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Optical conductivity of the Hubbard chain away from half filling
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We consider the optical conductivity o1(w) in the metallic phase of the one-dimensional Hubbard
model. Our results focus on the vicinity of half filling and the frequency regime around the optical
gap in the Mott insulating phase. By means of a density-matrix renormalization group implemen-
tation of the correction-vector approach, o1(w) is computed for a range of interaction strengths
and dopings. We identify an energy scale E,p¢ above which the optical conductivity shows a rapid
increase. We then use a mobile impurity model in combination with exact results to determine the
behavior of o1(w) for frequencies just above Eqpy which is in agreement with our numerical data.

As a main result, we find that this onset behavior is not described by a power law.

I. INTRODUCTION

The Mott metal-insulator transition is a paradigm for
the importance of electron-electron interactions in cor-
related many-particle systems. It occurs in a range of
materials and has attracted much attention over the last
fifty years.!? While the mechanism that drives the transi-
tion is well understood, some of the dynamical properties
relating to Mott physics remain to be fully explored. A
characteristic feature of the Mott phase is the interaction-
induced formation of an excitation gap.2 This gap is visi-
ble in various dynamical correlation functions such as the
real part o1(w) of the optical conductivity

m J w
o1(w) = —%, (1)
x7(w) = —§ OOO dt e“H(GS|[J(t), J(0)]|GS).  (2)

Here J =5 ; Jj is the current operator
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The Mott gap disappears upon doping, and an interesting
question is what o1 (w) looks like in the metallic phase
close to the Mott transition. Here we investigate this
issue in one spatial dimension for the archetypal example
of the Mott transition, the Hubbard model®

H=-t) [C§+1,o%a + C;}UCHLU] +UD nyam;
i j
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Here, ¢; , annihilates a fermion with spin o =1, at site

Jiny . = c;’gcj,o is the number operator, ¢ is the hopping

parameter which is set to t = 1 in our calculations, u is
the chemical potential, and U > 0 is the strength of the
on-site repulsion.

At zero temperature and half filling the optical conduc-
tivity has been comprehensively analyzed by both ana-
lytic and numerical methods:* 7 the system is insulating
and there is an optical gap® at w = 2A, i.e., twice the
Mott-Hubbard gap, below which the optical conductivity
vanishes. Immediately above this gap, o1(w) exhibits a
square-root increase. In contrast, much less is known re-
garding the optical conductivity away from half filling. In
the thermodynamic limit, the optical conductivity con-
sists of a delta peak at zero frequency, the Drude peak,
and a so-called regular or incoherent part

o1(w > 0) = Dd(w) + o™ (w). (5)

The low-frequency behavior has been studied using meth-
ods based on Luttinger liquid theory,” ' which predict
a universal w® behavior of 678 (w) at 0 < w < t. More-
over, in the case of one doped hole at strong coupling
(U > 1), an w?/? dependence at small frequency and
spectral weight in the region 0 < w < 4t have been
reported.'?. However, it is clear on general grounds
that at low dopings, i.e.1 —n < 1, only a minute frac-
tion of the total spectral weight in oq(w) will be as-
sociated with features at frequencies below the optical
gap 2A at half filling. One expects there to be a char-
acteristic “pseudogap” energy scale E,p¢ above which
01(w) will increase and exhibit a similar behavior to the
one seen at half filling. The low-intensity features be-
low E,pt involve only excitations comprising of holon-
antiholon pairs. The scale E,p¢ has been identified in a
work by Carmelo et al.'® and is obtained from the Bethe
ansatz solution of the one-dimensional Hubbard model.?
In Fig. 1 we present results for Fop as a function of the
band filling for several values of U.
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FIG. 1. (Color online) Bethe ansatz results for theoretical
“pseudogap” onset value!® 14 Fopt as a function of U and n.

In Ref. 13 it was conjectured that the optical conduc-
tivity increases in a power-law fashion above Eqp

01(w) ~ (@ = Bopt) ©(w — Eopt) - (6)

In the following we investigate the behavior of the optical
conductivity for small dopings, paying particular atten-
tion to its behavior above the pseudogap. Our analysis
is based on a combination of density-matrix renormaliza-
tion group (DMRG) computations'® and results obtained
by employing a mobile impurity model description!416-21
augmented by exact Bethe Ansatz calculations.

The paper is organized as follows. We briefly review
the DMRG-based correction-vector approach in Sec. II
and present our numerical results in Sec. III. The fre-
quency dependence of oi(w) above Eqp is also deter-
mined by means of a mobile impurity model (MIM) in
combination with exact results in Sec. IV. Section V pro-
vides a comparison of our DMRG and MIM calculations,
which shows that the onset behavior directly above Fop
is not described by a power law. Finally, our conclusions
are summarized in Sec. VI.

II. NUMERICAL METHOD.

We use a matrix product state (MPS)*?3 imple-
mentation of the correction-vector approach,?* which is
an extension of the DMRG to compute spectral func-
tions. There exist several variants of this correction-
vector approach?®~27 such as DDMRG.? We can recast
Eq. (1) as

2

01> 0) =~ lim, S—L Im Gy(w>0,7), (7)

where

1
+in— (H — Egs)

Gy(w,n) = (GS|J! 5 JIGS).  (8)

Here Egg is the ground-state energy. The correction
vector is defined by

1

J|GS), 9)

and can be obtained as the solution [¢) of the linear
system

(Egs +w+in— H)jy) = J|GS). (10)

Here the basic idea is to variationally determine the cor-
rection vector associated with G j(w,n) at the frequency
of interest within the ansatz class of MPS. We solve this
set of equations directly by local updates of the MPS |4))
(see Ref. 28 for details). Sweeping through the chain in a
DMRG-like fashion until convergence is reached, a local
non-Hermitian system of equations is solved at each site
by the generalized minimal residual (GMRES) method.2°
The dynamical correlation function can be evaluated as
the overlap G j(w,n) = (GS|JT|¢s(w,n)). Note that the
correction vector needs to be computed separately for
each frequency w. Importantly, the method gives intrin-
sically broadened results with a Lorentzian line shape of
width n > 0, which is crucial for Eq. (10) to be well-
conditioned. The correction-vector calculations are per-
formed for chains of up to L = 84 sites and open bound-
ary conditions (OBCs). Finite-size effects cause the spec-
tral weight of the Drude peak to be redistributed to fi-
nite frequencies above the lowest energy scale ~ 1/L.3°
By considering sufficiently large U, these effects are well-
separated from the onset at the edge of the “pseudo-
gap”. To obtain accurate results, we exploit the SU(2)
symmetry?® of the Hamiltonian (4) and keep m = 1300
DMRG states for ground-state calculations. For the dy-
namics, m = 500 states were retained for the correction-
vector approach at a filling of n = 1 and at n < 1,
m = 600.

III. RESULTS FOR THE ABSORPTION BAND.

A well-defined absorption band above E,p is only
observed for sufficiently large values of the repulsion
U. Moreover, far from half filling, e.g. at quarter-filling
(n =1/2), almost all of the intensity is contained in the
Drude peak.3! Therefore, the DMRG results for o (w) in
Fig. 2 are obtained for U = 6 and 16 and a filling fac-
tor not smaller than n = 2/3. Finite-size and boundary
condition effects are dominated by the intrinsic broad-
ening introduced due to n = 0.2. Ounly the n = 2/3
curve in the upper panel of Fig. 2 displays a slight in-
crease towards small frequencies. This increase is mainly
a consequence of the Drude peak appearing at finite fre-
quencies for OBCs?? and the growing Drude weight for a
fixed value of U with increasing doping. Moreover, it is
observed that for a given U the integrated spectral weight
below the regular part decreases with increasing doping.
This is in qualitative agreement with exact results for the



relative weight of Drude peak with respect to the total
intensity for an infinite system.?! In the thermodynamic
limit, the Drude peak vanishes at half filling; this trans-
fer of spectral weight to finite frequencies as a function
of n is very sharp for small and extremely large U and
can be understood in terms of umklapp processes.?! The
two spectra at half filling (n = 1) shown in Fig. 2 are in
agreement with the U dependence of the Mott-Hubbard
gap A.? With decreasing filling n, the frequency at which
o1(w) becomes sizable for a given U increases compared
to 2A. The rapid increase of the DMRG results above
this frequency agrees well with existing results for Eypg,"
which are marked by arrows in Fig. 2. The broadened
spectra also suggest that the onset at the lower thresh-
old becomes softer for decreasing filling and the upper
band edge does not vary significantly for different fill-
ings. This softening can be understood in terms of the
mobile impurity approach discussed below. The results
in Fig. 2 confirm the expectation that the optical spectra
become more symmetric for higher values of U.%'3 The

0.30

0.10 ¢

0.05 |

0.00
2

0.09

0.08 |
0.07 ¢
0.06 |
/3“0.05 r
=
© 0.04
0.03 |
0.02 |

0.01 |

0.00

12 14 16 18 20 22
w

FIG. 2. (Color online) DMRG results for the regular part of
the optical conductivity show a well-defined absorption band
for various fillings n and a Lorentzian broadening of n = 0.2.
The data are obtained for a chain of L = 60 and OBCs.
(Upper panel) U = 6. (Lower panel) U = 16. The arrows
mark the results for Eop¢ determined by Bethe ansatz. Note
that the w-axis starts at different frequencies in both panels.
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FIG. 3. (Color online) DMRG results with an intrinsic

Lorentzian broadening of n = 0.2 are compared to the corre-
sponding deconvolved data. (Upper panel) U = 20, n = 7/8,
and L = 80. (Lower panel) U = 10, n = 5/6, and L = 84.

small peak in the middle of the absorption band is very
similar to the one previously observed at half filling,*
and has its origin in the large density of states for exci-
tations between parallel bands. Its existence is evident
for U = 16 and it can still be observed as a weak feature
for U = 6. For U = 16 the small peak is found to persist
at least down to n = 5/6.

In order to compare our DMRG results to the predic-
tion of the mobile impurity model (MIM) presented in
the next section, it is necessary to remove the intrinsic
Lorentzian broadening of the DMRG data. This a nu-
merically ill-conditioned problem, but in practice the fol-
lowing procedure was found to work reliably. The initial
correction-vector results are obtained on a grid of fre-
quencies separated by Aw = 0.1. We use rational func-
tions to both interpolate and extrapolate this data.3? The
resulting continuous function is then deconvolved using
the Richardson-Lucy algorithm.?3:3* Comparisons of the
inherently broadened DMRG results and the deconvolved
data are presented in Fig. 3, where the onset behavior is
smooth, but small artefacts can be seen at higher fre-
quencies.



IV. MOBILE IMPURITY MODEL (MIM).

While the low-energy sector of the Hubbard model is
described by a spin-charge separated Luttinger liquid
(LL), the calculation of finite-frequency properties re-
quires a careful treatment of perturbations. Perturbation
theory in some of these irrelevant operators exhibits in-
frared singularities, which lead to strong deviations from
LL behavior. Crucially, in the vicinity of thresholds for
simple excitations the problem can be mapped to that of
a high-energy mobile impurity coupled to a LL.'%17 The
parameters of this MIM can be completely determined
by using exact results obtained in the framework of the
Bethe ansatz solution.'® The appropriate model for the
optical conductivity at frequencies just above E,p, can be
cast in the form H = [ dz[Hr1, +Himp + Hint|, where!®20

Vo, * *2
ML= Y MW{QK,@?é) +2K@Qﬁ@a)],

Hi = B_*<> 20 - 520022 Bo)

Hine = B (2) B(2) [faO205(2) + faOoi(@)] . (11)
|

,72
l(wNEopt)N*/ dp Fc

Here the Luttinger liquid part Hpy describes the low-
energy spin and charge collective modes, whereas Himp
is the Hamiltonian of a high-energy “impurity” with
quadratically decreasing dispersion €(p) around zero mo-
mentum. Finally H;,; describes the interaction of the
impurity with the low-energy degrees of freedom. The
parameters ve s, Kcs, fes, fgs and €(q) in (11) can be
determined from the Bethe ansatz solution.' The phys-
ical content of the model (11) is as follows. Excitations
at frequencies just above F,,; consist of a single high-
energy bound state (k-A string®) and a number of low-
energy excitations.!®> Assuming the bound state to be a
point-like object and retaining only the most relevant in-
teractions in Hiys then leads to the model (11). The cur-
rent operator (3) can be projected on the MIM degrees
of freedom!4

. o+
J; — (0,B(z)) e"1©:@)/V2 gipy () +... 12
i = ( (2)) NG (12)

The calculation of the current-current correlation func-
tion, and thus the optical conductivity in the framework
of the MIM (11), then proceeds along standard lines'®
and results in an expression of the form

(14 9) [ G5y () + G5y 2(w,9) | = 29G54 40 (w:D))

+1/ K” b [ G g1 (@0) = G ia (w,0)| +P2CE (w,0) +92C5 (w,p) | (13)

where
(2m)?0(we(|p)) (we(=p)) "~ (we(p)* !
Frale?) D(3)0(0) 2uc) 70 |
(14)
~ )2 W 2y—1 1 B
Gi(w,p) = (F22 ()’y)( (ngz)vz)w @(Ws(P))/O dss™ !
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Here we have defined w, (p) = w — &(p) — vap and A is a
cutoff. The parameter « is shown in Fig. 4 as a function
of band filling for several values of U. The result (13)
applies in an a priori unknown frequency window above
Eopt. This energy window shrinks to zero as we approach
half filling n — 1, and the behavior of (13) is in fact very
different from the square-root increase seen at half filling.
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FIG. 4. (Color online) Parameter «y as a function of U and n.

V. BEHAVIOR OF 0,(w) ABOVE THE
CROSS-OVER SCALE E,y;

Focusing on frequencies in the vicinity of Ep in Fig. 3,
we observe that the deconvolved DMRG data exhibits a
smooth and slow increase. This behavior can be directly
compared to the results obtained from the MIM. In the
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FIG. 5. (Color online) Comparison of theoretical predictions
from a mobile impurity model with numerical results from
DMRG.

latter we adjust the overall amplitude C allowing for a
small, constant contribution attributed to excitations in-
volving only holons and antiholons which give rise to
the Drude peak at zero frequency, but are expected to
make up only a small fraction of the spectral weight at
w ~ Eqpy. We furthermore adapt the cut-off A, although
the results depend only weakly on it. The comparison
in Fig. 5 shows that the MIM results are consistent with
the deconvolved DMRG data. Moreover, the increase in
o1(w) above E,pt is not described by a power law. On
a technical level this can be traced back to the fact that
the mobile impurity sits at a maximum of its dispersion

relation. The results obtained by means of the MIM are
very different from the power-law increase (6) predicted
in Ref. 13. In particular the exponent ¢ predicted in this
previous work becomes less than one for U > 4, which is
not consistent with our deconvolved DMRG data.

VI. CONCLUSIONS.

We have studied the real part o; (w) of the zero temper-
ature optical conductivity in the one-dimensional Hub-
bard model in the metallic phase close to half filling. At
half filling n = 1, it is known that o1 (w) vanishes below
twice the Mott gap, and then increases in a character-
istic square-root fashion.? Doping away from half filling
induces a Drude peak at zero frequency, the weight of
which scales with 1 — n. Here we have focused on fre-
quency scales close to the optical gap at half filling, and
investigated how o7 (w) gets modified upon doping holes
into the system. In our DMRG calculations, we have
observed a rapid increase above a cross-over scale Fgyt,
and analyzed this behavior in the framework of a mobile
impurity model. The results obtained by this method
were found to be in agreement with our DMRG data.
Therefore, the increase of o1(w) for frequencies above
the pseudogap Eypt, in which only small-amplitude exci-
ations comprising of holon-antiholon pairs are present, is
not described by a power law.
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