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Whether a doped hole propagates as a Bloch wave or not is an important issue of doped Mott physics. Here
we examine this problem based on the quasiparticle spectral weight Z distribution, calculated by density matrix
renormalization group (DMRG). By tuning the anisotropy of a two-leg t-J ladder without closing the back-
ground spin gap, the Z distribution unambiguously reveals a transition of the single hole state from a Bloch
wave to a novel one with spontaneous translational symmetry breaking. We further establish a direct connec-
tion of such a transition with a nonlocal phase string entanglement between the hole and quantum spins, which
explains numerical observations.

PACS numbers: 71.27.+a, 71.10.Fd

For a weakly interacting band insulator, a doped charge be-
haves like a Bloch wave in the presence of a periodic lattice
obeying the Bloch theorem. One may also ask a meaningful
question concerning the fate of a hole injected into a Mott in-
sulator with correlated quantum spins1,2. For the special case
that such a spin system is gapped and translationally invariant,
based on the conventional wisdom, the doped hole would be
expected to only disturb its surrounding spins to form some
sort of spin polaron2–6. One might be tempted to generally
conclude a Bloch-wave behavior for such a hole doping into a
gapped spin system.

However, recent density matrix renormalization group
(DMRG) studies7–10 of hole-doped two-leg spin ladders have
revealed an unexpected rich phenomenon even if the undoped
system remains gapped. Although an injected hole does prop-
agate like a simple Bloch wave in the strong anisotropic limit
of the model, it undergoes a quantum transition to a novel
state when the anisotropy is reduced. After the transition, the
charge loses its phase coherence over a finite length scale7,9,
concomitant with an emergent interference pattern10 (charge
modulation) breaking the translational symmetry. Besides,
a strong pairing of two holes also has been found8 in this
regime.

Nevertheless, in a recent new DMRG study of the same
model, White, Scalapino, and Kivelson (WSK) claimed11 that
the critical point seen in the above studies7–10 only signals a
qualitative change of the quasiparticle energy spectrum with-
out changing the Bloch wave nature on the both sides. The
WSK’s conclusion is largely based on the total quasiparticle
spectral weight Ztot (to be defined below), which remains fi-
nite and smooth across the transition point in their DMRG
calculation11.

To resolve the above controversy, in this paper, we di-
rectly compute the quasiparticle spectral weight distribution
by DMRG. Although Ztot previously calculated by WSK can
be indeed reproduced, we point out that it is not sufficient to
conclude the Bloch-wave behavior of the doped hole. Rather,
one has to further examine Zk and Zj , denoting the proba-
bilities of the ground state projecting onto a bare-hole Bloch
state at momentum k and site j, respectively. We determine
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Fig. 1. (Color online). Ztot measures the overlap of the true ground
state of a single hole with a bare hole state [cf. Eq. (4)]. α de-
notes an anisotropic parameter for the two-leg t-J ladder. A critical
point αc is marked by the vertical dashed line, which is previously
determined9,10 by DMRG for the t-J case at t/J = 3 with αc ≈ 0.7
(but there is no critical αc for the so-called σ·t-J model, see text).
Inset: the convergence of Ztot with the sample size N = Nx × 2 at
α = 5.

Zk and Zj , and show that the standard Bloch-wave behavior
does break down on the one side of the aforementioned criti-
cal point, despite that Ztot still remains finite and smooth. In
particular, the length scale associated with the incoherence of
the hole is identified from Zj . We further derive an analytic
formula serving as a direct probe of the underlying mecha-
nism responsible for the charge incoherence and modulation,
which is also verified by the DMRG calculation.

The model.— We study the one-hole ground state based on
the standard two-leg t-J Hamiltonian composed of two one-
dimensional chains (each with the hopping integral αt and the
superexchange coupling αJ), which are coupled together by
the hopping t and superexchange J at each rung to form a two-
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Fig. 2. (Color online). The quasiparticle spectral weight Zk. Insets: the original Zk’s in different models with various sample lengths. Main
panels: Bloch-wave quantization under the OBC as characterized by the scaling law with the kx-axis replaced by (kx−k0)Nx/π. (a) The t-J
case at α = 0.4 < αc, a well-quantized Bloch wave with k0 = π; (b) The σ·t-J ladder at α = 5, a well-quantized Bloch wave with k0 = 0;
(c) and (d) The t-J case at α = 5 > αc: although Ztot as the total sum well converges (cf. the inset of Fig. 1), the quantization in a finite-size
sample breaks down due to strong phase shifts occurring even at small variations of the sample length, for example, Nx = 192, 200, 202, and
206 [cf. (d)]. Here k0 is split into two k±0 separated by an incommensurate Q0 [cf. the insets of (c) and (d)].

leg ladder7,9. Here, the anisotropic parameter α → 0 in the
strong rung limit, while two chains are decoupled at α→∞.
We focus on the model with t/J = 3, which is the same as
studied in Refs. 7–10.

For the one-hole-doped t-J model, an exact expression of
the partition function is given by12

Zt-J =
∑
c

τcW[c] , (1)

where the hole acquires a Berry-like phase13 as

τc = (−1)
N↓h [c] = ±1 (2)

along a closed path c (a brevity for multi-paths of the spins and
the hole). Here N↓h [c] counts the total number of exchanges
between the hole and down spins. The weight W[c] ≥ 0
is dependent on temperature (1/β), t, J , and α12. The so-
called σ·t-J model is introduced in Ref. 7 by inserting a spin-
dependent sign in the hopping term of the t-J model, such that
the one-hole partition function reduces to7

Zσ·t-J =
∑
c

W[c] , (3)

which is different from Zt-J [Eq. (1)] only by the absence of
the Berry-like phase τc, with the sameW[c].

In the following, we shall study both models in a compara-
tive way by using the DMRG algorithm7–11. For these calcu-
lations, we keep up to around 1800 states, which controls the
truncation error to be in the order of 10−10 and 10−6 for open
and periodic systems, respectively. For Zj calculations, we do
more than 200 sweeps to obtain well converged results.

The quasiparticle spectral weight.— The total quasiparticle
spectral weight is defined by

Ztot ≡
∑
k

Zk ≡
∑
j

Zj , (4)

where Zk ≡ |〈k|ΨG〉|2 or Zj ≡ |〈j|ΨG〉|2 denotes the prob-
ability of the ground state |ΨG〉 in the bare hole Bloch state
|k〉 of momentum k or |j〉 at site j of coordinate rj . Here
|k〉 ≡ 1√

2Nx

∑
j eik·rj |j〉 and |j〉 ≡

√
2cj |φ0〉 (with a proper

normalization factor included), where |φ0〉 denotes the half-
filling ground state. Note that k = (kx, ky) in general but we
shall only focus on ky = 0 case in the considered regime of
the two-leg ladder where the ky = π component of the Zk is
exponentially small.



3

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
0 . 0

1 . 0 x 1 0 - 4

2 . 0 x 1 0 - 4

3 . 0 x 1 0 - 4

4 . 0 x 1 0 - 4

5 . 0 x 1 0 - 4

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0- 4 . 0 x 1 0 - 6

- 2 . 0 x 1 0 - 6

0 . 0

2 . 0 x 1 0 - 6

4 . 0 x 1 0 - 6

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0
0 . 0 0 0

0 . 0 0 1

0 . 0 0 2

0 . 0 0 3

0 . 0 0 4

0 . 0 0 5

0 . 0 0 6

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0- 2 . 0 x 1 0 - 6

- 1 . 0 x 1 0 - 6

0 . 0

1 . 0 x 1 0 - 6

2 . 0 x 1 0 - 6

3 . 0 x 1 0 - 6

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0
0

2 0

4 0

6 0

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0
0 . 0 0 0

0 . 0 0 1

0 . 0 0 2

0 . 0 0 3

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0
0 . 0 0 0 0

0 . 0 0 0 4

0 . 0 0 0 8

0 . 0 0 1 2

0 . 0 0 1 6

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0
0 . 0 0 0

0 . 0 0 2

0 . 0 0 4

0 . 0 0 6

( a )  t - J
Z j

j

 N = 2 1 0 ×2
λ

F q

q / π
Q 0 2 π- Q 0

2π/ λ

( b )   t - J

2 π- Q 0

N q

q / π
Q 0

( d )   t - J

2π/ λ

λ

N x

nh j

j

 N = 2 1 0 ×2λ( c )  t - J

Z j

j

 N = 2 1 0 ×2( e )  σ⋅t - J

( f )  σ⋅t - J

nh j

j

 N = 2 1 0 ×2

Fig. 3. (Color online). (a) Zj measures the probability of a bare hole at site j, which shows a fast oscillation modulated by a slower variation
at a length scale of λ (α = 5 > αc); (b) The Fourier transformation of Zj reveals the characteristic wave vector Q0 with a continuous spread
∼ 2π/λ; (c) and (d) The corresponding hole density distribution nh

j and its Fourier transformation; Inset of (c): The length scale λ vs. Nx.
Finally, smooth Zj [(e)] and nh

j [(f)] for the σ·t-J model at α = 5.

Ztot computed by DMRG is shown in Fig. 1, which is in
good agreement with the WSK’s result11 for the t-J case.
Note that Ztot indeed remains a smooth function of α without
exhibiting a singular behavior (though it decreases quickly)
acrossing the critical αc. Here the αc is marked by a verti-
cal dashed line, which has been previously determined9,10 in
terms of the ground state energy and the onset of a charac-
teristic momentum Q0 at α ≥ αc [cf. Figs. 2(c) and 3(b)].
For comparison, Ztot for the σ·t-J ladder is also presented
in Fig. 1, in which there is no critical point (with Q0 = 0)
throughout the whole α regime.

A finite Ztot only means that |ΨG〉 has a finite probability
remaining in a bare hole state [cf. Eq. (4)]. However, to deter-
mine whether the injected hole behaves like a Bloch wave or
not, one needs to further inspect Zk. Here Zk is found to be
peaked at k0 = π [or k0 = 0] for the t-J model at α < αc [or
the σ·t-J model] as shown in Fig. 2(a) [or (b)]. The data pre-
sented in the insets of Figs. 2(a) and (b) can be well collapsed
under a rescaling of kx by (kx − k0)Nx in the main panels.
They clearly indicate that the doped hole behaves like a co-
herent Bloch wave that is well quantized in a finite size sys-
tem [under an open boundary condition (OBC)]. In the large
Nx limit, the ground state possesses a single momentum k0,
which satisfies the translation symmetry as expected.

At α > αc, the momentum k0 is split by Q0 as k+0 − k
−
0 =

Q0 for the t-J model. The emerging double-peak structure
centered at k±0 is shown in the inset of Fig. 2(c) at α =
5 > αc. The wave quantization under the OBC is no longer
valid here, as clearly illustrated in the main panel of Fig. 2(c).
Here many momenta (instead of two k±0 ) are involved in the

large-Nx case, which implies a breakdown of the translation
symmetry. As a matter of fact, the distribution of momenta
strongly scatter around k±0 even under small changes of sam-
ple sizes, for example, Nx = 192, 200, 202, and 206, as
shown in Fig. 2(d). It indicates that a large fluctuation may
occur in the phase shift1,13 of the wave due to strong scatter-
ing between the hole and spin background, which scrambles
the momentum quantization of the wave under the OBC. By
contrast, Ztot as the summation of Zk still converges quickly
with the increase of Nx [cf. the inset of Fig. 1].

To further verify the breakdown of the Bloch wave behav-
ior observed above, one can examine the corresponding real
space distribution Zj . In Figs. 3(a) and (b), Zj and its Fourier
transformation Fq are presented, respectively, which exhibit
a sharp spatial oscillation characterized by Q0 [cf. Fig. 3(b)]
at α = 5. Figure 3(a) further indicates another slower spatial
modulation of a length scale λ, which corresponds to a con-
tinuous broadening around Q0 in Fig. 3(b). It is consistent
with the momentum smearing manifested in Zk around k±0 in
Figs. 2(c) and (d). Furthermore, the hole density distribution
nhj and its Fourier transformation Nq are given in Figs. 3(c)
and (d), which exhibit a charge modulation as well. In fact,
by comparison it is easy to determine that the dominant con-
tribution to the charge modulation in nhj comes from Zj , i.e.,
the bare hole component of |ΨG〉. The incoherent length scale
λ vs. Nx is plotted in the inset of Fig. 3(c).

It is noted that Zk and Zj are determined by the single
hole propagator, which may be formally expressed as12,13

Gh(i, j;E) ∝
∑
cij
τcijP (cij) where cij include all the paths

of spins and the hole with the hole path connecting site i and j,
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Fig. 4. (Color online). The energy change due to the charge re-
sponse to an inserted flux Φ = π into the ring geometry of the ladder
(see text). (a) The typical Bloch wave behavior (∝ 1/N2

x ) for the
σ·t-J case and the t-J ladder at α < αc (the inset); (b) The non-
Bloch-wave response at α > αc in the t-J case can be well fitted
by Eq. (5), which directly relates the phase string effect as the under-
lying cause for charge incoherence and incommensurate momentum
splitting (the inset) according to Eq. (6).

and the weight P (cij) > 014. According to Eq. (2), one may
show10 that the momentum structure and the charge modula-
tion come from τcij ∼ eik0·[ri−rj ]+iδij , in which k0 · [ri− rj ]

denotes an averaged N↓h(cij) and the phase shift δij captures
the rest of many-body fluctuations around k0 = k±0 . The
phase shift δij is the source leading to the above breakdown
of the Bloch wave behavior. As a matter of fact, by switching
off τc in the σ·t-J model, all the modulations disappear in Zj
and nhj as indicated in Figs. 3(e) and (f).

Charge incoherence.— To probe the charge incoherence re-
vealed by Zk and Zj at α > αc, one may alternatively study
the charge response to inserting a magnetic flux Φ into a ring
of the ladder enclosed along the chain direction. Define the
energy change ∆E1-hole

G ≡ E1-hole
G (Φ = π) − E1-hole

G (Φ = 0),
with Φ = 0 corresponding to the periodic boundary condi-
tion (PBC) and Φ = π the anit-PBC for the hole7,9. For a
Bloch-wave behavior of the doped hole, one expects7,9 that

∆E1-hole
G ∝ 1/N2

x . Indeed, as confirmed by DMRG, this is
true for the σ·t-J case [Fig. 4(a) and the inset] as well as the
t-J model at α < αc [the inset of Fig. 4(a), Nx = even].

However, for the t-J case at α > αc, the charge incoher-
ence is clearly manifested as shown in Fig. 4(b) at α = 5:
∆E1-hole

G oscillates strongly with Nx, which can be fitted by

∆E1-hole
G (t-J) ∝

(
eik

+
0 Nx + eik

−
0 Nx

)
g(Nx) , (5)

where the incommensurate k±0 emerge as indicated in the inset
of Fig. 4(b). Here the envelope function, g(Nx), further gives
rise to the broadening of the peaks k±0 as shown by its Fourier
transformation in the inset of Fig. 4(b), which characterizes
the incoherent scale of the charge.15

Analytically, a straightforward manipulation in terms of
Eq. (1) gives rise to

∆E1-hole
G (t-J) = − lim

β→∞

1

β
ln

(
Zt-J(Φ = π)

Zt-J(Φ = 0)

)
= 2

∑
c1

τc1ρc1 + 2
∑
c3

τc3ρc3 + ... , (6)

while, for the σ·t-J model, ∆E1-hole
G (σt-J) = 2

∑
c1
ρc1 +

2
∑
c3
ρc3 + ...16. Here, Zt-J(Φ = 0) ≡

∑
ν Z

(ν)
t-J

and Zt-J(Φ = π) ≡
∑
ν(−1)νZ(ν)

t-J with Z(ν)
t-J ≡∑

cν
τcνW[cν ], where ν denotes the winding number count-

ing how many times the hole circumvents the ring, and ρcν ≡
limβ→∞W[cν ]/(βZ(0)

t-J ) > 0. Therefore, Eq. (5) and Fig. 4
provide a direct measurement of

∑
c1
τc1ρc1 in Eq. (6) at large

Nx (note that ν > 1 terms decay faster as Nx increases),
which indeed gives rise to the incommensurate k±0 and re-
lates an incoherence scale with the phase shift fluctuation in
τc1 . These are indeed consistent with the picture previously
obtained based on Zk and Zj .

Conclusions.— Doping into a gapped spin system is one of
the simplest cases of doped Mott physics. Should the non-
Bloch-wave behavior be fully validated for the one hole case,
complemented by a strong pairing discovered8 for the two
hole case, an important understanding of the nature of strong
correlation can be gained. Both DMRG simulations on the
quasiparticle spectral weights, Zk and Zj , and the charge re-
sponse to inserting a flux have given rise to a consistent pic-
ture in this work. Namely, the momentum splitting and charge
modulations found7,9,10 at α > αc cannot be simply reduced
to a standing wave description of two counter-propagating
Bloch waves11. Here, the hole loses its Bloch wave coherence
intrinsically with involving a continuum of momenta, which
indicates a spontaneous translational symmetry breaking. The
microscopic origin due to τc in Eq. (2) (which is called the
phase string effect13 characterizing the long-range entangle-
ment between the spins and the doped charge17,18) has been
thus established. This mechanism has also been recently stud-
ied by a variational wave function approach19, which can re-
produce, e.g., αc and Q0, found by DMRG.
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