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Abstract

Gauge mediation predicts 10 TeV or heavier squarks because such a heavy stop is required

to explain the observed 125 GeV Higgs boson mass without a large trilinear soft mass term in

the minimal supersymmetric standard model. Although such a high scale cannot be searched

by the LHC directly, gauge mediation also predicts a hierarchy µ2 � Bµ by a simple and

naive solution of the µ problem. We point out that this simple and naive way of generating

µ (Bµ) term works in the case of 10 TeV or heavier squarks with a slight breaking of a GUT

relation among messenger B-terms (or supersymmetric mass terms). Furthermore, the upper

bound on the Higgsino mass is obtained from the observed Higgs boson mass, perturbativity

of a relevant coupling, and conditions avoiding tachyonic sneutrinos and stop. It turns out

that the light Higgsino of O(100) GeV is a promising signal of gauge mediation.

ar
X

iv
:1

60
1.

00
65

2v
1 

 [
he

p-
ph

] 
 4

 J
an

 2
01

6



1 Introduction

LHC experiments search the physics beyond the standard model (SM) and one of the promis-

ing candidates is supersymmetry (SUSY), which can solve the hierarchy problem. Theory with

gauge mediated SUSY breaking [1, 2, 3] is an interesting scenario because it can naturally

suppress dangerous flavor changing neutral currents.

One of the generic feature of gauge mediation is small trilinear A terms. The stop radiative

corrections to the lightest Higgs boson mass [4] is, however, maximized if the A term is as

large as the stop masses. If the A term is much smaller than stop masses, relatively large stop

masses are required to explain the observed Higgs boson mass. Therefore, in gauge mediation,

the observed 125 GeV Higgs boson predicts relatively large squark masses, e.g. mq̃ ∼ 10 TeV

with tan β ∼ 10 (mq̃ ∼ 103 TeV with tan β ∼ 2).

This prediction will drastically change the difficulty to solve the µ-Bµ problem. The µ

problem can be solved by considering a mechanism of the generating µ term from the SUSY

breaking. Such a mechanism, however, usually provides also very large Bµ term, µ2 � Bµ,

in gauge mediation. This is called as µ-Bµ problem [5, 6]: The µ2 � Bµ ∼ m2
q̃ spectrum is

required in order to achieve the electroweak symmetry breaking (EWSB), while such a very

light Higgsino have already excluded if mq̃ ∼ O(1) TeV. However, once we suppose such a

relatively high SUSY scale, mq̃ ∼ 10 TeV, even the light Higgsino mass can be O(100) GeV

and has not been excluded. Thus, this hierarchical relation, µ2 � Bµ, may be no longer a

problem and will be a prediction of the light Higgsino.1

In this paper, we investigate the phenomenology expected from such a simple solution of

the µ-Bµ problem. In particular, we have interested in mq̃ ∼ 10 TeV region rather than a

region of 103 TeV or heavier squarks because the naturalness of achieving the correct EWSB

is much better than that region.

We point out that such a simple and naive µ-Bµ solution works considering a slight break-

ing of a grand unified theory (GUT) relation in messenger sector.2 The doublet/triplet split-

ting can provide such a small µ term by a cancellation in Higgs soft masses through radiative

corrections. This focusing effect [8, 9, 10] is compatible with the hierarchical spectra of the

simple µ-Bµ solution, µ2 � Bµ ∼ m2
q̃ ∼ (10 TeV)2 with tan β ∼ 10.

We also suggest that the size of µ is bounded from above. Taking into account the

perturbativity up to the GUT scale and avoiding tachyonic sneutrinos and stop, we show that

1 In Ref. [7], it have been suggested that the µ-Bµ problem is solved simply in mini-split SUSY spectra
with stop mass & 100 TeV.

2 Actually, such spectra, µ2 � Bµ ∼ m2
q̃ ∼ (10 TeV)2 with tanβ ∼ 10, are not consistent with the

EWSB conditions in the minimal messenger model. Remember that the next-to-lightest SUSY particle is not
Higgsino but either bino or stau in this case.
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the light Higgsino of O(100) GeV is a promising signal in gauge mediation.

2 Generating µ term and light Higgsino prediction

To address the µ problem, we assume that the µ term is initially forbidden in the superpo-

tential due to a symmetry, then it is generated by SUSY breaking. It can be realized if the

Higgs superfields are coupled with the messenger sector in gauge mediation.

As a simple and concrete model, we consider the following superpotential which includes

Higgs-messenger couplings,

W = −ξZZ + (Mmess + kZ)ΨΨ̄,

+ λuHuΨ̄LN̄ + λdΨLHdN +MNNN̄, (2.1)

where Ψ (Ψ̄) is the messenger superfield transforming 5 (5̄) in SU(5) GUT gauge group

and can be decomposed as Ψ = ΨL + ΨD (Ψ̄ = Ψ̄L + Ψ̄D). The mass parameters, Mmess

and MN , are R-symmetry breaking parameters with R-charge 2 and we assume their origin

are the same, then Mmess ∼ MN . The breaking of R-symmetry is essential to generate

non-vanishing gaugino masses. From interactions in the first and second line of Eq.(2.1),

R-charges of Hu and Hd are fixed as Q(Hu) + Q(Hd) = 4, which forbids the bare µ-term.

It is assumed that k 〈Z〉 � Mmess which is ensured by e.g. K = −|Z|4/M2
∗ in the Kähler

potential (M2
∗ �MmessMP with MP = 2.4 · 1018 GeV). For simplicity, we drop ZNN̄ term in

the following discussions.

As we will discussed in the next section, a slight violation of the GUT relation of messengers

is essential for achieving the correct EWSB. Therefore, we define the messenger sector as

(Mmess + kZ)ΨΨ̄→ (ML + kLZ)ΨLΨ̄L + (MD + kDZ)ΨDΨ̄D. (2.2)

Then, soft SUSY breaking mass parameters are determined by ΛL = kL 〈FZ〉 /ML and ΛD =

kD 〈FZ〉 /MD, where 〈FZ〉 = ξZ . If the GUT relations, kL = kD and ML = MD at the GUT

scale, are satisfied, ΛL = ΛD at any scale. These messengers mediate the SUSY breaking to

the minimal supersymmetric standard model (MSSM) sector. The explicit formulas for the

soft SUSY breaking masses are shown in Appendix A.

After integrating out messengers, N and N̄ , not just µ term but also Bµ-term and other

Higgs soft masses are generated. The leading and sub-leading contributions are given as

L 3 −m2
HuH

†
uHu −m2

Hd
H†dHd

+

(
BµHuHd − AuHu

∂

∂Hu

W − AdHd
∂

∂Hd

W +

∫
d2θµHuHd

)
+ h.c.,
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m2
Hu,d

=
λ2u,d
16π2

Λ2
L

[
P1(x) +

Λ2
L

M2
L

P2(x)
]
,

µ =
λuλd
16π2

ΛL

[
Q1(x) +

Λ2
L

M2
L

Q2(x)
]
,

Bµ =
λuλd
16π2

Λ2
L

[
R1(x) +

Λ2
L

M2
L

R2(x)
]
,

Au,d =
λ2u,d
16π2

ΛL

[
S1(x) +

Λ2
L

M2
L

S2(x)
]
, (2.3)

where we use the same character to denote the Higgs superfields and the scalar components.

The loop functions of the leading contributions are written as

P1(x) =
x2

(x2 − 1)3
[
2(1− x2) + (1 + x2) lnx2

]
,

Q1(x) =
x

(x2 − 1)2
[
(x2 − 1)− x2 lnx2

]
,

R1(x) =
−x

(x2 − 1)3
[
1− x4 + 2x2 lnx2

]
,

S1(x) =
−1 + x2 − x2 lnx2

(x2 − 1)2
, (2.4)

with x = MN/ML. In the limit of x = 1, P1(1) = 1/6, Q1(1) = −1/2, R1(1) = 1/3, S1(1) =

−1/2. The loop-functions of the sub-leading terms are

P2(x) =
1 + 9x2 − 9x4 − x6 + 6(x2 + x4) lnx2

6(x2 − 1)5
,

Q2(x) =
−x(2 + 3x2 − 6x4 + x6 + 6x2 lnx2)

6(x2 − 1)4
,

R2(x) =
x(−3− 10x2 + 18x4 − 6x6 + x8 − 12x2 lnx2)

6(x2 − 1)5
,

S2(x) =
−2− 3x2 + 6x4 − x6 − 6x2 lnx2

6(x2 − 1)4
, (2.5)

which are numerically smaller than leading ones, and can be safely neglected unless ΛL/ML

is very close to 1. Here and hereafter, we take x = 1 as a reference value.

Neglecting the sub-leading contributions, generating µ and Higgs soft masses can be writ-

ten by

µ ≈ −1

2

(
λuλd
16π2

)
ΛL, Bµ ≈

1

3

(
λuλd
16π2

)
Λ2
L,

m2
Hu,d

≈ 1

6

(
λ2u,d
16π2

)
Λ2
L, Au,d ≈ −

1

2

(
λ2u,d
16π2

)
ΛL. (2.6)
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The difference between µ and Bµ are Bµ ≈ −(2/3)µΛL.

These generated soft masses and µ-parameter should be consistent with the vacuum con-

ditions. In MSSM, the tree level vacuum conditions are

m2
Z

2
= −|µ|2 +

m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
, (2.7)

sin 2β =
2Bµ

m2
Hu

+m2
Hd

+ 2|µ|2
, (2.8)

where mZ is the Z boson mass. From Eq. (2.8), in the large tan β case, we obtain

Bµ tan β ≈ m2
Hd

→ tan β ≈ 1

2

λd
λu
, (2.9)

therefore, the value of µ is determined by

|µ| ≈ 1

4

λ2d
16π2

ΛL

tan β
≈ 158 GeV

(
tan β

10

)−1(
λd
1.0

)2(
ΛL

1000 TeV

)
. (2.10)

The lightest Higgs boson mass is depend on ΛL and tan β. The lighter squark masses, the

larger tan β is required to obtain the observed 125 GeV Higgs mass. Although the details

of the dependence will be shown below, actually, in mq̃ ∼ 10 TeV region of our interest,

relatively large tan β ∼ 10 is required. Therefore, once we fix the value of ΛL, the value of µ

is determined by the λd by Eq. (2.10).

Note that the value of λd is bounded from above. The one of the bounds comes from

the requirements for avoiding the Landau pole below the GUT scale. We show the upper

bound on λd from the Landau pole constraint by the dashed-line in Fig. 1. The Landau pole

constraint is obtained for each Mmess(= ML = MD) by using one-loop renormalization group

equations (RGEs) (shown in Appendix B), demanding that couplings be perturbative up to

the GUT scale. The other is the constraint from the tachyonic sneutrinos, which caused by

non-vanishing U(1)Y contribution,

dm2
L

d lnµR
3 g21

16π2

3

5
(m2

Hd
−m2

Hu) → ∆m2
L ' −

3

5

g21
16π2

m2
Hd

ln
Mmess

mHd

≈ −(0.11 - 0.36)λ2d
Λ2
L

(16π2)2
, (2.11)

for Mmess = 107-1012 GeV with λd � λu. The above estimation implies λd can not be much

larger than unity, otherwise the negative U(1)Y contribution becomes larger than the contri-

bution from gauge mediation. We show also the tachyonic sneutrino bounds in Fig. 1 using

SOFTSUSY 3.6.2 [11] to evaluate MSSM mass spectra. By combining the Landau pole con-

straint and tachyonic sneutrino constraint, the value of λd should be λd . 0.9-1.1 in whole

parameter space.
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Figure 1: The upper bound on λd from the Landau pole constraint (dashed-line) and the
constraints from the sneutrino mass for ΛL = 1000 TeV and 4000 TeV with ΛD = ΛL (solid-
line). Above the solid lines, the sneutrinos become tachyonic. We take λu = λd/(2 tan β).
Here, αs(MZ) = 0.1185 and mt(pole) = 173.34 GeV.
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Figure 2: The region consistent with the Higgs mass of 125 GeV, for ΛL = ΛD and Mmess =
107 GeV. We take λu = λd = 0 and µ = −200 GeV. The blue band indicates a theoretical
uncertainty including the experimental error of the top quark mass (mt(pole) = 173.34±0.76
GeV). The other parameters are same as in Fig. 1.

In Fig. 2, we show the region consistent with the observed Higgs boson mass on the

tan β-ΛD plane. The Higgs mass is computed using SUSYHD 1.0.2 [12]. The blue bands

indicates theoretical uncertainty, including the experimental error of the top mass, mt(pole) =

173.34± 0.76 GeV [13]. From the Higgs boson mass constraint, tan β is bounded from below

for fixed ΛD.

As a result, for the fixed ΛL, the upper bound on the Higgsino mass can be obtained from
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the upper bound on λd and lower bound on tan β discussed above. From Eqs.(2.9) and (2.10),

the upper bounds on the Higgsino mass are obtained as

|µ| . (158, 575, 1580) GeV for ΛL = (1000, 2000, 4000) TeV, (2.12)

where λd = 1.0 and ΛL = ΛD is assumed. At the large ΛL case, the value of µ is pushed up by

not only the large ΛL but also small tan β, which is required to satisfy 125 GeV Higgs mass.

However, as shown in the next section, such a small tan β and large λd region is constrained

requiring consistency with the EWSB conditions. As a result, the Higgsino is likely to be

light as O(100) GeV, at least, in this model.

3 Electroweak symmetry breaking

In this section, we point out that a simple and naive way to generate µ-Bµ term discussed in

previous section actually works for the soft masses around 10 TeV, with a slight breaking of

a GUT relation among messenger B-terms.

At first, we demonstrate the difficulty to satisfy the EWSB condition Eq. (2.7) by this

simple µ generating mechanism with a simple messenger sector. Considering 1/ tan2 β � 1

case, the EWSB condition can be written as

µ2 ' −m
2
Z

2
−
(
m2
Hu −

m2
Hd

tan2 β

)
+ (CW), (3.1)

where (CW) denotes a contribution from Coleman-Weinberg potential. The Higgs soft masses

at the messenger scale are provided by the generating µmechanism and usual gauge mediation.

Using Eqs. (2.6) and (2.9), it is written by(
m2
Hu −

m2
Hd

tan2 β

)
mess

'
[
− λ2d

8 tan2 β
+

3

2

g42
16π2

(
1− 1

tan2 β

)]
Λ2
L

16π2
, (3.2)

which is negative for large λd and small tan β. Additionally, there are radiative corrections

from stop and gluino loops, estimated as

(∆m2
Hu)stop/gluino ≈ −(0.3 - 0.5)m2

q̃ − (0.1 - 0.5)M2
g̃

≈ −(0.8 - 1.8)
g43

(16π2)2
Λ2
D, (3.3)

depending on the messenger scale (Mmess = 107 - 1012 GeV), and also from wino loops and a

U(1)Y contribution. Therefore, Eq. (3.1) can be rewritten as

µ2 ' −m
2
Z

2
−
[(
m2
Hu −

m2
Hd

tan2 β

)
mess

+ (∆m2
Hu)stop/gluino + (0.1 - 0.2)M2

w̃ + ∆U(1)Y

]
+ (CW), (3.4)
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where ∆U(1)Y is the same as Eq. (2.11) but with an opposite sign. The right hand side of

Eq. (3.4) is positive and its size is much larger than µ2 ∼ (100 GeV)2 for ΛL ' ΛD. As a

result, the EWSB conditions can not be satisfied by this simple µ generating mechanism with

a simple messenger sector.

The difficulty can be solved by a breaking of a GUT relation with rL ≡ ΛL/ΛD > 1, which

enhances the contributions from the wino-loops and ∆U(1)Y . This is similar to a setup of the

focus point gauge mediation [14]. Note that rL is a RGE invariant quantity. The correct

EWSB can be achieved with rL = 1.6 - 2.0 depending on λd and tan β. In Fig. 3, we show the

value of the generated µ term (see Eq.(2.3)) and the required value µEWSB from the EWSB

condition, Eq. (3.1), as a function of rL. The correct EWSB occurs at a point where two-lines

of µ and µEWSB cross. It can be seen that the correct EWSB is explained for rL ∼ 1.6.

One might think that by taking large rL, the correct EWSB is always explained for any

λd. However, this is not true: much large rL causes tachyonic stop because radiative correc-

tions gives a large negative correction to the right-handed stop mass squared. The negative

corrections come from a U(1)Y contribution similar to Eq. (2.11) and Yukawa interactions

with top Yukawa coupling because of larger m2
Q3

due to large SU(2)L contributions.

In Fig. 4, we show the lower bound on tan β for each λd. We take ΛD = 1000 TeV, and

show the bounds for Mmess = 107 and 1012 GeV. At each point, rL is scanned to find a solution

realizing successful EWSB. Below the solid lines, the stop becomes tachyonic with large rL and

there is no solution to explain the EWSB. It is found that for λd =0.9 -1.0, tan β is required

to be larger than about 9- 10, while for more smaller tan β, the constraint is much stronger

than the Landau pole and tachyonic sneutrino constraint as shown in Fig. 1. Considering also

this constraint, the upper bound on the Higgsino mass can be estimated roughly

|µ| . (250, 400, 500) GeV for ΛD = (1000, 2000, 4000) TeV, (3.5)

for Mmess & 107 GeV. As a results, it turns out that the Higgsino is always light.

We emphasize that although the lower bound on tan β in Fig. 4 is model dependent,

it is generically true that small tan β with large λd makes it difficult to be consistent with

the correct EWSB. This is because the contribution to the Higgs potential m2
Hd
/ tan2 β ∝

λ2d/ tan2 β becomes large in such cases. Therefore, the light Higgsino is always favored together

with the smaller fine-tuning.

3.1 Mass spectra

Finally, we present sample mass spectra in Table 1 (I-IV). The input parameters are Mmess,

λd and tan β, and rL and λu are fixed by the EWSB conditions. The MSSM mass spectra is
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Figure 3: µ and µEWSB as functions of rL = ΛL/ΛD. We take ΛD = 1.5 · 106 GeV, Mmess =
5 · 106 GeV, tan β = 10, and λd = 0.7. The other parameters are same as in Fig. 1.
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Figure 4: The lower bounds on tan β for Mmess = 107 GeV and 1012 GeV from the stop mass.
Below the line, the right-handed stop becomes tachyonic. We take ΛD = 1000 TeV. The other
parameters are same as in Fig. 1.

calculated using SOFTSUSY, and the Higgs boson mass calculated using FeynHiggs 2.11.2 [15]

and SUSYHD, denoted by (h0)FH and (h0)SHD, respectively. For the point IV, (h0)SHD is

consistent with the observed Higgs boson mass including theoretical uncertainty about 1 GeV.

Although the SUSY particles other than the Higgsino are heavy and beyond the reach of

the LHC, the Higgsino is always light as O(100) GeV. At all sample points, the lightest

supersymmetric particle (LSP) and next-to-LSP are the gravitino and Higgsino, respectively.
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Parameters Point I Point II Point III Point IV
ΛD (GeV) 8 · 105 1.5 · 106 3 · 106 106

Mmess (GeV) 5 · 106 107 107 5 · 106

λd 0.8 0.7 0.39 0.9
tan β 10 10 6 13

µ (GeV) -147.6 -190.3 -214.5 -146.7
rL 1.864 1.664 1.740 1.517

Particles Mass (TeV) Mass (TeV) Mass (TeV) Mass (TeV)
t̃1,2 5.5, 8.3 10, 15 21, 29 7.1, 9.7
g̃ 5.4 9.6 18 6.6

mL̃,mẼ 4.4, 4.4 7.6, 6.9 17, 10 4.3, 4.8

χ̃±2 4.0 6.6 14 4.0

χ̃0
3 1.7 3.0 6.4 1.9
A 37 55 65 43

(h0)FH(GeV) 125.4 128.4 133.1 127.6
(h0)SHD(GeV) 122.7 125.2 125.9 124.1

Table 1: Mass spectra in sample points. Here, λu and rL are determined by the EWSB conditions,
and (h0)FH and (h0)SHD are the Higgs mass computed by FeynHiggs and SUSYHD, respectively.

4 Conclusion

We have shown that a simple and naive way of generating the µ (Bµ) term can work in the 10

TeV or heavier squark case with the small breaking of the GUT relation among messenger B-

terms. The required doublet/triplet splitting, ΛL/ΛD > 1, may be naturally accommodated

in more general gauge mediation models even if GUT relations among parameters in the

messenger sector are satisfied [16, 17].

In this paper, we also investigate the upper bound on the Higgsino mass focusing on the

O(10) TeV squark case. Such a squark mass region is favored by the naturalness of achieving

the correct EWSB rather than a region of much heavier squarks. The ratio between the two

couplings of messenger-Higgs interactions, which generate the µ (Bµ) term, is fixed by tan β,

and the size of the coupling is bounded from above by the conditions of not just keeping

the perturbativity up to the GUT scale but also avoiding tachyonic sneutrinos. Then, the

Higgsino mass is bounded from above for a fixed SUSY mass scale. (Here, tan β is determined

by the observed Higgs boson mass.) Furthermore, in cases of the larger squark masses, the

stronger upper bound on the messenger-Higgs coupling is imposed in order to satisfy the

EWSB conditions. Consequently, it turns out that the light Higgsino, |µ| < 500 GeV, is

a promising signal of gauge mediation. Although the signal also depends on the Higgsino
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lifetime which can be taken broad, it can be accessible by the LHC[18] and ILC [19].
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A Soft SUSY breaking masses with splitting messenger B-terms

The relevant superpotential is given by

W = (kLZ +ML)ΨLΨ̄L + (kDZ +MD)ΨDΨ̄D, (A.1)

where ΨL and ΨD are SU(2)L doublet and SU(3)c triplet, respectively, and U(1)Y charges of

ΨL and ΨD are taken as (1/2) and (-1/3).

Then, gaugino masses are given by

Mb̃ '
g21

16π2
(
3

5
ΛL +

2

5
ΛD), Mw̃ '

g22
16π2

ΛL, Mg̃ '
g23

16π2
ΛD, (A.2)

where ΛL = kL 〈FZ〉 /ML and ΛD = kD 〈FZ〉 /MD. The SM gauge couplings of SU(3)c, SU(2)L

and U(1)Y are denoted by g3, g2 and g1. Here, kL,D 〈Z〉 � ML,D is assumed. Scalar masses

are

m2
Q̃
' 2

(16π2)2

[
4

3
g43Λ2

D +
3

4
g42Λ2

L +
3

5
g41(Λ̃2

1)
1

62

]
,

m2
Ũ
' 2

(16π2)2

[
4

3
g43Λ2

D +
3

5
g41(Λ̃2

1)

(
2

3

)2
]
,

m2
D̃
' 2

(16π2)2

[
4

3
g43Λ2

D +
3

5
g41(Λ̃2

1)
1

32

]
,

m2
L̃
' 2

(16π2)2

[
3

4
g42Λ2

L +
3

5
g41(Λ̃2

1)
1

22

]
,

m2
Ẽ
' 2

(16π2)2

[
3

5
g41(Λ̃2

1)

]
,

m2
Hu = m2

Hd
= m2

L̃
, (A.3)

with Λ̃2
1 ≡ [(3/5)Λ2

L + (2/5)Λ2
D].
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B Renormalization group equations

We list the RGEs for λd and λu:

βλd =
λd

16π2

(
4λ2d + 3Y 2

b + Y 2
τ − 3g22 −

3

5
g21

)
,

βλu =
λu

16π2

(
4λ2u + 3Y 2

t − 3g22 −
3

5
g21

)
, (B.1)

where we have neglected contributions from kD, kL and Yukawa couplings of first and second

generations. Also, the beta-functions for MSSM Yukawa couplings are modified. The changes

of beta-functions are

δβYt =
Yt

16π2
λ2u ,

δβYb =
Yb

16π2
λ2d ,

δβYτ =
Yτ

16π2
λ2d . (B.2)

Above the messenger scale, the beta-functions of gauge couplings have additional contribu-

tions:

δβgi =
g3i

16π2
Nmess, (B.3)

where Nmess is a number of messenger superfields.
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