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Abstract

We analyse a problem of two-dimensional linearised elasticity for a two-component periodic composite,
where one of the components consists of disjoint soft inclusions embedded in a rigid framework. We
consider the case when the contrast between the elastic properties of the framework and the inclusions, as
well as the ratio between the period of the composite and the framework thickness increase as the period
of the composite becomes smaller. We show that in this regime the elastic displacement converges to the
solution of a special two-scale homogenised problem, where the microscopic displacement of the framework
is coupled both to the slowly-varying “macroscopic” part of the solution and to the displacement of the
inclusions. We prove the convergence of the spectra of the corresponding elasticity operators to the
spectrum of the homogenised operator with a band-gap structure.

Introduction

The multi-scale extension of the notion of the weak L2-limit was proposed in [10], [2], where a general theorem
about two-scale compactness of L2-bounded sequences was proved and a corrector-type result for the uniformly
elliptic periodic homogenisation problem was established. Multi-scale convergence has proved to be an effective
tool in the study of composite media with a complicated geometry of the periodic reference cell. Further, in
problems where solutions do not converge in the strong L2-sense, for example in the presence of degeneracies,
see e.g. [12], the related techniques have the additional benefit of capturing the multi-scale structure of
the limit, by providing a suitable generalised notion of strong convergence. As opposed to the uniformly
elliptic case, where the limit function only depends on the macroscopic variable and is a solution to a single
boundary-value problem, the multi-scale limit for degenerate homogenisation problems satisfies a coupled
system of equations for the macroscopic and microscopic parts of the limit solution. This happens to be the
case for periodic “thin structures”, which are the subject of the present work.

We define a thin structure as an arrangement of rods of thickness h > 0 joined together at a number
of junction points (“nodes”). Fig. 1 shows an example of a this structure, where the two panels show rods
of thickness h (left) and the “singular” structure obtained by taking the mid-lines of the rods (right). In
the literature, equations of elasticity on thin structures are studied either for a fixed rod thickness h or by
treating it as a parameter linked to the typical rod length. In the context of homogenisation, the rods are
often assumed to be arranged periodically with period ε, and the limit behaviour of the structure is studied
as ε → 0. The use of two-scale convergence for the study of periodic thin structures has been proposed in
[13, 14, 4], where the two-scale approach of [10, 2] was extended to the setting of general Borel measures, and
conditions on the measure sufficient for passing to the two-scale limit were determined. In addition, it was
shown in [13] that the spectrum of the “double-porosity model”, where the components of the composite have
contrasting properties, is close to a band spectrum whose complement consists of an infinite set of disjoint
intervals (“gaps”). This property is also possessed by the homogenised operator that we derive in the present
work.
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d=2: The ‘‘matrix’’ 
and its ‘‘skeleton’’

Figure 1: Example of a periodic network and unit cell.

If the thickness of the rods h = h(ε) is a function of the period ε of the network, such that limε→0 h(ε) = 0,
then the limit behaviour depends on the asymptotics of the ratio h/ε2 as ε → 0. In particular, in the case
when limε→0 h/ε

2 = θ > 0, sequences of symmetric gradients of the solutions are, in general, not compact
with respect to strong two-scale convergence. As a consequence, the equation describing the limit energy
balance is no longer obtained by setting the test function to be the solution of the homogenised equation for
the corresponding “singular structure”, obtained by considering the mid-lines of the rods with the measure
induced by the thin structure (cf. Fig. 1). This problem was addressed [18], where the correct form of the
energy equality was determined and the limit system of equations was derived. This study was followed by the
analysis of Sobolev spaces for a variable measure [16, 11], Korn inequalities for periodic frames [17], and gaps
in the spectrum of the elasticity operator on a high-contrast periodic structure [19] with non-vanishing volume
fraction of the components as ε → 0. In [19], the band-gap nature of the spectrum of the limit operator is
analysed and conclude that the convergence of the spectra of the heterogeneous problems to the limit spectrum
is proved.

In the present work we extend the techniques of [18, 19], for the study of an elasticity problem on a two-
component periodic composite where the region occupied by the main material (“matrix”) is a framework with
h/ε2 → θ > 0, and the complementary part of the space consisting of disjoint “inclusions” is filled by a less
rigid material, so that ratio between the stiffness of inclusions and the matrix is of the order O(ε2). In other
words, in addition to the assumption of high contrast, cf. [13, 17], we assume that the the stiff component is
a thin structure so that its volume fraction is of the order O(ε).

1 Problem formulation

We consider a periodic rod framework (“stiff” component of the composite) filled by a different material (“soft”
component). We assume that the rod thickness h > 0 is a function of the period ε > 0, and consider the
regime when limε→0 h/ε

2 = θ > 0. The ratio of the elastic moduli of the soft and stiff component is assumed
to be of the order O(ε2). Denote by Fh1 the domain occupied by the rods and by F1 the corresponding singular
structure. Consider the “periodicity cell” Q := [0, 1]2 and denote Q1 := Q ∩ F1 and Q0 := Q\Q1. Consider

also the “contraction” Fh,ε1 := ε−1Fh1 of the framework Fh1 . The soft component R2 \ Fh1 and its contraction

ε−1(R2 \Fh1 ) are denoted by Fh0 and Fh,ε0 , respectively. We denote by χh1 , χ
h,ε
1 and χh0 , χ

h,ε
0 the characteristic

functions of the respective sets.
In what follows, we consider equations of two-dimensional elasticity in R2. These are obtained from the

full system of linearised elasticity in three dimensions when there is a direction, say x3, along which material
properties are constant, assuming that the displacement does not depend on x3. At each point x ∈ R2, the
fourth order tensor of the elastic moduli of the medium is given by

Aε = ε2A0(·/ε)χ0(·/ε) +A1(·/ε)χ1(·/ε),

where A0 and A1 are periodic, bounded and positive definite1: cjξ
2 ≤ Ajξ · ξ ≤ c−1

j ξ
2, cj > 0, j = 0, 1. For a

bounded Lipschitz domain Ω ⊂ R2, we denote by Ωε,h1 := Ω∩Fh,ε1 the stiff component and by Ωε,h0 := Ω∩Fh,ε0

1The scalar product of two symmetric matrices ξ = {ξij}2i,j=1 and η = {ηij}2i,j=1 is defined by ξ · η = ξijηij . The product of
the fourth-order elasticity tensor A with a symmetric matrix ξ is defined as Aξ = aijklξkl and thus Aξ · ξ = aijklξijξkl.
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Figure 2: Periodic network with high-contrast.

the union of all soft inclusions in Ω. Consider the measures λ, λh defined on Q by

λ(B) =
H1(B ∩ F1)

H1(Q ∩ F1)
, λh(B) =

H2(B ∩ Fh1 )

H2(Q ∩ Fh1 )
, ∀ Borel B ⊂ Q,

where Hd, d = 1, 2, is the d-dimensional Hausdorff measure (see e.g. [8]), and extended to R2 by Q-periodicity.
Clearly, the weak convergence λh ⇀ λ holds as h→ 0, i.e. one has2

lim
h→0

∫
Q

ϕ dλh =

∫
Q

ϕdλ ∀ϕ ∈
[
C∞per(Q)

]2
.

Similarly, for the “composite” measures µ := (1/2)dx + (1/2)λ and µh := (1/2)dx + (1/2)λh, where dx
is the plane Lebesgue measure, one has µh ⇀ µ as h → 0. Further, we consider the “scaled” measure
λhε (B) := ε2λh(ε−1B) for all Borel B ⊂ R2, and µhε := (1/2)dx + (1/2)λhε , so that µhε ⇀ dx as ε→ 0.

For ε, h > 0 and f ∈
[
C∞(Ω)

]2
, we look for u ∈

[
H1

0 (Ω)
]2

such that∫
Ωε,h1

A1(·/ε)e(uhε ) · e(ϕ) dµhε + ε2

∫
Ωε,h0

A0(·/ε)e(uhε ) · e(ϕ) dµhε

+

∫
Ω

uhε ·ϕdµhε =

∫
Ω

f ·ϕ dµhε ∀ϕ ∈
[
H1

0 (Ω)
]2
. (1.1)

Define a bilinear form Bh
ε (·, ·) and a linear form Lhε (·) by

Bh
ε (u,v) :=

∫
Ωε,h1

A1(·/ε)e(u)·e(v) dµhε+ε2

∫
Ωε,h0

A0(·/ε)e(u)·e(v) dµhε+

∫
Ω

u·v dµhε , Lhε (v) :=

∫
Ω

f ·v dµhε .

(1.2)

Notice that Bh
ε is coercive and continuous, and Lhε is continuous on

[
H1

0 (Ω)
]2
. It is a consequence of the

Lax-Milgram lemma (see e.g. [7, Chapter 6]) that (1.1) has a unique solution uhε . In what follows we aim to
describe the structure of the limit problem for the weak two-scale limit of the function uhε as ε→ 0.

From the general theory of homogenisation on periodic rod structures, the following results hold regardless
of the limit of the ratio h/ε2:

1. There exists a vector function u(x,y) ∈
[
C∞

(
Ω, L2

per(Q,dµ)
)]2

such that

lim
ε→0

1∣∣Ωh,ε1

∣∣
∫

Ωh,ε1

∣∣uhε (x)− u(x,x/ε)
∣∣2dx = 0.

2We attach the superscript “per” to the notation for a function space when we refer to its subspace of Q-periodic functions.
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2. The vector u(x, ·) is a “periodic rigid displacement” (see Definition 2.3): u(x,y) = u0(x) + χ(x,y),

where u0 ∈
[
H1

0 (Ω)
]2

and χ is the transverse displacement, see (2.6).

3. The equation −div
(
Ahome(u0)

)
+ 〈u〉y = f holds, where Ahom is the “homogenised tensor”, see (2.12).

For each link I of the network F1, let τ and ν be unit tangent and normal vectors that form a positively
orientated system. Then all vectors v ∈ R2 are written as v = v(τ)τ+v(ν)ν, where v(τ) = v ·τ and v(ν) = v ·ν.
In the case when the tensor A0 is isotropic3, the vectors U and χ are shown (see Section 3) to satisfy equations
of the form

A0U + u = f , Lτχ(ν) + TνU (ν) + u(ν) = f (ν), (1.3)

where A0 is a second-order differential operator in Q expressed in terns of the tensor A0 only, Lτ is a fourth-
order differential operator in the “longitudinal” direction τ , and Tν is a first-order differential operator in the
“transverse” direction ν corresponding to each link I.

2 Two-scale structure of solution sequences

In this section we establish the structure of various two-scale limits on the soft and stiff components. This is
achieved by taking the limits of integrals entering the identity (1.1), with suitably chosen test functions ϕ.

2.1 Two-scale convergence: definition and properties

We first recall the notion of weak and strong two-scale convergence and their basic properties, see [14].

Definition 2.1 (Weak two-scale convergence). Suppose that h is a function of ε and {uhε} ⊂
[
L2(Ω,dµhε )

]2
is a bounded sequence:

lim sup
ε→0

∫
Ω

|uhε |2 dµhε <∞. (2.1)

We refer to u(x,y) ∈
[
L2(Ω × Q,dx × dµ)

]2
=:
[
L2(Ω × Q)

]2
as the weak two-scale limit of uhε , denoted

uhε
2
⇀ u, if

lim
ε→0

∫
Ω

uhε (x) ·Φ(x,x/ε) dµhε =

∫
Ω

∫
Q

u(x,y) ·Φ(x,y) dµ(y)dx ∀Φ ∈
[
L2(Ω, Cper(Q))

]2
(2.2)

Proposition 2.1 (Two-scale compactness). If a sequence uhε is bounded in
[
L2(Ω,dµhε )

]2
, then it is compact

with respect to weak two-scale convergence.

Proposition 2.2. If uhε
2
⇀ u then ‖u‖[L2(Ω×Q)]2 ≤ lim infε→0 ‖u‖[L2(Ω,dµhε )]2 .

Definition 2.2. Let uhε be a bounded sequence in
[
L2(Ω,dµhε )

]2
. The function u = u(x,y) ∈

[
L2(Ω×Q)

]2
is said to be the strong two-scale limit of uhε , denoted uhε

2→ u, if for any weakly two-scale convergent sequence

vhε
2
⇀ v one has

lim
ε→0

∫
Ω

uhε · vhε dµhε =

∫
Ω

∫
Q

u(x,y) · v(x,y) dµ(y)dx. (2.3)

Note that by setting vhε = uhε one has

lim
ε→0

∫
Ω

|uhε |2 dµε =

∫
Ω

∫
Q

|u|2 dµdx. (2.4)

The next proposition shows that the converse also holds.

Proposition 2.3. If uhε
2
⇀ u and the convergence (2.4) holds, then uhε

2→ u.

Proposition 2.4. For any arbitrary a ∈ L∞(Q), the weak (resp. strong) two-scale convergence of uhε to
u(x,y) implies the weak (resp. strong) two-scale convergence of a(·/ε)uhε to a(y)u(x,y).

3A tensor A0 is said to be isotropic if for all symmetric matrices ξ one has A0ξ = k1ξ + k2(tr ξ)I, k1, k2 > 0
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2.2 Two-scale compactness of solutions to (1.1)

Consider the equation (1.1) with ϕ = uhε :∫
Ωε,h1

A1(·/ε)e(uhε ) · e(uhε ) dµhε + ε2

∫
Ωε,h0

A0(·/ε)e(uhε ) · e(uhε ) dµhε +

∫
Ω

|uhε |2 dµhε =

∫
Ω

f · uhε dµhε . (2.5)

Using ellipticity estimates on the left-hand side and the inequality 2ab ≤ a2 + b2, a, b ∈ R, on the right-hand
side yields

c0ε
2

∫
Ωε,h0

∣∣e(uhε )
∣∣2 dµhε + c1

∫
Ωε,h1

∣∣e(uhε )
∣∣2 dµhε +

1

2

∫
Ω

|uhε |2 dµhε ≤
1

2

∫
Ω

|f |2 dµhε c0, c1 > 0.

Hence the following a priori bounds hold.

Proposition 2.5. Let uhε be a sequence in
[
L2(Ω,dµhε )

]2
of solutions to (1.1). Then there exists C > 0 such

that
‖uhε‖[L2(Ω,dµhε )]2 ≤ C,

∥∥e(uhε )
∥∥

[L2(Ωε,h1 ,dµhε )]3
≤ C, ε

∥∥e(uhε )
∥∥

[L2(Ωε,h0 ,dµhε )]3
≤ C.

Using two-scale compactness of L2-bounded sets (see Proposition 2.1), we assume that the sequences

uhε , χh,ε1 uhε , χh,ε1 e(uhε ), εχh,ε0 e(uhε )

weakly two-sale converge to functions

u(x,y) ∈
[
L2(Ω×Q,dx×dµ)

]2
, û(x,y), p(x,y) ∈

[
L2(Ω×Q,dx×dλ)

]2
, p̃(x,y) ∈

[
L2(Ω×Q,dx×dy)

]2
,

respectively, where
[
L2(Ω×Q,dx× dy)

]2
is treated as a subspace of

[
L2(Ω×Q,dx× dµ)

]2
.

2.3 Rigid displacements, potential and solenoidal matrices

Definition 2.3. A vector function u ∈
[
L2

per(Q,dλ)
]2

is said to be a periodic rigid displacement (with respect

the measure λ) if there exists a sequence {un} ⊂
[
C∞per(Q)

]2
such that

(
un, e(un)

)
→ (u, 0) in

[
L2

per(Q,dλ)
]5
.

We denote the set of periodic rigid displacements by R, omitting the reference to the measure λ.

It is shown, see e.g. [14], that any u ∈ R has a unique representation

u(y) = c + χ(y), y ∈ Q, (2.6)

where c ∈ R2 and χ is a periodic transverse displacement, i.e. on each link of the singular network F1 it is
orthogonal to the link. Denoting by R̂ the set of transverse displacements, we thus have R = R2⊕R̂. The next
definition characterises transverse displacements that occur in the study of rod networks with h/ε2 → θ > 0
as ε→ 0.

Definition 2.4. Denote by I1, . . . , In the links of the network F1 sharing an arbitrary node O, and denote
by (χ · ν)′ the derivative in the tangential direction: (χ · ν)′ = (τ · ∇)(χ · ν). The set R̂0 ⊂ R̂ is defined to
consist of periodic transverse displacements χ satisfying the conditions:

(C1) The function χ · νj |Ij , j = 1, 2, . . . , n, has square integrable second derivatives on Ij , i.e. one has
χ · ν ∈ H2(Ij).

(C2) The first derivative along the link is continuous across each node: (χ · ν1)′
∣∣
O = (χ · ν2)′

∣∣
O = · · · =

(χ · νn)′
∣∣
O.

(C3) Each node is fastened: χ|O = 0.

The norm in R̂0 is defined to be the sum of the H2-norms of χ · ν over all the links.

Definition 2.5. For a given Borel measure κ on Q, we define the space V κpot of κ-potential matrices as the

closure of the set
{
e(u) |u ∈

[
C∞per(Q)

]2}
in the space

[
L2

per(Q,dκ)
]3
. A symmetric matrix v ∈

[
L2

per(Q,dκ)
]3

is said to be κ-solenoidal if ∫
Q

v · e(u) dκ = 0 ∀u ∈
[
C∞per(Q)

]2
.
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Denoting by V κ
sol the set of κ-solenoidal matrices, we can write (see e.g. [14])

[
L2

per(Q,dκ)
]3

= V κ
pot⊕V κ

sol.

It follows that the orthogonal decomposition
[
L2(Ω × Q,dx × κ)

]2
= L2(Ω, V κ

pot) ⊕ L2(Ω, V κ
sol) holds, where

the two-scale L2-spaces of κ-potential and κ-solenoidal vector fields are the closures of the linear spans of

matrices we(u), w ∈ C∞0 (Ω), u ∈
[
C∞per(Q)

]2
and wv, w ∈ C∞0 (Ω), v ∈ V κ

sol, with respect to the norm of[
L2(Ω×Q,dx× dκ)

]3
. When κ is the Lebesgue measure on Q, we simply write Vpot, Vsol,

[
L2(Ω×Q)

]3
.

2.4 Convergence on the stiff component

We first study the relationship between u(x,y) and û(x,y).

Definition 2.6. Denote ψhε := ψh(·/ε), where ψh ∈
[
L2

per(Q,dµ
h)
]2

extended to R2 by Q-periodicity.

1. We say that the sequence ψhε weakly converges to ψ ∈
[
L2

per(Q,dµ)
]2
, and write ψhε ⇀

µhε

ψ, if

∫
Q

ψhε · ξ(·/ε) dµhε −→
∫
Q

ψ · ξ dµ ∀ξ ∈
[
C∞per(Q)

]2
,

where the test function ξ is extended to R2 by Q-periodicity.

2. We say that ψhε strongly converge to a function ψ ∈
[
L2

per(Q,dµ)
]2
, and write ψhε →

µhε

ψ, if

∫
Q

ψhε · ξ
h(·/ε) dµhε −→

∫
Q

ψ · ξ dµ if and only if ξhε ⇀
µhε

ξ.

Proposition 2.6. If uhε (x)
2
⇀ u(x,y) (see Appendix) and ψhε →

µhε

ψ, then

∫
Ω

uhε ·ψ
h
εϕdµhε −→

∫
Ω

∫
Q

u(x,y) ·ψ(y)ϕ(x) dµ(y)dx ∀ϕ ∈ C∞0 (Ω).

Proof. Since ψhε →
µhε

ψ, it follows that for all ζ ∈
[
Cper(Q)

]2
the relation

lim
ε→0

∫
Ω

∣∣ψhε − ζ(·/ε)
∣∣2 dµhε = |Ω|

∫
Q

|ψ − ζ|2 dµ (2.7)

holds. Notice further that, by the Hölder inequality, one has∣∣∣∣∫
Ω

uhε ·
(
ψhε − ζ(·/ε)

)
ϕdµhε

∣∣∣∣ ≤ max
Ω
|ϕ|‖uhε‖[L2(Ω,dµhε )]2

(∫
Ω

∣∣ψh − ζ(·/ε)
∣∣2dµhε

) 1
2

.

The weak two-scale convergence of uhε and the relation (2.7) imply that

lim sup
ε→0

∣∣∣ ∫
Ω

uhε ·ψ
h
εϕdµhε −

∫
Ω

∫
Q

u(x,y) · ζ(y)ϕ(x) dµ(y)dx
∣∣∣

= lim sup
ε→0

∣∣∣∣ ∫
Ω

uhε ·ψ
h
εϕdµhε −

∫
Ω

uhε · ζ(·/ε)ϕdµhε

∣∣∣∣ ≤ C(∫
Q

|ψ − ζ|2 dµ

) 1
2

∀ζ ∈
[
Cper(Q)

]2
.

The claim now follows by choosing an approximation sequence ζ = ζk such that ζk → ψ in
[
L2

per(Q,dµ)
]2

.

Theorem 2.1. The function û is the trace of u on F1, in the sense that u(x,y) = û(x,y) a.e. x ∈ Ω, λ-a.e.
y ∈ F1.

Proof. For all functions ψ̂ ∈
[
L2

per(Q,dµ)
]2

we define

ψ(y) :=

{
ψ̂(y), y ∈ F1 ∩Q,
0, y ∈ Q\F1,

ψh(y) :=
∑
j

ψhj (y), y ∈ Fh1 ∩Q. (2.8)

6



where for each link Ij of F1 ∩Q, we define ψhj (y) to equal ψ̂(y∗), whenever y is in the h-neighboughood of Ij
and |y − y∗| = dist(y, Ij), y∗ ∈ Ij . Notice that for all ϕ ∈ C∞0 (Ω) one has∫

Ω

uhε ·ψ
h
εϕdµhε =

∫
Ω

uhεχ
h
1 (·/ε) ·ψhεϕdµhε +

∫
Ω

uhεχ
h
0 (·/ε) ·ψhεϕdµhε . (2.9)

Due to the fact that ψhε →
µhε

ψ̂, one has

∫
Ω

uhε ·ψ
hϕdµhε −→

1

2

∫
Ω

∫
Q

u(x,y) · ψ̂(y)ϕ(x) dλ(y)dx, ε→ 0. (2.10)

Similarly, for the first integral on the right-hand side of (2.9), one has∫
Ω

uhεχ
h
1 (·/ε) ·ψhεϕdµhε −→

1

2

∫
Ω

∫
Q

û(x,y) · ψ̂(y)ϕ(x) dλ(y)dx. (2.11)

Finally, the second integral on the right-hand side of (2.9) goes to zero as ε→ 0, by virtue of the convergence

uhεχ
h
0 (·/ε) 2

⇀ u(x,y)χ0(y). It follows that the limit integrals in (2.10) and (2.11) coincide, as required.

The next theorem, proved in [14], describes the structure of the two-scale limit û. Recall that on the stiff

component Fh,ε1 the symmetric gradient is bounded and hence εχε,h1 e(uhε )→ 0 in
[
L2(Ωε,h1 ,dλhε )

]3
.

Theorem 2.2 (Theorem 12.2 in [14]). 1. It follows from χε,h1 uhε
2
⇀ û(x,y), εχε,h1 e(uhε )→ 0 in

[
L2(Ωε,h1 ,dλhε )

]2
,

that ∀x ∈ Ω, λ-a.e. y ∈ F1 one has û(x,y) = u0(x) + χ(x,y) where u0 ∈
[
H1

0 (Ω)
]2

and χ ∈ L2(Ω, R̂).
2. Define the “λ-homogenised” tensor Ahom

λ by the minimisation problem

Ahom
λ ξ · ξ = min

v∈V λpot

∫
Q

A1(ξ + v) · (ξ + v) dλ ∀ξ ∈ Sym3. (2.12)

Suppose that Ahom
λ is positive-definite and that periodic rigid displacements take the form (2.6). If χε,h1 uhε

2
⇀

u0(x) +χ(x,y) and the sequence
{
χh,ε1 e(uhε (x))

}
is bounded in

[
L2(Ωε,h1 ,dλhε )

]3
, then, up passing to a subse-

quence, one has:

i) e(uhε (x))
2
⇀ e(u0(x)) + v(x,y) in

[
L2(Ωε,h1 ,dλhε )

]3
, where v(x,y) ∈ L2(Ω, V λpot);

ii) A1(·/ε)e(uhε )
2
⇀ Ahom

λ

{
e
(
u0(x)

)
+ v(x,y)

}
∈ L2(Ω, Vsol).

The description of the structure of the two-scale limit of χh,ε1 uhε is a consequence of several statements
proved in [18] Combining this with Theorem 2.1, we obtain the following result (cf. [18, Theorem 3.1]).

Theorem 2.3. In the formula û(x,y) = u0(x) +χ(x,y), the transverse displacement χ is an element of the
space L2(Ω,R0

1).

2.5 Convergence on the soft component

Theorem 2.4. For all sequences {uhε} ⊂
[
H1(Ω)

]2
such that uhε

2
⇀ u(x,y) in

[
L2(Ωε,h0 ,dµhε )

]2
and εχh,ε0 e(uhε )

2
⇀

p̃(x,y) in
[
L2(Ωε,h0 ,dµhε )

]3
, one has u ∈

[
L2(Ω, H1(Q))

]2
and p̃(x,y) = ey

(
u(x,y)

)
a.e. x ∈ Ω, y ∈ Q.

Proof. For each δ > 0, consider a C∞-domain Qδ such that Q ∩ F 2δ
0 ⊂ Qδ ⊂ Q ∩ F δ0 and the set

Xδ := {b ∈
[
C∞(Qδ)

]3
: b n|∂Qδ = 0

}
where n is the unit normal to ∂Qδ. For b ∈ Xδ, a = div b in Qδ, consider the functions

ã(y) :=

{
a(y), y ∈ Qδ,
0, 0 ∈ Q\Qδ,

b̃(y) :=

{
b(y), y ∈ Qδ,
0, 0 ∈ Q\Qδ,

(2.13)
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extended to R2 by Q-periodicity. Then for sufficiently small ε > 0 (recall that h→ 0 as ε→ 0) the following
identity holds:

ε

∫
Ωε,h0

b̃(·/ε) · e(ψ) dµhε = −
∫

Ωε,h0

ã(·/ε) ·ψ dµhε ∀ψ ∈
[
H1

0 (Ω)]2. (2.14)

Setting ψ = ϕuhε , ϕ ∈ C∞0 (Ω), in (2.14) yields

ε

∫
Ωε,h0

b̃(·/ε)ϕ · e(uhε ) dµhε + ε

∫
Ωε,h0

b̃(·/ε) · 1

2

(
uhε ⊗∇ϕ+∇ϕ⊗ uhε

)
dµhε = −

∫
Ωε,h0

ã(·/ε) · ϕuhε dµhε .

Passing to the limit in the last identity as ε→ 0 and using the fact that ã, b̃ vanish in Q \Qδ, we obtain∫
Ω

∫
Qδ

p̃(x,y)ϕ(x) · b(y) dydx = −
∫

Ω

∫
Qδ

u(x,y)ϕ(x) · a(y) dydx.

As ϕ ∈ C∞0 (Ω) is arbitrary, it follows that∫
Qδ

p̃(x,y) · b(y) dy = −
∫
Qδ

u(x,y) · a(y) dy a.e. x ∈ Ω. (2.15)

Taking divergence-free fields b ∈ Xδ in (2.15) we infer (see e.g. [6]) the existence of v ∈
[
L2(Ω, H1(Qδ))

]2
such that p̃(x,y) = ey

(
v(x,y)

)
, y ∈ Qδ, which implies∫

Qδ

v(x,y)·a(y) dy =

∫
Qδ

u(x,y)·a(y) dy a.e. x ∈ Ω, ∀a ∈
{

div b|b ∈ Xδ
}

=

{
a ∈ C∞(Qδ) :

∫
Qδ

a = 0

}
.

Using the density in
[
L2(Qδ)

]2
of vector functions a having the above representation implies that v(x,y) and

u(x,y) differ by a constant for y ∈ Qδ, hence p̃ = ey(v) = ey(u), a.e. y ∈ Qδ. By virtue of the arbitrary
choice of the parameter δ, we conclude that p̃ = ey(u) for a.e. y ∈ Q.

3 Homogenisation theorem

The proof of the homogenisation theorem is similar to the proof of the corresponding homogenisation theorem
in [18]. However, modifications in the structure of the extension functions are required to prove the result in
question. Accordingly, the limit equation includes two coupled microscopic equations which uniquely determine
the function U on the soft inclusions and its trace χ on the limit network.

3.1 Homogenised system of equations

Definition 3.1. We denote by V the energy space consisting of vectors

u(x,y) = u0(x) + U(x,y), u0 ∈
[
H1

0 (Ω)
]2
, U ∈

[
L2
(
Ω, H1

per(Q)
)
]2,

U(x,y) = χ(x,y), a.e. x ∈ Ω, λ-a.e. y ∈ Q, χ ∈ L2(Ω, R̂0).

We refer to u ∈ V as the solution of the homogenised problem if∫
Ω

Ahom
λ e(u0) · e(ϕ0) dx +

θ2

6

∫
Ω

∫
Q

k̂χ′′ ·Φ′′ dλdx +
1

2

∫
Ω

∫
Q

A0ey(U) · ey(Φ) dydx

+

∫
Ω

∫
Q

(
u0 + U

)
·ϕdµdx =

∫
Ω

∫
Q

f ·ϕ dµdx ∀ϕ(x,y) = ϕ0(x) + Φ(x,y) ∈ V, (3.1)

where Ahom
λ is given by (2.12), and k̂ :=

〈
A−1

1 η · η
〉−1

, η = τ ⊗ τ .
The identity (3.1) is equivalent to a system of partial differential equations, which is obtained by considering

various classes of test functions in (3.1). First, taking functions of the form ϕ(x,y) = ϕ0(x) yields

− divAhome(u0) + u0 + 〈U〉 = f , u0 ∈
[
H1

0 (Ω)
]2
. (3.2)
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In order to obtain additional equations, test functions of the form ϕ(x,y) = Φ(x,y) are considered where two
restrictions of Φ will be examined. Consider first those test functions which have support exclusively on the
limiting network F1 followed by those test functions that are supported by the soft component. If the tensor
A0 is isotropic, then the desired system of PDE’s obtained take the form

θ2k̂

3
∂4

2χ1 + (k1 + k2)∂1U2 +
(
(u0)1 + χ1

)
= f1, (3.3)

− 1

2

{
k1∆U + (k1 + 2k2)∇div U

}
+ u = f , (3.4)

U(x, ·) ∈
[
H1

per(Q)
]2
, x ∈ Ω, U(x,y) = χ(x,y) x ∈ Ω, λ-a.e. y ∈ F1, χ ∈ L2(Ω,R0

1). (3.5)

For a general periodic framework F1 where on each link there is a positively orientated pair of vectors τ , ν
with τ pointing along the link and ν orthogonal to the link. Then equation (3.3) in this case is given as

θ2k̂

3
∂4
τχ

(ν) + (k1 + k2)∂νU
(ν) + u(ν) = f (ν), (3.6)

where ∂τ , ∂ν denote differentiation along the links and in the direction normal to the links.

3.2 Extension theorem

Before proving the main result, we recall the description of a class of functions that extend periodic rigid
displacements in R0

1 on the framework F1 to the rod network Fh1 , introduced in [18].

Definition 3.2. Let D denote the space of functions g ∈ R0
1 such that:

1. The function g is infinitely smooth outside a neighbourhood of the nodes of the network F1;

2. In a neighbourhood of each node y0, the function g takes the form g(y) = C
(
ω(y) − ω(y0)

)
, y ∈ F1,

where C is a constant, ω(y) := (−y2, y1).

The following two statements are proved in [18].

Proposition 3.1. The set D is dense in R0
1.

Proposition 3.2. For each g ∈ D, there exists an extension gh = gh(y) to the network Fh1 such that

1. The symmetric gradient ey(gh) is zero in a neighbourhood of each node,

2. The following asymptotic formula holds:

A1ey(gh) = h
[
(g · ν)′′ρ

]
h
σ +O(h2), h→ 0, (3.7)

where
σ := −(τ ⊗ τ )β(·/ε), β(y) := h−1ν · (y − y0) on the h-rod,

ρ := (A1η · η)−1, η := τ ⊗ τ ,[
(g · ν)′′ρ

]
h

is the natural extension of the function (g · ν)′′ρ to Fh1 .

3. The convergence gh → g holds in
[
L2(Q,dµh)

]2
.
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3.3 Convergence of solutions

Theorem 3.1. Let uhε solve the integral identity (1.1) with right-hand side f = fh,ε, for all ε, h, and suppose

that h/ε→ θ > 0 as ε→ 0. If fh,ε
2
⇀ f then uhε

2
⇀ u, and u satisfies (3.1). If fh,ε

2→ f then uhε
2→ u and, in

addition, there is convergence of the elastic energies.

Proof. Setting ϕ = ϕ0(x) in the identity (1.1) and using Theorems 2.2, 2.4, we obtain∫
Ω

Ahom
λ e(u0) · e(ϕ0) dx +

∫
Ω

∫
Q

u ·ϕ0 dµdx =

∫
Ω

∫
Q

f ·ϕ0 dµdx. (3.8)

Suppose that G ∈
[
H1

per(Q)
]2
, g ∈ R0

1 such that G(y) = g(y) for λ-a.e. y ∈ ∂Q. Consider the function

Gh
ε = G̃h

ε + g̃h, where g̃h is the extension of gh to Q such that g̃h
∣∣
Fh0

is A0-harmonic, and G̃h
ε ∈

[
H1

0 (Q)
]2

solves the problem∫
Q

(A0χ
h
0 + ε−2A1χ

h
1 )e(G̃h

ε ) · e(ψ)dµh =

∫
Q

A0χ
h
0e(G) · e(ψ)dµh ∀ψ ∈

[
H1

0 (Q)
]2
. (3.9)

Clearly, one has Gh
ε ∈

[
H1

per(Q)
]2

for all ε, h. Taking in (1.1) test functions ϕ = ϕh,ε = wGh
ε (·/ε), where

w ∈ C∞0 (Ω), yields

ε−1

∫
Ωε,h1

A1(·/ε)e(uhε ) · ey(gh)(·/ε)w dµhε +

∫
Ωε,h1

A1(·/ε)e(uhε ) · (Gh
ε (·/ε)⊗∇w) dµhε

+ ε

∫
Ωε,h0

A0(·/ε)e(uhε ) · ey(G)(·/ε)w dµhε

+ ε2

∫
Ωε,h0

A0(·/ε)e(uhε ) · (Gh
ε (·/ε)⊗∇w) dµhε =

∫
Ω

(fh,ε − uhε ) ·Gh
ε (·/ε)w dµhε , (3.10)

We denote the four integrals on the left-hand side of (3.10) by Ij(ε), j = 1, 2, 3, 4. It follows from the L2-
boundedness of the sequence εe(uhε ) and the fact that A1

(
e(u0)+v(x,y)

)
is pointwise orthogonal to the matrix

g ⊗ ∇w (see [13, Lemma 5.3]) that the integrals I4(ε) and I2(ε) tend to zero as ε → 0. By the convergence
results on the soft component discussed in Section 2.5, it is seen that

lim
ε→0

I3(ε) =
1

2

∫
Ω

∫
Q

A0ey(u) · ey(g)w dydx.

The following lemma is proved in [18].

Lemma 3.1. The two-scale convergence

h

ε
e(uhε ) · σ(y)

2
⇀

θ2

3
(χ · ν)′′ττ (3.11)

holds, where σ is the function defined in Proposition 3.2.

It follows from the above lemma that

lim
ε→0

I1(ε) =
θ2

6

∫
Ω

∫
Q

k̂χ′′ · g′′w dλdx. (3.12)

Finally, we prove the following lemma.

Lemma 3.2. The sequence Gh
ε converges to G in L2(Q) as ε→ 0.

Proof. We start by using the Poincaré-type inequality

‖U‖L2(Q) ≤ Cθ
∫
Q

(ε2χh0 + h−1χh1 )e(U) · e(U)dx, Cθ > 0, (3.13)

10



which holds whenever h/ε2 → θ as ε → 0. Indeed, since the tensors A0 and A1 are positive definite, the
inequality

C̃−1‖Gh
ε −G‖L2(Q) ≤

∫
Qh1

A1

(
e(Gh

ε )− e(G)
)
·
(
e(Gh

ε )− e(G)
)
dµhε

+ ε2

∫
Qh0

A0

(
e(Gh

ε )− e(G)
)
·
(
e(Gh

ε )− e(G)
)
dµhε (3.14)

holds, where the constant C̃ depends of Cθ in (3.13) and the ellipticity constants cj of Aj , j = 0, 1. Setting

first ψ = G̃h
ε and then ψ = G− g̃hε in (3.9) we obtain∫

Q

(A0χ
h
0 + ε−2A1χ

h
1 )e(G̃h

ε ) · e(G̃h
ε )dµh =

∫
Q

A0χ
h
0e(G) · e(G̃h

ε )dµh, (3.15)

∫
Q

(A0χ
h
0 + ε−2A1χ

h
1 )e(G̃h

ε ) · e(G− g̃hε )dµh =

∫
Q

A0χ
h
0e(G) · e(G− g̃hε )dµh. (3.16)

Using (3.15) and (3.16) to re-write the right-hand side of (3.14) yields the estimate

C−1‖Gh
ε−G‖L2(Q) ≤ ε2

∫
Qh0

A0

{
e(g̃h)·e(g̃h−G)+e(G)·e(G̃h

ε+g̃h−G)
}

+

∫
Qh1

A1e(g̃h−G)·e(g̃h−G) (3.17)

Further, in view of the uniform boundedness of the first integral in (3.17) and convergence∫
Q

A1e(G) · e(G)dµh
h→0−→

∫
Q

A1e(g) · e(g)dµ = 0,

where the limit vanishes by virtue of g ∈ R1, we infer the claim of the lemma.

Passing to the limit in (3.10 ) as ε→ 0 we obtain

θ2

6

∫
Ω

∫
Q

k̂χ′′ · g′′w dλdx +
1

2

∫
Ω

∫
Q

A0ey(u) · ey(G)w dydx =

∫
Ω

∫
Q

(f − u) ·Gw dµdx, (3.18)

Adding together the identities (3.8) and (3.18) and denoting ϕ(x,y) = ϕ0(x) + Φ(x,y), the homogenised
formulation (3.1) follows.

In order to prove strong convergence of solutions when fh,ε
2→ f , consider another version of problem (1.1)

with right-hand sides gh,ε
2
⇀ g :

vhε ∈
[
H1

0 (Ω)
]2
,

∫
Ωε,h1

A1(·/ε)e(vhε ) · e(ϕ) dµhε + ε2

∫
Ωε,h0

A0(·/ε)e(vhε ) · e(ϕ) dµhε

+

∫
Ω

vhε ·ϕdµhε =

∫
Ω

gh,ε ·ϕdµhε ∀ϕ ∈
[
H1

0 (Ω)
]2
. (3.19)

Setting ϕ = uhε in the above, ϕ = vhε in the original problem (1.1) and then subtracting one from the other
yields

lim
ε→0

∫
Ω

uhε · gh,ε dµhε =

∫
Ω

vhε · fh,ε dµhε =

∫
Ω

∫
Q

v · f dµdx =

∫
Ω

∫
Q

u · g dµdx, (3.20)

where where v solves the homogenised equation with right-hand side g.
Finally, using a standard two-scale convergence property (see e.g. [2]), we obtain

lim
ε→0

{∫
Ωε,h1

A1(·/ε)e(uhε ) · e(uhε ) dµhε + ε2

∫
Ωε,h0

A0(·/ε)e(uhε ) · e(uhε ) dµhε

}
=

∫
Ω

∫
Q

|f |2 dµdx−
∫

Ω

∫
Q

|u|2 dµdx

=

∫
Ω

Ahome(u0) · e(u0) dx +
θ2

6

∫
Ω

∫
Q

k̂χ′′ · χ′′ dλdx +
1

2

∫
Ω

∫
Q

A0ey(U) · ey(U) dydx,

as required.
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4 Convergence of spectra

Here we establish the convergence of the spectra of the operators associated with (1.1) to the spectrum given
by the limit problem (3.1). We then calculate the spectrum on a model network and it to the spectrum of the
analogous problem without high-contrast.

4.1 Spectrum of the limit operator

Consider the bilinear forms (cf. (3.1))

bmacro(u0,ϕ0) =

∫
Ω

Ahome(u0) · e(ϕ0) dx, u0,ϕ0 ∈
[
H1

0 (Ω)
]2
, (4.1)

bmicro(U,Φ) =
θ2

6

∫
Q

k̂χ′′ ·Φ′′ dλ+
1

2

∫
Q

A0ey(U) · ey(Φ) dy, U,Φ ∈ Ṽ , (4.2)

where the space Ṽ consists of functions in
[
H1

per(Q)
]2

whose trace on Q ∩ F1 coincides with a rigid-body
motion λ-a.e. The spectral problem associated with (3.1) can be written in the form

bmacro(u0,ϕ0) = s
(
u0 + 〈U〉,ϕ0

)
[L2(Ω)]2

∀ϕ0 ∈
[
H1

0 (Ω)
]2
, (4.3)

bmicro(U,Φ) = s
(
u0 + U,Φ

)
[L2(Q,dµ)]2

∀Φ ∈ Ṽ .

Let {φn}n∈N be an orthonormal set of eigenvectors with non-zero average for the bilinear form bmicro with
corresponding set of eigenvalues {ωn}n∈N :

bmicro(φn,Φ) = ωn (φn,Φ)[L2(Q,dµ)]2 ∀Φ ∈ Ṽ . (4.4)

Assuming that the values s is outside the spectrum σ(bmicro) of the form bmicro, the function U(x,y) is written
as a series in terms of eigenfunctions {φn}n∈N :

U(x,y) = s

∞∑
n=1

〈φn〉 · u0(x)

ωn − s
φn(y). (4.5)

Substituting this expansion for U(x,y) into (4.3), we obtain

bmacro(u0,ϕ0) =
(
β(s)u0,ϕ0

)
[L2(Ω)]2

∀ϕ0 ∈
[
H1

0 (Ω)
]2
, β(s) := s

(
I + s

∞∑
n=1

〈φn〉 ⊗ 〈φn〉
ωn − s

)
. (4.6)

Versions of the function β appear in the study of scalar [13] and vector ([12], [19], [20]) homogenisation
problems. The following statement is a straightforward modification of a result in [20].

Proposition 4.1. Denote by H the closure in
[
L2(Ω × Q,dx × dµ)

]2
of the energy space V from Definition

3.1, and consider the operator A whose domain consist of all solution pairs (u0,U) to the identity

bmacro(u0,ϕ0) + bmicro(U,Φ) = (f ,ϕ0 + Φ)[L2(Ω×Q,dx×dµ)]2 ∀ϕ0 + Φ ∈ V, (4.7)

as the right-hand side f runs over all elements of H, and defined by f = A(u0 + U) if and only if (4.7) holds.
Then s ∈ C belongs to the resolvent set ρ(A) of the operator A if and only if s /∈ σ(bmicro) and the matrix

β(s) is negative definite:
ρ(A) = ρ(bmicro) ∩

{
s |β(s) < 0

}
, (4.8)

where ρ(bmicro) denotes the resolvent set of the operator generated by the form bmicro in the closure of 4 Ṽ in[
L2(Q)

]2
.

4Note that the domain of this operator is dense in this closure.
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Proof. Suppose that s belongs to the right-hand side of 4.8. We argue that the problembmacro(u0,ϕ0)− s
(
u0 + 〈U〉,ϕ0

)
[L2(Ω)]2

= (f ,ϕ0)[L2(Ω)]2 ,

bmicro(U,Φ)− s
(
u0 + U,Φ

)
[L2(Q,dµ)]2

= (f ,Φ)[L2(Q,dµ)]2 .
(4.9)

has a solution for every f ∈ H given that s satisfies the required assumptions of the lemma. Since s /∈ Sp(bmicro),
it follows that U can be written in the form (4.5) with u0 replaced by su0 + f . Substituting this into the first
equation given in system (4.9) yields

bmacro(u0,ϕ0)−
(
β(s)u0,ϕ0

)
[L2(Ω)]2

=
(
s−1β(s)f ,ϕ0

)
[L2(Ω)]2

, (4.10)

Since β(s) is negative definite, the operator induced by the bilinear form on the left-hand side is invertible
and thus (4.10) is solvable.

To prove the converse, assume that s ∈ ρ(A). It is clear that s cannot be in the spectrum of bmicro. Assume
that β(s) is positive definite for some s ∈ ρ(A). Hence problem (4.9) is uniquely solvable for any f . Therefore
(4.10) is solvable all right-hand sides, which is a contradiction.

We note (see [19]) that all points of nontrivial spectrum for the periodic problem induced by the bilinear
form bmicro are at those points s where the matrix β(s) is singular. The trivial spectral points are ω = 0 which
corresponds to constant eigenfunctions and those ω ∈ Sp(bmicro) such that the corresponding eigenfunctions
have zero average. Moreover, as a consequence of the last result, when the matrix β(s) is positive definite there
is no solution and hence values of s for which β(s) is negative definite correspond to a gap in the spectrum.
The matrix β(s) = {βij(s)} is negative definite if and only if the following conditions are satisfied:

β11(s) = s

(
1 + s

∞∑
n=1

(
c
(1)
n

)2
ωn − s

)
< 0, detβ(s) > 0,

where c
(i)
n is the ith component of the vector cn := 〈φn〉. Note that after simplification, it can be shown that

detβ(s) = s3

{ ∞∑
n=1

(
c
(1)
n − c(2)

n

)2
ωn − s

+ s

∞∑
n=1

∞∑
m=n+1

[det(cn, cm)]2

(ωn − s)(ωm − s)

}
, det(cn, cm) :=

∣∣∣∣∣c(1)
n c

(1)
m

c
(2)
n c

(2)
m

∣∣∣∣∣ .
If detβ(s) has a zero on the interval (ωn, ωn+1) then, provided this zero is strictly less than the corre-

sponding zero of β11(s) on the same interval, the interval between the these two zeros does not belong to the
spectrum. Should detβ(s) have a turning point in the interval (ωn, ωn+1) then, provided detβ(s) is positive
on the whole interval, there is no spectrum all the way up to the zero of β11(s) on the same interval.

Let {νn}n∈N0
denote the increasing sequence of values for which β11(s) = 0. Let {γn}n∈P denote the

increasing sequence of values for which detβ(s) = 0 where P ⊂ N0. Note that ν0 = γ0 = 0. Hence, provided
γn < νn for all n ∈ P , the spectrum of the limit operator A takes the form:

Sp(A) =

(⋃
n∈P

([ωn, γn] ∪ [νn, ωn+1])

)
∪
( ⋃
n∈N0\P

[νn, ωn+1]

)
∪ {ω′1, ω′2, . . . }.

Therefore, the intervals (γn, νn), n ∈ P and the intervals (ωn, νn) n ∈ N0\P are gaps in the spectrum of the
operator A provided it does not contain a point from the set {ω′1, ω′2, . . . } and γn < νn.

4.2 Proof of convergence

Here we show that the spectra of the original problems converge to the spectrum of the limit problem (3.1).

Definition 4.1. We say that a sequence of sets Xε ⊂ R, ε > 0, converges in the sense of Hausdorff to X ⊂ R
if the following two statements hold:

(H1) For each ω ∈ X , there exists a sequence ωε ∈ Xε such that ωε → ω;
(H2) For all sequences ωε ∈ Xε such that ωε → ω ∈ R, it follows that ω ∈ X .
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Figure 3: Sketch of the graph of β11. The highlighted parts of the s-axis correspond to the regions where
β11(s) is positive and hence there is the possibility for spectrum.

Definition 4.2. We say that a family of operators Aε in
[
L2(Ω,dµhε )

]2
strongly two-scale resolvent convergent

as ε → 0 to an operator A in
[
L2(Ω × Q,dx × dµ)

]2
, and write Aε

2−→ A, if for all f in the range R(A)

of the operator A and for all sequences fhε ∈
[
L2(Ω,dµhε )

]2
such that fhε

2→ f , the two-scale convergence

(Aε + I)−1 fhε
2→ (A+ I)−1 f holds.

Proposition 4.2. If Aε
2−→ A, then the property (H1) holds with Xε = Sp(Aε), X = Sp(A).

Proof. Let Tε := (Aε + I)−1 and T := (A+ I)−1. If s ∈ Sp(A) then t = (1 + s)−1 ∈ Sp(T ). Therefore, for any
δ > 0, there exists a vector f ∈ R(A) such that

‖f‖[L2(Ω×Q,dx×dµ)]2 = 1,
∥∥(T − t)f

∥∥
[L2(Ω×Q,dx×dµ)]2

≤ δ/4.

Consider a sequence fhε ∈
[
L2(Ω,dµhε )

]2
such that fhε

2→ f . Using the definition of strong two-scale resolvent
convergence, one has

lim
ε→0

∥∥(Tε − t)fhε
∥∥

[L2(Ω,dµhε )]
=
∥∥(T − t)f

∥∥
[L2(Ω×Q,dx×dµ)]2

≤ δ/4.

Hence, ‖(Tε − t)fhε ‖L2(Ω,dµhε ) ≤ δ/2 and ‖fhε ‖L2(Ω,dµhε ) ≥ 1/2 for sufficiently small ε. Therefore, the interval
(−δ + t, δ + t) contains a point of the spectrum of the operator Tε. Moreover, every interval centered at s
contains a point of the spectrum of the operator Aε for small enough ε, which completes the proof.

Corollary 4.1. For the operators Ahε defined by the identity

Bh
ε (u,v) = Lhε (v),

where the forms Bh
ε , L

h
ε are defined by (1.2), f = Ahεu, and the operator A is defined in proposition 4.1, the

property (H1) holds with Xε = Sp(Ahε ), X = Sp(A), h = h(ε).

The property (H2) of the Hausdorff convergence does not hold for spectra Sp(Aε) in general, due to the fact
that the soft component may have a non-empty intersection with the boundary of Ω. In addition, sequences
of eigenfunctions of Sp(Aε) may converge to the eigenfunctions of the “Bloch spectrum” associated with the
expression (4.2) κ-quasiperiodic functions, κ ∈ [0, 2π)2. However, a suitable version of (H2) does hold for a
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modified operator family, where the corresponding elements of the soft component are replaced by the stiff
material. More precisely, for each ε, h, denote by Âhε the operator defined similarly to Ahε , with Ωε,h0 and Ωε,h1

in (1.1) replaced by Ω̂ε,h0 and Ω \ Ω̂ε,h0 . Here, the set Ω̂ε,h0 is the union of the sets ε(Q∩Fh0 + n) over all n ∈ Z2

such that ε(Q+ n) ⊂ Ω.

Theorem 4.1. For all κ ∈ [0, 2π), denote by Ṽ κ the space of functions U(y) = eiκ·yU#(y), y ∈ Q, such that

U# ∈
[
H1

per(Q)
]2
, U(y) = χ(y) λ-a.e. y ∈ F1, χ ∈ R̂0

κ ,

where R̂0
κ is the set of κ-quasiperiodic rigid displacements, defined analogously to R̂0, see Definition 2.4.

Consider the bilinear form

bκmicro(U,Φ) =
θ2

6

∫
Q

k̂χ′′ ·Φ′′ dλ+
1

2

∫
Q

A0ey(U) · ey(Φ) dy, U,Φ ∈ Ṽ κ ,

Suppose that of all ε, h, the function uhε ∈
[
H1

0 (Ω)
]2

is the L2-normalised eigenfunction of Âε :

Âεu
h
ε = ωεu

h
ε , ‖uhε‖[L2(Ω,dµhε )]2 = 1. (4.11)

If ωε → ω /∈
⋃

κ Sp(bκmicro), then the eigenfunction sequence uhε is compact with respect to strong two-scale
convergence on Ω.

Proof. The eigenvalue problem (4.11) is understood in the sense of the identity∫
Ω\Ω̂ε,h0

A1(·/ε)e(uhε ) · e(ϕ) dµhε + ε2

∫
Ω̂ε,h0

A0(·/ε)e(uhε ) · e(ϕ) dµhε = ωε

∫
Ω

uhε ·ϕdµhε ∀ϕ ∈
[
H1

0 (Ω)
]2
,

which implies, in particular, that∫
Ω\Ω̂ε,h0

A1(·/ε)e(uhε ) · e(uhε ) dµhε + ε2

∫
Ω̂ε,h0

A0(·/ε)e(uhε ) · e(uhε ) dµhε = ωε.

Denote by Ω̂ε,h1 the union of ε(Q ∩ Fh1 + n) over all n ∈ Z2 such that ε(Q+ n) ⊂ Ω. We claim that for all ε,
h, there exists ũhε such that

e(uhε ) = e(ũhε ) on Ω̂h,ε1 , ũhε ∈
[
H1

0 (Ω)
]2
,

∥∥e(ũhε )
∥∥

[L2(Ω̂ε,h0 )]2
≤ C

∥∥e(uhε )
∥∥

[L2(Ω̂ε,h1 ,dµhε )]2
, (4.12)∫

Ω̂h,ε0

A0(·/ε)e(ũhε ) · e(ϕ) dµhε = 0 ∀ϕ ∈ [H1
0 (Ω)

]2
such that e(ϕ) = 0 in Ω̂ε,h1 ,

where the constant C > 0 is independent of ε, h. Indeed, we can consider ũhε such that zhε := uhε − ũhε solves
the minimisation problem

1

2

∫
Ω̂ε,h0

A0(·/ε)e(v) · e(v) dµhε −
∫

Ω̂ε,h0

A0(·/ε)e(uhε ) · e(v) dµhε 7→ min, (4.13)

over all functions v ∈
[
H1

0 (Ω)
]2

whose restriction to Ω̂h,ε1 is a rigid-body motion with respect to the Lebesgue

measure, i.e. one has e(v) = 0 in Ω̂h,ε1 . Clearly, one has e(zhε ) = 0 in Ω̂ε,h1 and

ε2

∫
Ω̂h,ε0

A0(·/ε)e(zhε ) · e(ϕ) dµhε − ωε
∫

Ω

zhε ·ϕdµhε = ωε

∫
Ω

ũhε ·ϕdµhε ∀ϕ ∈ [H1
0 (Ω)

]2
, e(ϕ) = 0 in Ω̂ε,h1 .

(4.14)

It follows from the bound (4.12) that ũhε is compact with respect to strong convergence in
[
L2(Ω,dµhε )

]2
:

there exists ũ(x,y) such that, up to selecting a subsequence, one has

ũhε → ũ in
[
L2(Ω,dµhε )

]2
, χε,h0 ũhε

2→ χ0(y)ũ(x), (4.15)

where we the second convergence follows from Proposition 2.4.
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Lemma 4.1. Suppose that
[
L2(Ω)

]2 3 fhε
2
⇀ f ∈ H, where the space H is defined in Proposition 4.1. For all

ε, h, consider the function vhε ∈
[
H1

0 (Ωε,h)
]2

such that e(zhε ) = 0 in Ω̂ε,h1 and the following resolvent identity
holds (cf. (4.14)):

ε2

∫
Ωε,h0

A0e(vhε ) ·e(ϕ) dµhε −ωε
∫

Ω

vhε ·ϕ dµhε =

∫
Ω

fhε ·ϕdµhε ∀ϕ ∈
[
H1

0 (Ω)
]2
, e(ϕ) = 0 in Ω̂ε,h1 . (4.16)

Then vhε
2
⇀ v = v(x,y) ∈

[
L2(Ω, Ṽ )

]2
, and∫

Ω

∫
Q

A0ey(v) · ey(ϕ) dydx− ω
∫

Ω

∫
Q

v ·ϕ dµ(y)dx =

∫
Ω

∫
Q

f ·ϕ dµ(y)dx ∀ϕ ∈
[
L2(Ω, Ṽ )

]2
. (4.17)

Proof. Note first that since ωε converges to a point outside the set
⋃

κ Sp(bκmicro), the identity (4.16) does not
have non-zero solutions vhε for fhε = 0 and ωε replaced by any value in some finite neighbourhood of the set
{ωε}ε<ε0 for some ε0 > 0. Hence, for an L2-bounded sequence of the right-hand sides fhε , the functions vhε
that satisfy (4.16) are uniformly bounded in

[
L2(Ω,dµhε )

]2
for ε < ε0.

Further, setting ϕ = vhε in (4.16) and using the fact that A0 is uniformly positive definite yields the uniform
estimate

ε
∥∥χh,ε0 e(vhε )

∥∥
[L2(Ωε,h0 ,dµhε )]2

≤ C

for some positive constant C. Proceeding as in Section 2, and using the fact that Ω̂ε,h0 ∪ Ω̂ε,h1 → Ω as ε → 0,

we extract a subsequence of vhε that weakly two-scale converges to a function v ∈
[
L2(Ω, Ṽ )

]2
and such that

χh,ε0 e(vhε )
2
⇀ ey(v) in

[
L2(Ω,dµhε )

]2
.

Finally, passing to the limit as ε→ 0 in (4.16) yields the identity (4.17). By the uniqueness of solution to
(4.16), the whole sequence vhε weakly two-scale converges to v.

Lemma 4.1 implies that the sequence zhε is compact with respect to weak two-scale convergence, its two-
scale limit z = z(x,y) is a rigid-body motion on F1 and satisfies the identity∫

Ω

∫
Q

A0ey(z) · ey(ϕ) dydx− ω
∫

Ω

∫
Q

z ·ϕ dydx = ω

∫
Ω

∫
Q

ũ ·ϕdydx ∀ϕ ∈
[
L2(Ω, Ṽ )

]2
. (4.18)

Setting ϕ = vhε in the identiy (4.14) and ϕ = zhε in (4.16) yields∫
Ω

zhε · fhε dµhε = ωε

∫
Ω

vhε ·
(
χε,h0 ũhε

)
dµhε ∀ε, h. (4.19)

Taking the limit on both sides of (4.19) as ε → 0, h = h(ε), and using the above convergence properties, we
obtain ∫

Ω

∫
Q

z(x,y) · f(x,y) dµ(y)dx = ω

∫
Ω

∫
Q

v(x,y) · ũ(x) dµ(y)dx.

In particular, setting fhε = zhε and using (4.17) with f = z, ϕ = ũ, and (4.18) with ϕ = z, we infer the
convergence ‖zhε‖[L2(Ω,dµhε )]2 → ‖z‖[L2(Ω×Q,dx×dµ)]2 . Therefore, the sequence zhε strongly two-scale converges
to z, see Proposition 2.3.

4.3 Limit spectrum for model framework

In the following, an explicit calculation of the spectrum for the periodic bilinear form bmicro defined by equation
(4.2) will be given for the case shown in Fig. 2, where the unit cell Q has links labelled I1, I2, I3, I4. Consider
the spectral problem

bmicro(U, φ) = s(U, φ)[L2(Q,dµ)]2 ∀φ, U ∈
[
H1

per(Q)
]2
, U|Oj = 0, (U ·τ j)|Ij = 0, j = 1, 2, 3, 4. (4.20)

Its spectrum can be calculated explicitly by using the Fourier method (see e.g. [3]). Let U be written as a
Fourier series:

U(y) =
∑
n∈Z2

b(n)e2πin·y, n = (n1, n2), (4.21)
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where b(n) =
(
b1(n), b2(n)

)>
are the Fourier coefficients. For completeness, the conditions on the Fourier

coefficients required to be satisfied in order the the eigenfunction U to be in the right space are∑
n1∈Z

b2(n1, n2) = 0 ∀n2 ∈ Z,
∑
n2∈Z

b1(n1, n2) = 0 ∀n1 ∈ Z.

Hence, by substituting the Fourier series (4.21) into (4.20) and using the test functions φj(y) = eje
2πim·y,

m ∈ Z2, j = 1, 2 in (4.20). two algebraic equations are obtained:∑
n∈Z2

Bmicro

(
b(n)e2πin·y, eje

2πim·y) = s
∑
n∈Z2

〈
b(n)e2πin·y, eje

2πim·y〉, j = 1, 2, (4.22)

Using the definition of the bilinear form where the tensor A0 is chosen to be isotropic and applying Fourier
theory, the above equations can be expressed as A(m, s)b(m) = 0, where

A(m, s) :=

16π4θ2k̂

3
m4

2 + 2π2
[
(k1 + k2)m2

1 +
k1

2
m2

2

]
− s, π2(k1 + 2k2)m1m2

π2(k1 + 2k2)m1m2,
16π4θ2k̂

3
m4

1 + 2π2
[
(k1 + k2)m2

2 +
k1

2
m2

1

]
− s

.
(4.23)

Recall that k1, k2 are the Lamé constants and that k̂ = k1(k1 + 2k2)(k1 + k2)−1. Clearly the above system
has a non-trivial solution if and only if detA(m, s) = 0. It should also be obvious that the eigenvalues of the
matrix A(m, s) are also the points of the spectrum of the bilinear form Bmicro.

The characteristic polynomial associated with the matrix A(m, s) is given by the equation

s2 −

{
16π4θ2k̂

3
(m4

1 +m4
2) + π2(3k1 + 2k2)(m2

1 +m2
2)

}
s− π4(k1 + 2k2)2m2

1m
2
2

+

[
16π4θ2k̂

3
m4

2 + 2π2
[
(k1 + k2)m2

1 +
k1

2
m2

2

]] [16π4θ2k̂

3
m4

1 + 2π2
[
(k1 + k2)m2

2 +
k1

2
m2

1

]]
= 0.

In the general case (θ, k1 and k2 arbitrary), it follows that the spectral values for all m1,m2 ∈ Z2 are given by

s(m1,m2) =
1

2

{
16π4θ2k̂

3
(m4

1 +m4
2) + π2(3k1 + 2k2)(m2

1 +m2
2)±

√
D(m1,m2)

}
, (4.24)

where

D(m1,m2) := (m2
1 +m2

2)

{(
16π4θ2k̂

3

)2

(m2
1 −m2

2)2(m2
1 +m2

2)−

− 32π6θ2k̂

3
(k1 + 2k2)(m2

1 −m2
2)2 + π4(k1 + 2k2)2(m2

1 +m2
2)

}
.

The spectrum calculated for the high-contrast, critically scaled model will now be compared with the
spectrum for the model which is critically scaled only. The bilinear form of consideration in this case is simply
the microscopic bilinear form without the second integral, i.e.

B̃micro(U,Φ) =
θ2

3

∫
Q

k̂U′′ ·Φ′′ dλ.

Consider the same geometric setting, i.e. the model network and let the Lamé constants be set k1 = 1 and
k2 = 0. Hence when the critical scale parameter θ = 1, it can easily be seen that the spectral points are at

s̃1(m) =
16π4

3
m4

1, s̃2(m) =
16π4

3
m4

2, m1,m2 ∈ Z.

In this case, s = 0 has multiplicity two and every other point of the spectrum has multiplicity four.
The spectrum in the critically scaled case is distributed (up to a factor) at every fourth power of an integer

with multiplicity four, whereas, in the critically scaled high-contrast case [19], the spectrum is less regularly
distributed with varying degrees of multiplicity.
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