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Abstract

One of the core problems of modern statistics is to approximate difficult-to-compute
probability distributions. This problem is especially important in Bayesian statistics,
which frames all inference about unknown quantities as a calculation about the posterior.
In this paper, we review variational inference (VI), a method from machine learning that
approximates probability distributions through optimization. VI has been used in myriad
applications and tends to be faster than classical methods, such as Markov chain Monte
Carlo sampling. The idea behind VI is to first posit a family of distributions and then
to find the member of that family which is close to the target. Closeness is measured
by Kullback-Leibler divergence. We review the ideas behind mean-field variational
inference, discuss the special case of VI applied to exponential family models, present
a full example with a Bayesian mixture of Gaussians, and derive a variant that uses
stochastic optimization to scale up to massive data. We discuss modern research in VI

and highlight important open problems. VI is powerful, but it is not yet well understood.
Our hope in writing this paper is to catalyze statistical research on this widely-used class
of algorithms.

Keywords: Algorithms; Statistical Computing; Computationally Intensive Methods.
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1 Introduction

One of the core problems of modern statistics is to approximate difficult-to-compute prob-
ability distributions. This problem is especially important in Bayesian statistics, which
frames all inference about unknown quantities as a calculation about the posterior. Modern
Bayesian statistics relies on models for which the posterior is not easy to compute and
corresponding algorithms for approximating them.

In this paper, we review variational inference, a method from machine learning for ap-
proximating probability distributions (Jordan et al., 1999; Wainwright and Jordan, 2008).
Variational inference is widely used to approximate posterior distributions for Bayesian
models, an alternative strategy to Markov chain Monte Carlo (MCMC) sampling. Compared
to MCMC, variational inference tends to be faster and easier to scale to large data—it has
been applied to problems such as large-scale document analysis, high-dimensional neuro-
science, and computer vision. But variational inference has been studied less rigorously
than than MCMC, and its statistical properties are less well understood. In writing this paper,
our hope is to catalyze statistical research on variational inference.

First, we set up the general problem. Consider a joint distribution of latent variables
z= z1:m and observations x= x1:n,

p(z,x) = p(z)p(x |z).

In Bayesian models, the latent variables help govern the distribution of the data. A Bayesian
model draws the latent variables from a prior distribution p(z) and then relates them to
the observations through the likelihood p(x |z). Inference in a Bayesian model amounts to
conditioning on data and computing the posterior p(z |x). In complex Bayesian models,
this computation often requires approximate inference.

For over 50 years, the dominant paradigm for approximate inference has been MCMC. First,
we construct a Markov chain on z whose stationary distribution is the posterior p(z |x).
Then, we sample from the chain for a long time to (hopefully) collect independent samples
from the stationary distribution. Finally, we approximate the posterior with an empirical
estimate constructed from the collected samples.

MCMC sampling has evolved into an indispensable tool to the modern Bayesian statistician.
Landmark developments include the Metropolis-Hastings algorithm (Metropolis et al.,
1953; Hastings, 1970), the Gibbs sampler (Geman and Geman, 1984) and its application
to Bayesian statistics (Gelfand and Smith, 1990). MCMC algorithms are under active
investigation. They have been widely studied, extended, and applied; see Robert and
Casella (2004) for a perspective.

Variational inference is an alternative approach to approximate inference. Rather than
using sampling, the main idea behind variational inference is to use optimization. First, we
posit a family of approximate distributions of the latent variables Q. Then, we try to find
the member of that family that minimizes the Kullback-Leibler (KL) divergence to the exact
posterior,

q∗(z) = arg min
q(z)∈Q

KL
�

q(z)‖p(z |x)
�

. (1)

Finally, we approximate the posterior with the optimized member of the family q∗(·).

Variational inference thus turns the inference problem into an optimization problem, and
the reach of the familyQ manages the complexity of this optimization. One of the key ideas
behind variational inference is to choose Q to be flexible enough to capture a distribution
close to p(z |x), but simple enough for efficient optimization.
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We emphasize that MCMC and variational inference are different approaches to solving
the same problem. MCMC algorithms sample from a Markov chain; variational algorithms
solve an optimization problem. MCMC algorithms approximate the posterior with samples
from the chain; variational algorithms approximate the posterior with the result of the
optimization.

Research on variational inference. The development of variational techniques for
Bayesian inference followed two parallel, yet separate, tracks. Peterson and Anderson
(1987) is arguably the first variational procedure for a particular model: a neural network.
This paper, along with insights from statistical mechanics (Parisi, 1988), led to a flurry of
variational inference procedures for a wide class of models (Saul et al., 1996; Jaakkola
and Jordan, 1996, 1997; Ghahramani and Jordan, 1997; Jordan et al., 1999). In parallel,
Hinton and Van Camp (1993) proposed a variational algorithm for a similar neural network
model. Neal and Hinton (1999) (first published in 1993) made important connections
to the expectation-maximization algorithm (Dempster et al., 1977), which then led to a
variety of variational inference algorithms for other types of models (Waterhouse et al.,
1996; MacKay, 1997).

Modern research on variational inference focuses on several aspects: tackling Bayesian infer-
ence problems that involve massive data; using improved optimization methods for solving
Equation (1) (which is usually subject to local minima); developing generic variational
inference, algorithms that are easy to apply to a wide class of models; and increasing the
accuracy of variational inference, e.g., by stretching the boundaries of Q while managing
complexity in optimization.

Organization of this paper. Section 2 describes the basic ideas behind the simplest ap-
proach to variational inference: mean-field inference and coordinate-ascent optimization.
Section 3 works out the details for a Bayesian mixture of Gaussians, an example model
familiar to many readers. Sections 4.1 and 4.2 describe variational inference for the class
of models where the joint distribution of the latent and observed variables are in the expo-
nential family—this includes many intractable models from modern Bayesian statistics and
reveals deep connections between variational inference and the Gibbs sampler of Gelfand
and Smith (1990). Section 4.3 expands on this algorithm to describe stochastic variational
inference (Hoffman et al., 2013), which scales variational inference to massive data using
stochastic optimization (Robbins and Monro, 1951). Finally, with these foundations in
place, Section 5 gives a perspective on the field—applications in the research literature, a
survey of theoretical results, and an overview of some open problems.

2 Variational inference

The goal of variational inference is to approximate a conditional distribution of latent
variables given observed variables. The key idea is to solve this problem with optimization.
We use a family of distributions over the latent variables, parameterized by free “variational
parameters.” The optimization finds the member of this family, i.e., the setting of the
parameters, that is closest in KL divergence to the conditional of interest. The fitted
variational distribution then serves as a proxy for the exact conditional distribution.

2.1 The problem of approximate inference

Let x = x1:n be a set of observed variables and z = z1:m be a set of latent variables, with joint
distribution p(z,x). We omit constants, such as hyperparameters, from the notation.
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The inference problem is to compute the conditional distribution of the latent variables
given the observations, p(z |x). This conditional can be used to produce point or interval
estimates of the latent variables, form predictive distributions of new data, and more.

We can write the conditional distribution as

p(z |x) =
p(z,x)
p(x)

. (2)

The denominator contains the marginal distribution of the observations, also called the
evidence. We calculate it by marginalizing out the latent variables from the joint distribu-
tion,

p(x) =

∫

z

p(z,x). (3)

For many models, this evidence integral is unavailable in closed form or requires exponential
time to compute. The evidence is what we need to compute the conditional from the joint;
this is why inference in such models is hard.

Note we assume that all unknown quantities of interest are represented as latent random
variables. This includes parameters that might govern all the data, as found in Bayesian
models, and latent variables that are “local” to individual data points. It might appear to the
reader that variational inference is only relevant in Bayesian settings. It has certainly had a
significant impact on applied Bayesian computation, and we will be focusing on Bayesian
models here. We emphasize, however, that variational inference is a general-purpose
tool for estimating conditional distributions. One need not be a Bayesian to have use for
variational inference.

Bayesian mixture of Gaussians. Consider a Bayesian mixture of unit-variance Gaussians.
There are K mixture components, corresponding to K normal distributions with means µ =
{µ1, . . . ,µK}. The mean parameters are drawn independently from a common prior p(µk),
which we assume to be a Gaussian N (0,σ2). (The prior variance σ2 is a hyperparameter.)
To generate an observation x i from the model, we first choose a cluster assignment ci ,
from a categorical distribution over {1, . . . , K}. We then draw x i from the corresponding
Gaussian N (µci

, 1).

The full hierarchical model is

µk ∼N (0,σ2), k = 1, . . . , K , (4)

ci ∼ Categorical(1/K, . . . , 1/K), i = 1, . . . , n, (5)

x i | ci ,µ∼N
�

c>i µ, 1
�

i = 1, . . . , n. (6)

For a sample of size n, the joint distribution of latent and observed variables is

p(µ,c,x) =
K
∏

k=1

p(µk)
n
∏

i=1

p(ci)p(x i | ci ,µ). (7)

The latent variables are z= {µ,c}, the K class means and n class assignments.

Here, the evidence is

p(x) =

∫

µ

p(µ)
n
∏

i=1

∑

ci

p(ci)p(x i |µci
). (8)

The integrand in Equation (8) does not contain a separate factor for each µk. (Indeed,
each µk appears in all n factors of the integrand.) Thus, the integral in Equation (8) does
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not reduce to a product of one-dimensional integrals. The time required for numerical
evaluation of the K-dimensional integral is exponential in K .

If we distribute the product over the sum in (8) and rearrange, we can write the evidence
as a sum over all possible configurations c of cluster assignments,

p(x) =
∑

c

p(c)

∫

µ

p(µ)
n
∏

i=1

p(x i |µci
). (9)

Here each individual integral is computable, thanks to the conjugacy between the Gaussian
prior on the components and the Gaussian likelihood. But there are Kn of them, one for
each configuration of the cluster assignments. Computing the evidence remains exponential
in K , hence intractable.

2.2 The evidence lower bound

In variational inference, we specify a family Q of distributions over the latent variables.
Each q(z) ∈ Q is a candidate approximation to the exact conditional. Our goal is to find
the best candidate, the one closest in KL divergence to the exact conditional.1 Inference
now amounts to solving the following optimization problem,

q∗(z) = arg min
q(z)∈Q

KL
�

q(z)‖p(z |x)
�

. (10)

Once found, q∗(·) is the best approximation of the conditional, within the family Q. The
complexity of the family determines the complexity of this optimization.

However, this objective is not computable because it requires computing the evidence
log p(x) in Equation (3). (That the evidence is hard to compute is why we appeal to
approximate inference in the first place.) To see why, recall that KL divergence is

KL
�

q(z)‖p(z |x)
�

= E
�

log q(z)
�

−E
�

log p(z |x)
�

, (11)

where all expectations are taken with respect to q(z). Expand the conditional,

KL
�

q(z)‖p(z |x)
�

= E
�

log q(z)
�

−E
�

log p(z,x)
�

+ log p(x). (12)

This reveals its dependence on log p(x).

Because we cannot compute the KL, we optimize an alternative objective that is equivalent
to the KL up to an added constant,

ELBO(q) = E
�

log p(z,x)
�

−E
�

log q(z)
�

. (13)

This function is called the evidence lower bound (ELBO). The ELBO is the negative KL diver-
gence of Equation (12) plus log p(x), which is a constant with respect to q(z). Maximizing
the ELBO is equivalent to minimizing the KL divergence.

Examining the ELBO gives intuitions about the optimal variational distribution. We rewrite
the ELBO as a sum of the expected log likelihood of the data and the KL divergence between
the prior p(z) and q(z),

ELBO(q) = E
�

log p(z)
�

+E
�

log p(x |z)
�

−E
�

log q(z)
�

= E
�

log p(x |z)
�

− KL
�

q(z)‖p(z)
�

.

1 The KL divergence is an information-theoretic measure of proximity between two distributions. It is
asymmetric—that is, KL

�

q‖p
�

6= KL
�

p‖q
�

—and nonnegative. It is minimized when q(·) = p(·).
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Which values of z will this objective encourage q(z) to place its mass on? The first term is
an expected likelihood; it encourages distributions that place their mass on configurations
of the latent variables that explain the observed data. The second term is the negative
divergence between the variational distribution and the prior; it encourages distributions
close to the prior. Thus the variational objective mirrors the usual balance between
likelihood and prior.

Another property of the ELBO is that it lower-bounds the (log) evidence, log p(x)≥ ELBO(q)
for any q(z). This explains the name. To see this notice that Equations (12) and (13) give
the following expression of the evidence,

log p(x) = KL
�

q(z)‖p(z |x)
�

+ ELBO(q). (14)

The bound then follows from the fact that KL (·)≥ 0. In the original literature on variational
inference, this was derived through Jensen’s inequality (Jordan et al., 1999).

Finally, many readers will notice that the first term of the ELBO in Equation (13) is the
expected complete log-likelihood, which is optimized by the expectation maximization (EM)
algorithm (Dempster et al., 1977). The EM algorithm was designed for finding maximum
likelihood estimates in models with latent variables. It uses the fact that the ELBO is equal
to the log likelihood log p(x) (i.e., the log evidence) when q(z) = p(z |x). EM alternates
between computing the expected complete log likelihood according to p(z |x) (the E step)
and optimizing it with respect to the model parameters (the M step). Unlike variational
inference, EM assumes the expectation under p(z |x) is computable and uses it in otherwise
difficult parameter estimation problems. Unlike EM, variational inference does not estimate
fixed model parameters—it is often used in a Bayesian setting where classical parameters
are treated as latent variables. Variational inference applies to models where we cannot
compute the exact conditional of the latent variables.2

2.3 The mean-field variational family

We described the ELBO, the variational objective function in the optimization of Equa-
tion (10). We now describe a variational family Q, to complete the specification of the
optimization problem. The complexity of the family determines the complexity of the opti-
mization; it is more difficult to optimize over a complex family than a simple family.

In this review we focus on the mean-field variational family, where the latent variables are
mutually independent and each governed by a distinct factor in the variational distribution.
A generic member of the mean-field variational family is

q(z) =
m
∏

j=1

q j(z j). (15)

Each latent variable z j is governed by its own distribution q j(z j). In optimization, these
variational factors are chosen to maximize the ELBO of Equation (13).

We emphasize that the variational family is not a model of the observed data—indeed, the
data x does not appear in Equation (15). Instead, it is the ELBO, and the corresponding
KL minimization problem, that connects the fitted variational distribution to the data and
model.

Notice we have not specified the parametric form of the individual variational factors. In
principle, each can take on any parametric form appropriate to the corresponding random

2Two notes: (a) Variational EM is the EM algorithm with a variational E-step, i.e., a computation of an
approximate conditional. (b) The coordinate ascent algorithm of Section 2.4 can look like the EM algorithm. The
“E step” computes approximate conditionals of local latent variables; the “M step” computes a conditional of the
global latent variables.
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variable. For example, a continuous variable might have a Gaussian factor; a categorical
variable will typically have a categorical factor. We will see in Sections 4 and 4.2 that
there are many models for which properties of the model determine optimal forms of the
mean-field factors.

Finally, though we focus on mean-field inference in this review, researchers have also
studied more complex families. One way to expand the family is to add dependencies
between the variables (Saul and Jordan, 1996; Barber and Wiegerinck, 1999); this is
called structured variational inference. Another way to expand the family is to consider
mixtures of variational distributions, i.e., additional latent variables within the variational
family (Lawrence et al., 1998). Both of these methods potentially improve the fidelity of the
approximation, but there is a trade off. Structured and mixture-based variational families
come with a more difficult-to-solve variational optimization problem.

Bayesian mixture of Gaussians (continued). Consider again the Bayesian mixture of
Gaussians. The mean-field variational family contains approximate posterior distributions
of the form

q(µ,c) =
K
∏

k=1

q(µk; µ̂k, σ̂k)
n
∏

i=1

q(ci;ϕi). (16)

Following the mean-field recipe, each latent variable is governed by its own variational factor.
The factor q(µk; µ̂k, σ̂2

k) is a Gaussian distribution on the kth mixture component’s mean
parameter; its mean is µ̂k and its variance is σ̂2

k. The factor q(ci;ϕi) is a distribution on the
ith observation’s mixture assignment; its cluster probabilities are a K-vector ϕi .

Here we have asserted parametric forms for these factors: the mixture components are
Gaussian with variational parameters (mean and variance) specific to the kth cluster;
the cluster assignments are categorical with variational parameters (cluster probabilities)
specific to the ith data point. (In fact, these are the optimal forms of the mean-field
variational distribution for the mixture of Gaussians.)

With the variational family in place, we have completely specified the variational inference
problem for the mixture of Gaussians. The ELBO is defined by the model definition in
Equation (7) and the mean-field family in Equation (16). The corresponding variational
optimization problem maximizes the ELBO with respect to the variational parameters, i.e.,
the Gaussian parameters for each mixture component and the categorical parameters for
each cluster assignment. We will see this example through in Section 3.

Visualizing the mean-field approximation. The mean-field family is expressive because
it can capture any marginal distribution of the latent variables. However, it cannot capture
correlation between them. Seeing this in action reveals some of the intuitions and limitations
of mean-field variational inference.

Consider a two dimensional Gaussian distribution, shown in violet in Figure 1. This
distribution is highly correlated, which defines its elongated shape.

The optimal mean-field variational approximation to this posterior is a product of two Gaus-
sian distributions. Figure 1 shows the mean-field variational density after maximizing the
ELBO. While the variational approximation has the same mean as the original distribution,
its covariance structure is, by construction, decoupled.

Further, the marginal variances of the approximation under-represent those of the tar-
get distribution. This is a common effect in mean-field variational inference and, with
this example, we can see why. The KL divergence from the approximation to the poste-
rior is in Equation (11). It penalizes placing mass in q(·) on areas where p(·) has little
mass, but penalizes less the reverse. In this example, in order to successfully match the
marginal variances, the circular q(·) would have to expand into territory where p(·) has
little mass.
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x1

x2

Exact Posterior
Mean-field Approximation

Figure 1: Visualizing the mean-field approximation to a two-dimensional Gaussian posterior.
The ellipses (2σ) show the effect of mean-field factorization.

2.4 Coordinate ascent mean-field variational inference

Using the ELBO and the mean-field family, we have cast approximate conditional inference
as an optimization problem. In this section, we describe one of the most commonly used
algorithms for solving this optimization problem, coordinate ascent variational inference
(CAVI) (Bishop, 2006). CAVI iteratively optimizes each factor of the mean-field variational
distribution, while holding the others fixed. It climbs the ELBO to a local optimum.

The algorithm. We first state a result. Consider the jth latent variable z j . The complete
conditional of z j is its conditional distribution given all of the other latent variables in the
model and the observations, p(z j |z− j ,x). Fix the other variational factors q`(z`), ` 6= j.
The optimal q j(z j) is then proportional to the exponentiated expected log of the complete
conditional,

q∗j (z j)∝ exp
¦

E− j

�

log p(z j |z− j ,x)
�©

. (17)

The expectation in Equation (17) is with respect to the (currently fixed) variational dis-
tribution over z− j , that is,

∏

6̀= j q`(z`). Equivalently, Equation (17) is proportional to the
exponentiated log of the joint,

q∗j (z j)∝ exp
¦

E− j

�

log p(z j ,z− j ,x)
�©

. (18)

Because of the mean-field family—that all the latent variables are independent—the expec-
tations on the right hand side do not involve the jth variational factor. Thus this is a valid
coordinate update.

These equations underlie the CAVI algorithm, presented as Algorithm 1. We maintain a set
of variational factors q`(z`). We iterate through them, updating q j(z j) using Equation (18).
CAVI goes uphill on the ELBO of Equation (13), eventually finding a local optimum.

CAVI is closely related to Gibbs sampling (Geman and Geman, 1984; Gelfand and Smith,
1990), the classical workhorse of approximate inference. The Gibbs sampler maintains a
realization of the latent variables and iteratively samples from each variable’s complete
conditional. Equation (18) uses the same complete conditional. It takes the expected log,
and uses this quantity to iteratively set each variable’s variational factor.3

Derivation. We now derive the coordinate update in Equation (18). The idea appears
in Bishop (2006), but the argument there uses gradients, which we do not. Rewrite the

3Many readers will know that we can significantly speed up the Gibbs sampler by marginalizing out some of
the latent variables; this is called collapsed Gibbs sampling. We can speed up variational inference with similar
reasoning; this is called collapsed variational inference (Hensman et al., 2012). (But these ideas are outside the
scope of our review.)
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Algorithm 1: Coordinate ascent variational inference (CAVI)
Input: A model p(x,z), a data set x

Output: A variational distribution q(z) =
∏m

j=1 q j(z j)
Initialize: Variational factors q j(z j)
while the ELBO has not converged do

for j ∈ {1, . . . , m} do
Set q j(z j)∝ exp{E− j[log p(z j |z− j ,x)]}

end

Compute ELBO(q) = E
�

log p(z,x)
�

+E
�

log q(z)
�

end

return q(z)

ELBO of Equation (13) as a function of the jth variational factor q j(z j), absorbing into a
constant the terms that do not depend on it,

ELBO(q j) = E j

�

E− j

�

log p(z j ,z− j ,x)
��

−E j

�

log q j(z j)
�

+ const. (19)

We have rewritten the first term of the ELBO using iterated expectation. The second term we
have decomposed, using the independence of the variables (i.e., the mean-field assumption)
and retaining only the term that depends on q j(z j).

Up to an added constant, the objective function in Equation (19) is equal to the negative KL

divergence between q j(z j) and q∗j (z j) from Equation (18). Thus we maximize the ELBO with
respect to q j when we set q j(z j) = q∗j (z j).

2.5 Practicalities

Here, we highlight a few things to keep in mind when implementing and using variational
inference in practice.

Initialization. The ELBO is (generally) a non-convex objective function. CAVI only guar-
antees convergence to a local optimum, which can be sensitive to initialization. Figure 2
shows the ELBO trajectory for 10 random initializations using the Gaussian mixture model.
(This inference is on images; see Section 3.4.) Each initialization reaches a different value,
indicating the presence of many local optima in the ELBO. Note that better local optima give
variational distributions that are closer to the exact posterior.

0 10 20 30 40 50

�2:4

�2:2

�2

�1:8

�1:6

�106

Seconds

EL
BO

CAVI

Figure 2: Different initializations may lead CAVI to find different local optima of the ELBO.
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Algorithm 2: CAVI for a Gaussian mixture model

Input: Data x1:n, number of components K , prior variance of component means σ2

Output: Variational distributions q(zi;ϕi) (K-categorical) and q(µk; µ̂k, σ̂2
k) (Gaussian)

Initialize: Variational parameters {ϕ1:n, µ̂1:K , σ̂2
1:K}.

while the ELBO has not converged do

for i ∈ {1, . . . , n} do
Set ϕik ∝ exp{E

�

µk; µ̂k, σ̂2
k

�

x i −E
�

µ2
k; µ̂k, σ̂2

k

�

/2}
end

for k ∈ {1, . . . , K} do

Set µ̂k ←

∑

i ϕik x i

1/σ2 +
∑

i ϕik

Set σ̂2
k ←

1

1/σ2 +
∑

i ϕik

end

Compute ELBO(ϕ1:n, µ̂1:K , σ̂2
1:K)

end

return {ϕ1:n, µ̂1:K , σ̂2
1:K}

Assessing convergence. Monitoring the ELBO in CAVI is simple; we typically assess conver-
gence once the change in ELBO has fallen below some small threshold. However, computing
the ELBO of the full dataset may be undesirable. Instead, we suggest computing the average
log predictive of a small held-out dataset. Monitoring changes here is a proxy to monitoring
the ELBO of the full data.

Numerical stability. Probabilities are constrained to live within [0,1]. Precisely ma-
nipulating and performing arithmetic of small numbers requires additional care. When
possible, we recommend working with logarithms of probabilities. One useful identity is
the “log-sum-exp” trick,

log





∑

i

exp(x i)



= α+ log





∑

i

exp(x i −α)



 . (20)

The constant α is typically set to maxi x i . This provides numerical stability to common
computations in variational inference procedures.

3 A complete example: Bayesian mixture of Gaussians

As an example, we return to the simple mixture of Gaussians model of Section 2.1. To
review, consider K mixture components and n real-valued data points x1:n. The latent
variables are K real-valued mean parameters µ = µ1:K and n latent-class assignments
c = c1:n. The assignment ci indicates which latent cluster x i comes from. In detail, ci
is an indicator K-vector, all zeroes except for a one in the position corresponding to x i ’s
cluster. There is a fixed hyperparameter σ2, the variance of the normal prior on the µk ’s.
We assume the observation variance is one and take a uniform prior over the mixture
components.
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The joint distribution of the latent and observed variables is in Equation (7). The variational
family is in Equation (16). Recall that there are two types of variational parameters—
categorical parameters ϕi for approximating the posterior cluster assignment of the ith
data point and Gaussian parameters (µ̂k, σ̂k) for approximating the posterior of the kth
mixture component.

We combine the joint and the mean-field family to form the ELBO for the mixture of
Gaussians. It is a function of the variational parameters,

ELBO(ϕ, µ̂, σ̂2) =
K
∑

k=1

E
�

log p(µk); µ̂k, σ̂2
k

�

+
n
∑

i=1

�

E
�

log p(ci);ϕi
�

+E
�

log p(x i | ci ,µ);ϕi , µ̂, σ̂2
�

�

(21)

−
n
∑

i=1

E
�

log q(ci;ϕi)
�

−
K
∑

k=1

E
�

log q(µk; µ̂k, σ̂2
k)
�

.

In each term, we have made explicit the dependence on the variational parameters. Each
expectation can be computed in closed form.

The CAVI algorithm updates each variational parameter in turn. We first derive the update
for the variational cluster assignment factor; we then derive the update for the variational
mixture component factor.

3.1 The variational distribution of the mixture assignments

We first derive the variational update for the cluster assignment ci . Using Equation (18),

q∗(ci;ϕi)∝ exp
¦

log p(ci) +E
�

log p(x i | ci ,µ); µ̂, σ̂2
�©

. (22)

The terms in the exponent are the components of the joint distribution that depend on ci .
The expectation in the second term is over the mixture components µ.

The first term of Equation (22) is the log prior of ci . It is the same for all possible values
of ci , log p(ci) =− log K . The second term is the expected log of the cith Gaussian density.
Recalling that ci is an indicator vector, we can write

p(x i | ci ,µ) =
K
∏

k=1

p(x i |µk)
cik .

We use this to compute the expected log probability,

E
�

log p(x i | ci ,µ)
�

=
∑

k

cikE
�

log p(x i |µk); µ̂k, σ̂2
k

�

(23)

=
∑

k

cikE
�

−(x i −µk)
2; µ̂k, σ̂2

k

�

+ const. (24)

=
∑

k

cik

�

E
�

µk; µ̂k, σ̂2
k

�

x i −E
�

µ2
k; µ̂k, σ̂2

k

�

/2
�

+ const. (25)

In each line we remove terms that are constant with respect to ci . This calculation requires
E
�

µk
�

and E
�

µ2
k

�

for each mixture component, both computable from the variational
Gaussian on the kth mixture component.

Thus the variational update for the ith cluster assignment is

ϕik ∝ exp
¦

E
�

µk; µ̂k, σ̂2
k

�

x i −E
�

µ2
k; µ̂k, σ̂2

k

�

/2
©

. (26)

Notice it is only a function of the variational parameters for the mixture components.
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3.2 The variational distribution of the mixture-component means

We turn to the variational distribution q(µk; µ̂k, σ̂2
k) of the kth mixture component. Again

we use Equation (18) and write down the joint density up to a normalizing constant,

q(µk)∝ exp
¦

log p(µk) +
∑n

i=1E
�

log p(x i | ci ,µ);ϕi , µ̂−k, σ̂2
−k

�©

. (27)

We now calculate the unnormalized log of this coordinate-optimal q(µk). Recall ϕik is the
probability that the ith observation comes from the kth cluster. Because ci is an indicator
vector, we see that ϕik = E

�

cik;ϕi
�

. Now

log q(µk) = log p(µk) +
∑

i E
�

log p(x i | ci ,µ);ϕi , µ̂−k, σ̂2
−k

�

+ const. (28)

=−µ2
k/2σ

2 +
∑

i E
�

cik;ϕi
�

log p(x i |µk) + const. (29)

=−µ2
k/2σ

2 +
∑

i ϕik

�

−(x i −µk)2/2
�

+ const. (30)

=−µ2
k/2σ

2 +
∑

i ϕik x iµk −ϕikµ
2
k/2+ const. (31)

=
�
∑

i ϕik x i

�

µk −
�

1/2σ2 +
∑

i ϕik/2
�

µ2
k + const. (32)

This calculation reveals that the coordinate-optimal variational distribution of µk is an expo-
nential family with sufficient statistics {µk,µ2

k} and natural parameters {
∑n

i=1ϕik x i ,−1/2σ2−
∑n

i=1ϕik/2}, i.e., a Gaussian. Expressed in terms of the variational mean and variance, the
updates for q(µk) are

µ̂k =

∑

i ϕik x i

1/σ2 +
∑

i ϕik
, σ̂2

k =
1

1/σ2 +
∑

i ϕik
. (33)

These updates relate closely to the complete conditional distribution of the kth component in
the mixture model. The complete conditional is a posterior Gaussian given the data assigned
to the kth component. The variational update is a weighted complete conditional, where
each data point is weighted by its variational probability of being assigned to component
k.

3.3 CAVI for the mixture of Gaussians

Algorithm 2 presents coordinate-ascent variational inference for the Bayesian mixture of
Gaussians. It combines the variational updates in Equation (22) and Equation (33). The
algorithm requires computing the ELBO of Equation (21). We use the ELBO to track the
progress of the algorithm and assess when it has converged.

Once we have a fitted variational distribution, we can use it as we would use the posterior.
For example, we can obtain a posterior decomposition of the data. We assign points to their
most likely mixture assignment ĉi = arg maxkϕik and estimate cluster means with their
variational means µ̂k.

We can also use the fitted variational distribution to approximate the predictive distribution
of new data. This approximate predictive is a mixture of Gaussians,

p(xnew | x1:n)≈
1

K

K
∑

k=1

p(xnew | µ̂k), (34)

where p(xnew | µ̂k) is a Gaussian with mean µ̂k and unit variance.
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3.4 Empirical study

We present two analyses to demonstrate the mixture of Gaussians algorithm in action. The
first is a simulation study; the second is an analysis of a data set of natural images.

Simulation study. Consider two-dimensional real-valued data x. We simulate K = 5
Gaussians with random means, covariances, and mixture assignments. Figure 3 shows the
data; each point is colored according to its true cluster. Figure 3 also illustrates the initial
variational distribution of the mixture components—each is a Gaussian, nearly centered,
and with a wide variance; the subpanels plot the variational distribution of the components
as the CAVI algorithm progresses.

The progression of the ELBO tells a story. We highlight key points where the ELBO develops
“elbows”, phases of the maximization where the variational approximation changes its shape.
These “elbows” arise because the ELBO is not a convex function in terms of the variational
parameters; CAVI iteratively reaches better plateaus.

Finally, we plot the logarithm of the Bayesian predictive distribution as approximated by
the variational distribution. Here we report the average across held-out data. Note this plot
is smoother than the ELBO.

Image analysis. We now turn to an experimental study. Consider the task of grouping
images according to their color profiles. One approach is to compute the color histogram
of the images. Figure 4 shows the red, green, and blue channel histograms of two images
from the imageCLEF data (Villegas et al., 2013). Each histogram is a vector of length 192;
concatenating the three color histograms gives a 576-dimensional representation of each
image, regardless of its original size in pixel-space.

We use CAVI to fit a Gaussian mixture model to image histograms. We randomly select two
sets of ten thousand images from the imageCLEF collection to serve as training and testing
datasets. Figure 5 shows similarly colored images assigned to four randomly chosen clusters.
Figure 6 shows the average log predictive accuracy of the testing set as a function of time.
We compare CAVI to an implementation in Stan (Stan Development Team, 2015), which
uses a Hamiltonian Monte Carlo-based sampler (Hoffman and Gelman, 2014). (Details are
in Appendix A.) CAVI is orders of magnitude faster than this sampling algorithm.4

4 Variational inference with exponential families

We described mean-field variational inference and derived CAVI, a general coordinate-ascent
algorithm for optimizing the ELBO. We demonstrated this approach on a simple mixture of
Gaussians, where each coordinate update was available in closed form.

The mixture of Gaussians is one member of the important class of models where each
complete conditional is in the exponential family. This includes a number of widely-used
models, such as Bayesian mixtures of exponential families, factorial mixture models, matrix
factorization models, certain hierarchical regression models (e.g., linear regression, probit
regression, Poisson regression), stochastic blockmodels of networks, hierarchical mixtures of
experts, and a variety of mixed-membership models (which we will discuss below).

Working in this family simplifies variational inference: it is easier to derive the correspond-
ing CAVI algorithm, and it enables variational inference to scale up to massive data. In
Section 4.1, we develop the general case. In Section 4.2, we discuss conditionally conjugate
models, i.e., the common Bayesian application where some latent variables are “local” to a

4This is not a definitive comparison between variational inference and MCMC. Other samplers, such as a
collapsed Gibbs sampler, may perform better than HMC.
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Figure 3: A simulation study of a two dimensional Gaussian mixture model. The ellipses
are 2σ contours of the variational approximating factors.
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Figure 4: Red, green, and blue channel image histograms for two images from the im-
ageCLEF dataset. The top image lacks blue hues, which is reflected in its blue channel
histogram. The bottom image has a few dominant shades of blue and green, as seen in the
peaks of its histogram.

data point and others, usually identified with parameters, are “global” to the entire data set.
Finally, in Section 4.3, we describe stochastic variational inference (Hoffman et al., 2013), a
stochastic optimization algorithm that scales up variational inference in this setting.

4.1 Complete conditionals in the exponential family

Consider the generic model p(x,z) of Section 2.1 and suppose each complete conditional is
in the exponential family:

p(z j |z− j ,x) = h(z j)exp{η j(z− j ,x)
>z j − a(η j(z− j ,x))}, (35)

where z j is its own sufficient statistic, h(·) is a base measure, and a(·) is the log normal-
izer (Brown, 1986). Because this is a conditional distribution, the parameter η j(z− j ,x) is a
function of the conditioning set.

Consider mean-field variational inference for this class of models, where we fit q(z) =
∏

j q j(z j). The exponential family assumption simplifies the coordinate update of Equa-
tion (17),

q(z j)∝ exp
¦

E
�

log p(z j |z− j ,x)
�©

(36)

= exp
n

log h(z j) +E
�

η j(z− j ,x)
�>

z j −E
�

a(η j(z− j ,x))
�

o

(37)

∝ h(z j)exp
n

E
�

η j(z− j ,x)
�>

z j

o

. (38)
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Figure 5: Example clusters from the Gaussian mixture model. We assign each image to its
most likely mixture cluster. The subfigures show nine randomly sampled images from four
clusters; their namings are subjective.
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Figure 6: Comparison of CAVI to a Hamiltonian Monte Carlo-based sampling technique.
CAVI fits a Gaussian mixture model to ten thousand images in less than a minute.

This update reveals the parametric form of the optimal variational factors. Each one is in
the same exponential family as its corresponding complete conditional. Its parameter has
the same dimension and it has the same base measure h(·) and log normalizer a(·).

Having established their parametric forms, let ν j denote the variational parameter for
the jth variational factor. When we update each factor, we set its parameter equal to the
expected parameter of the complete conditional,

ν j = E
�

η j(z− j ,x)
�

. (39)

This expression facilitates deriving CAVI algorithms for many complex models.

4.2 Conditional conjugacy and Bayesian models

One important special case of exponential family models are conditionally conjugate models
with local and global variables. Models like this come up frequently in Bayesian statistics
and statistical machine learning, where the global variables are the “parameters” and the
local variables are per-data-point latent variables.

Conditionally conjugate models. Let β be a vector of global latent variables, which
potentially govern any of the data. Let z be a vector of local latent variables, whose ith
component only governs data in the ith “context.” The joint distribution is

p(β ,z,x) = p(β)
n
∏

i=1

p(zi , x i |β). (40)
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The mixture of Gaussians of Section 3 is an example. The global variables are the mixture
components; the ith local variable is the cluster assignment for data point x i .

We will assume that the modeling terms of Equation (40) are chosen to ensure each
complete conditional is in the exponential family. In detail, we first assume the joint
distribution of each (x i , zi) pair, conditional on β , has an exponential family form,

p(zi , x i |β) = h(zi , x i)exp{β> t(zi , x i)− a(β)}, (41)

where t(·, ·) is the sufficient statistic.

Next, we take the prior on the global variables to be the corresponding conjugate prior (Di-
aconis et al., 1979; Bernardo and Smith, 1994),

p(β) = h(β)exp{α>[β ,−a(β)]− a(α)}. (42)

This prior has natural (hyper)parameter α = [α1,α2] and sufficient statistics that con-
catenate the global variable and its log normalizer in the distribution of the local vari-
ables.

With the conjugate prior, the complete conditional of the global variables is in the same
family. Its natural parameter is

α̂=
�

α1 +
∑n

i=1 t(zi , x i)
α2 + n

�

. (43)

Turn now to the complete conditional of the local variable zi . Given β and x i , the local
variable zi is conditionally independent of the other local variables z−i and other data x−i .
This follows from the form of the joint distribution in Equation (40). Thus

p(zi | x i ,β ,z−i ,x−i) = p(zi | x i ,β). (44)

We further assume that this distribution is in an exponential family,

p(zi | x i ,β) = h(zi)exp{η(β , x i)
>zi − a(η(β , x i))}. (45)

This is a property of the local likelihood term p(zi , x i |β) from Equation (41). For ex-
ample, in the mixture of Gaussians, the complete conditional of the local variable is a
categorical.

Variational inference in conditionally conjugate models. We now describe CAVI for this
general class of models. Write q(β |λ) for the variational posterior approximation on β ; we
call λ the “global variational parameter”. It indexes the same exponential family distribution
as the prior. Similarly, let the variational posterior q(zi |ϕi) on each local variable zi be
governed by a “local variational parameter” ϕi . It indexes the same exponential family
distribution as the local complete conditional. CAVI iterates between updating each local
variational parameter and updating the global variational parameter.

The local variational update is

ϕi = Eλ
�

η(β , x i)
�

. (46)

This is an application of Equation (39), where we take the expectation of the natural
parameter of the complete conditional in Equation (44).

The global variational update applies the same technique. It is

λ=
�

α1 +
∑n

i=1Eϕi

�

t(zi , x i)
�

α2 + n

�

. (47)
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Here we take the expectation of the natural parameter in Equation (43).

CAVI optimizes the ELBO by iterating between local updates of each local parameter and
global updates of the global parameters. To assess convergence we can compute the ELBO at
each iteration (or at some lag), up to a constant that does not depend on the variational
parameters,

ELBO =
�

α1 +
∑n

i=1Eϕi

�

t(zi , x i)
�

�>
Eλ
�

β
�

− (α2 + n)Eλ
�

a(β)
�

−E
�

log q(β ,z)
�

.
(48)

This is the ELBO in Equation (13) applied to the joint in Equation (40) and the corresponding
mean-field variational distribution; we have omitted terms that do not depend on the
variational parameters. The last term is

E
�

log q(β ,z)
�

= λ>Eλ
�

t(β)
�

− a(λ) +
n
∑

i=1

ϕ>i Eϕi

�

zi
�

− a(ϕi). (49)

Note that CAVI for the mixtures of Gaussians (Section 3) is an instance of this method.

4.3 Stochastic variational inference

Modern applications of probability models often require analyzing massive data. However,
most posterior inference algorithms do not easily scale. CAVI is no exception, particularly in
the conditionally conjugate setting of Section 4.2. The reason is that the coordinate ascent
structure of the algorithm requires iterating through the entire data set at each iteration.
As the data set size grows, each iteration becomes more computationally expensive.

An alternative to coordinate ascent is gradient-based optimization, which climbs the ELBO

by computing and following its gradient at each iteration. This perspective is the key
to scaling up variational inference using stochastic variational inference (SVI) (Hoffman
et al., 2013), a method that combines natural gradients (Amari, 1998) and stochastic
optimization (Robbins and Monro, 1951).

SVI focuses on optimizing the global variational parameters λ of a conditionally conjugate
model. The flow of computation is simple. The algorithm maintains a current estimate of
the global variational parameters. It repeatedly (a) subsamples a data point from the full
data set; (b) uses the current global parameters to compute the optimal local parameters for
the subsampled data point; and (c) adjusts the current global parameters in an appropriate
way. SVI is detailed in Algorithm 3. We now show why it is a valid algorithm for optimizing
the ELBO.

The natural gradient of the ELBO. In gradient-based optimization, the natural gradient
accounts for the geometric structure of probability parameters (Amari, 1982, 1998). Specifi-
cally, natural gradients warp the parameter space in a sensible way, so that moving the same
distance in different directions amounts to equal change in symmetrized KL divergence. The
usual Euclidean gradient does not enjoy this property.

In exponential families, we find the natural gradient with respect to the parameter by pre-
multiplying the usual gradient by the inverse covariance of the sufficient statistic, a′′(λ)−1.
This is the inverse Riemannian metric and the inverse Fisher information matrix (Amari,
1982).

Conditionally conjugate models enjoy simple natural gradients of the ELBO. We focus
on gradients with respect to the global parameter λ. Hoffman et al. (2013) derive the
Euclidean gradient of the ELBO,

∇λELBO = a′′(λ)(Eϕ [α̂]−λ), (50)
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where Eϕ [α̂] is in Equation (47). Premultiplying by the inverse Fisher information gives
the natural gradient g(λ),

g(λ) = Eϕ [α̂]−λ. (51)

It is the difference between the coordinate updates Eϕ [α̂] and the variational parameters λ
at which we are evaluating the gradient. In addition to enjoying good theoretical properties,
the natural gradient is easier to calculate than the Euclidean gradient. For more on natural
gradients and variational inference see Sato (2001) and Honkela et al. (2008).

We can use this natural gradient in a gradient-based optimization algorithm. At each
iteration, we update the global parameters,

λt = λt−1 + εt g(λt), (52)

where εt is a step size.

Substituting Equation (51) into the second term reveals a special structure,

λt = (1− εt)λt−1 + εtEϕ [α̂] . (53)

Notice this does not require additional types of calculations other than those for coordinate
ascent updates. At each iteration, we first compute the coordinate update. We then adjust
the current estimate to be a weighted combination of the update and the current variational
parameter.

Though easy to compute, using the natural gradient has the same cost as the coordinate
update in Equation (47); it requires summing over the entire data set and computing
the optimal local variational parameters for each data point. With massive data, this is
prohibitively expensive.

Stochastic optimization of the ELBO. Stochastic variational inference solves this problem
by using the natural gradient in a stochastic optimization algorithm. Stochastic optimiza-
tion algorithms follow noisy but cheap-to-compute gradients to reach the optimum of an
objective function. (In the case of the ELBO, stochastic optimization will reach a local
optimum.) In their seminal paper, Robbins and Monro (1951) proved results implying that
optimization algorithms can successfully use noisy, unbiased gradients, as long as the step
size sequence satisfies certain conditions. This idea has blossomed (Spall, 2003; Kushner
and Yin, 1997). Stochastic optimization has enabled modern machine learning to scale to
massive data (Le Cun and Bottou, 2004).

Our aim is to construct a cheaply computed, noisy, unbiased natural gradient. We expand
the natural gradient in Equation (51) using Equation (43)

g(λ) = α+
h

∑n
i=1Eϕ∗i

�

t(zi , x i)
�

, n
i

−λ, (54)

where ϕ∗i indicates that we consider the optimized local variational parameters (at fixed
global parameters λ) in Equation (46). We construct a noisy natural gradient by sampling
an index from the data and then rescaling the second term,

t ∼ Unif(1, . . . , n) (55)

ĝ(λ) = α+ n
h

Eϕ∗t
�

t(zt , x t)
�

, 1
i

−λ. (56)

The noisy natural gradient ĝ(λ) is unbiased: Et
�

ĝ(λ)
�

= g(λ). And it is cheap to compute—
it only involves a single sampled data point and only one set of optimized local parameters.
(This immediately extends to minibatches, where we sample B data points and rescale
appropriately.) Again, the noisy gradient only requires calculations from the coordinate
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Algorithm 3: SVI for conditionally conjugate models
Input: Model p(x,z), data x, and step size sequence εt

Output: Global variational distributions qλ(β)
Initialize: Variational parameters λ0

while TRUE do
Choose a data point uniformly at random, t ∼ Unif(1, . . . , n)
Optimize its local variational parameters ϕ∗t = Eλ

�

η(β , x t)
�

Compute the coordinate update as though x t was repeated n times,

λ̂= α+ nEϕ∗t
�

f (zt , x t)
�

Update the global variational parameter, λt = (1− εt)λt + εt λ̂t

end

return λ

ascent algorithm. The first two terms of Equation (56) are equivalent to the coordinate
update in a model with n replicates of the sampled data point.

Finally, we set the step size sequence. It must follow the conditions of Robbins and Monro
(1951),

∑

t

εt =∞ ;
∑

t

ε2
t <∞. (57)

Many sequences will satisfy these conditions, for example εt = t−κ for κ ∈ (0.5, 1]. The full
SVI algorithm is in Algorithm 3.

We emphasize that SVI requires no new derivation beyond what is needed for CAVI. Any
implementation of CAVI can be immediately scaled up to a stochastic algorithm.

Probabilistic topic models. We demonstrate SVI with a probabilistic topic model. Prob-
abilistic topic models are mixed-membership models of text, used to uncover the latent
“topics” that run through a collection of documents. Topic models have become a popular
technique for exploratory data analysis of large collections (Blei, 2012).

In detail, each latent topic is a distribution over terms in a vocabulary and each document
is a collection of words that comes from a mixture of the topics. The topics are shared
across the collection, but each document mixes them with different proportions. (This is the
hallmark of a mixed-membership model.) Thus topic modeling casts topic discovery as a
posterior inference problem. Posterior estimates of the topics and topic proportions can be
used to summarize, visualize, explore, and form predictions about the documents.

One motivation for topic modeling is to get a handle on massive collections of documents.
Early inference algorithms were based on coordinate ascent variational inference (Blei
et al., 2003) and analyzed collections in the thousands or tens of thousands of documents.
With SVI, topic models scale up to millions of documents; the details of the algorithm are
in Hoffman et al. (2013). Figure 7 illustrates topics inferred from 1.8M articles from the
New York Times. This analysis would not have been possible without SVI.
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Figure 7: Topics found in a corpus of 1.8M articles from the New York Times. Reproduced
with permission from Hoffman et al. (2013).

5 Discussion

We described variational inference, a method that uses optimization to make probabilistic
computations. The goal is to approximate the conditional distribution of latent variables
z given observed variables x, p(z |x). The idea is to posit a family of distributions Q and
then to find the member q∗(·) that is closest in Kullback-Leibler (KL) divergence to the
conditional of interest. Minimizing the KL divergence is the optimization problem, and its
complexity is governed by the complexity of the approximating family.

We then described the mean-field family, i.e., the family of fully factorized distributions
of the latent variables. Using this family, variational inference is particularly amenable to
coordinate-ascent optimization, which iteratively optimizes each factor. (This approach
closely connects to the classical Gibbs sampler (Geman and Geman, 1984; Gelfand and
Smith, 1990).) We showed how to use mean-field variational inference (VI) to approximate
the posterior distribution of a Bayesian mixture of Gaussians, discussed the special case of
exponential families and conditional conjugacy, and described the extension to stochastic
variational inference (Hoffman et al., 2013), which scales mean-field variational inference
to massive data.

5.1 Applications

Researchers in many fields have used variational inference to solve real problems. Here we
focus on example applications of mean-field variational inference and structured variational
inference based on the KL divergence. This discussion is not exhaustive; our intention is to
outline the diversity of applications of variational inference.
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Computational biology. VI is widely used in computational biology, where probabilis-
tic models provide important building blocks for analyzing genetic data. For example,
VI has been used in genome-wide association studies (Carbonetto and Stephens, 2012;
Logsdon et al., 2010), regulatory network analysis (Sanguinetti et al., 2006), motif detec-
tion (Xing et al., 2004), phylogenetic hidden Markov models (Jojic et al., 2004), population
genetics (Raj et al., 2014), and gene expression analysis (Stegle et al., 2010).

Computer vision and robotics. Since its inception, variational inference has been impor-
tant to computer vision. Vision researchers frequently analyze large and high-dimensional
data sets of images, and fast inference is important to successfully deploy a vision sys-
tem. Some of the earliest examples included inferring non-linear image manifolds (Bishop
and Winn, 2000) and finding layers of images in videos (Jojic and Frey, 2001). As other
examples, variational inference is important to probabilistic models of videos (Chan and
Vasconcelos, 2009; Wang and Mori, 2009), image denoising (Likas and Galatsanos, 2004),
tracking (Vermaak et al., 2003; Yu and Wu, 2005), place recognition and mapping for
robotics (Cummins and Newman, 2008; Ramos et al., 2012), and image segmentation with
Bayesian nonparametrics (Sudderth and Jordan, 2008). Du et al. (2009) uses variational
inference in a probabilistic model to combine the tasks of segmentation, clustering, and
annotation.

Computational neuroscience. Modern neuroscience research also requires analyzing
very large and high-dimensional data sets, such as high-frequency time series data or
high-resolution functional magnetic imaging data. There have been many applications
of variational inference to neuroscience, especially for autoregressive processes (Roberts
and Penny, 2002; Penny et al., 2003, 2005; Flandin and Penny, 2007; Harrison and Green,
2010). Other applications of variational inference to neuroscience include hierarchical
models of multiple subjects (Woolrich et al., 2004), spatial models (Sato et al., 2004;
Zumer et al., 2007; Kiebel et al., 2008; Wipf and Nagarajan, 2009; Lashkari et al., 2012),
brain-computer interfaces (Sykacek et al., 2004), and factor models (Manning et al., 2014;
Gershman et al., 2014). There is a software toolbox that uses variational methods for
solving neuroscience and psychology research problems (Daunizeau et al., 2014).

Natural language processing and speech recognition. In natural language processing,
variational inference has been used for solving problems such as parsing (Liang et al.,
2007, 2009), grammar induction (Kurihara and Sato, 2006; Naseem et al., 2010; Cohen
and Smith, 2010), models of streaming text (Yogatama et al., 2014), topic modeling (Blei
et al., 2003), and hidden Markov models and part-of-speech tagging (Wang and Blunsom,
2013). In speech recognition, variational inference has been used to fit complex coupled
hidden Markov models (Reyes-Gomez et al., 2004) and switching dynamic systems (Deng,
2004).

Other applications. There have been many other applications of variational inference.
Fields in which it has been used include marketing (Braun and McAuliffe, 2010), optimal
control and reinforcement learning (Van Den Broek et al., 2008; Furmston and Barber,
2010), statistical network analysis (Wiggins and Hofman, 2008; Airoldi et al., 2008),
astrophysics (Regier et al., 2015), and the social sciences (Erosheva et al., 2007; Grimmer,
2011). General variational inference algorithms have been developed for a variety of classes
of models, including shrinkage models (Armagan et al., 2011; Armagan and Dunson, 2011),
general time-series models (Roberts et al., 2004; Barber and Chiappa, 2006; Johnson and
Willsky, 2014; Foti et al., 2014), robust models (Tipping and Lawrence, 2005; Wang and
Blei, 2015), and Gaussian process models (Titsias and Lawrence, 2010; Damianou et al.,
2011; Hensman et al., 2014).
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5.2 Theory

Though researchers have not developed much theory around variational inference, there are
several threads of research about theoretical guarantees of variational approximations. As
we mentioned in the introduction, one of our purposes for writing this paper is to catalyze
research on the statistial theory around variational inference.

Below, we summarize a variety of results. In general, they are all of the following type:
treat VI posterior means as point estimates (or use M-step estimates from variational expec-
tation maximization (EM)) and confirm that they have the usual frequentist asymptotics.
(Sometimes the research finds that they do not enjoy the same asymptotics.) Each result
revolves around a single model and a single family of variational approximations.

You et al. (2014a) study the variational posterior for a classical Bayesian linear model. They
put a normal prior on the coefficients and an inverse gamma prior on the response variance.
They find that, under standard regularity conditions, the mean-field variational posterior
mean of the parameters are consistent in the frequentist sense. Note that this is a conjugate
model; one does not need to use variational inference in this setting. You et al. (2014b)
build on their earlier work with a spike-and-slab prior on the coefficients and find similar
consistency results. This is a non-conjugate model.

Hall et al. (2011) examines a simple Poisson mixed-effects model, one with a single
predictor and a random intercept. They use a Gaussian variational approximation and
estimate parameters with variational EM. They prove consistency of these estimates at
the parametric rate and show asymptotic normality with asymptotically valid standard
errors.

Celisse et al. (2012) and Bickel et al. (2013) analyze network data using stochastic block-
models. They show asymptotic normality of parameter estimates obtained using a mean-
field variational approximation. They highlight the computational advantages and theoreti-
cal guarantees of the variational approach over maximum likelihood for dense, sparse, and
restricted variants of the stochastic blockmodel.

Wang and Titterington (2006) analyze variational approximations to mixtures of Gaussians.
Specifically, they consider Bayesian mixtures with conjugate priors, the mean-field varia-
tional approximation, and an estimator that is the variational posterior mean. They confirm
that coordinate ascent variational inference (CAVI) converges to a local optimum, that the
VI estimator is consistent, and that the VI estimate and maximum likelihood estimate (MLE)
approach each other at a rate of O(1/n). In Wang and Titterington (2005), they show that
the asymptotic variational posterior covariance matrix is “too small”—it differs from the
MLE covariance (i.e., the inverse Fisher information) by a positive-definite matrix.

Westling and McCormick (2015) study the consistency of VI through a connection to
M-estimation. They focus on a broader class of models (with posterior support in real
coordinate space) and analyze an automated VI technique that uses a Gaussian variational
approximation (Kucukelbir et al., 2015). They derive an asymptotic covariance matrix
estimator and show its robustness to model misspecification.

5.3 Open problems

There are many open avenues for statistical research in variational inference.

Here we focused on models where the complete conditional is in the exponential family.
However, many models do not enjoy this property. (A simple example is Bayesian logistic
regression.) One fruitful avenue of research is to expand variational inference to such
models. For example, Wang and Blei (2013) adapt Laplace approximations and the delta
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method to this end. In a similar vein, Tan et al. (2014) extend stochastic variational
inference (SVI) to generalized linear mixed models.

There has also been a flurry of recent work on methods that optimize the variational
objective with Monte Carlo estimates of the gradient (Kingma and Welling, 2013; Rezende
et al., 2014; Ranganath et al., 2014; Salimans and Knowles, 2014; Titsias and Lázaro-
Gredilla, 2014; Titsias and Lázaro-Gredilla, 2015). These so-called “black box” methods are
designed for models with difficult complete conditionals; they avoid requiring any model-
specific derivations. Kucukelbir et al. (2015) leverage these ideas toward an automatic VI

technique that works on any model written in the probabilistic programming system Stan
(Stan Development Team, 2015). This is a first step towards a derivation-free, easy-to-use
VI algorithm.

We focused on optimizing KL
�

q(z)||p(z |x)
�

as the variational objective function. Another
promising avenue of research is to develop variational inference methods that optimize
other measures, such as α-divergence measures. As one example, expectation propaga-
tion (Minka, 2001) is inspired by the KL divergence between p(z |x) and q(z). Other work
has developed divergences based on lower bounds that are tighter than the evidence lower
bound (ELBO) (Barber and de van Laar, 1999; Leisink and Kappen, 2001). Alternative
divergences may be difficult to optimize but may also give better approximations (Minka
et al., 2005; Opper and Winther, 2005).

Though it is flexible, the mean-field family makes strong independence assumptions. These
assumptions help with scalable optimization but they limit the expressivity of the variational
family. (Further, they can exacerbate issues around local optima of the objective and
underestimating posterior variances; see Figure 1.) A third avenue of research is to develop
better approximations while maintaining efficient optimization. As examples, Hoffman
and Blei (2014) use generic structured variational inference in a stochastic optimization
algorithm; Giordano et al. (2015) post-process the mean-field parameters to correct for
underestimating the variance.

Finally, the statistical properties of variational inference are not yet well understood,
especially in contrast to the wealth of analysis of Markov chain Monte Carlo (MCMC)
techniques. (Though there has been some progress; see Section 5.2.) A final open research
problem is to understand variational inference as an estimator and to understand its
statistical profile relative to the exact posterior.
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A Gaussian Mixture Model of Image Histograms

We present a multivariate, diagonal covariance Gaussian mixture model (GMM). Write data
as X = {x1, · · · , xN} ∈ R(N×D) where each xn ∈ RD. The latent variables similarly live in
high dimensions. The assignment latent variables are Z = {z1, · · · , zN} ∈ R(N×K) where each
zn is a “one hot” K-vector. The mean latent variables are µ= {µ1, · · · ,µK} ∈ R(K×D) where
each µk ∈ RD and the precision latent variables are τ= {τ1, · · · ,τK} ∈ R(K×D) where each
τk ∈ RD.

The joint distribution of the model factorizes as

p(X , Z ,π,µ,τ) = p(X | Z ,µ,τ)p(Z | π)p(π)p(µ | τ)p(τ).

The likelihood is a Gaussian distribution, with precision parameterization,

p(X | Z ,µ,τ) =
N
∏

n=1

K
∏

k=1

 

D
∏

d=1

N (xnd | µkd ,τkd)

!znk

.

The marginal over assignments is a Categorical distribution,

p(Z | π) =
N
∏

n=1

K
∏

k=1

π
znk
k .

The prior over mixing parameters is a Dirichlet distribution,

p(π) = Dir(π | a0) = C(a0)
K
∏

k=1

π
a0−1
k .

The prior over mean and precision parameters is a Normal-Gamma distribution,

p(µ | τ)p(τ) =
K
∏

k=1

D
∏

d=1

N (µkd | m0, b0τkd)×
K
∏

k=1

D
∏

d=1

Gam(τkd | α0,β0)

=
K
∏

k=1

D
∏

d=1

N (µkd | m0, b0τkd)Gam(τkd | α0,β0).

We use the following values for the parameters

a0 =
1

K
, m0 = 0.0, b0 = 1.0, α0 = 1.0, β0 = 1.0.

Bishop (2006) derives a CAVI algorithm for this model in Chapter 10.2.

Figure 8 presents Stan code that implements this model. Since Stan does not support
discrete latent variables, we marginalize over the assignment variables.
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data {
int < lower=0> N; // number o f data po in t s in data s e t
int < lower=0> K; // number o f mixture components
int < lower=0> D; // dimension
vec to r [D] x [N ] ; // o b s e r v a t i o n s

}

trans formed data {
vector < lower =0>[K] alpha0_vec ;
f o r ( k in 1 :K) { // convert the s c a l a r d i r i c h l e t p r i o r 1/K

alpha0_vec [ k ] < - 1 .0/K; // to a vec to r
}

}

parameters {
s implex [K] theta ; // mixing propor t i ons
vec to r [D] mu[K ] ; // l o c a t i o n s o f mixture components
vector < lower =0>[D] sigma [K ] ; // standard d e v i a t i o n s o f mixture components

}

model {
// p r i o r s
theta ~ d i r i c h l e t ( alpha0_vec ) ;
f o r ( k in 1 :K) {

mu[ k ] ~ normal ( 0 . 0 , 1 .0/ sigma [ k ] ) ;
sigma [ k ] ~ inv_gamma ( 1 . 0 , 1 . 0 ) ;

}

// l i k e l i h o o d
f o r (n in 1 :N) {

r e a l ps [K ] ;
f o r ( k in 1 :K) {

ps [ k ] < - l og ( theta [ k ] ) + normal_log ( x [ n ] , mu[ k ] , sigma [ k ] ) ;
}
increment_log_prob ( log_sum_exp ( ps ) ) ;

}
}

Figure 8: Stan code for the GMM of image histograms.
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