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The Grüneisen ratio (Γ), i.e. the ratio of the linear thermal expansivity to the specific heat at
constant pressure, quantifies the degree of anharmonicity of the potential governing the physical
properties of a system. While Γ has been intensively explored in solid state physics, very little is
known about its behavior for gases. This is most likely due to the difficulties posed to carry out
both thermal expansion and specific heat measurements in gases with high accuracy as a function
of pressure and temperature. Furthermore, to the best of our knowledge a comprehensive discussion
about the peculiarities of the Grüneisen ratio is still lacking in the literature. Here we report on a
detailed and comprehensive overview of the Grüneisen ratio. Particular emphasis is placed on the
analysis of Γ for gases. The main findings of this work are: i) for the Van der Waals gas Γ depends
only on the co-volume b due to interaction effects, it is smaller than that for the ideal gas (Γ =
2/3) and diverges upon approaching the critical volume; ii) for the Bose-Einstein condensation of
an ideal boson gas, assuming the transition as first-order Γ diverges upon approaching a critical
volume, similarly to the Van der Waals gas; iii) for 4He at the superfluid transition Γ shows a
singular behavior. Our results reveal that Γ can be used as an appropriate experimental tool to
explore pressure-induced critical points.

PACS numbers: 72.15.Eb, 72.80.-r, 72.80.Le, 74.70.Kn

I. INTRODUCTION

It is well known from daily life that upon increasing
or decreasing the temperature of a solid, in general, its
volume changes. The formation of ice, namely the phase
transition of water from liquid-to-solid, consists a clas-
sical example of volume change. It is worth to men-
tion that in the case of water, in particular, a nega-
tive thermal expansion is observed upon freezing, thus
leading the ice to fluctuate in the surface of the liquid.
In general terms, in the case of solids, regarding solely
the phononic excitations, the phenomenon of thermal ex-
pansion is a direct consequence of the deviation of the
lattice potential from the so-called harmonic approxima-
tion, i.e. temperature changes bring terms of the lattice
potential U with power higher than two into play, for in-
stance U(x) = ax2 − bx3 − cx4, being a, b and c positive
constants and x the average atomic displacement from
the equilibrium position and, as a consequence < x > is
not longer zero1. Thus, as an effect of such anharmonic
contributions to the lattice potential, once the temper-
ature is varied the solid continuously either shrinks or
dilates in order to achieve the optimal volume where its
total free energy (F ) is minimized, namely ∂F/∂ < x >
= 0. The situation is quite distinct in the immediate
vicinity of a generic phase transition, where besides such
anharmonic terms contributing to the lattice potential
other sorts of excitations like charge, spins and orbital
as well as critical fluctuations itself2 can contribute dra-
matically to the volume change of the solid. From the
experimental point of view, such volume changes can-
not, in many cases, be detected directly by means of
standard x-ray structural data analysis due to the rela-
tively low-resolution intrinsic to this kind of experiments,
i.e. ∆l/l ' 10−8, here l refers to the sample length, see
e.g. 5. In this sense, high-resolution measurements of the

thermal expansivity can be considered a quite powerful
thermodynamic experimental tool for investigating vol-
ume changes associated with phase transitions. Indeed,
employing such an experimental technique phase transi-
tions involving distinct types of excitations, i.e. lattice,
charge, magnetic and orbital degrees of freedom can be
precisely detected. For instance, ultra-high resolution
expansivity measurements have been recently employed
to detect and explore subtle lattice effects accompany-
ing the charge-ordering transition in molecular solids6,7,
spin-liquid-like lattice instability8, the Mott metal-to-
insulator transition2,3,9,10, magnetic11, multiferroic12 and
superconducting transition as well13. Analogously, the
bulk properties of a solid can be obtained by means
of high-resolution specific heat measurements14. In-
deed, high-resolution specific heat measurements consti-
tute one of the most powerful experimental tools to access
fundamental excitations in solids, like the effective charge
carrier mass and the entropy changes associated with a
phase transition15, just to mention a few examples. In
his seminal paper of 190816, E. Grüneisen reported on a
formal connection between both quantities, i.e. thermal
expansion and heat capacity, which leads to the birth of
the so-called Grüneisen Ratio, abbreviated to GR here-
after. The GR (Γ) is generally defined as the ratio of
the linear thermal expansivity (α) to the specific heat at
constant pressure (cp), namely:

Γ =
α

cp
. (1)

It is straightforward to write Eq. 1 in the following way:

Γ = V
(∂P/∂T )V
(∂E/∂T )V

= − 1

T

(∂S/∂p)T
(∂S/∂T )p

, (2)

where V , P , T , E and S refer, respectively, to the speci-
men volume, pressure, temperature, energy and entropy.
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FIG. 1. (a) Schematic universal pressure (p) versus tem-
perature (T ) phase diagram for a generic substance, being
solid, liquid and gaseous phases indicated explicitly. (b)
Schematic proposed universal pressure versus temperature
phase diagram of molecular conductors of the κ-(BEDT-
TTF)2X serie2–4. The red solid lines in (a) and (b) rep-
resent a first-order phase transition line which separate the
paramagnetic/antiferromagnetic insulating from the metal-
lic/superconducting phased and ends in a critical point (indi-
cated by red bullets in (a) and in (b)), indicated by (P0, T0).
Details about the behavior of the GR close to the critical-end
point are presented in the main text.

For completeness, it is worth recalling that (∂E/∂T )V is
the specific heat at constant volume.

More generally, the GR is roughly constant when a sin-
gle energy scale Es, for instance the exchange coupling
constant in a magnetic system or the electrical polariza-
tion in a conventional ferroelectric, governs the physical
properties of the system of interest. In such cases, for
the sake of completeness, it is worth mentioning that the
entropy S ∝ f(T/Es) and the GR are given by:

Γ =
( 1

VmEs

)∂Es
∂p

, (3)

see e.g. 17 and references cited therein for details. How-
ever, from the definition of the GR (cf. Eqs.1 and 2) one
can directly infer that for any pressure-induced critical
point the GR should diverge. This is a direct consequence

of the entropy accumulation in the immediate vicinity of
a critical point. Indeed, it is nowadays well established
that the GR shows a singular behavior upon approach-
ing a quantum critical point17,18 and close to a finite-
temperature critical end-point2–4 as well (see Figs. 1 and
2). Hence, the GR can considered the smoking gun for ex-
ploring pressure-induced critical points (see Figs. 1 a), b)
and Fig. 2), no matter the nature of the phase transition.
While the GR has been largely explored in solid state
physics, since measurements of the specific heat and ther-
mal expansion measurements are quite accessible, very
little is known about its behavior for gases. This is most
likely due to the difficulties posed to carry out both ther-
mal expansion and specific heat measurements in gases
with high accuracy as a function of pressure and tem-
perature. To the best of our knowledge, the only report
about the GR for gases is found in Ref. 19. Also in clas-
sical textbooks discussions on the GR are quite limited,
see e.g. Refs. 20,21. Interestingly enough, recently the GR
was identified as the scaling exponent γ in supercooled
liquids22. As discussed by the authors of Ref. 22 the scal-
ing exponent γ quantifies the slope of the interatomic po-
tential and its relative contribution of temperature and
volume. Hence, as pointed by the authors in Ref. 22 a
direct connection between γ and the GR exists, charac-
terizing thus both quantities as a gauge for the level of the
anharmonicity of the potential. In this contribution we
introduce the fundamental physical concepts associated
with the GR in a didactic way and report on a systematic
analysis of the GR for gases. We show that for the Van
der Waals gas the GR depends only on the co-volume b
due to interaction effects, it is smaller than that for the
ideal gas (GR = 2/3) and diverges upon approaching the
critical volume. For the Bose-Einstein condensation of
an ideal boson gas, assuming the transition as first-order
the GR diverges upon approaching a critical volume, sim-
ilarly to the Van der Waals gas. Furthermore, for 4He at
the superfluid transition the GR shows a singular behav-
ior at the transition. Hence, we show, for the first time,
the particularities of the GR for various gaseous systems.
The paper is divided as follows: after this brief intro-
duction, which comprises the first section, we discuss the
most relevant textbooks thermodynamic quantities of in-
terest for this work followed by an analysis of the GR for
well-known systems like the ideal, Van der Waals and
ultra-relativistic gases; 4He and the Bose-Einstein con-
densation (BEC). Our aim is to give an overview of the
GR and its relevance in the exploration and understand-
ing of the above-mentioned systems in a comprehensive
fashion.

II. THERMODYNAMIC QUANTITIES

The Grüneisen-Relation, discussed in the introduction
of this work, was originally16 presented as follows:

β(T ) = Γeff ·
κT
Vmol

· cV (T ), (4)
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where β(T ) and Vmol refers, respectively, to the volumet-
ric thermal expansion coefficient and molar volume; Γeff
is the so-called effective Grüneisen parameter, κT stands
for the isothermal compressibility. It is worth mention-
ing that the GR (Eq. 4) holds true for solid, liquid and
gases. Although this work is focused on the properties
of the GR for gases, for the sake of completeness, in the
following we discuss briefly the lattice Grüneisen param-
eter, obviously present only in solid-state. In the frame
of the Debye-model, the lattice (or phononic) Grüneisen
parameter Γpho reads:

Γpho = −d ln ΘD

d lnV
, (5)

where ΘD stands for the Debye temperature of the solid.
A simple analysis of Eq. 5 reveals that the bigger the
lattice Grüneisen parameter, the higher the volume de-
pendence of the vibration modes of the lattice. Strictly
speaking, as above-mentioned, the lattice Grüneisen pa-
rameter is a measure of the volume dependence of the
anharmonicity of the lattice vibrations, which in turn is
responsible for the lattice contribution to the thermal ex-
pansion in a solid. In general terms, the vibrational free
energy, entropy, specific heat and thermal expansion orig-
inate from sums of contributions fi, si, ci and αi from
independent vibration modes of frequency ωi(V ), respec-
tively. Hence, the so-called mode Grüneisen parameter
is defined in the following way:

Γi = −d lnωi
d lnV

. (6)

Thus, according to Eq. 6, vibration modes whose fre-
quency, ωi, decreases or softens as the volume of the solid
decreases will result in a negative Grüneisen parameter
and, from Eq. 4, such vibration modes, in particular, will
be responsible for a negative contribution to the overall
thermal expansion of the material23. As a matter of fact,
the so-called mode Grüneisen parameter can be related
to the interatomic/intermolecular potential via the elas-
tic force constant, namely k ≡ d2U/dr2, which in the
frame of the harmonic approximation is proportional to
ω2. More generally, in addition to the ordinary phononic
background contribution to the thermal expansion of a
certain solid material, other contributions, whose origin
might be electronic or magnetic, have to be taken into
account in an accurate estimate of the GR. This is the
case especially at low temperatures, where such contri-
butions may dominate the thermodynamic properties5.
Hence, in such cases the Grüneisen usually is written in
the following way:

Γeff = Γph+Γel+Γmag =
Vmol
κT

(βph
cph

+
βel
cel

+
βmag
cmag

)
, (7)

where βph (cph), βel (cel) and βmag (cmag) refer to the
phononic, electronic and magnetic contributions to ther-
mal expansivity β (specific heat c), respectively, while

Γph, Γel and Γmag are the respective Grüneisen param-
eters. Strictly speaking, when various contributions to
the GR have to be taken into account the GR reads24:

Γ =

V
∑
i

ciΓi

κT
∑
i

Γi
, (8)

where i refers to the ith contribution to Γ.
At this point, it is useful to discuss the GR in quanti-

tative terms. For the critical temperature of the ordinary
metal-to-superconducting phase transition in the molec-
ular conductor κ-(BEDT-TTF)2Cu(NCS)2 Γ ≈ 40 was
obtained25. The latter is roughly by a factor of twenty
bigger than those obtained for ordinary superconduct-
ing materials such as Pb, with a Γ = 2.426 or even big-
ger than those measured for the well-known high-critical
temperature cuprate superconductor YBa2Cu3O7 with Γ
= (0.36 ∼ 0.6)27. Such a simple comparison reveals the
high-sensitivity of the superconducting transition tem-
perature to application of external pressure in the above-
mentioned molecular metals, as discussed in quite details
in Ref. 28. Regarding the GR close to P -induced critical
points, a huge value of Γ ' 100 was deduced experi-
mentally in the immediate vicinity of a quantum critical
point in heavy fermions18, close to the critical end-point
of the metal-to-insulator Mott transition2,3 and at the
γ � α structural phase transition of Cerium29. For the
sake of completeness, analogously, if the tuning parame-
ter of the phase transition is an external magnetic field
(H), the magnetic Grüneisen parameter, frequently also
called magnetocaloric effect, reads17:

ΓH = − (∂M/∂T )H
cH

= − 1

T

(∂S/∂H)T
(∂S/∂T )H

, (9)

where M refers to the magnetization and cH to the spe-
cific heat under constant external magnetic field. Fur-
themore, it is worth mentioning that is well documented
in the literature that for a magnetic field-induced quan-
tum critical point, due to the enhancement of the entropy
in the critical region a sign change of ΓH is expected30.
The latter consists one of the fingerprints of a magnetic
field-induced quantum critical point.

III. APPLICATIONS AND DISCUSSION

Below we discuss the GR ratio for various gases and
make a detailed discussion for each particular case of in-
terest.

A. The Ideal Gas

We start with the simplest example. For an ideal gas,
well known from textbooks, the equation of state is given
by:

pV = nRT, (10)
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FIG. 2. Schematic universal pressure versus volume phase di-
agram. The shaded area indicates a phase coexistence region.
At T = Tcrit, i.e. at the liquid-to-gas phase transition tem-
perature the system achieves a critical volume and the GR
diverges. For details, see discussion in the main text.

and the (internal) energy in turn, reads:

E =
3

2
nRT, (11)

where n and R refers to the number of moles and the
universal gas constant, respectively. Employing Eqs. 10,
11 and making use of the definition for the GR discussed
in the introduction of this work (Eqs. 1 and 2), one ob-
tains Γ = 2/3. Thus, for the ideal gas Γ is a constant.
Analogously, the same result, i.e. Γ = 2/3, is obtained
for the free electron gas at zero temperature, where E =
3/2V P . This result can be easily understood by consid-
ering the physical definition of the GR, which quantifies
the degree of the anharmonicity of the potential. Since
for both ideal and free electron gas the intermolecular
interaction is not taken into account and thus no phase
transition takes place, a constant value for the GR is ex-
pected in these cases. With respect to the value 2/3, it
is a direct consequence of the number of degrees of free-
dom in the system. To make this clear, for the ideal gas,
remembering that Cp − CV = R, the GR can be written
in the following way:

Γ =
Cp
CV
− 1. (12)

Now, considering the relation CP /CV = (f + 2)/f ,
being f the number of degrees of freedom (for the ideal
gas f = 3; namely three translational degrees of freedom),
from Eq. 12, Γ = 2/3 is obtained for the ideal gas. For
the sake of completeness, below we derive the GR for the
ideal gas employing the partition function:

Z =

[
V

(
2πmkBT

h2

) 3
2

]N
. (13)

Making use of the well-known relations, namely:

p =
1

β∗

(∂lnZ
∂V

)
T
, (14)

and

E = −∂lnZ
∂β∗

, (15)

being β∗ = 1/kBT
31, the GR (cf. Eq. 1) can thus be writ-

ten as follows:

Γ = −V
∂
∂T

[
1
β∗

∂
∂V (lnZ)

]
∂
∂T

[
− ∂
∂β∗ (lnZ)

] , (16)

making the inner derivatives, one obtains:

Γ = −V
∂
∂T

[
1
β∗

N
V

]
∂
∂T

[
− 3N

2β∗

] =
V
[
NkB
V

]
3
2kBN

, (17)

we then achieve the same value obtained for the GR,
namely:

Γ =
2

3
, (18)

employing the equation of state as discussed above.

B. The Van der Waals Gas

In the case of the Van der Waals gas, the equation of
state reads: (

P +
n2a

V 2

)(
V − nb

)
= nRT, (19)

where a and b stand for the cohesion pressure and co-
volume, respectively; while n refers to the number of
particles of the gas investigated. The Van der Waals gas
energy is given by:

U = Uideal gas −
n2a

V
. (20)

Making the derivatives of Eqs. 19 and 20 the GR for
the Van der Waals gas is obtained:

Γ =
2

3
· V

(V − nb)
. (21)

Interestingly enough, as can be directly inferred from
Eq. 21, the GR depends solely on the co-volume. This
means that the cohesion pressure is not relevant and the
GR for the Van der Waals is governed only by the radius
of the gas particles. Yet, from Eq. 21, one can deduce
that measuring the Grüneisen parameter of a real gas,
the co-volume b of the investigated gas can be immedi-
ately obtained. Furthermore, upon pressurizing the gas,
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b increases and, in particular, when b achieves the gas
cloud critical volume32 Vc = nb the GR diverges, since
the denominator of Eq. 21 tends to zero when V → Vc.
As we have done for the ideal gas, for the sake of com-
pleteness, below we derive the GR for the van der Waal
gas employing the partition function. The latter, for the
van der Waals gas, reads:

lnZ = −N lnN +N +N ln

 (V −Nb)(
h2

2πmkBT

) 3
2

+
N2a

V kBT

(22)
and can be rewritten in the following way:

lnZ = N [1− lnN + ln(V −Nb)]−

−N
{

3

2

[
lnh2 − ln (2πmkBT )

]}
+

N2a

V kBT
(23)

Hence, making use of Eqs. 16 and 23 the GR can be
easily calculated:

Γ = −V
∂
∂T

{
1
β∗

[
N

(V−Nb) −
N2a

kBTV 2

]}
∂
∂T

[
− 3

2NkBT + N2a
V

] , (24)

which simplified, reads:

Γ = −V
∂
∂T

{
kBTN

(V−Nb) −
N2a
V 2

}
− 3

2NkB
, (25)

thus, the GR for the van der Waals gas is obtained,
namely:

Γ =
2

3
· V

(V −Nb)
, (26)

which is identical to Eq. 21, deduced starting from the
equation of state.

Still considering the Van der Waals gas, it is useful to
analyze the behavior of the GR for the Joule-Thomson
effect. For the latter, the temperature gradient is given
by:

∆T = − n2a

cV V
. (27)

Combining Eqs. 21 and 27, the GR (ΓJT ) for the Joule-
Thomson effect can be obtained, namely:

ΓJT =
2

3

1(
1 + bcV ∆T

na

) . (28)

Interestingly enough, as can be deduced immediately
from Eq. 28, in the Joule-Thomson effect the van der
Waals GR assumes a value closer to those obtained for
the ideal gas, i.e. Γ = 2/3, when the second term in the
parenthesis of the denominator tends to zero.

C. Bose-Einstein Condensation

The Bose-Einstein gas is of particular interest because,
in contrast to the Fermi-Dirac gas, it can undergo a phase
transition thought the particles do not interact with each
other. As well-known from the literature, the Bose-
Einstein condensation is a direct consequence of how the
particles occupancy takes place in the case of bosons. To
make this clear, let us recall the average number 〈N〉 of
particles in an allowed state l:

〈N〉 =
∑
l

( 1

eβ∗(εl−µ) − 1

)
=
( z

eβ∗εl − z

)
=
∑
l

〈nl〉,

(29)
where z = eβ

∗µ is an effective pressure, the so-called
fugacity. Since 1 ≤ eβ∗εl ≤ ∞, i.e. all states are accessible
in this range, to keep 〈N〉 > 0, there is a constrain to the
fugacity, namely 0 ≤ z ≤ 1. In addition, a simple analysis
of Eq. 29 reveals that µ should be either zero or negative.
Physically, as a consequence of such constrains, one can
say that it is easy to tot up additional particles to the gas.
A particular situation is found when l = 0, i.e. ε0 = 0. In
such a situation limz→0〈nl〉 → ∞ and a phase transition
into a Bose-Einstein condensation takes place33. Here we
are interested in estimating the GR for the condensate.
In the case of the Bose-Einstein condensation of an ideal
boson gas, the specific heat for T ≥ Tc is given by34:

cv = 1.496NkB + 0.341NkB

(Tc
T

)1.5

+0.089NkB

(Tc
T

)3

,

(30)
and, according with Ref. 35 for T > Tc

∂P

∂T
=
∂
[
N
V kBT

g5/2(z)

g3/2(z)

]
∂T

, (31)

where g5/2(z) and g3/2(z) are the so-called Bose func-
tions.

At this point, it is worth mentioning that only those
particles which do not take part in the condensate con-
tribute to the energy of the Bose gas below Tc

36. Thus,
for T < Tc, the specific heat of those particles is given
by34:

cv = 1.926NkB

( T
Tc

)1.5

; (32)

and36

∂P

∂T
=
∂[0.0851m1.5(kBT )2.5~−3g]

∂T
, (33)

where m refers to the mass of the gas particle, g is the
degeneracy, ~ = h/2π being h the Planck constant.

Employing Eqs. 30, 31, 32 and 33, the GR of the con-
densate can be estimated.
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It turns out that employing such expressions both be-
low and above the Bose-Einstein condensation tempera-
ture GR = 2/3, as in the case of the ideal gas. An alter-
native equation of state was proposed in Ref. 37 consider-
ing that in the ground state the system holds the kinetic
energy associated with the gas cloud right at the con-
densation temperature. The proposed equation of state
below the condensation temperature reads37:

PV = cV T 5/2 + 0.513
[
1− (T/Tc)

3/2
]
NkbTc, (34)

where c = g5/2(1)k5/2(m/2π~2)3/2. Thus, making use of
Eqs. 32 and 34 the GR follows a linear dependence with T
below Tc. In what follows, we discuss the BEC in analogy
with a liquid-to-gas phase phase transition. The critical
volume (v∗) is given by38:

v∗ =
1

n∗
=

λ3

gξ3/2
=

1

g

[ h

(2πmkBT )1/2

]3
; (35)

Considering the transition as being of first order, the
Clausius-Clayperon equation can be used:

dT

dP
=

∆v

∆s
=
Tc(v

∗ − v0)

L
(36)

where ∆v, ∆s and L, refer to the volume change, entropy
change and latent heat, respectively.

The GR reads:

Γ =
Lvcv

Tc(v∗ − v0)
(37)

From Eq. 37, when v0 → v∗ ⇒ Γ → ∞. A similar
result from that obtained for the Van der Waals gas.

From the experimental point of view, immense efforts
have been put by different groups to measure the ther-
modynamic properties of a Bose–Einstein condensate. In
this regard, we refer to measurements of the specific heat
of a weakly interacting gas39 and the influence of pressure
on a Bose–Einstein condensate in two dimensions40.

D. Grüneisen Parameter in the Vicinity of the 4He
λ-Phase Transition

Due to its exotic behavior, the theoretical and experi-
mental investigations of the 4He isotope physical proper-
ties have been a topic of great interest since the middle
of the 20th century until nowadays. Seminal works in-
clude the reports by Fairbank and Kellers on the λ-like
(superfluid) transition41 as well as the detailed report by
McCarty42, who investigated the helium physical proper-
ties in a broad range of temperature and pressure. Fur-
thermore, it is worth mentioning experiments of dielectric
constant43, thermal expansion43 and specific heat44–46,
whose results will serve as the basis for the estimate of
the GR to be discussed in the following. Here, for the
estimate of the GR under pressure the results of Gray-
wall and Ahlers47 were employed. The expression for the

FIG. 3. Grüneisen ratio as a function of the reduced temper-
ature t for 4He in the immediate vicinity of the normal liquid-to-
superfluid phase transition, namely for ∼ |t| ≤ 1 mK. Inset: Blowup
of the data shown in the main panel, being the Grüneisen param-
eter shown in the range |t| ≤ 1µK.

specific heat in the immediate vicinity of the λ-like transi-
tion, reported in the literature by Fairbank and Kellers41,
is given by:

cp = 4.55− log10 |T − Tλ| − 5.20∆, (38)

here ∆ is a phenomenological parameter and it is as-
sumed to be 1 at the normal-liquid phase (t > 0) and
0 at the superfluid phase (t < 0), where t refers to the
reduced temperature; Tλ stands for the from normal-
liquid-to-superfluid phase transition temperature. We
stress that Eq. 38 is in perfect agreement with experi-
mental results44 in the temperature range |T−Tλ| = |t|
≤ 200 mK. However, in our analysis we stick to the re-
gion |t| ≤ 10 mK, cf. detailed discussion below. Yet, we
stress that the expression employed for the specific heat
fits was taken from an experiment carried out at con-
stant volume. However, as the range of temperature is
quite small, the process can be considerate isobaric as
well as isovolumetric. Hence, in this particular case we
assume cP = cV so that Eq. 1 can be used in our analysis.
Regarding thermal expansivity experiments, the work of
Niemela and Donnelly43 provided the data set in the T -
range from 1.35 K to 4.9 K. Nevertheless, here the only
results within the region |t| ≤ 10 mK are taken into ac-
count. The volumetric thermal expansion data are nicely
described by the following expression43:

β(t) = − (a1 + b1) + a1 ln |t|+ (a2 + 2b2)t+ 2a2t ln |t|

1 +
2∑
i=1

aiti ln |t|+
7∑
i=1

biti
+

(39)

+

7∑
n=3

nbnt
(n−1)

1 +
2∑
i=1

aiti ln |t|+
7∑
i=1

biti
,
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FIG. 4. Grüneisen parameter as a function of the reduced tem-
perature t under various pressures, cf. indicated in the label. The
behaviour for saturated pressure value is the same observed in Fig. 3
and increases with the pressure. A.P. stands for ambient pressure.

being, for the sake of completeness, the coefficients ai and
bi presented in Table 1. Employing Eqs. 38 and 39, the

i ai (T < Tλ) ai (T > Tλ) bi (T < Tλ) bi (T > Tλ)
1 −0.00757537 −0.00794605 0.00379937 −0.0303511
2 0.00687483 0.00507051 0.00186557 −0.0102326
3 - - 0.00488345 −0.00300636
4 - - - 0.00024072
5 - - - −0.00245749
6 - - - 0.00153454
7 - - - −0.00030818

TABLE I. Parameters ai and bi used for the estimate of thermal

expansion expression of 4He (Eq. 39) for t > 0 and t < 0, after

Ref. 43.

GR as a function of temperature can be obtained, being
the results in the range |t| ≤ 0.001 K depicted in Fig. 3.
Note that a clear singularity of the GR is observed in
the immediate vicinity of the λ transition for the isotope
4He. A blowup of the GR even closer to Tλ together with
the normalized Grüneisen parameter is shown in the inset
of Fig. 3. It is worth mentioning that for the tempera-
ture range |t| > 1 mK (not shown), at ambient pressure,
the GR does not present singularities, being instead de-
scribed roughly by a constant function. For the range t
< 0, i.e. below the superfluid transition, we were able to
perform calculations of the GR as a function of temper-
ature and pressure, whose results are presented in Fig. 4.
By doing so, we are interested now in following the pres-
sure dependence of the entropy of 4He in the superfluid
phase. Hence, we make use of the function for the super-
fluid helium entropy derived by Greywall an Ahlers47,
which in turn is in good agreement with experimental
data published in the literature48. Interestingly enough,
as can be seen in Fig. 4, the GR is clearly enhanced un-
der pressure. Based on the discussions presented in the
introduction of this work the GR can be used as an indi-
rect way to measure the interaction between particles in a
gas, fluid or solid. In the model proposed by Tisza50, the

FIG. 5. Entropy as a function of temperature for various values
of applied pressures49. The entropy enhancement is related to the
increase of the interaction between rotons, see main text for details.
A.P. stands stands for ambient pressure.

so-called rotons are essentially a bounded pair of Helium
atoms which is formed in the superfluid phase. In anal-
ogy with a classical rotor, such rotons have translational
and rotational degrees of freedom. From the sound veloc-
ity data the entropy at the superfluid phase was derived
by Maynard49. Fig. 5 depicts the entropy as a function
of temperature for various pressures. Note that the en-
tropy increases as the applied pressure is increased. Such
a behavior is a direct consequence of the enhancement
of the interaction between rotons as pressure is applied.
The rotons gas is also discussed and presented in details
by Pathria in Ref. 35. Employing the expression of the
Helmhotz free energy it is straightforward to obtain the
GR of a rotons gas as a function of temperature and pres-
sure (not shown), being the results in perfect agreement
with those depicted in Fig 4.

IV. CONCLUSIONS

To summarize, we have derived the Grüneisen ratio for
various gases. We have shown that for the ideal gas as
well as for the free electron gas a constant value, namely
Γ = 2/3 is found for the Grüneisen ratio. For the Van
der Waals gas the Grüneisen ratio diverges when the gas
particle co-volume achieves a critical value. We also have
shown that Γ for 4He diverges near the so-called λ transi-
tion, namely from superfluid to normal liquid. Our anal-
ysis show that application of pressure increases the sys-
tem entropy, in perfect agreement with Tisza’s theory
based on rotons. Using the textbook Bose-Einstein dis-
tribution for gases and considering the boundary condi-
tions for the realization of a Bose-Einstein condensation
we have obtained Γ = 2/3 for the non-interacting boson
gas. Yet, an analysis of the Bose-Einstein condensation in
analogy with the classical liquid-to-gas transition reveals
that when the gas cloud volume achieves the critical, the
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Grüneisen ratio diverges. A calculation of the effects of
interaction on the Grüneisen ratio for the Bose-Einstein
condensation constitute a topic of interest and will be
explored in another work.
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