 10-dimensional action receives

corrections in both α′ and gs, the gs-corrections – both perturbative and non-perturbative

D-instanton corrections – are subsumed into α′-corrections, and so first arise only at order

α′3. In particular, there are no gs-corrections that are tree-level in α′.

The relevance of this is that all gs-corrections are suppressed by factors of volume, and so

provided the extra-dimensional volume is also large, the classical metric of (2.1) remains

an accurate description of the dilaton-axion moduli space even at large values of the string

coupling (for example, see [38]).

Naively, as we enter the region gs > 1 the axion decay constant becomes trans-Planckian.

However, this is not really true, as the moduli space of the dilaton-axion multiplet S is con-

trolled by the SL(2,Z) symmetry, generated not only by the axionic shift symmetry S ≡ S+1

but also by S ≡ −1/S. The discrete SL(2,Z) symmetry restricts the fundamental region of

the dilaton-axion system as shown in Figure 1. While without the action of SL(2,Z), the

axionic decay constant would indeed grow indefinitely, we see that this conventional inter-

pretation can only be sustained until we reach Im(S) = 1. Below this, the axionic ‘path’ can

be reinterpreted as simply a different route within the fundamental region. The truncation

to the fundamental region then provides a maximal value for the axion decay constant of

2πfa = MP√
2

.

We note that it is the intrinsically stringy physics of the SL(2,Z) duality group that is

responsible for cutting off the moduli space here, and thereby capping the axion decay
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Figure 1: Fundamental domain under the discrete SL(2,Z) of the dilaton-axion system.

constant. We also note that this is despite the fact that the effective action remains good

down to arbitrarily small values of Im(S), even though formally gs � 1 in this region.

This example is hopefully familiar, but its key elements will recur later. These elements are

the presence of an axionic field in the 4-d effective theory, that in the classical limit of large

volume and weak coupling has a highly sub-Planckian decay constant. As we move into

the ‘stringy’ regime of moduli space, the decay constant grows towards a Planckian value,

and would classically become trans-Planckian. However intrinsically stringy physics, and in

particular duality groups that restrict the moduli space to a fundamental region, caps the

field range at a finite maximum value close to the Planck scale.

3. One Parameter models

We now move onto examples of Calabi-Yau manifolds with one Kähler modulus for which

the exact prepotential has been calculated in the literature.

We study here type IIA string theory compactified on a Calabi-Yau 3-fold. In this case,

the Kähler moduli fall into vector multiplets and the complex structure moduli into hyper-

multiplets (in type IIB compactifications, it is the complex structure moduli that fall into

vector multiplets while the Kähler moduli belong in hypermultiplets). For both type IIA

and type IIB cases the dilaton falls in a hypermultiplet.
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As is well known, the product nature of N = 2 supersymmetry implies that the hyper-

multiplet and vector multiplet moduli spaces form a direct product. In particular, while

the type IIA Kähler moduli space receives α′-corrections, there are no gs-corrections. Fur-

thermore, the form of these corrections can be determined via mirror symmetry techniques,

allowing the structure of the IIA Kähler moduli space to be solved – even at large gs – at

strong coupling in the α′ expansion.

In classical type IIA compactifications, the Kähler moduli correspond to the volumes of 2-

cycles, with their axionic parts corresponding to the reduction of the NS-NS 2-form B2 on

the cycle. At large volumes and weak coupling, these provide good examples of axions. As

for the dilaton-axion system, we can determine the classical axion field range, and then using

the mirror symmetry computations we can follow the field range into small volumes.

In this section, we do this for a number of one-modulus Calabi-Yau manifolds, and thereby

study the axionic field range in strong coupling regions where calculational control is normally

inaccessible. We take the relevant data for these from a variety of both classic and more

recent papers on mirror symmetry.

3.1. The Quintic

The canonical example of mirror symmetry is the quintic. We compactify type IIA string

theory on the quintic hypersurface of CP4 with (h1,1, h2,1) = (1, 101) that is described by the

following degree five equation

p =
∑
i

x5
i − ψ5(x1, x2, x3, x4, x5) = 0 . (3.1)

As is well known, the Kähler moduli space on this manifold can be obtained from the classical

complex structure moduli space for ψ on the mirror manifold with (h1,1, h2,1) = (101, 1),

described by the equation

p =
∑
i

x5
i − ψx1x2x3x4x5 = 0 , (3.2)

and obtained from the original case by a quotient under the action of a discrete Z3
5 symmetry.

The resulting prepotential has been calculated in [39] and is given by2

F = −5

6
T 3 − 11

4
T 2 +

25

12
T +

χ(M)iζ(3)

2(2π)3
− 1

(2πi)3

∞∑
k=1

nk Li3(e2πikT ) , (3.3)

where T = a + it, the Euler number is χ(M) = −200 and the leading nk coefficients are

2A summary of our conventions is given in Appendix A.

7



given by:

k 1 2 3 4 5 6

nk 2875 609250 317206375 242467530000 229305888887625 248249742118022000
(3.4)

The classical (tree-level in α′) Kähler potential is

K = −3 ln
(
−i(T − T̄ )

)
+ constant. (3.5)

The axion periodicity a ≡ a+ 2πfa is set by

2πfa =

√
3

2

MP

t
,

where t is the volume of the 2-cycle measured in units of ls = 2π
√
α′, with the classical

Calabi-Yau volume (in the same units) given by V = (5/6)t3. As for the dilaton-axion

system, in the limit of large t the decay constant is clearly sub-Planckian, approaching

Planckian values as t tends towards 1. Our interest is in a controlled analysis of the decay

constant as t approaches 1.

The first correction term is the classical perturbative α′3-correction, which modifies the

Kähler potential to

K = − log

(
20

3

(
−i(T − T̄ )

2

)3

+
50ζ(3)

π3

)
. (3.6)

As shown in Figure 2, this has the effect of moderating the increase in the field range as t

reduces. We also show in Figure 2 the effect of including all instanton corrections to give

the full non-perturbative Kähler metric. Surprisingly, these have minimal effect on the field

range for any given value of 〈t〉.3 However, the instanton corrections do have a profound

effect on the maximum field range, but this is through modifying the structure of the moduli

space via the mirror map that describes the geometry of Kähler moduli space.

As described in detail in the classic paper [39], mirror symmetry ensures that the moduli

space of the Kähler modulus is equivalent to the moduli space of the complex structure

modulus on the mirror quintic. The Z5 quotient symmetry ensures that the moduli space of

the complex structure modulus U on the mirror quintic is the wedge of the complex plane

given by arg(U) ≤ 2π/5. The mirror map (given explicitly as equation (5.9) in [39]) describes

the map from U → T and shows how the fundamental U domain is mapped into Kähler

moduli space.

The upshot is that the fundamental region of Kähler moduli space is, in a manner analogous

to the dilaton-axion system, a rectangle coming down from infinite volume but capped at

3The reason is that the instanton corrections give sinusoidal corrections to the Kähler metric, so even

when the correction to the metric itself is large the correction to the integrated field range is small.
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Figure 2: Plot of the axion field range for the one-parameter quintic threefold without α′-

corrections (grey), for the full tree-level Kähler potential (blue), and including instanton

contributions up to order ten (dotted orange).

small volume. This is illustrated in Figure 3. The same physics is seen; there is a maximal,

approximately Planckian, value that the axion field range attains within the fundamental

domain (for the quintic this is 0.7 MP ). Beyond this, trajectories can be mapped back into

non-axionic trajectories within the fundamental domain.

3.2. More One-Parameter Models

Following the above example of the quintic, we also want to perform a similar analysis for

other one-parameter Calabi-Yaus for which mirror symmetry data on the mirror map is

available. For this purpose we use the Calabi-Yau manifolds described in first [40], then [41],

and finally [42, 43].

The first paper contains the following examples (including the quintic above)

Mk=5 =
{
xi ∈ P[1,1,1,1,1] | W0 = x5

0 + x5
1 + x5

2 + x5
3 + x5

4 = 0
}
,

M6 =
{
xi ∈ P[2,1,1,1,1] | W0 = 2x3

0 + x6
1 + x6

2 + x6
3 + x6

4 = 0
}
,

M8 =
{
xi ∈ P[4,1,1,1,1] | W0 = 4x2

0 + x8
1 + x8

2 + x8
3 + x8

4 = 0
}
,

M10 =
{
xi ∈ P[5,2,1,1,1] | W0 = 5x2

0 + 2x5
1 + x10

2 + x10
3 + x10

4 = 0
}
.

For these examples the prepotential takes the form

F = −y
6
T 3 +

1

2
κ2T

2 + κ1T + κ0 −
1

(2πi)3

∞∑
k,d=1

nk
e2πidkT

d3
, (3.7)
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Figure 3: Fundamental domain of the Kähler modulus of the quintic.

where the parameters for each model are given as follows:

y κ2 κ1 κ0

5 −11
2

25
12
−25iζ(3)

π3

3 −9
2

7
4
−51iζ(3)

2π3

2 −3 11
6
−37iζ(3)

π3

1 −1
2

17
12
−36iζ(3)

π3

(3.8)

In [40] the mirror map and duality symmetries are described in detail, in particular showing

how these restrict the Kähler moduli space to a fundamental region analogous to that already

described for the cases of SL(2,Z) and the quintic. As the behaviour is simpler to that of

the quintic, we do not show the precise plots (available in the journal version of [40]).

We instead list results, describing the maximal axion field range, the value of the Kähler

modulus when this is attained, and the classical volume this corresponds to.

Manifold Euler Number Field Range Cycle size/(2π
√
α′)2 Volume/(2π

√
α′)6

P[2,1,1,1,1] −204 0.6MP 1.4 1.37

P[4,1,1,1,1] −296 0.44MP 1.65 1.51

P[5,2,1,1,1] −288 0.35MP 2.05 1.44

(3.9)
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Label Hypersurface χ(X) y

1 X4,4 ⊂ P5
[1,1,2,1,1,2] -144 4

2 X6,6 ⊂ P5
[1,2,3,1,2,3] -120 1

3 X4,3 ⊂ P5
[2,1,1,1,1,1] -156 6

4 X6,2 ⊂ P5
[3,1,1,1,1,1] -256 4

5 X6,4 ⊂ P5
[3,2,2,1,1,1] -156 2

Table 1: List of one parameter models in [41].

As for the case of the quintic, the maximal field range corresponds to the smallest value of

t such that the entire axionic path a→ a+ 1 remains inside the fundamental region.

We now also consider the following CY’s with h1,1 = 1 described in [41]. In this case, the

instanton numbers are calculated in [41], but the details of the mirror map, duality groups

and fundamental regions are not presented.

In evaluating the maximal field range, we therefore assume a similar feature holds for these

examples as held for the above cases: that the boundary of the fundamental region can be

found by determining when the instanton sum causes the Kähler metric to diverge. Doing

this, we then find the following field ranges for the models listed:

Manifold Euler Number Field Range Cycle size/(2π
√
α′)2 Volume/(2π

√
α′)6

P[1,1,2,1,1,1] −144 0.76MP 1.18 1.09

P[1,2,3,1,2,3] −120 0.54MP 1.79 0.96

P[2,1,1,1,1,1] −156 0.84MP 1.05 1.16

P[3,1,1,1,1,1] −256 0.58MP 1.27 1.37

P[3,2,2,1,1,1] −156 0.57MP 1.51 1.15

(3.10)

In these examples, the precise physics that determines the maximal axionic field range in-

volves the rate of growth of the instanton sum, which determines the radius of convergence

of the large-t expressions (and thus implicitly the fundamental region of moduli space). The

α′3-corrections serves to moderate the growth in field range as we approach small radius.

The final examples are based on results in [42–44]. In comparison to the previous examples,

these have only a small number of geometric moduli.

These manifolds are obtained by modding out freely acting symmetries in a CICY, leading

to manifolds with h1,1 = 1 and h2,1 = {1, 3, 4, 5}, and so χ(M) = {0,−4,−6,−8}. The

large complex structure expansion breaks down at the closest conifold point which can be

identified from the Picard-Fuchs operator. Utilising the mirror map, we can identify the
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corresponding value for T.

Manifold χ y Field Range Cycle size/(2π
√
α′)2 Vol./(2π

√
α′)6

(1, 1) 0 4 2.81MP 0.45 0.06

(1, 3) −4 12 2.79MP 0.44 0.17

(1, 4) −6 18 3.25MP 0.33 0.11

(1, 5) −8 3 2.15MP 0.57 0.09

(3.11)

The combination of a small Euler number, a large triple intersection, and a slow growth

in instanton number allows convergence down to rather small radii. We find the maximal

field range in the (1,4) manifold at t = 0.33(2π
√
α′)2, equivalent to a classical volume of

0.11(2π
√
α′)6, leading to a field range of 3.25MP . Interestingly, we see that even in the case

of vanishing Euler number, the field range is bounded due to the presence of a conifold locus.

3.3. General Discussion

For a general one-parameter model, we can calculate the perturbative Kähler potential start-

ing from the prepotential

F = −1

6
yT 3 +

1

2
κ2T

2 + κ1T +
ζ(3)χ

2(2πi)3
, (3.12)

leading to the perturbative Kähler potential

K = − log

(
4 y t3

3
− χζ(3)

4π3

)
. (3.13)

As t decreases from infinity, the resulting field range is maximised at (assuming χ/y < 0)

tmax =

(
−21 + 9

√
5

32π3

χζ(3)

y

)1/3

. (3.14)

Numerically the Kähler metric and field range takes the value

KT T̄ (tmax) ≈ 2.60

(
− y
χ

)2/3

, 2πfa(tmax) ≈ 2.28

(
− y
χ

)1/3

MP . (3.15)

We see that these maximal values depend on two parameters, the Yukawa coupling y and the

Euler number of the Calabi-Yau χ. In particular one can achieve situations where tmax < 1

and the associated value of the Kähler metric KT T̄ > 1 and subsequently the axion field

range obeys 2πfa > MP .

This illustrates the reason why the final examples with only a few moduli produced the largest

field ranges; the combination of relatively large triple intersection numbers and relatively

small Euler numbers both work to increase the field range.
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This set of examples is supportive of the notion that string theory really does cap axion field

ranges at values around MP (and not, say, around 8πMP ). The physics operating here is

a set of duality transformation that restrict the fundamental region of moduli space such

that axion decay constants cannot grow in an unbounded fashion. Even for cases where the

instanton sum is absent (as for the dilaton/axion system), it is the presence of these duality

relations that enforce the presence of a fundamental region which caps the field range.

4. Two parameter models

Let us now discuss examples with two Kähler moduli for which the prepotential is known

in the literature. Before examining the individual examples, we would like to highlight the

differences to the one parameter case. Similarly, we can start with a general prepotential:

F = −1

6
yijkTiTjTk +

1

2
κijTiTj + κiTi +

ζ(3)χ

2(2πi)3
+
∑
β

nβ Li3(qβ) . (4.1)

From the prepotential we can calculate the Kähler potential and metric in general. In the

case of vanishing instanton contributions we can write the Kähler potential as

K = − log

(
4

3

(
y11t

3
1 + y12t

2
1t2 + y21t1t

2
2 + y22t

3
2

)
− χζ(3)

4π3

)
. (4.2)

How do such a non-trivial Kähler potential and metric affect the axion decay constants? To

see this, we need to diagonalise the kinetic terms. This leads to the following type of kinetic

terms

Lkin =
∑
i

λi∂µT̃i∂
µ ¯̃Ti. (4.3)

where λi denote the eigenvalues of the Kähler metric.

The notion of an axionic field range is not uniquely defined for multi-axion examples (there

are several good bases for the axion lattice, and including instanton effects the field range

for one axion depends on the vev of the other axions). As an illustrative measure, we shall

define the decay constants to be given by these eigenvalues of the Kähler metric

2πfi =
√

2λiMP . (4.4)

As in the one modulus case, the formula for the decay constants (4.4) is modified when

including the instanton contributions to

2πfi =

∫ 1

a1,a2=0

√
2λiMP dai . (4.5)

A more detailed motivation for this choice for the decay constants can be found in Ap-

pendix C.
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Figure 4: Eigenvalues of the Kähler metric for P4
(1,1,1,6,9)[18] derived from the prepotential

in (4.7) with no instanton contributions.

As the general eigenvalues are lengthy expressions without a clear structure, we present

some examples that have appeared in the literature and analyse the decay constants that

appear in this context. We shall discuss three examples in turn P4
(1,1,1,6,9)[18], P4

(1,1,2,2,2)[8],

and P4
(1,1,2,2,6)[12]. All of these examples are hypersurfaces in weighted projective spaces.

4.1. P4
(1,1,1,6,9)[18]

One of the canonical two moduli examples is the weighted projective space P4
(1,1,1,6,9)[18]

whose moduli space was presented and discussed in [45]. We are interested in type IIA string

theory on this manifold with Hodge numbers (2, 272) which is described by the following

degree 18 polynomial

p = x18
1 + x18

2 + x18
3 + x3

4 + x2
5 − 18ψx1x2x3x4x5 − 3φx6

1x
6
2x

6
3 . (4.6)

The prepotential is given by

F = −1

6

(
9T 3

1 + 9T 2
1 T2 + 3T1T

2
2

)
+

1

4

(
9T 2

1 + 3T1T2

)
+

17

4
T1+

3

2
T2−

135iζ(3)

4π3
+
∑
i,j

nij Li3
(
qi1q

j
2

)
,

(4.7)

where the first numbers associated to the instanton contributions can be found on page 44

of [45] and in Appendix B.

Figure 4 shows the eigenvalues of this Kähler metric. From the plot we get the impression

that it is possible to have large trans-Planckian decay constants in some regions of parameter

space. However, are these regions which are actually accessible?

In the case of the quintic one-parameter threefold, the large complex structure expansion is

valid up to the conifold point which is located at ψ = 1. Here, there are similar boundaries

located at special points in moduli space where the large complex structure expansion of the

14



Figure 5: Contour lines of |ψ| = const. for T1 (left) and T2 (right). T2 is fixed and T1 varies

by varying ψ. For small ψ (not shown here) the behaviour becomes non-trivial. There are

in principle three distinct solutions to φ3 = 1, however the contours remain the same for

sufficiently large values for |ψ|.

periods is no longer valid. In the case of P4
(1,1,1,6,9) they are located at

(ρ6 + φ)3 = 1 , φ3 = 1 , (4.8)

where ρ = (342)1/3ψ. As for the quintic, we can now find the corresponding values for T1,2

by utilising the mirror map and establish the boundary locus in this parametrisation. The

mirror map was provided in [45] and is summarised in Appendix B for completeness. Let us

discuss these two loci in turn.

For the hypersurface φ3 = 1, a sketch of the parameter space is shown in Figure 5. It shows

that by decreasing T2 towards the critical value T2 ≈ 1.50 + 0.46i we hit this special point

in moduli space. As in the one modulus case we cannot decrease the imaginary part of T2

below this point with this expansion of the periods. The large complex structure expansion

breaks down. For the locus (ρ6 + φ)3 = 1, the contour lines are shown in Figure 6 where we

find a similar behaviour as for the locus φ3 = 1 with the difference that T1 remains almost

constant (slightly decreasing with increasing |ψ|) at around T ≈ i whereas T2 is free to vary.

In analogy to the effect in the one-modulus case, the instanton contributions do not change

the results significantly. However, they do set the boundary of the large complex structure

expansion, which then restricts the decay constants significantly at small values for Ti.

Both conifold loci bound this moduli space at small values for Ti. In particular the regions

with large decay constants at large values for t2 and small values for t1 are excluded. The

15



Figure 6: Contour lines of |ψ| = const. for T1 (left) and T2 (right). T1 is fixed and T2 varies

by varying φ or ψ respectively.

maximal value of the decay constants (corresponding to the larger eigenvalue) is found to be

2πfmax = 0.71MP , (4.9)

where Im(T1) = 1.00 and Im(T2) = 4.24.

4.2. Further examples

The moduli space of the following two examples was presented and discussed in [45]. The

first Calabi-Yau manifold, with Hodge numbers (2, 86), is given as the following degree eight

polynomial in the weighted projective space P4
(1,1,2,2,2)

W = x8
1 + x8

2 + x4
3 + x4

4 + x4
5 − 8ψx1x2x3x4x5 − 2φx4

1x
4
2 . (4.10)

The non-vanishing Yukawa couplings are given by

y11 = 8 , y12 = 12 . (4.11)

The first instanton contributions are summarised in Appendix B. The loci where the large

complex structure expansion breaks down are given by

φ2 = 1 , 8ψ4 + φ = ±1 . (4.12)

The relevant details from the mirror map from [45] are summarised in Appendix B.
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The second example is a Calabi-Yau with Hodge numbers (2, 128) which is given as the

hypersurface in the weighted projective space P4
(1,1,2,2,6) with degree 12

W = x12
1 + x12

2 + x6
3 + x6

4 + x6
5 − 12ψx1x2x3x4x5 − 2φx6

1x
6
2 (4.13)

The non-vanishing Yukawa couplings are given by

y11 = 4 , y12 = 6 . (4.14)

The first instanton coefficients nij are given in Appendix B. The interesting points are

similar and correspond to φ2 = 1, 864ψ6 + φ = ±1. Details from the mirror map from [45]

are summarised in Appendix B.4

For both examples we run the analogous analysis as for P4
1,1,1,6,9[18], the corresponding Fig-

ures of the eigenvalues of the Kähler metric are similar. We find the following maximal decay

constants

fmax Im(T1) Im(T2)

P4
11222[8] 1.4MP 0.71 ∞

P4
11226[12] 0.99MP 1.015 ∞

(4.15)

We note that also large values for Im(T2) reproduce similar field ranges as the asymptotic

value.

We have seen that the general Kähler potential (4.2) can lead to large eigenvalues (i.e. sig-

nificantly trans-Planckian decay constants) before taking into account constraints on the

moduli space. These constraints, arising from the breakdown of the large complex structure

expansion (e.g. due to conifold loci in the CY moduli space), bound the decay constants to

be comparable to MP . Again the instanton sum is found to have a negligible effect in our

examples.

5. Connection to (field theory) models of inflation

In this article we have focused on the axion field range arising from the Kähler potential and

the associated eigenvalues of the Kähler metric without discussing the scalar potential. For

clarity, let us connect this discussion to field theory models of inflation which would precisely

exhibit this behaviour.

Throughout this section we make the simplifying assumption that the Kähler potential which

has been obtained in a context of N = 2 compactifications survives as the Kähler potential

upon breaking toN = 1 SUSY. In anN = 1 framework we can discuss how such a non-trivial

Kähler potential can lead to known models of axion inflation.

4Some useful details can also be found in [46].
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Taking the one modulus case with a kinetic term as discussed in Section 3, a potential of

the type

V = Λ4 (1− cos (φ)) (5.1)

leads to a setup with precisely the decay constants as discussed. The two axion setup can

be brought into the following form by appropriate field re-definitions

L = Kij(∂φi)(∂φj)− Λ4

2∑
i=1

(1− cos (φi)) . (5.2)

In this case the eigenvalues of the non-trivial Kähler potential set the axion decay constants.

The effect of axion decay constant alignment [2, 47] precisely occurs if one of the associated

eigenvalues of the kinetic mixing matrix becomes large (see [48] for a detailed discussion).

In our analysis of the two moduli case we precisely capture the possibility of this effect.

Note that from (5.2) there are other possibilities to generate decay constant alignment by

generating a non-trivial axion potential. This is always an additional possibility which is not

captured in our discussion.

However, the two potentials described above can be obtained by generating a potential

from (simple) non-perturbative effects (e.g. pure gaugino condensation), for instance with a

superpotential of the following type

W = W0 +
∑
i

Aie
−aiT . (5.3)

In particular, in the case of two moduli it is not required to arrange for very particular type

of non-perturbative effects to reach (trans-)Planckian decay constants.5 In other words,

simple, low-rank gaugino condensates would give rise to a setup with large field inflation if

the eigenvalue structure of the Kähler metric is appropriate.

Along similar lines one can envisage to compare with models that involve large number of

axion fields (e.g. [3, 51]). However, the analysis of Calabi-Yau manifolds with such a large

number of complex structure moduli is beyond the scope of this paper.

6. Conclusion

If there is a bound on axion field ranges in string theory, it will also hold in regions of strong

coupling or small radii. As presented in this article it is possible to use mirror symmetry

results to make a quantitative study of field ranges in the context of N = 2 Calabi-Yau

compactifications of type II string theory, even in such strong coupling regions.

5In general, there are additional mechanisms which can lead to decay constant alignment by considering

more sophisticated brane setups with large wrapping number and appropriate units of flux turned on (see

for instance [49]). Also, very special instanton configurations can lead to alignment in field theory [50]. This

could in principle generate alignment via the superpotential.
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The largest field ranges we have found so far is 3.25 MP (one modulus CY) and 1.4 MP (two

moduli CY), and it is worth noting that our results do suggest that it is around MP (and

not for example 16πMP ) that the critical value for field ranges lie. However our exploration

of Calabi-Yau geometries is very limited at this stage. It would be very intriguing to analyse

large classes of the (available) Calabi-Yau manifolds to test for the possibility of large axion

decay constants. The steps for this analysis are clear and involve the information that was

used in the previous sections: the large complex structure prepotential (in particular the tree-

level Yukawa couplings) and the singularity structure (i.e. to know the range of validity of

the large complex structure regime). As the tree-level Yukawa couplings are related to triple

intersection numbers on the respective mirror manifold, it is clear that any upper bound

on intersection numbers would influence the bound on the possible axion decay constants.

Together with a general argument on the appearance of singularities in moduli space that

shield off regions corresponding to large decay constants, a ‘bound’ along the lines of our

analysis can be established.

We have found that the higher order instanton corrections have a negligible effect in our

examples which is in accordance of the recent work [52, 53]. The effect that is capping the

field range are duality symmetries which are of clear string theory origin.

It would also be interesting to see how this approach can be applied in the context of F-

theory where open string moduli become part of complex structure moduli and to which

extent the results on the possible field range can be extended to situations with open string

moduli as well. We hope to return to some of these questions in the future.
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A. Conventions

In this Appendix we summarise our conventions, in particular for the periods and the asso-

ciated metric around the large complex structure limit.

The underlying Kähler potential for the IIB complex structure moduli (IIA Kähler moduli)

is given by

K = − log
(
−i Π†.Σ.Π

)
, (A.1)
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where

Σ =

(
0 1

−1 0

)
. (A.2)

The period vector Π around the large complex structure limit is given by

Π =


1

T i

2F − T i∂iF
Fi

 , (A.3)

where F is the prepotential. Around the large complex structure point, it can be written in

the following form

F = −1

6
yijkT

iT jT k +
1

2
κijT

iT j + κiT
i +

ζ(3)χ

2(2πi)3
+
∑
β

nβLi3(qβ) , (A.4)

where qj = e2πiT j
and the β denotes an appropriate multi-index. We are interested in the

Kähler metric

Kij̄ =
∂2K

∂T i∂T̄ j̄
. (A.5)

The large complex structure limit is defined by the existence of an exact shift symmetry for

every complex structure modulus Ti = ai + iti

Ti → Ti + 1 . (A.6)

B. Period details

Here we summarise the technical details of the two moduli geometries discussed in the main

text. All of them have appeared beforehand and are only listed for completeness.

B.1. P4
(1,1,1,6,9)[18]

The first instanton numbers are given by

j \ k 0 1 2 3 4 5

0 3 −6 27 −192 1695

1 540 −1080 2700 −17280 154440

2 540 143370 −574560 5051970

3 540 204071184 74810520

4 540 21772947555

5 540

(B.1)
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In the large complex structure regime, the mirror map is given by

2πiT 1 = −πi− log

(
(18ψ)6

3φ

)
+

1

$0

∞∑
k=0

(−3)k(6k)!

k!(2k)!(3k)!(18ψ)6k
[AkUk(φ) + Yk(φ) +Nk(φ)]

2πiT 2 = −3πi− log (3φ)3 − 3

$0

∞∑
k=0

(−3)k(6k)!

k!(2k)!(3k)!(18ψ)6k
Nk(φ) (B.2)

where we used the following auxiliary functions

$0 =
∞∑
k=0

(6k)!(−3)k

k!(2k)!(3k)!(18ψ)6k
Uk(φ) (B.3)

Ak = 6Ψ(6k + 1)− 3Ψ(3k + 1)− 2Ψ(2k + 1)−Ψ(k + 1)

Uk(φ) = φk
[k/3]∑
n=0

(−1)nk!

(n!)3Γ(k − 3n+ 1)(3φ)3n

Yk(φ) = φkk!

[k/3]∑
n=0

(−1)n

(n!)3(k − 3n)!(3φ)3n
(Ψ(1 + k)−Ψ(1 + n))

Nk(φ) = φkk!

[k/3]∑
n=0

(−1)n [Ψ(n+ 1)−Ψ(k − 3n+ 1)]

(n!)3(k − 3n)!(3φ)3n
+

∞∑
[k/3]+1

(−1)k+1(3n− k − 1)!

(n!)3(3φ)3n


B.2. P4

(1,1,2,2,2)[8]

The instanton numbers are given by

j \ k 0 1 2 3

1 0 0 0 0

2 0 0 0 0

3 −1280 2560 2560 −1280

4 −317864 1047280 15948240 1047280

5 −36571904 224877056 12229001216 12229001216

6 −3478899872 36389051520 4954131766464 13714937870784

(B.4)

The mirror map is given by

2iπT1 = iπ − logZ1 −
∞∑
n=1

(2n− 1)!

(n!)2
Z−n2

+
1

2$0

∞∑
n=1

(4n)!(−1)n

(n!)4
Z−n1 [2Anûn(Z2) + 2ĥn(Z2) + f̂n(Z2)] ,

2iπT2 = − logZ2 + 2
∞∑
n=1

(2n− 1)!

(n!)2
Z−n2 − 1

$0

∞∑
n=1

(4n)!(−1)n

(n!)4
Z−n1 f̂n(Z2) , (B.5)
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where

Z1 =
(8ψ)4

2φ
, Z2 = (2φ)2 ,

An = 4[Ψ(4n+ 1)−Ψ(n+ 1)] ,

$0(φ, ψ) =
∞∑
n=0

(4n)!(−1)n

(n!)4(8ψ)4n
un(φ) ,

ûn =
un

(2φ)n
,

ĥn =
hn

2(2φ)n
,

f̂n = −
√
φ2 − 1fn
(2φ)n

, (B.6)

where the expansion for the fundamental period is valid for |(φ±1)/(8ψ4)| < 1. The remaining

auxiliary functions can be calculated using the following recursion relations:

nun = 2(2n− 1)φun−1 − 4(n− 1)(φ2 − 1)un−2 , u0 = 1, t1 = 2φ

nfn = 2(2n− 1)φfn−1 − 4(n− 1)(φ2 − 1)fn−2 , f0 = 0, f1 = 4

ngn = 2(2n− 1)φgn−1 − 4(n− 1)(φ2 − 1)gn−2

−2un + 8φun−1 − 8(φ2 − 1)un−2 , g0 = 0, g1 = 0

hn = φfn + gn . (B.7)

B.3. P4
(1,1,2,2,6)[12]

The instanton numbers are

j \ k 0 1 2

0 0 2 0

1 2496 2496 0

2 223752 1941264 223752

3 38637504 1327392512 1327392512

4 9100224984 861202986072 2859010142112

(B.8)

The fundamental period in the large complex structure regime is given by

$0 =
∞∑
n=0

(6n)!(−1)n

(n!)3(3n)!(12ψ)6n
un(φ) ,

∣∣∣∣ φ± 1

864ψ6

∣∣∣∣ < 1 (B.9)

where un is the same function as above in (B.7).
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In the regime where the large complex structure expansions of the periods is valid, the mirror

map is given by

2iπT 1 = iπ − log Y1

−
∞∑
n=1

(2n− 1)!

(n!)2
Y −n2 +

1

2$0

∞∑
n=1

(6n)!(−1)n

(n!)3(3n)!
Y −n1

(
2Bnûn(Y2) + 2ĥn(Y2) + f̂n(Y2)

)
,

2iπT 2 = − log Y2 + 2
∞∑
n=1

(2n− 1)!

(n!)2
Y −n2 − 1

$0

∞∑
n=1

(6n)!(−1)n

(n!)3(3n)!
Y −n1 f̂n(Y2) , (B.10)

where besides the fundamental period the following auxiliary functions were used:

Y1 =
(12ψ)6

2φ
, (B.11)

Y2 = (2φ)2 ,

Bn = 6Ψ(6n+ 1)− 3Ψ(3n+ 1)− 3Ψ(n+ 1) ,

un = (2φ)nûn ,

hn = 2(2φ)nĥn ,

fn = − (2φ)n√
φ2 − 1

f̂n .

C. Decay constants in the multi-moduli setup

To understand the decay constants in the multi-moduli case, let us start with the one modulus

case which can be described by the following Lagrangian

L = f 2
a∂µφ∂

µφ̄− Λ4(1− cos (2παφ)) . (C.1)

By going to canonical kinetic terms (φ̂ = faφ) the Lagrangian becomes

L = ∂µφ̂∂
µ ¯̂
φ− Λ4

[
1− cos

(
2παφ̂

fa

)]
. (C.2)

In the main text, we have not specified the potential but restricted ourselves to the situation

where α = 1 as the potential then obeys the shift symmetry φ→ φ+ 1. The physical fields

then have a shift symmetry φ̂ → φ̂ + fa. The quadratic term of this field expanded around

the origin is

4π2Λ4 φ̂
2

f 2
a

. (C.3)

In the two (multi) moduli case, we proceed similarly, by demanding a shift symmetry of the

potential φi → φi + 1. A canonical example would be

L = Kij̄∂µφ∂
µφ̄− Λ4

∑
i

(1− cos (2πφi)) . (C.4)
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Figure 7: Left: Fundamental domain in the original coordinates. We have a shift symmetry

φ→ φ+1. Middle: After diagonalising the kinetic terms, the fundamental domain is rotated.

We denote the rotation angle by ω. Right: Going to canonical kinetic terms, the physical

area of the fundamental domain is given by
√
λ1λ2. The fundamental domain becomes a

parallelogram.

What is the shift symmetry for the physical fields? We first rotate to a basis where the

kinetic terms are diagonal

φ̃i = Rijφj , (C.5)

where Rij ∈ SO(2) and is given by the normalised eigenvectors of the Kähler metric.

L = λi|∂φ̃i|2 − Λ4
∑
i

[
1− cos

(
2πRT

ijφ̃j

)]
, (C.6)

where λi are the eigenvalues of the Kähler metric. The shift symmetry is illustrated in

Figure 7. In the second step we re-scale the kinetic terms such that they become canonical

φ̂i =
√
λiφ̃i. This the analogous step to the transformation in the one-modulus case. The

Lagrangian becomes

L = |∂φ̂i|2 − Λ4
∑
i

[
1− cos

(
2πRT

ij

φ̂j√
λj

)]
. (C.7)

The mass term is diagonal and is given by

4π2Λ4

(
φ̂2

1

λ1

+
φ̂2

2

λ2

)
. (C.8)

This term is in complete analogy to the mass term in the one modulus case (C.3). This is

the situation of two axions with decay constants
√
λ1 and

√
λ2 respectively.
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