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STABILITY AND CONVERGENCE ANALYSIS OF THE KINEMATICALLY CO  UPLED SCHEME AND
ITS EXTENSIONS FOR THE FLUID-STRUCTURE INTERACTION

MARTINA BUKAC * AND BORIS MUHA T

Abstract. In this work we analyze the stability and convergence prigeof a loosely-coupled scheme, called the kinematicaiypled
scheme, and its extensions for the interaction betweencamipressible, viscous fluid and a thin, elastic structure. céhsider a benchmark
problem where the structure is modeled using a general thictare model, and the coupling between the fluid and strads linear. We
derive the energy estimates associated with the unconditgtability of an extension of the kinematically coupletiame, called thg-scheme.
Furthermore, for the first time we presenpriori estimates showing optimal, first-order in time convergendbe case whef3 = 1. We further
discuss the extensions of our results to other fluid-stradnteraction problems, in particular the fluid-thick sture interaction problem. The
theoretical stability and convergence results are supgavith numerical examples.
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1. Introduction. The interaction between an incompressible viscous fluideanelastic structure has been of
great interest due to various applications in differendalsee e.g [8]). This problemis characterized by highhtno
linear coupling between two different physical phenomehs.a result, a comprehensive study of such problems
remains a challengé [B1]. The solution strategies for fatideture interaction (FSI) problems can be roughly
classified as monolithic schemes and loosely or stronglpleaipartitioned schemes. Monolithic algorithms, see for
example([7[-26, 40, 25,42, 32], consist of solving the ertirepled problem as one system of algebraic equations.
They, however, require well-designed preconditioner$ [2530] and are generally quite expensive in terms of
computational time and memory requirements. Hence, toiristaaller and better conditioned sub-problems,
reduce the computational cost and treat each physical pieman separately, partitioned numerical schemes that
solve the fluid problem separately from the structure probteve been a popular choice. The development of
partitioned numerical methods for FSI problems has beesnsitely studied [19, 20, 13| 2,138,121] 41| [29,[35]6, 5,
[22], but the design of efficient schemes to produce stabtirate results remains a challenge. Moreover, despite
the recent developments, there are just a few works whermeotiheergence is proved rigorously [39] 38| 21, 22].

A classical partitioned scheme, particularly popular irodgnamics, is known as the Dirichlet-Neumann (DN)
partitioned schemé [17, 41, 124]. The DN scheme consistsleingpthe fluid problem with a Dirichlet boundary
condition (structure velocity) at the fluid-structure ifitee, and the structure problem with a Neumann boundary
condition (fluid stress) at the interface. While the DN sché@atures appealing properties such as modularity,
simple implementation and fast computational time, it hasrbshown to be stable only if the structure density is
much larger than the fluid density. This requirement is gasihieved in some applications like aerodynamics, but
not in other applications like hemodynamics where the dgmdiblood is of the same order of magnitude as the
density of arterial walls. In these cases, the energy of iberete problem in the DN partitioned algorithm does
not accurately approximate the energy of the continuouslene, introducing numerical instabilities known the
added mass effef7]. A partial solution to this problem is to sub-iterate fluid and structure sub-problems at each
time step until the energy at the fluid-structure interfackalanced. However, schemes that require sub-iterations,
also known as strongly coupled schemes, are computatjoergilensive and may suffer from convergence issues
for certain parameter values [17, 24].

To circumvent these difficulties, and to retain the main atlvges of partitioned schemes, several new algo-
rithms have been proposed. Methods proposed’in[[23, 41] usenabrane model for the structure that is then
embedded into the fluid problem where it appears as a gereddtobin boundary condition. A different approach,
proposed in[[2,11], splits the fluid and structure problemth@classical way, but combines the coupling conditions
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in a novel way, which improves the convergence rate. Kaakidet al. [4/"44] proposed fictitious-pressure and
fictitious-mass algorithms, in which the added mass effeeiccounted for by incorporating additional terms into
governing equations. However, algorithms proposeflini[2114[44] require sub-iterations between the fluid and
the structure sub-problemsin order to achieve stabilitglifferent approach based on Nitsche’s penalty method [29]
was used in[14, 15]. The formulation in]14,15] still sufidrom stability issues, which were corrected by adding
a weakly consistent stabilization term that includes presssariations at the interface. The splitting error, hogrev
lowers the temporal accuracy of the scheme, which was theeated by proposing a few defect-correction sub-
iterations to achieve an optimal convergence rate. Regertlel partitioned algorithms were proposed[in([6, 5].
Using the von Neumann stability analysis, the authors sdaWat the algorithm proposed inl[6] is weakly stable
under a Courant—Friedrichs—Lewy (CFL) condition, while tldgorithm proposed in[5] is stable under a condition
on the time step which depends on the structure parametezs.tBough the authors do not derive the convergence
rates, their numerical results indicate that both schemeesexcond-order accurate in time.

A loosely-coupled numerical scheme, called the “kinenaditjccoupled scheme”, was introducedin[28]. The
scheme is based on the Lie operator splitting, where the 8odlthe structure sub-problems are fully decoupled
and communicate only via the initial conditions. Due to thpealing features of the kinematically coupled scheme,
such as modularity, stability, and easy implementatiovesd extensions have been proposed that include modeling
FSI between artery, blood flow, and a cardiovascular dewadlec a stent[12], FSI with thick structured [9], FSI
with composite structure5 [11], FSI with poroelastic staues [13], and FSI involving non-Newtonian fluids 33,
[34]. The kinematically coupled scheme has been shown to benditionally stable, circumventing instabilities
associated with the added mass efféci [28/16, 21]. Howéseorder of temporal convergence is orfy(/At)
[39,121], and hence sub-optimal. In order to improve the eamy the extension of the kinematically coupled
scheme, so-calle-scheme, was introduced by the author<’id [13] and “the mergal displacement correction
scheme” was proposed by FernandeZin [21]. Better accurasywshieved iri [13] by introducing a parameter which
controls the amount of the fluid pressure used to load thetsimeisub-problem. In[21] the accuracy is improved by
treating the structure explicitly in the fluid sub-problentahen correcting it in the structure sub-problem. A more
detailed comparison between these two basic extensiormedfihematically coupled scheme is given in Section
[B3. While the incremental displacement correction schisnsapported by the stability and convergence analysis,
the improved accuracy ¢@#-scheme had only been observed numerically [13].

The goal of this work is to understand the mechanism whictid¢a a better accuracy and prove the optimal
convergence result for tHg-scheme. We show that the optimal convergence rate is ahigkien3 = 1 and when
the structure is loaded with the full fluid stress insteadisf pressure. The main result of the paper is Theérei 5.1,
in which we derive the error estimates of the fully discretelppem. Our estimates prove the optimal, first-order
convergence in time and optimal convergence in space.

This paper is organized as follows: We introduce the lineaidfstructure interaction model in Section 2,
deriving the weak formulation of the monolithic problem. eThumerical scheme is presented in Section 3, while
the comparison with the alternative scheme proposedin$fiyen in Sectioh 3]11. The energy estimates associated
with the unconditional stability are derived in Section A.Section 5 we derive tha priori energy estimates and
prove first-order convergence in time. In Secfibn 6 we gdizerthe obtained result to the cases when the structure
is thick or multi-layered. Theoretical results from Sen8c® and 6 are supported by the numerical experiments in
Section 7. Finally, conclusions are drawn in Section 8.

2. Description of the problem. We consider a linear fluid-structure interaction probleneveithe structure is
described by some lower dimensional, linearly elastic rh{fdeexample membrane, shell, plate, etc). In the cases
of nonlinear, moving boundary FSI problems, even the goesif existence of a solution is challenging and we
refer the reader to [39] and references within.

LetQ c RY, d = 2 3, be an open, smooth set af@ = > UT, wherel" represents elastic part of the boundary
while Z represents artificial (inflow or outflow) of the boundary. Vésame that the structure undergoes infinitesimal
displacements, and that the fluid is incompressible, Nelaitgrand is characterized by a laminar flow regime.

Thus, we model the fluid by the time-dependent Stokes equaitiva fixed domai®

pidu =0 o(u,p), O-u=0 inQ x (0,T), (2.1)
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U(ua p)n _pin/out(t)n onxx (OvT)a (22)

u(.,0)=u’ inQ, (2.3)

whereu = (Uj)i=1,..q is the fluid velocityo (u, p) = —pI +2uD(u) is the fluid stress tensaqp,is the fluid pressure,
ps is the fluid densityp is the fluid viscosityr is the outward normal to the fluid boundapy, /¢ is the prescribed
inflow or outflow pressure anB) (u) = (Ou + (Ou)")/2 is the strain rate tensor.

REMARK 1. We could also prescribe other types of boundary conditiansarious parts ok, for example
symmetry boundary condition, slip boundary condition orstip boundary condition. These types of mixed bound-
ary conditions do not effect our analysis. However since rgérderested in simulating a pressure-driven flow and
in order to keep the notation simple, we choose to work ortly dundary conditioff2.2).

The lateral boundary represents a thin, elastic wall whgsauics is modeled by some linearly elastic lower-
dimensional model, given by

PsEOum + ZLon =T onl x (0,T), (2.4)
n(.,0)=n° an(.,0) =Vv° onl, (2.5)

wheren = (ni)i—1,... 4 denotes the structure displacemehts a vector of surface density of the force applied to the
thin structure ps denotes the structure density andenotes the structure thickness. Moreover, we define ahilin
form associated with the structure operator

as(1,€) = [ Zun-£dS  and nom|jn| 3= as(n.).

We assume that operatéfs is such that norni|.||s is equivalent to théd*(I") norm. One example of such operator
is the one associated with the linearly elastic cylindri¢aiter shell used in[[13]. Finally, we prescribe clamped
boundary conditions for the thin structure:

n(0,t) =n(L,t)=0, forte (0,T). (2.6)
The fluid and the structure are coupled via the kinematic gméuhic boundary conditions:

The kinematic coupling condition (continuity of velocity)= én onl x (0,T).
The dynamic coupling condition (balance of contact forcgsy —o(u,p)n  onl x (0,T).

2.1. Weak formulation of the monolithic problem. For a domairs, we denote by] - [| kg the norm in the
Sobolev spaceiX(S) and by]|| - [L2(g the norm inL2(S). We define the following test function spaces

Vi=(HNQ)Y Q' =L*Q), Vo=(H5(M)% V™={(p.8) eV xV el =¢},
forallt € [0,T), and introduce the following bilinear forms
as(up) =2u [ Du): Dig)da,  blp.g)= [ pO-da.
We define nornj| - || associated with the fluid bilinear form #&||r := || D (u)|| 2(q), Yu € Vi

The variational formulation of the monolithic fluid-struce interaction problem now reads: givea (0, T)
find (u,n,p) € VI x VS x Qf with uw = én onT, such that for al(p, £,q) € V' x Qf

pf/ du-cpdw+af(u,so)—b(p,so)+b(q,u)+pse/dm-édmas(n,&):/pin/out(t)so-nds (2.7)
Q r >
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3. The numerical scheme.To solve the fluid-structure interaction problem presete8ection 2, we use a
loosely coupled numerical scheme, called the kinemayicallpled3 scheme. The scheme is based on an operator
splitting method called Lie splitting [27], which separatihe original problem into a fluid sub-problem and a
structure sub-problem. The equations are split in a way $@hthe fluid problem is solved with a Robin-type
boundary condition including the structure inertia. As valsshow later, this is the main key in proving the
stability of the scheme. The structure sub-problem is Idd@ea part of the fluid normal stress obtained from the
previous time step. The amount of stress applied to thetsteits measured by a paramefee [0, 1]. Namely, we
split the normal fluid stress as

on=on—LBon+Bon.
—— N — —
Part | Part Il
Part Il in the equation above is used to load the thin strectwhile Part | gives rise to a Robin-type boundary
condition for the fluid sub-problem.

The case8 = 0 corresponds to the classical kinematically coupled sehehich was introduced in [28], where
the fluid and structure sub-problems communicate only \aitlitial conditions. Namely, the structure elasto-
dynamics is driven only by the initial velocity, setting i@al to the fluid velocity from the previous time step.
Including some loading from the fluid, as done[in][10], wasvamdo increase the accuracy of the scheme. The
loading on the structure used [n[10] was introduced in alaimféshion as here, but instead of loading the structure
with the fluid normal stress, it was loaded only by the fluidgstee. This was done because the algorithm presented
there was motivated by biomedical applications (blood flovetigh the compliant vessels), where the pressure is
the leading order term of the fluid stress. However, as wese#l later, for theoretical reasons here we take into
account the full normal stress.

Lett":=nAt forn=1,...,N, whereT = NAt is the final time. To discretize the problem in time, we use the
Backward Euler scheme. We denote the discrete time desviagidy "t = At~ — "),

The kinematically couplefl scheme for the time-discrete problem is given as follows [8&,10] for details):

e Step 1: The structure sub-problem.Find »"*1, andn™** such that

f;n+1 —_ "
PsE——— + L™ = —Bo(u", pP")n onr, (3.1)
"t =gt onr, (3.2)
with boundary conditions:
n™(0) =n™(L) =0. (3.3)

The structure velocity computed in this sub-problem is thsed as an initial condition in Step 2. Note that
the velocity of the fluid does not change in this step.

e Step 2. The fluid sub-problem.Find "1, p"*1 andv"*! such that

pfdtun+1 =0- U(un+lv pn+l) in Q, (34)

O-u™t=0 inQ, (3.5)
,Un+l _ ,l’}n+l

pse———— = —o (™, p" Y+ Bo(u", pP")n onl, (3.6)

utt ="ttt onl, (3.7)

with the following boundary conditions ant
o(u n+l’ pn+1)n = _pin/out(tn+1)n onz, (3.8)

and the initial conditions obtained in Step 1.
Dot" =t"1 and return to Step 1.



REMARK 2. Combining equatiof3.4) with equation(3.8) gives rise to a Robin-type boundary condition for
the fluid velocity. The structure displacement remains anged in this step.

To discretize the problem in space, we use the finite elemetiiad based on a conforming FEM triangulation
with maximum triangle diametdr. Thus, we introduce the finite element spa‘dés: Vf,Q; cQf, andVy C VS,
The fully discrete numerical scheme in the weak formulaisogiven as follows:

e Step 1.Givent™?! € (0,T],n=0,...,N—1,find 6" € VS, with dp) " = 50", such that for alk, € VS
we have

. ,l'}'I:llJrl _ ’UR ) i
P sg/r T EndStasnh T én) = B /r"(UR, Pl €hdS (3.9)

e Step 2.Givens?! computed in Step 1, finfkf! %, ot 1) € Vil x VS, with wfl Y- = o1t andpflt € Q|
such that for allh, 4n,th) € Vyy x VS x Qp, With ¢n|r = 1, we have

n+1_ ﬁﬁ+1

v
Jof /Q deup™ - ondz +as(up ™t on) —b(ph ™, ¢n) + b(an, up ™) + pse /r “T

= B [, PRy ndS+ [ Pinjoult e ndS (3.10)

-ppdS

3.1. Comparison of the two main extensions of the kinematidly coupled scheme.In this section we
illustrate differences between the original kinematicabupled schemé 28], and its extensions: so-cafBed
scheme[[10] and the incremental displacement-correctitberae [[21]. It was proven in_[39] that the original
kinematically coupled scheme (cg8e-= 0) applied to the full, nonlinear moving boundary FSI prablis conver-
gent. Moreover, even though not explicitly stated, it was/en that the splitting error is of order at maét ([39],
formula (67) and proof of Theorem 2). The same was provenlhff# a linear problem (se&[21], Theorem 5.2).

We first consider th@8 scheme and surh (3.1)-(8.2) ahd {3[4)4(3.7). To shortendkegtion in this section, we
denotes" := o (u", p"), Vn. Variablesu"?, v"*1 andn"*? satisfy the following equations:

pichu™t =0. "t inQ, (3.11)

O.-u™1=0 inQ, (3.12)
,Un+1 — "

psE— + L™t = —(o"1n) onT, (3.13)

Ml =t onl, (3.14)

dt,r,nJrl _ ,Ur'l+1 + (f;n+1 _ ,vn+1) onTl. (315)

Notice that this is exactly the monolithic formulation oktleonsidered FSI problem with an additional term
in 3.I8). Therefore, terr@"* — v"*1) accounts for the splitting error. Frof (B.6) we obtain

At At
,8n+l o ,Un+l _ = (o.n+1n _ Bann) _ =
PsE PsE

From equation(3.16) we see that the chgce 1 yields the smallest splitting error because the last teilhegual
zero. Hence, the main goal in our analysis is to take advertbiie correction made by the fluid stress (with- 1)
in order to get better estimates of the splitting error terniclv yield optimal convergence rate.

In order to remedy the problem of sub-optimal accuracy, &@ea [21] proposed a different extension of the
kinematically coupled scheme, so-called “incrementapldisesment-correction” scheme. In the first step of this
scheme, one solves the FSI problem with the explicit treatmithe structure elasticity operatéfsn", correcting
it in the second step. Instead of adding and subtractingdhmal stress from the previous time step, which leads
to the 3 scheme, the incremental displacement-correction schemietained by adding and subtracting the elas-
tic operator%sn" applied to the displacement from the previous time steps Sbheme can also be viewed as a
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kinematic perturbation of the monolithic scheme in thedaing way. Letu"*1, v andn™** be the fluid veloc-
ity, the structure velocity, and the structure displacetnesspectively, obtained in+ 1th step of the incremental
displacement-correction scheme. Then, they satisfy thaifimg equations:

pfdtun+l —0.oM1 inQ, (3.17)

O-u™t=0 inQ, (3.18)
,Un+1 —_ "

sE = +$S"7n+l _ —(0‘”+1n)|r onl, (3.19)

oMLy (f;n+1 _ ,Un+1) _ un+1|r onrl, (3.20)

dy™tt ="t onr, (3.21)

Again, we see that teriis"** —»"*1) accounts for the splitting error, but in this case the spiterror is manifested
as the error in the kinematic coupling condition. Fernansleawed that this scheme has an optimal, first-order
convergence in time[([21], Theorem 5.2).

To summarize, there are two different extensions of therkatécally coupled scheme presented in the literature,
both introduced to improve the accuracy. Both of them canttee splitting error, but in a different manner. The
B scheme first solves the structure problem with the forcimgnfthe fluid computed in the previous time step.
Then, it solves the fluid problem with a Robin-type boundamydition involving the structure inertia. On the other
hand, in the incremental displacement-correction schemedficst solves the whole FSI problem with the explicit
treatment of the elastic operator, and then in the secopctsteects the structure displacement. Both scheme have
the structure inertia included in the fluid step which is ¢alifor the stability. However, one could argue that fhe
scheme is closer to the standard partitioned schemes leeitapsnputes the main part of the structure velocity in
the structure step, while incremental displacement-ctime computes the main part of the structure displacement
in the fluid step and just corrects it in the structure step.

4. Stability analysis. In this section we derive an energy estimate that is assabigith unconditional stability
of algorithm [3.ID){(319). Based on our previous reslil@ find arguments in Sectién 8.1, we expect the optimal
accuracy wheiff = 1. Hence, from here on we ufe= 1 in our analysis.

Leta < ()b denote that there exists a positive constagnindependent of the mesh sikeand the time step
sizeAt, such that < (>)Cb. Let & (uy) denote the discrete kinetic energy of the fluftiv]}) denote the discrete
kinetic energy of the structure, aig(ny)) denote the discrete elastic energy of the structure at ewedm, defined
respectively by

Ps€

pi 1
&t (up) = 7”“?”52(9)’ &(vp) = = lv WRllEry,  Es(nf) = 5”’72”%— (4.1)

The stability of the loosely-coupled scherhe (3.10)1(3%tated in the following result.

THEOREM 4.1. Let {(u}, pp,?n, v, n fo<n<n be the solution of310)(39). Then, the following estimate
holds:

At? AtZN !
ﬁllﬂ(uwapw)nl\@ Z)Hdt up I Ee
AtZN 1

Psf -
+ %”dtnﬂJrlHS"' pAt Z)HUEHHFJF Z)H CHAMEE A [

&t (ul)) + & (v ) + Es(n) +

A
< v (up) + & (vp) + Es(np) + ||‘7(uha PR fo ) + At Z)”pln/out(thrl)HLZ (4.2)



Proof. To prove the energy estimate, we test the problend (3.9) (wghvn,an) = (uf™, vt pitt), and
problem [3.ID) withey, = vﬂ*l dm”+1 Then, after adding them together, multiplying Aty and using identity

1
b 2——b2 5(a—b)? 4.3

we get

P

5 (1R 1)~ IRy + ™~ whlEe ) + 20 DO D Ee) + 55 (10 Eer) ~ IR

Ps€ ~ 1 1
5 (IR = o) + IR = 80 ey ) + zas<nﬂ+1,nﬂ“> ~ el )
1 ~
+2a3(nﬂ+1_77h7772+1—77h At/ Uhvph) ( n+l n+1)dS+At/pm/out tn+1) ntl .d4s

We canceled the intermediate tejfdf, *||? . in the estimate above. Denote iy=At fr o (uf), ph)n- (vy ' — 5 ) dS
the term that corresponds to the splitting error. Froml (@&have

- At
vﬂ“ — vﬂ*l = E (—a(uﬂ“, pﬂ”)n +o(up, pﬂ)n) onrl. (4.4)
Now, we can write# as
At?

_ N1
psE Jr

o (up, pp)n - (o (up, ph)n — o (up vpﬂﬂ) )ds

At?
= 2oz Ul b Iz )~ o (™ Bl e + ooy, PR — o (s o o )

At2

_ n+1
2ps€

(o, PRIn Iz — Nl py ey ) + E o = 5 s . (4.5)

Employing identity [4.5) and summing from= 0 toN — 1, we obtain

AtZN 1

ek e+ S 3 ek B

AtZ pfAZN 1
Er(uf) + & (o) + Es(np )+T”U(uhaph)nHL2(r+ 5

n=

8 ~
+2uAtzOIID uft )2y ) + zon L ofl o) = 61 (ud) + SvR) + En)

At?
+2P Ho'(uhv ph n|||_2(r + At Z)/ pln/out +1 n+1 -ndS (4.6)
Using the Cauchy-Schwarz, the trace, and the Korn inedgslive can estimate

' CAt
0 [ Pl ) mlS < S B g+ O D( e (4.7)

Combining the latter estimates with equatibn{4.6) we ptheedesired energy inequalify.
5. Error Analysis. Inthis section, we analyze the convergence rate of the laieaily coupled3 scheme(319)-
(3.10) when3 = 1. We assume that the true solution satisfies the followisgragtions:
u e HYO, T;H"(Q)) NH?(0, T;LA(Q)), w|r € HY(0, T;H* (1)), (5.1)
pe L?(0,T;HS(Q)), plr € HY(O, T;HS(I)), (5.2)
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n € W (0, T;HK (M) A H2(0, T HK(M) nH3(0,T;LA(T)). (5.3)

To approximate the problem in space, we apply the Lagrarfgidgae elements of polynomial degréefor all the
variables, except for the fluid pressure, for which we usenelgs of degres < k. We assume that our finite
element spaces satisfy the usual approximation propggias that the fluid velocity-pressure spaces satisfy the
discreteinf-supcondition. We introduce the following time discrete norms:

N-1 1/2
_ n+1)2 _ n
leliorao = (85 ") lelheorso = ma el (5.4

whereX € {H¥(Q),HX(I"),F,S}. Note that they are equivalent to the continuous norms siveeise piecewise
constant approximations in time.

Let I be the Lagrangian interpolation operator o¥fo andR; be the Ritz projector ontg? such that for all
nevs

as(n —Rn,&n) =0 Vép € V. (5.5)
Then, the finite element theory for Lagrangian and Ritz mtiges [18] gives, respectively,
1o =10l 20y +hllo = I llary S B0l Yo €VS, (5.6)
and
17— Rells < WKImllernry. ¥m € VS, (5.7)
Let My be a projection operator onf@rz such that
Ip—hpll2ig) < D% Pllksiq),  YPEQ. (5.8)

Following the approach in[21], we introduce a Stokes-likaj@ction operatofS,, B,) : V| —>Vhf X Q,';, defined for
allu eV by

(Svu, Bvu) €V, x Qp, (5.9)
(Sv)|r = In(ulr), (5.10)
ar (Syu, n) — b(Phu, n) = ar (u,n),  Vepn € V) such thatpy|r =0, (5.11)
b(dh, Svu) =0,  Vaoh € Qp. (5.12)

Projection operatad®, satisfies the following approximation properties (seé [Zheorem B.5):
lw — Shuell S Wl pgess . (5.13)

We assume that the continuous fluid velocity lives in the epd€ = {u € V| O-u = 0}. Since the test func-
tions for the partitioned scheme do not satisfy the kinecr@iupling condition, we start by deriving the monolithic

variational formulation with the test functionsW x Vs x Q/: Find (u, 7, p) € V4 x VS x Qf with "1 = gn"+1
onT such that for allen, &, 0n) € Vhf X Vi x Qrf] we have

pf/thun+l"10hdw+af(un+la‘;0h)_b(anrla‘Ph)+p55/|_0tt"7n+l'£hds+as(77n+17£h)

= [ Prjout™ n-ndSt [ oL n(on - g)ds (5.14)
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Notice that here the fluid and the structure test functioasredependent, i.e. we do not satisfy conditigm ) r =
&h. Introducing variablea™! = gyt and ™! = w1, we can rewrite the structure acceleration term as
follows

. . . ,Un+1 _ f;n+1
pse [ dun™ - €ndS—pse [ o™ - 05— pst | &dS
Jr r Jr At
- ~n+l o oon .
+pse /r % - €ndS+ pst /r (Go™ ! — o™ ) - gydS (5.15)
Taking into account the latter equation, the weak formafatf the monolithic problem can be written as
. L 0
Ioli /Q deu" - pnda +ar (u, on) —b(p™ on) +as(n™, &n) + Psf/r —r &ndS

,Un+l_,5n+l
+psf/ T'fhdsz Pf/ (dtun+l_atun+l)'90hdm+Ps€/(dtvn+1—atvn+1)'€hds
r Q r
+ /r o (u™, P (on— &h)dS+ /z Pin/out(t™**)ion - dS (5.16)

To analyze the error of our numerical scheme, we start byraetinig [3.9){(3.10) from[{5.16), giving rise to the
following error equations:

Ps /th(un+1 —uf™) - pndz +ar (u™ ™t —up ™ n) — b(p™ - pht on) — b(an, up ™) +as(n™t —nitt &)

gl _n vﬂJrl vn oMl pntl vﬂJrl vﬂJrl
+pse/|_ < A A ) -&€ndS+ pss/r < A — A -ppdS
~ [ P — o, pin) - (b~ En)dS= 2" (o) +A%(En) + A —&n),  (5.7)
for all (¢n,1n,&n) € Vhf x Vi x Vi§ such thatpp|r = 4, where
Z' (on) = ps /g'z(dtun+1 —qu™?) - ppda (5.18)
A5(&n) = pse [ (A" =A™ grdS (5.19)
1 1 ,vn+1_,5n+l
P (Pn — &n) :/r (0(un+ P Hn—o(u", pM)n+ T) -(Ynh—&n)dS (5.20)

Note that the last term accounts for the operator-spligimgr. Sincev™! = u™1|r = gn"! = v"*, we have
RO(Pn — &n) = / (et p"n—o(u", p")n) - (¥n— &n)dS (5.21)
r

We split the error of the method as a sum of the approximatioor &, and the truncation errod, for r €
{f,9,p,s,v} as follows

e =t = (M S 4 (S - ) = 0714 87, (5.22)
evg+1 — ﬁﬂ+1 (~n+1 _ |h'5n+l) + (|h5n+l_ ~rr11+1) _ 9\[/1+1+ 5\l71+17 (5.23)
e = Pt = (P = M)+ (Mt — ) = 67+ 5 (5.24)
£t =" = " =R + (R - = 63+ 60, (5.25)
e\r;+1 — "1 UEH _ (vn+1 _ |hvn+1) + (|h,vn n+1) 9n+1+ 5n+1 (5.26)
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The main result of this section is stated in the followingatiesn.
THEOREMS. 1. Consider the solutiotun, ph, o, vn,7n) Of (]E)(B:IZ]) with discrete initial datgu?, pd, 2, v, n) =
(Syul, Mhp2, 1h3°, 1hv°, Rin®). Assume that the exact solution satisfies assumpf@is(5.3), and that

PsE 1
st oy
wherey > 0,1 > 0, > 0. Lety = max{y, 5, y3}. Then, the following estimate holds

YAt < 1, < ——

NN NN N_ N N_ N N N N N
[u”™ —up 2@ + lu” —unllizore) 107 —vp e +n =y lls+ [lo(w™, p7)n — o (uy, py)n|lzr

AtL/2
< <Amf1+m2(ml/2 — ; + ylAt),afer W%, + hlg, 1 hetla,

At 1 At 1

K 2 s+1 2

+Ath (At +—+ m + yit )(fl—i—Ath (At +—+ m + yAt )%2,)
where

1 1 L
= ||Geullz2072(0) T Y/HatthLz(O,T;LZ(F)) * ;/”athLZ(O’T;Hl(r)) h 1aonlzorem)
= ||don| 202y,

1 1
B = ;/H”HLZ(O,T;HKH(I')) + | Gull 2071k 1(0)) + 1wllizoHeq) + m el 20.7mke2(ry) + 1ellie(oTHxe1 ()
1
T Hnan(o‘T;Hkﬂ(r)), 2= (14 2 ) 1 laorasesy + [vlleorames

#3= Ptz 07 () || Plzzormerary + IPlliorpsrscry:

¢1= ||atuHEZ(O)T;Hk+l(|'))a C2= | p|‘L2(0,T;Hsr1(r))-

Proof. Due to property[(5]5) of the Ritz projection operator, weehas(00+1, &) = 0. Furthermore, since
M = o™ we havedltl — 00 = 90+ — 7 and 6+1 — 911 = 0. Rearranging the error equatidn (3.17) and
taking the properties above into account, we get
n+1 §h

u - £ndS

Pt /§2dt5?+1-90hdw+af(5?+1,90h) —b(85 ™, n) — b(ah, up ™) + as(88 T, &n) + Ps 8/ A

n+1_ sn+l
+Ps£/ ) Até\, "/’hds_/a( ?.60)m - (vpn— €n)dS= 2" (pn) + Z5(&n) + Z°(vpn — &n)

n+1 on

0y
—pr [ 072 orcle — (672, on) + (6 L n) — ot [ H =t 60

+ [[oO1.6p)m - (¥n—€nds (5.27)
for all (¢n,¥n, &n) € th x Vy x Vi§ such thatpp|r = 1. We proceed by choosing test functiopg = 6?*1,% =
oM o = 5{,‘*1 and¢n = 0071, Thanks to[(5.12), the pressure terms simplify as follows

—b(3p ", 8% —b(op ™ uptt) = —b(85, Sutt) = 0. (5.28)
Multiplying equation[(5.2]7) byAt and summing over & n< N — 1, we get

PfAt

E(8N) + &8 + zndta““n +2HNZH5“”||F+pS£ZJIM"“ 8322y
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AN
pS Z H6n+1 6n+1”L2 + At %as 5n+1 5n+1 At %/ 5n+1 6\[/1+1)dS: & (6?)-}-(9@\/(58)
+At % 5n+1 +%5(5n+1) %05(5n+1 5n+1)) Pt %/ d[0n+1 5n+1d:13 At Z ar ( 0n+1 5n+1)

At Zjb (6071 6™ — peeat Z; / Ot 50 dS At Z; / (Mo shds  (5.29)
For the termAt 3 N"¢ as(62+1, 57"1), we proceed as follows

At Z) 6n+1 5n+1 — At Z) 6n+1 dt6n+1_|_| ~N+1 thtnn+1) :53(521)—55(52)

At2
Z)”dt(anrl”S'i_At Z)as 6n+1 |h~n+1 thtnn+1).

Note that, SInCQ;”‘Jrl _ ,Un+1 |h ~n+1 tht,r’nJrl — |h,vn+1 _ ,Un+1+,vn+l_ tht,r’nJrl — —03+1+d103+1—|— at,r,nJrl_
dn™tL. Hence, using propert{ (3.5) of the Ritz projection operalauchy-Schwartz and Young’s inequalities, we
have

Aty N

N—-1
At as(0 Ind" ! — Rudkn™) ZJH@““HSJr Z (|65 13+ At Zf%e (601 (5.30)
=0

for y > 0, whereZ®(60+1) = ag(68+L, g™t — dip™+1).
To estimate the last term on the left hand sidé of (5.29), vie thatd! ! — 57" = — (v — §11). Further-
more, adding and subtracting the continuous velocity asdsure on the right hand side bf (4.4) , we have

At
Ps€
Employing the identity above, we have

oyt —optt = (_U(shu“+1 — & Mt = 8 + o (S — 67, Myp" — 5g)n) onl. (5.31)

2N 1
At Z; / (8 5“+1)ds__i / —o (671, &M )n + (87, 8)n)dS
7
Atz N—1
Yog 2 [o(6napm (<o (S = u). Mo~ ) m) dS (5.32)
P,

To estimate tern7;, we apply identity[(4.8) as follows

tZN ! n+l sn+l n sn At? N <N
= ot 2 / o (87,05 )+ o (87, 8))ndS= 5 o (87, 8l
At2 At2 N-1
2p£H o (69,892, oo 20” (877,85 )n — o (87, 8)n 2z r . (5.33)

To estimate the last term in the equation above, we agairdestify [5.31)[[41) and Young’s inequality wigh > 0
as follows

AtZNl n+1 sn+l n tZNl nl n n+1 n
%H o (67,00 )n — o (87, 0p)n| (r) Zpsggn =), Ma(p" - pM)n)

2ps€



2 N-1
At n+1

Ps€ ; cni1 n+1 n n+1_ n 2
+_(6 6 H 2p < %” u )7r|h(p —-p )’I’L) HLZ(I')

Psf Z H5n+1 5n+1||L2 +At%/ 5n+1 5n+1) (Sn(u”l—u”),ﬂh(pnﬂ—pn)n)ds

At2 N—1 PsS
< Zp - Z H n+1_un)’nh(pn+l n) ||L2 %HJ”‘LJ‘ 6n+1”
's
VlAt N+l sntly2 20t Nt W " Nl on 2
z L el —u") (P ) [P (5.39)

Finally, we estimate7, using the Cauchy-Schwartz inequality and Young’s inedyalith y» > 0 as

AtZN ! n sn n+1 n n+1 n
805 [lo6h8pm: (o (S —u - ) m) s

AZN ! n Atz n+1
Z lo (87, )72, ZyszSH—U(Sn(u

We bound the right hand side ¢f(5129) as follows. Using Csusbhwartz, Young's, Poincaré - Friedrichs, and
Korn’s inequalities, we have the following:

u"), Mp(p™t — p”))"H;(r)' (5.35)

N-1 . N-1 N-1
—pilt Z) / o 07 67 dx — At zoaf (07,67 + At Z)b(@{,‘“,é?“)

uAt _
||<5”“HF

Zl\dtO”“H S+t ZJ||0“+1||F+ ZHG”“H

n=
Manipulating the next couple of terms and using the Cauattya@rtz, Poincaré - Friedrichs, Korn’s and Young's
inequalities withy; > 0, we get

—psAts / a6l 60 dS + At Z) / (07, ) (871 — 80y dx
= pste Z)/dten+l 5n+1 5n+1) 5n+1 dS+ At Z)/ gh p .(5\[/1+l_5\r/1+1)dxz
— _pte i)/rdte3+l.5'f‘+1|rd8+m Z)</F (peeck0 — (67, 00} ).(53+1_5g+1)ds>
n—
Ane N1 Atyl

pie? 4) i nil)2 NAt n+l Nl sl
<ot (B2 L 2) 5 e zé +—200, zé Wy
( u Vi £ || \Y ”LZ(F) H ”F H f p H ||

Combining the estimates above with equat[on (5.29) andtgikito account the assumption on the initial data,
we have

fAtz

At? L Pse
G108+ A(8Y) + 6(0Y) + 5o (07, BYmlfage) + ZOHdté'”lHLz . ZO”‘S”H 80122 r)

At2 N-1
—i—[JAt Z) H6n+1”F L+ 5 % ||d15n+1|‘%5 At % 6n+1) +%S(5n+l) e@05(6\r/1+1 _ 6\[/1+1) _i_%e(égwrl))

tN 1 2N 1
Ty ZJ”"”“”# -3 a6y +At( ) Zjudte““n -+ Bty z 107+12
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apt N1 A2 At A2\ N2t
s > llo 2. 6p)nlIzz +o— o (S —
2p £ 21 2¥pPsE

AtN ! Yt " At2N ! 122 Aty

o 3 105 e ZJH&““—&L‘“H@( DAL

To estimate the approximation and consistency errors, wd_ammag 5}4 and_8.2, leading to the following in-
equality

u"), nh(le - pn)) nHEZ(r)

z 18SH&  (5.36)

At? piAt2 N1 L P N-1
gf(élf\l)""éav(é\’;l)"i_gs(ég‘)'i‘—HO'((SN,5S‘)’I’LHEZ(|_)+ ||d,[6n+1H S H6n+1 5nH
2 PsE 2 e 2 &
uAt _ 1
- H5“+1||F+ 2 ZJHdtagﬂH%SAtZ (lldnu|L20TLz ||c9nv|\L20TL2 ;,|\‘9tt’7||fz<o,T;H1<r>)
n=

1 2 2k+2 2s5+2 1 2
+z”ato'n”L2(0,T;L2(r))) <1+ Vi > " HathLz 0,T;Hk+1(1 )) +h=* ||p||L2(OT HSHL(Q)) E”p”Lz(O,T;HSH(F))

1
2k 2 2
+h <_||'U|||_2 0,T;Hk+1(r +||atu|||_2 0,T;HK+1(Q ))+”uHLZ(O)T;HkH(Q))"’_HU’HLZ O,T;Hk+1(|'))>

<g;+§ytl+2yiig)§| (=), (P = ) [ tZNz:w 1 3pmleq
V1At Z)Hénﬂ 5n+1” Aty Z)H‘anHs*‘ yAt ZO”‘SnHHLZ(r (5.37)
We estimate ternfiet yN-1(|g5+1 — 6”+1|| ) using equatior((5.31) as follows
nat's z e _ZV;SLZ ZJII (@), (= ) e
P03 167 810 Sl <SS o (S (5 ) il
SE°
e o 6. Bmla + ZylfsN o6, nlEer + L o 0¥l (539)

Finally, adding and subtracting the continuous solutiow, applying Lemmals 5.4 ahdb.3, we have
1 1 2 p 1 1\, 2
At Zo o (Sh(u™ —u), I (p™ — p) 2 ) < 22 > st (ck67 %, ck03 ) mllZ
n=

+2At Z) Ho' M, pn+1 ) nHLZ(r S AtthkHatuHLZ 0.T;HK+1(r)) +At2h25+2||at pHLZ 0,T;HSTL(M))

PsE

Assuming tha/At < 1,y < y2 < } , and applying the discrete Gronwall inequallty|[43], we get

Atz R n+1 n+1 n
||dt5 2 q) H5 i e
(Q) 2 ()

t? N sNy. (12
(8¢, 05 )iz

Et(OY) + &) + E5(8L) + 80t
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uAt A2 N . 1
% ||6n+1HF + - Z |‘d[5n+l||2 S eVT Atz ”dH’U‘HEZ(O’T)LZ(Q)) + ;/Hdtt,UHEZ(O,T;LZ(I'))
At 1
+;/||an,’7HEZ(O,T;H1(F)) +— |dan|lEZ(O,T;L2(F))) +At4 (At + E + E + ylAt2> ”dlo'nHEZ(o’T;LZ(r))
1
(14 2 ) 0200 g sy P2 (1Pl i) + o P o

1
+h2k (— ||'U||L2 0,T; Hk+1 + ||atu|||_2 0,T; Hk+1( ) + ||UHEZ(O,T;HK+1(Q)) + z|u||EZ(O,T;Hk+1(I'))>

At 1
+At? (At + E + E + VlAtz) (thHdu||EZ(O,T;Hk+1(F)) + h2$+2H0I p||fz(o7-|-;|.|s+1(|—))) } (5.40)

Recall that the error between the exact and the discret¢i@olis the sum of the approximation error and the
truncation error[(5.22)-(5.26). Thus, using the trianglequality and approximation properti¢s {5[6)-(5.13), we
prove the desired estimate.
d

LeEmMMA 5.2. The following estimate holds fgr> 0:

At % 6n+1 +%5(5n+1) L@OS(é\l/‘lJrl _ 6\[[\+1) +L@e(6ls'l+1))

1 1
<o (|"ttu||52<o,T,L2<o> + ‘H"H”Hfz orary + 1%tz orme + 4 Idonlt o,T;L2<r>>>

pat N\t Aty N yot !

ZOII5””||F+ Z}IM"”H%’

Proof. Using Cauchy-Schwartz Young’s Poincaré - Friedrielmsl Korn's inequalities, we have

Z)”(anrl 5n+1”L2 +yAt— %H5n+1”|—2

uAt
At %% 6n+1 %”dt n+1 0I'Ufn+lH %”6”4’1”2

Furthermore, using Cauchy-Schwartz and Young'’s inedesjifory > 0, we have

At pss

At % L@S 5n+1) —|—%e(5n+1)) % ||dt n+1 at,anrl” _|_ yAt % H6n+1”

At N
+—;Hdm”+1 an™E+ ;ua““ns

Finally, to estimate the operator splitting error, we uge@auchy-Schwartz and Young’s inequality wyth> 0 as
follows

At %L@os 6n+1 6n+1 — At %/ n+1 n+1)n—0'(un, p")n) . (5\[/1+1_5\r/1+1)dx

% HénJrl 5n+1”

N-1
oA uL ) At V1

ZOII

The final estimate follows by applying Leminal5B.
LeEmMMA 5.3 (Consistency errorsT.he following inequalities hold:

)n— U(u p)nHLZ(r

At Z ||dt‘Pn+l at¢n+1|||_2(s <At2|‘att80”L2(0T L2(9))’
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N-1
1 2 2 2
At ZOHO'nJr n_o'nnHLz(r) SAt HdIO"I’L”Lz(O’T;Lz(r)).
n=

Proof. Using the Cauchy-Schwartz inequality, we have

Uan

N-1 2
&3 e Lo a2 At/ (t—t")Aep(t)dt] dx

tn+1

1 - p
|t—t“|2dt/tn |0It<p|2dt>dxﬁ?/s/0 |Geep[Pdtdx S M| deplPo o rizs)  (5:41)

sl (L

To prove the second inequality, we use the Taylor expansitmimtegral reminder

,tn+1

c"n—o'n= Gondt.

tl’]
Now we have

2
dx

tn+1

dondt

N—-1
At %Har‘“n—a”nﬂfz(
LN 1 tﬂ+1 tn+1
<At/ (/ dt/ |dtan|2dt>dx§At2// |don|?dtdx< A2 don 2 o 1z ),
0 JO v

The last line in the proof follows froni (5.41) and the defimitiof the time discrete normis (5.4).
LeEmMMA 5.4 (Interpolation errors)The following inequalities hold:

N-1
At % ”dlo?Jrl”EZ < Hatef |||_2 0,T; L2( )) 5 h2k||atuHEZ((J)T;HkJrl(Q))v
n=|
p 1 2k+2
At Z) ”dto\l;IJr H < ”atOVHLZ 0T; |_2( )) ~ Sh * HathLZ 0,T; Hk+1(|'))
At g)ue"ﬂué <ot zthkHu““nH ey S PNl ki)
At Z)||0n+l||2< thHvHLZ 0,T; Hk+1(l')) At Z)HngrlHEZ( S h2$+2|‘pHL2 0,T; HSFl(OT))
n=
Proof. The last three inequalities follow directly from approxition propertied(516J-(5.13). To prove the first
equality, we use the Cauchy-Schwarz inequality as follows
N g gnl2 1t T 1 p= nt+1,2
&5 07 e = 5 3 / a0 / At/ a6t ) da

< ”dlef |||_2(0,T;|_2(Q)) S h2k||a[u|||_2(0’T;Hk+1(Q))' (5-42)

The second inequality is proved in an analogous \May.

6. Thick structure models and other extensions.One of the most appealing features of the kinematically
coupledB-scheme and its variants is that it can be generalized toaheus FSI problems including the ones with
thick structures[[9] and composite structurfes [11]. Thibta and the convergence proof presented in this paper
can be applied, with simple and straightforward modifiaadiato the3-scheme for the fluid-composite structure
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interaction probleni[11], where the composite structunesesis of a thin layer and a thick layer. The main reason
for that is the fact that the fluid and thick structure are dedia the thin elastic interface which regularizes the
problem (this regularization is quantified iDIcase in[[36]). It was proven in [37] that classical kinemaitic
coupled scheme (cage= 0) applied to fluid-composite structure interaction prablis convergent, but the order
of convergence iﬁ(Atl/Z) in time. Using the methods presented in this paper, one caw #at the proposed
modified3 scheme applied to a fluid-composite structure interactioblem with3 = 1 has optimal, first order in
time, convergence.

We will briefly discuss the case of fluid-thick structure iatetion problem which is more difficult (numeri-
cally and analytically) because there is no additional lagzation due to the elastic interface. Thus, only a limhite
amount of numerical analysis of partitioned schemes forge8blems with thick structures is available in the lit-
erature. The generalized Robin-Neumann explicit couittgeme for the fluid-thick structure interaction problem
was analyzed in[22] where it was proved that it is convergeith the order of convergence ﬁf(%). We consider

the B-scheme for the fluid-thick structure interaction probleresented in [9]. A basic stability estimate for the case
B =0 is derived in[[9] where convergence of fiescheme was proved numerically. Here we consider the case wh
there is no additional structural viscosity (in notation@}f casee = 0), which analytically and numerically is the
most difficult case. We will show tha-scheme for FSI with thick structures is stable under camaliit?> < h. The
obtained estimates could then be used to prove that the sciseatso convergent with order of accura@y%).
Our proof illustrates that numerically our interface hasass which makes the scheme convergent.

In the following we consider a simplified linear version o ituid-thick structure interaction problem presented
in [Q]. We start with the weak formulation for the coupled piem and sub-problems of the partitioned scheme.
Differential formulation and more details can be foundih urthermore, we ignore the influence of the boundary
conditions since they can be treated in the same manner las thit structure case.

LetQF = (0,1)%2x (—1,0), Qs= (0,1)?> x (0,1) andr" = (0,1)? x {0} be the fluid domain, the structure domain
and the fluid-structure interface, respectively. We defireeciorresponding function spaces:

VI=HY(Qr)%, Q=L%(QF), VS =HYQg)*, V¥ = {(¢,£) e VI x V¥ ¢|r = &r }.

Furthermore we introduce a bilinear form connected to thediized elastic operator:
a(m.€) = [ S(m): C¢,
Qs

whereS(n) = 2usD(n) + As(0-n)l is the first Piola-Kirchhoff stress tensor apgandAs are the Lamé parameters.
The variational formulation for the coupled fluid-thickwstture interaction problem now reads:

Givent € (0,T) find (u,v) € VS, pe Q, n € VS such thatdyn = v onT and for every(p,£,q) € Vs x Q the
following holds:

pr [ Gu-pda-+ar(u. @)~ b(p. ) +bcu) + ps [ dhv-dx+as(n.&) = [ ProulipdS  (6.1)
OF Qs Js

To discretize the problem in space we use the FEM triangudatith maximum triangle diametérand define
the finite element spacas c V', Vi§ VS, andQ, C Q. We denote byQl, QR the strip in the fluid and the
structure domain, respectively, that consists of all tleeneints that have at least one vertex on the interface. The
width of QF andQl is of orderh.

The partitioned numerical scheme for the interaction betwa fluid and a thick structure presented[ih [9],
based on the kinematically coupled scheme, reads as follows _
Step 1.Find (a2, 871) € V', n*1 € VS such that for everypn, &) € Vi the following equality holds:

i 1 ap ™t —uf
~h  7h, N+ _h 7nh, - _ Ny, .
pS/QS At £h+at5(nh aéh)+pf /QF At ‘ph /I_Uhn éa
(6.2)
n+1 n
~ 7 - ~ ~
vrr]lJrl —_Ih m h7 (vrt‘]l+l)|r _ (uEJrl)lr’
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whereo{ = o (uy, pp).
Let @ be a test function such théd)r = 0. Then(g,0) is an admissible test function, so we can take this
test function in[(6.R) to obtain:

ﬂﬂ*l—u”
pf/Q T'Sohzoa (Soh)\l':O
F

1 L . . . . antl_qn .
Therefore we have[*! = uf) on all the nodes inside the fluid domain. Hence, the intefralt—=—" - ¢y, "lives”
only in narrow stripQ! i.e.

n+1 n . n+1 n
h  — U, Uy —Up
Pt /Q,: At ¥n=pr / At #h-

F
Now, if we take into the accour(f™)|r = (a™)|r we see thaf(6l2) is indeed essentially a structure problem
because the only unknowns are the structure displacemednthanstructure velocity. However, the fluid inertia
enters the problem through the mass matrix on the interface.

Step 2.Find (ul*, o1 p1) € I » Qy, such that foXon, &, ah) € Vi x Qp, the following equality holds:

/ uR+1_,L~LH+1 N / vH+1_1~}H+1
Pf'QF At ®h+Ps 0 At

(op ™) = (up™)]r-
(6.3)

Similarly as in the previous step we see that the integral@ated with the structure acceleration "lives” only in the
strip QY i.e. v = $0"* on the nodes inside the structure domain. Again, we can edachat[6.B) is the fluid
problem because the unknowns are the fluid velocity and tieeghessure, while the structure inertia is taken into
the account on the interface. This is crucial for the stghdf the scheme.

To derive energy estimates, we take test functignsén) = At(af ™, 571) in €2), (¢n, &n) = At(ufl ™ ot
in (6.3) and sum the resulting expressions. We end up withahee energy estimates adin [9], but W|th the following
additional term (analogously as in Sectidn 4):

&n+ar (v L on) =P on) +blan wp ) = [ oin- o,

| —At/ ofn(vf™t — gt

The problem is that now we do not have the thin structure iméhnt would help us to deal with the problematic
term. However, numerically we still have some structuretiaen the fluid step. Namely, after integration by parts
of (6.3) we obtain:

Yh T Y,
Ps/g)hT'fh:/l_(Uﬂ_Uﬂ+l)n #h- (6.4)

Let us now take into account thet, = &,|r to derive the relation between the structure inertia andlthe force
on the interfacé . First, we introduce some notation.

Let qqh, i =1,...,mbe the finite element functions on the interfzhfcandtpih, i=1,....,m, corresponding finite
elements functions in the structure domgig, i.e. (L[lih)“- = @ andy are supported iff x (0,h). Notice that we
consider only the structure elements that are associatbdivd nodes on the interface. We denote®gyandBy, the
associated mass matricés, = (af}) = (Jo W'¢YD)ij andBy = (b}) = (ji— @"@ij. Letv= 3y, vis" be a function
defined on the structure domam. Then its trace is givevipy: 3™, vig. With a slight abuse of a notation we will
identify functionv with vectorv = (vj)i—1,._m. Furthermore, we have

m
Mgy = 3 viviag —Aw v, Vel = 3 Wby = Brv-v.
i,]=1 i,]=1
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Moreover, notice thailAn|| ~ h® and||By|| ~ h? becausay; are 31 elements andg are 21 elements, and their
maximum triangle diameter Is Using the following equation

. vﬂ“ n+1
n+1
Ps/ h_/ (eh—onn-&n., (6.5)
h S
we obtain
n+l  entl
Vi T Vh

P ) = Ay (o — o ).

Here we used the identification between functions and thicieats vectors in order to define the operator on the

right-hand side. Therefore we have
At? 1At2
At/a n- (V- = E/raﬂn-AhlBh( —othn = Z—

-1 ny,, . ~N
> Y (/I_(Ah Bhop)n-opn

_/F(AhlBhanﬂn) n+1n+/ 1Bh aﬂ*l)n)-(aﬂ aﬂ“) )

Let us calculate the last term

1At2
5o LA B = o m) - (of o m = Fos [ (47 - B A )

an+1_vh+1”|—2

This term is canceled with the same term from the left-hade #$iat comes from the structure inertia that is included
in the fluid step. Moreove#, !By, is a positive-definite matrix and therefore one can proceasbtain analogous

stability and convergence estimates as in the thin streatase as long as the ter%‘é\l_.}éHAnghH stays bounded.
Since||A,ngh|\ ~ % we have the following stability condition:
At? < h.

More precisely we proved the following stability result:
THEOREM6.1. Let{(up, &}, vp,np to<n<n be the solution of6.2)-(6.3). Then, the following estimate holds:

pr A2 N
2

At?
Er(up) + E(vh) + &) + ﬂl\d(um pﬁ)nllfz(m + IIdt ”“I\Lz ()

n=
AN ML Gty N1 1
+— %ats (dymp ™, e ™) + pAt ZOHUth HF+ ZOH * vhHLZ (Q9)

At2
< Er(up) + Elvp) + Es(nf) + oh Ha(uh,ph)nll —|—AtZ)Hpouttn+)||2 (6.6)
where

Pt 1
& (UR) = EI\uRIIEz(QW @@V(Uﬂ) ||UhH|_2 (Qg)’ 55(772) = Eats(nﬂmﬂ)- (6.7)

REMARK 3. Using the obtained stability estimates in an analogous wajnaSectio b, one can show that
the scheme is convergent and its order of temporal accum@ﬁ(%). This is the same order of accuracy that is

obtained by an alternative splitting strategy [n22].
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7. Numerical results. In this section we focus on the verification of the stabilityl@onvergence results of the
kinematically couple@ scheme. We consider a benchmark problem similar to the apoped in[[211], belonging
to a class of benchmark problems commonly used to validdtedf&rs. As in[[21], we consider a two-dimensional
test problem and model the structure elastodynamics usgamaralized string model with the assumption of zero
axial displacement:

Ee

dCi=——
andt 2(1+0)’

. Ee
77 - (07 nr)Tv gslr’nJrl - (Ovconr _ClaXXrII')T Wlth CO = R2 (71)

(1-0?)
whereE is the Young’s modulus and is Poisson’s ratio. The fluid domain is the rectar@le- [0, L] x [0, R] with
R=0.5cm,L =5 cm. The top boundary corresponds to the fluid-structuezfimte, while symmetry conditions are
prescribed at the bottom boundary. The flow is driven by thet time-dependent pressure data, which is a cosine
pulse with maximum amplitudpmax = 1.3333x 10* dyne/cn? lasting fortmax = 0.003 seconds, while the outlet
normal stress is kept at zero:

tmax

Prax[1 — cos( 2] if t <t
' _ 2 < Umax .
pln(t) - { 0 |ft > tmax ) pOUt(t) - OVt S (OaT)

The problem is solved over the time interval [0,16] ms.

The fluid physical parameters are givenday= 1 g/cn? andu=0.035 g/cm s. The structure physical parameters
areps = 1.1 g/cn?, € = 0.1 cm,E = 0.75- 10° dyne/cnt ando = 0.5. To discretize the fluid problem in space, we
use thdP; bubble#; elements for the velocity and pressure, @&idlements to discretize the structure problem.

In order to verify the time convergence estimates from Taeb.1, we fixh = L/164= 0.03 cm and define
the reference solution to be the one obtained with= 5- 1078, Figure[Z1 shows the relative error between the
reference solution and solutions obtained with=5-10"%,2.5-104,1.25-10 4,6.25- 10 ° and 3125-10 ° for
the fluid velocityu) in L2-norm (left) and for the structure displacemefitin || - ||s norm (right) obtained af = 10
ms. We observe that the case whna- 1 leads to the optimal, first-order in time convergence, avhilb-optimal
convergence is obtained whén= 0.

10t : 10*
///-/—
100 -7 ] 10° ~
L @/Q/Q/H _ A L -~
CD“_ -~ C.Dm
107 107} _
—e— [3=0 -~ —e— =0
_ - B —— /6:1 —— [)):1
P — — slope 1 — — slope 1
5 - —-—-slope 0.5 5 —-—-slope 0.5
10 ” 3 10 ) 3
10° 10° 10° 10°
At At

FiG. 7.1.Time convergence obtained at t=10 ms. Left: Relative ewoflfiid velocity in >-norm. Right: Relative error for the structure
displacement inj - ||s norm. Higher rate of convergence is observed in the case \Sheri.

Finally, to verify the space convergence estimates fromoféra[5.1, we fixAt = 5-107% s and define the
reference solution to be the one obtained with- L/164 = 0.03. Figure_Z.P shows the relative error between
the reference solution and solutions obtained with L/40,L/80,L/160 andL/320 for the fluid velocityu) in
L2-norm (left) and for the structure displacemeyft in || - ||s norm (right) obtained aT = 10 ms. There are no
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substantial differences in the rates of convergence inesfra@@ = 0 andf3 = 1, indicating that, as expected, terms
involving B affect only the convergence in time.

0
10 T
f//’/’ ,ﬂw”///’
.- /-/- lo_l I /‘
= /
10"} - 1
—e— =0 —e— =0
s | —+—p=1 B ——p=1
Pid — — slope 1 107 — — slope 1
e slope 0.5 —-—-slope 0.5
10 10t 1072 10"
h h

FIG. 7.2.Space convergence obtained at t=10 ms. Left: Relative éordtuid velocity in >-norm. Right: Relative error for the structure
displacement inj - ||s norm. No significant differences are observed for cases herd and3 = 1.

8. Conclusions.In order to complete the theory behind the kinematicallypted scheme and its variants, in
this manuscript we analyze the stability and convergenmegsties of3-scheme. This is the first work that presents
thea priori error estimates which include the operator splitting eraod proves the optima¥(At) convergence
in time whenB = 1. Furthermore, we discuss the extension of our resultsedltid-thick structure interaction
problem. Numerical experiments confirm the theoreticalltss
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