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The perspective of probing quantum many-body systems out of equilibrium under well controlled conditions
is attracting enormous attention in recent years, a perspective that extends to the study of fermionic systems.
In this work, we present an argument that precisely captures the dynamics causing equilibration and Gaussifi-
cation under quadratic non-interacting fermionic Hamiltonians. Specifically, based on two basic assumptions
— the initial clustering of correlations and the Hamiltonian exhibiting delocalizing transport — we prove that
systems become locally indistinguishable from fermionic Gaussian states on precisely controlled time scales.
The argument gives rise to rigorous instances of a convergence to a generalized Gibbs ensemble. This argument
is general enough to allow for arbitrary pure and mixed initial states, including thermal and ground states of
interacting models, and large classes of systems, including high-dimensional lattice and classes of spin systems.
Our results allow to develop an intuition of equilibration that is expected to be generally valid, and at the same
time relates to current experiments of cold atoms in optical lattices.

Despite the great complexity of quantum many-body sys-
tems out-of-equilibrium, local expectation values in such sys-
tems show the remarkable tendency to equilibrate to station-
ary values that do not depend on the microscopic details of the
initial state, but rather can be described with few parameters
using thermal states or generalized Gibbs ensembles [1–3].
Such behavior has been successfully studied in many settings
theoretically and experimentally, most notably in instances of
quantum simulations in optical lattices [2, 4, 5].

By now, it is clear that, despite the unitary nature of quan-
tum mechanical evolution, local expectation values equilibrate
due to a dephasing between the eigenstates [3, 6–11]. So far
it is, however, unclear why this dephasing tends to happen
so rapidly. In fact, experiments often observe equilibration
on time scales independent of the system size [5, 12], while
even the best general theoretical bounds diverge exponentially
[2, 11]. This discrepancy is known as the problem of equili-
bration time scales.

What is more, only little is known about how exactly the
equilibrium expectation values emerge. Due to the exponen-
tially many constants of motion present in quantum many-
body systems, corresponding to the overlaps with the eigen-
vectors of the system, there seems to be no obvious reason
why equilibrium values often only depend on few macro-
scopic properties such as temperature or particle number. In
short: It is unclear how precisely the memory of the initial
conditions is lost during time evolution.

To make progress towards a solution of the two problems
introduced above, it is instructive to study the behavior of non-
interacting particles captured by so-called quadratic or free
models, which provide a guideline for understanding these is-
sues in significantly more depth. Thermal states of these mod-
els are fully described by the correlation matrix and are hence
instances of so-called Gaussian states, which are thus partic-
ularly simple to describe. While studying the time evolution
of such states provides valuable insight into the spreading of
particles and equilibration, it does not explain how the state
ends up appearing Gaussian in the first place.

In this work, we address this question: We show that after

Figure 1. Illustration of the Gaussification process. Expanding a
time evolving local operator in the basis of creation and annihila-
tion operators allows us to separate Gaussian (two body, dark blue)
and non-Gaussian (multi-body, bright red) contributions to its ex-
pectation value in states with exponential clustering of correlations.
Delocalizing transport leads to an algebraic suppression of the non-
Gaussian contributions in time.

a short and well controlled relaxation time very general non-
Gaussian initial states become locally indistinguishable from
a Gaussian state with the same second-moments. This mech-
anism is much reminiscent and shares many features of actual
thermalisation, in that an initially complex setting appears to
be convergent to a state that is captured by astoundingly few
parameters only. In this way, we present a significant step
forward in the theory of equilibration of quantum many-body
systems that have been pushed out of equilibrium.

Our results hold for a remarkably large class of initial con-
ditions, including ground states of interacting models, evolv-
ing in time under a quadratic fermionic Hamiltonian with fi-
nite ranged interactions. This family of Hamiltonians notably
includes the case of non-interacting ultra-cold fermions in an
optical lattice. By virtue of the Jordan-Wigner transforma-
tion our results also apply to certain spin models. We for-
mulate our results in form of a rigorous proof, which at the
same time provides an intuitive explanation for this result. In
particular, we identify two natural assumptions, namely expo-
nential clustering of correlations in the initial state and what
we call delocalizing transport, which provide the basis for our
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proof and are immediately connected to the intuition underly-
ing equilibration.

Setting. Let L be a dL-dimensional cubic lattice with V
lattice sites. We restrict to cubic lattices purely for nota-
tional convenience, all results can be straight forwardly gen-
eralized to Kagomé, honeycomb, or other geometries. Re-
stricting ourself to spin-less fermions, again purely out of
notational convenience, each site r ∈ L is associated with
a fermionic orbital with fermionic creation and annihilation
operators f†r and fr. We collect all of them in a vector
c = (f1, f

†
1 , . . . , fV , f

†
V ). The Hamiltonian of a quadratic

fermionic system is then of the form

H =

2V∑
j,k=1

c†j hj,k ck, (1)

with h = h† its hermitian Hamiltonian kernel. The time evo-
lution of the annihilation operator in the Heisenberg picture
under such a Hamiltonians is given by (see Appendix A)

cj(t) := eiHt cj e−iHt =

2V∑
k=1

Wj,k(t) ck (2)

with the propagator W (t) := e2th.
Next we introduce the concept of Gaussian states and Gaus-

sification. Define the correlation matrix γ of a state ρ as the
matrix of its second moments, i.e., γj,k := tr(ρ c†j ck). A con-
venient characterization of Gaussian states is the following:
They are the states that maximize the von Neumann entropy
given the expectation values collected in the correlation ma-
trix (see also Appendix C 1). For every state ρ, we hence de-
fine its Gaussified version ρG as the Gaussian state with the
correlation matrix of ρ, i.e., tr(ρG c

†
j ck) = tr(ρ c†j ck).

Assumptions. Our main theorem holds for initial states
(including non-Gaussian ones) with a certain form of decay
of correlations that evolve under quadratic Hamiltonians that
exhibit a certain form of transport. We now make these two
conditions precise, starting with the correlation decay:

Definition 1 (Exponential clustering of correlations). We say
that a state ρ exhibits exponential clustering of correlations
with length scale ξ > 0 and constant CClust > 0 if, for any
two operators A,B with ‖A‖ = ‖B‖ = 1, we have

| tr(ρAB)− tr(Aρ) tr(B ρ)|
≤ CClust supp(A) supp(B) e− d(A,B)/ξ.

(3)

Here d(A,B) is taken to be the natural distance on the
lattice between the supports supp(A), supp(B) of A and B
and ‖ · ‖ denotes the operator norm. The above definition is
slightly less demanding than the standard definition of expo-
nential clustering of correlations (we allow for a scaling with
the volume of the supports rather than just their surfaces) and
a wide classes of physically relevant states exhibit this form of
correlation decay. It is important to stress that the initial state
is not assumed to be a Gaussian state. It may for example per-
fectly well be a ground state of an interacting gapped model

Figure 2. Numerical study of the spreading of the support of a single
fermionic annihilation operator described in Eq. (2) under the evolu-
tion of the free hopping HamiltonianH = −

∑
j(f
†
j fj+1 +f†j+1fj)

with unit hopping amplitude on a one-dimensional chain of 150 sites
with periodic boundary conditions. The blue color denotes the modu-
lus of the evolution matrix elementsW75,k(t) of a fermionic operator
initially supported on site 75 in the center of the chain. The support
expands ballistically creating the Lieb-Robinson cone. Within the
cone the support is distributed fairly evenly. The maximal value, in-
dicated by the smoothed blue curve, is encountered at the wavefronts
and suppressed by at least t−1/3 as shown in the inset. The suppres-
sion stabilises, once the wavefronts collide.

[13, 14] or a high temperature state of a locally interacting
non-quadratic fermionic system [15].

For our proof of local relaxation towards a Gaussian state
we further assume that the Hamiltonian exhibits transport in
the following sense:

Definition 2 (Delocalizing transport). A quadratic Hamil-
tonian with propagator W on a dL-dimensional cubic lat-
tice of volume V exhibits delocalizing transport with con-
stant CTrans > 0 and recurrence time tRec > 0 if, for all
t ∈ (0, tRec], we have that

∀j, k : |Wj,k(t)| ≤ CTrans max{t−dL/3, V −dL/3}. (4)

The intuition behind this definition is that an initially lo-
calized fermionic operator will spread over a large area, such
that its component on a single localized operator is dynami-
cally suppressed. For our main result any exponent smaller
than −dL/4 is sufficient. The choice of the exponent −dL/3
in the definition is justified by the fact that this is what can be
shown to hold for important classes of models: Quadratic hop-
ping Hamiltonians with constant on-site potential (see Fig. 2
and Appendix B 1), as well as the critical Ising model (see Ap-
pendix B 2) show this kind of transport, as well as numerous
others.

The recurrence time takes into account that any non-trivial
bound of the form (4) is eventually violated due to the re-
current nature of the dynamics of finite dimensional quantum
systems. For free hopping Hamiltonians, it can be shown that
the recurrence time grows at least like a power-law with the
system size V (see Appendix B 2), but it is usually exponen-
tially large.
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Main result. With the above definitions our main result
can be stated as follows:

Theorem 1 (Gaussification in finite time). Consider a fam-
ily of systems on cubic lattices of increasing volume V . Let
the initial states exhibit exponential clustering of correlations
and let the Hamiltonians be quadratic finite range and have
delocalizing transport. If all constants are independent of
the system size, except the recurrence time tRec, which in-
creases as some function of V , then for any local opera-
tor A on a fixed finite region and error ε > 0 there ex-
ists a relaxation time tRelax > 0 independent of the system
size such that for all times t ∈ [tRelax, tRec] it holds that
| tr[A(t) ρ]− tr[A(t) ρG]| ≤ ε.

The theorem states that for all times in [tRelax, tRec] it will
be impossible by any local measurements on S to distinguish
the true state ρ from the fermionic Gaussian state ρG, which
has the same second moments as ρ. Note that since tRelax

is independent of the system size, but tRec increases with
its volume, for any ε there always exists a system size such
that tRec > tRelax and the interval where the theorem applies
grows as a function of the system size. We complement this
analytical and rigorous approach by a tensor network simula-
tion, the results of which are depicted in Fig. 3, which clearly
shows the algebraic suppression of non-Gaussian feature in
time.

The argument can be understood as a fermionic quantum
central limit theorem [16] emerging from a dynamical evolu-
tion, in that the second moments are preserved and the higher
cumulants can be proven to converge to zero in time. The key
steps in the proof, to be presented in the following, can be
understood from intuitive physical considerations. They are
based on three main ingredients: the finite speed of propaga-
tion in lattice systems, the homogeneous suppression of ma-
trix elements of the propagator due to delocalizing transport,
and the exponential clustering of correlations in the initial
state. For the full proof with all details of the involved com-
binatorics we refer the reader to Appendix (see Appendix D 5
for an overview). The proof shares some intuition put forth on
the equilibration of harmonic classical chains [17].

Proof. We expand the local operator A supported in a fixed
finite region S in the basis of fermionic operators. To that end
let S̃ := {sr} for r ∈ [2|S|] := {1, . . . , 2|S|} be the set of
indices of all elements of the vector c with support in S, then

A(t) =

1∑
b1,...,b2|S|=0

ab1,··· ,b2|S| cs1(t)b1 . . . cs2|S|(t)
b2|S| . (5)

Without loss of generality we can assume normalization
‖A‖ = 1, such that all of the 22|S| coefficients satisfy
|ab1,··· ,b2m | ≤ 1. Thus

| tr[Aρ(t)]− tr[AρG(t)]| (6)

≤ 22|S|max
J⊂S̃

∣∣∣∣ ∑
(kj)j∈J∈[2V ]×|J|

tr

[∏
j∈J

Wj,kj (t) ckj (ρ− ρG)

]∣∣∣∣ .

Here and in the following all products are meant to be pre-
formed in increasing order.

We assumed that the Hamiltonian has finite range interac-
tions, i.e., there exists a fixed length scale l0, such that when-
ever (.j, k) > l0 it holds that hj,k = 0, where we have used
the shorthand d(j, k) := d(cj , ck). Such models satisfy Lieb-
Robinson bounds [18], which in our free fermionic setting can
be stated as follows:

Lemma 2 (Lieb-Robinson bound for quadratic systems [19]).
For any quadratic fermionic HamiltoniansH with finite range
interactions there exist constants CLR, µ, v > 0 independent
of the system size such that its propagatorW fulfills the bound

|Wj,k(t)| ≤ CLR eµ (v|t|−d(j,k)) . (7)

The Lieb-Robinson bound tells us that cj(t) and ck(t) es-
sentially still have disjoint support as long as t is small enough
such that v|t| � d(j, k). We can hence restrict the sum in
Eq. (6) to those kj whose mins∈S̃ d(kj , s) is smaller than
(v + 2 vε)|t| for some fixed vε > 0. The total contribution
of the neglected terms can be bounded explicitly (see Ap-
pendix D 1 for details) and, importantly, is independent of V
and exponentially suppressed in |vε t|.

For each of the remaining summands in Eq. (6) it is now
important to keep track of the distribution of the indices kj
inside the cone. For this purpose we define the ∆-partition P∆

of a subindex set J ⊂ S̃ and sequence of indices (kj)j∈J as
the unique decomposition of J into subsets (patches) p in the
following way: The patches are constructed such that for any
two subindices within any given patch p there is a connecting
chain of elements from that patch in the sense that the distance
between two consecutive ckj with j ∈ p along that chain is not
greater than ∆ and the distance between any two ckj , ck′j with
j, j′ from different patches is larger than ∆. For each patch p
in the ∆-partition of a given summand in Eq. (6) we define a
corresponding operator

P̂ (kj)j∈p
p :=

∏
j∈p

Wj,kj (t) ckj . (8)

We can then reorder the factors in Eq. (6) to write the product
as a product over these operators. The exponential clustering
of correlations (Definition 1) in the initial state allows us to
factor the patches if we scale ∆ suitably with |t|. Concretely,
for σ ∈ {ρ, ρG} the expectation values appearing in Eq. (6),
which we denote by 〈·〉σ , can be approximated as follows〈 ∏

p∈P∆

P̂ (kj)j∈p
p

〉
σ

≈
∏
p∈P∆

〈P̂ (kj)j∈p
p 〉σ . (9)

The error introduced in the factorization is exponentially sup-
pressed with the ratio of patch distance and correlation length
∆/ξ.

It remains to bound the contribution from the factorized
patches that are completely inside the Lieb-Robinson cone.
Note that the right hand side of Eq. (9) can be non-zero only
if all the patches are of even size, as ρ and ρG have an even
particle number parity. Moreover, as the second moments
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Figure 3. Numerical study of the evolution of the nearest-neighbor
density-density correlator for a correlated initial state under the
free hopping Hamiltonian with hopping amplitude one. The ini-
tial state was obtained by a matrix-product state algorithm ground
state search of an interacting spinless Fermi-Hubbard model H =
−
∑

j(f
†
j fj+1 + f†j+1fj) + U

∑
j njnj+1 +

∑
j ωjnj on 64 sites.

The system was placed at half filling with periodic boundary condi-
tions and hopping amplitude one, interaction strength U = 2, and
weak onsite disorder wj drawn at random independently and identi-
cally distributed from a Gaussian with variance 1/4. The time evo-
lution was performed by an explicit evolution of the operator in the
Heisenberg picture using Eq. (2). Shown is the difference of expec-
tation values between the initial state ρ and its Gaussified version
ρG for a nearest-neighbor density-density correlator on sites 45 and
46 as a function of time. As indicated by the curve scaling as t−1,
which serves as a guide to the eye, the difference is suppressed al-
gebraically. At late times, a recurrence due to the finite size of the
system occurs, leading to an increase in the difference between the
state and its Gaussified version.

of ρ and ρG are equal, the difference of the right hand side
for σ = ρ and σ = ρG vanishes whenever all patches have
size 2. Hence, only partitions that contain at least one patch
of size at least 4 can contribute. The delocalizing transport
of the Hamiltonian implies that the contribution from such
larger patches however is dynamically suppressed. Whenever
|p| ≥ 4 it holds that

|〈P̂ (kj)j∈p
p 〉σ| ≤ C4

Trans t
−4 dL/3 (10)

as long as V is large enough. The influence of possible
patches of size 2 in the same decomposition makes it nec-
essary to bound the overall contribution with an involved re-
cursive and combinatorial argument. However, effectively the
dynamical suppression stated in the last inequality allows us
to derive a bound that increases with the patch size ∆ but is
algebraically suppressed in time t. The increase with ∆ is a
consequence of the fact that allowing for longer distances be-
tween the elements of a patch increases the number of possible
patches of a given size. Finally, by choosing ∆ = tdL/24 one
can obtain an at least algebraic suppression with t of all terms
and thereby of the difference | tr(A(t)ρ)− tr(A(t)ρG)|.

Physical implications and application. The Gaussifica-
tion result presented above also has profound implications
for the study of equilibration of quantum many-body systems.

Whenever the second moments equilibrate, which is often ob-
served [5, 20–24], the results imply that the full reduced den-
sity matrix becomes stationary. The quadratic models consid-
ered here constitute a “theoretical laboratory”, in which the
mechanisms of Gaussification and equilibration can be very
precisely and quantitatively characterized, and all specifics of
the processes laid out.

This does not mean that the physics we address is very spe-
cific to precisely these quadratic Hamiltonians: Quite to the
contrary, we expect the fundamental mechanisms underlying
the result — local relaxation due to transport and initial clus-
tering of correlations — to be generic and the reason for re-
laxation in a wide classes of interacting models [25]. The in-
tuition, reminiscent of a quantum central limit theorem, that
incommensurate influences of further and further separated
regions lead to mixing and relaxation is then expected to still
be valid. It is also important to stress that our main theorem
equally applies to mixed initial states, such as thermal states,
which are relevant in present day experiments with ultra-cold
fermions [26–29].

Returning to the specifics of quadratic Hamiltonians, the re-
sult derived here can be interpreted in yet another way: It con-
stitutes a rigorous proof of convergence to a generalised Gibbs
ensemble (GGE). Fermionic Gaussian states are the maximum
entropy states given their second moments so that the result-
ing state can be captured in terms of a GGE with suitable La-
grange parameters. The same holds true for the integrable spin
models that can be mapped to the type of fermionic models
considered here. The results complement insights on bosonic
systems [6, 30] and are expected to largely carry over to con-
tinuous settings as well in which a convergence to a Gaussian
generalised Gibbs ensemble has been observed [? ].

Conclusion and outlook. In this work we have established
an understanding of how systems quenched to non-interacting
fermionic Hamiltonians locally converge to Gaussian states.
Out of equilibrium dynamics is identified as having the ten-
dency to bring systems locally in maximum entropy states
given the second moments. This holds even if the initial state
was far from being a Gaussian state, e.g., a ground state of a
strongly interacting model. This is achieved based on just two
natural assumptions: A form of delocalizing transport in the
model and exponential clustering of correlations in the initial
state. Otherwise the initial state can be completely general. It
is the hope that the present work will serve as a stepping stone
to gain further insights into the relaxation dynamics of more
complex quantum many-body systems and the consequences
of the suppression of transport in, for example, localizing sys-
tems.
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Appendix A: Majorana operators and time evolution in free fermionic systems

In this appendix, we formulate the Majorana operator description that allows to conveniently derive the operator governing
transport in the system. We introduce the Majorana operators as

m2j−1 := (f†j + fj)/
√

2, (A1)

m2j := i (f†j − fj)/
√

2, (A2)

which are collected in a vector m = (m1, . . . ,m2V ) [31]. The vector c of creation and annihilation operators used in the main
text and m are related by the unitary transformation

Ω :=
1√
2

V⊕
j=1

(
1 1
−i i

)
, (A3)

as m = Ω c. The Majorana operators are Hermitian and satisfy the anti-commutation relations {mj ,mk} = δj,k for j, k ∈
[2V ] := {1, . . . , 2V }. The algebra generated by those operators constitutes a Clifford algebra. Linear transformations of the
form

m′j =

2V∑
j,k=1

Oj,kmk, O ∈ SO(2V ) (A4)

transform a vector of legitimate Majorana operators to a new such vector.
The most general form of a Hamiltonian considered in this work can be written in terms of the Majorana operators as follows

H = i

2V∑
j,k=1

mj Kj,kmk , (A5)

where K = −KT is real and anti-symmetric. It is straightforward to relate such Hamiltonians to the ones expressed in the form
of Eq. (1). The kernel K can be obtained form h via K = −i ΩhΩ†.

Time evolution can be captured conveniently in the Majorana operator formulation. Using the Baker-Campbell-Hausdorff
formula, that K is anti-symmetric, and the algebraic structure of the Majorana fermions, one arrives at the following expression
for their time evolution in the Heisenberg picture

mj(t) := eiHtmje
−iHt =

2V∑
k=1

(e2tK)j,kmk =

2V∑
k=1

Lj,k(t)mk, (A6)

where L(t) := e2tK . Now notice that as the propagator defined in the main text is related to L(t) via

W (t) = Ω† L(t) Ω (A7)

and hence

cj(t) =

2V∑
k=1

Wj,k(t) ck (A8)

as claimed in the main text.
Further, we introduce some general notation which we will use in the following for any given operator A that is supported on

a region S. For this set, let S̃ := {s1, · · · , s2|S|} with s1 < s2 < . . . < s2|S| be the set of indices of fermionic basis operators
in S. Similarly as in Eq. (5) in the main text we can then expand A as

A =

1∑
b1,...,b2|S|=0

a({sr : br = 1}) cb1s1 . . . c
b2|S|
s2|S| , (A9)

with a({sr : br = 1}) = ab1,...,b2|S| . The sum in Eq. (A9) goes over all possible configurations of fermionic basis operators on
the region S. We can hence group the summands according to the subset J of indices from S̃ for which a given term actually
contains a fermionic basis operator and write it as a sum

A =
∑
J⊂S̃

a(J)AJ , (A10)



7

with

AJ :=
∏
j∈J

cj . (A11)

Here, as well as everywhere where such expressions appear, we assume that the product over j is ordered according to the lattice
ordering. The time evolution of A is then given by A(t) =

∑
J⊂S̃ a(J)AJ(t) with

AJ(t) =
∑

(kj)j∈J∈[2V ]×|J|

(∏
j∈J

Wj,kj (t) ckj

)
. (A12)

Appendix B: Transport

In the following we show that our definition of delocalizing transport (Def. 2) is matched by two prototypical examples: the
fermionic nearest neighbor hopping model as well as the fermionisation of the Ising model. Our proofs rely on the following
Lemma [30].

Lemma 3 (Spreading for hopping models). Given the real V × V matrix

M =


0 1 1
1 0 1

1 0 1
1 0

1
. . .

 , (B1)

we find for all 0 < t ≤ V 6/7

|(e−itM )j,k| ≤
37

|t|1/3
. (B2)

We begin with free hopping Hamiltonians.

1. Transport in fermionic nearest neighbor hopping models in square lattices

Consider fermionic hopping models, i.e., systems whose Hamiltonian is a linear combination of terms of the form f†j fk.
Instead of the general quadratic form (1), the Hamiltonian can then be written as

H =

V∑
j,k=1

f†jMj,kfk, (B3)

with M a real and symmetric matrix, i.e., M = MT . The time evolution of fermionic annihilation operators in the Heisenberg
picture is then given by

fj(t) = eiHt fj e−iHt =

V∑
k=1

Nj,k(t) fk, (B4)

where N(t) := e−iMt. To connect this to the notation used in the main text, note that with P the permutation matrix that acts as

(f1, f
†
1 , . . . , fV , f

†
V ) = P (f1, . . . , fV , f

†
1 , . . . , f

†
V ). (B5)

the Hamiltonian from Eq. (B3) can be written in the form of Eq. (1) by adding an appropriate constant and setting

h =
1

2
P (M ⊕−M)P †. (B6)

N(t) is then related to W (t), via

W (t) = P (N(t)⊕N(t)†)P †. (B7)
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Now consider the particularly important case of nearest neighbor hopping on a square lattice of spacial dimension dL with V
sites, periodic boundary conditions and unite hopping strength. Writing the Hamiltonian as in (B3) the coupling matrix M of
this model can be decomposed into a sum over the different dL spatial directions as follows

M =

dL−1∑
k=0

1
⊗k ⊗M (1) ⊗ 1⊗(dL−k−1), (B8)

with

M (1) := −


0 1 1
1 0 1

1 0 1
1 0

1
. . .

 . (B9)

For such models we can bound the spreading as follows:

Lemma 4 (Spreading for fermionic hopping models). For the fermionic nearest neighbor hopping model on a square lattice of
spacial dimension dL with periodic boundary conditions there is a constant CTrans > 0 independent of volume V of the lattice
and the recurrence time tRec = V 6/7dL such that for all t ∈]0, tRec] it holds that

∀j, k |Wj,k(t)| ≤ CTrans t
−dL/3. (B10)

Proof. From the structure of the Hamiltonian it follows that N(t) = (ei(dL−1)teiM(1)t)⊗dL where M (1) agrees up to a sign with
the matrix in Lemma 3. From Lemma 3 we obtain that for all 0 < t < tRec = V 6/7dL and j, k

|Nj,k(t)| ≤ 37dL

tdL/3
. (B11)

This bound is inherited by W as N and W are related by a permutation of rows and columns.

2. Spreading in the Ising model

In this appendix, we discuss the 1D Ising model and specifically show that the required conditions of transport are satisfied at
criticality. Its Hamiltonian for V sites is

HIS = −
V∑
j=1

XjXj+1 − g
V∑
j=1

Zj , (B12)

where Xj , Zj are the Pauli matrices supported on site, j and g are a real parameter, and we adopt periodic boundary conditions.
For convenience we restrict the discussion to V even. Invoking the Jordan-Wigner transformation [32], this spin system can be
mapped to fermions, using the substitutions

Zj 7→ fjf
†
j − f

†
j fj = 1− 2nj , (B13)

Sj =
1

2
(Xj − iYj) 7→

∏
l<j

(1− 2nl)fj , (B14)

S†j =
1

2
(Xj + iYj) 7→

∏
l<j

(1− 2nl)f
†
j , (B15)

where Sj is the spin annihilation operator associated with site j and nj = f†j fj denotes the usual fermionic number operator.
After this transformation, the Ising Hamiltonian takes the form,

HIS = −
V∑
j=1

(f†j + fj)(1− 2nj)(f
†
j+1 + fj+1)− g

V∑
j=1

(1− 2nj) (B16)

= −
V∑
j=1

(f†j − fj)(f
†
j+1 + fj+1)− g

V∑
j=1

(1− 2nj) . (B17)
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Using the Majorana operators introduced in Appendix A, we can rewrite the Hamiltonian as

HIS = i

V−1∑
j=1

(m2jm2j+1 −m2j+1m2j)− ig

V∑
j=1

(m2jm2j−1 −m2j−1m2j). (B18)

That is, it is of the form

H = i

2V∑
j,k=1

mjKj,kmk (B19)

with

K =



0 g
−g 0 1
−1 0 g
−g 0 1
−1 0

. . .

 . (B20)

In what follows, we will consider a special case. First, we will set g = 1, corresponding to the critical Ising model. Second, we
will make use of periodic boundary conditions, to render the discussion simpler. The model actually considered, therefore, is the
Hamiltonian (B19), with the circulant kernel

K =



0 1 −1
−1 0 1
−1 0 1
−1 0 1
−1 0

1
. . .

 . (B21)

For this model, essentially the same statement as above holds true.

Lemma 5 (Spreading for the critical Ising model). For the one-dimensional fermionic model in Eq. (B19) and (B21) corre-
sponding to the critical Ising model with V even, there is a constant CTrans > 0 such that for all t ∈]0, tRec] with the recurrence
time tRec = (2V )6/7/2 we have

|Wj,k(t)| ≤ CTranst
−1/3 ∀j, k. (B22)

Proof. The proof follows again from Lemma 3. For V even we can relate the coupling matrix K in (B21) to M by

iM = Q†KQ (B23)

with Q = diag(1, i,−1,−i, 1, . . . ,−i). We then find for all 0 < t ≤ (2V )6/7/2

|Lj,k(t)| = |(e2tK)j,k| = |(Q†e2tKQ)j,k| = |(e2tiM )j,k| ≤
37

|2t|1/3
. (B24)

From the block structure of Ω in Eq. (A7) follows directly

|Wj,k(t)| ≤ 2
37

|2t|1/3
. (B25)

Appendix C: Fermionic Gaussian states and clustering of correlations

In this appendix, we consider Gaussian fermionic states. We first demonstrate that they can be thought of as maximum
entropy states given a correlation matrix. Moreover, we investigate the Gaussified version of states with exponential clustering
of correlations. By using the exponential decay of second moments, we show that also the Gaussified version of the state shows
such a correlation decay.
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1. Gaussian states as maximum entropy states

In this subsection, we show that fermionic Gaussian states are the maximum entropy states given the second moments of
fermionic operators, which we state here for completeness of the argument. That is to say, the state the system locally converges
to can be seen as a proper generalised Gibbs ensemble (GGE), with the constants of motion being provided by the second
moments.

Lemma 6 (Gaussian states as maximum entropy states). For a given correlation matrix γ ∈ C2V×2V ,

ρG = arg max
ρ

{S(ρ) : γ(ρ) = γ} , (C1)

where ρ is a quantum state and γ(ρ) its correlation matrix.

Proof. This statement follows immediately from the positivity of the quantum relative entropy. For an arbitrary state ρ and the
Gaussian state ρG with the same correlation matrix, we have

0 ≤ S(ρ‖ρG) = −S(ρ)− tr(ρ log(ρG)). (C2)

Since ρG is a Gaussian state, it can be written as ρG = eih for a suitable Hermitian h that is quadratic in the fermionic operators,
which means that

tr(ρ log(ρG)) = tr(ρG log(ρG)) = −S(ρG), (C3)

from which the assertion follows.

2. Clustering of correlations of Gaussified states

In this subsection we show that given a state ρ that exhibits exponential clustering of correlation as defined in Def. 1, its
Gaussified version ρG inherits the exponential clustering of correlations with a changed scaling of the pre-factor with the support
of the considered operators. We proof this statement by the aid of Wick’s theorem which connects higher to second moments
for a general Gaussian state. Precisely, Wick’s theorem can be stated as follows.

Lemma 7 (Wick’s theorem [33]). A Gaussian state ρG fulfills

tr[

n∏
k=1

cikρG] = Pf(γc[i1, . . . , in]) , (C4)

where

γc[i1, . . . , in]a,b =


tr(ciacibρG) for a < b,

− tr(cibciaρG) for b < a,

0 else.
(C5)

Given a state with exponential clustering of correlations also its Gaussified version will show clustering of correlations in
following sense:

Lemma 8 (Weak clustering of correlations for Gaussified states). Let ρ be a state that exhibits exponential clustering of corre-
lations according to Definition 1 with constants CClust, ξ > 0, then for all operators A,B with ‖A‖ = ‖B‖ = 1 its Gaussified
version ρG satisfies

| tr(ρGAB)− tr(AρG) tr(B ρG)| ≤ CClust 4| supp(A)|+| supp(B)|(| supp(A)|+ | supp(B)|)| supp(A)|+| supp(B)|e− d(A,B)/ξ.
(C6)

Proof. Note that we can assume without loss generality CCluste
− d(A,B)/ξ ≤ 1 as otherwise the trivial bound | tr(ρGAB) −

tr(AρG) tr(B ρG)| ≤ 2 concludes proof.
We decompose a general operator supported on supp(A) and supp(B) as in Eq. (A10) into the fermionic operator-basis

A =
∑

K⊂supp(A)

a(K)
∏
k∈K

ck (C7)
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and

B =
∑

J⊂supp(B)

b(J)
∏
j∈J

cj (C8)

correspondingly. From ‖A‖ = 1 = ‖B‖ follows |b(J)| ≤ 1 and |a(K)| ≤ 1 for all corresponding J and K. Using the triangle
inequality, we can therefore write

| tr(ρGAB)− tr(AρG) tr(B ρG)| ≤ 2| supp(A)∪supp(B)| max
K⊂supp(A),
J⊂supp(B)

∣∣∣∣∣∣tr(ρG
∏
k∈K

ck
∏
j∈J

cj)− tr(
∏
k∈K

ck ρG) tr(
∏
j∈J

cj ρG)

∣∣∣∣∣∣ .
(C9)

Assuming that the maximum is attained for the sets J ′ andK ′, Wick’s theorem allows us to write the expectation values in terms
of second moments:

| tr(ρGAB)− tr(AρG) tr(B ρG)| ≤ 2| supp(A)∪supp(B)||Pf γc[(k)k∈K′ , (j)j∈J′ ]− Pf γc[(k)k∈K′ ] Pf γc[(j)j∈J′ ]|. (C10)

Note that from the definition of γc in (C5) follows that γc[(k)k∈K′ , (j)j∈J′ ] decomposes into blocks according to

γc[(k)k∈K′ , (j)j∈J′ ] = γc[(k)k∈K′ ]⊕ γc[(j)j∈J′ ] +

(
0 E
−ET 0

)
. (C11)

As E contains only second moments of which one operator is supported on supp(A) and the other on supp(B) we obtain from
the exponential clustering of correlations of ρ that |Ea,b| ≤ CCluste

− d(A,B)/ξ. Expanding therefore the Pfaffians in Eq. (C10)
yields that each term either appears in both terms of the difference and cancels out or that it contains at least one element of E
as a factor. Counting the number of terms in the expansion of the Pfaffians gives that the sum contains

(2[| supp(A)|+ | supp(B)|]− 1)!! ≤ 2| supp(A)|+| supp(B)|(| supp(A)|+ | supp(B)|)| supp(A)|+| supp(B)| (C12)

many terms which yields the final bound

| tr(ρGAB)− tr(AρG) tr(B ρG)| ≤ CClust 4| supp(A)|+| supp(B)|(| supp(A)|+ | supp(B)|)| supp(A)|+| supp(B)|e− d(A,B)/ξ.
(C13)

Appendix D: Details of the proof of Theorem 1

In this Appendix we provide all the details of the proof of our main result Theorem 1. We proceed as follows: In Section D 1
we bound the error introduced by truncating to the Lieb-Robinson cone. In Section D 2 we introduce the necessary concepts and
notation to then in Section D 3 bound the error made by factorizing expectation values into a products of local contributions from
different patches. In Section D 4 we use the properties of delocalizing transport to show a bound on the remaining non-Gaussian
contributions to the expectation value. Finally, in Section D 5, we assemble all the parts of the proof and state a more technical
version of the main theorem.

1. Truncating to the Lieb-Robinson cone

We decompose a general operator supported in the region S according to Eq. (A10). Without loss of generality we can assume
that A is normalized, i.e., ‖A‖ ≤ 1, which implies |a(J)| ≤ 1 and so in the following we concentrate on the individual terms of
the form given in Eq. (A12). We will demonstrate that sums over time evolved fermionic operators in Eq. (A12) can be truncated
to an enlarged Lieb-Robinson cone up to an error that decays exponentially with time. Rather than summing over all possible
index positions kj ∈ [2V ] it is then sufficient to only sum over positions inside this enlarged Lieb-Robinson cone. We will
require the following auxiliary lemma:

Lemma 9 (Norm bound on restricted sums of fermionic operators). Let I ⊂ [2V ] and W ∈ U(2V ) be unitary. Then for all
j ∈ [2V ] ∥∥∥∥∑

kj∈I

Wj,kjckj

∥∥∥∥ ≤ 1 . (D1)
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Proof. The proof can be carried out with straightforward norm estimates and using the normalisation of the two-point correlator
γ. We begin with∥∥∥∥∥∥

∑
kj∈I

Wj,kjckj

∥∥∥∥∥∥ = sup
|ψ〉

‖|ψ〉‖=1

〈ψ|
∑
rj∈I

W j,rjc
†
rj

∑
kj∈I

Wj,kjckj |ψ〉 = sup
|ψ〉

‖|ψ〉‖=1

∑
rj∈I

∑
kj∈I

W j,rj 〈ψ| c†rjckj |ψ〉Wj,kj . (D2)

We now rewrite this as a matrix multiplication on the index space∥∥∥∥∥∥
∑
kj∈I

Wj,kjckj

∥∥∥∥∥∥ ≤ sup
γ
〈j|WPIγPIW

T |j〉 , (D3)

where |j〉 is a vector on the index space, PI denotes the projector onto the interval I and γ denotes fermionic correlation matrices.
A straightforward norm estimate and using that ‖γ‖ ≤ 1, as every fermionic mode can be occupied by at most one particle, gives∥∥∥∥∥∥

∑
kj∈I

Wj,kjckj

∥∥∥∥∥∥ ≤ ‖W‖ ‖PI‖ ‖γ‖ ‖PI‖ ‖WT ‖ ≤ 1 , (D4)

which concludes the proof.

As introduced in the main text, we then denote by d(A,B) the shortest distance between the supports supp(A), supp(B) of
two operators A and B. For k1, k2 ∈ [2V ] we then define the distance d(k1, k2) := d(ck1

, ck2
). Note that d defines only a

pseudometric on [2V ] as for k1, k2 ∈ [2V ] with ck1
= fs and ck2

= f†s we have k1 6= k2 but d(k1, k2) = 0.
Given a pseudometric, we define a ball around a set as follows.

Definition 3 (Ball around set). Given l > 0, a set M with pseudometric d and J ⊂M , we define the l-ball Bl(J) ⊂M around
J by

Bl(J) = {s ∈M : min
j∈J

d(j, s) ≤ l}. (D5)

With this, we define an enlarged Lieb-Robinson cone around a set of indices J with radius (v + 2vε)|t| for some vε > 0 and
bound the error made by restricting sums of the form given in Eq. (A12) to this widened Lieb-Robinson cone:

Lemma 10 (Error made in restricting to widened Lieb-Robinson cone). Given a dL-dimensional cubic lattice system with a
quadratic Hamiltonian H that satisfies a Lieb-Robinson bound of the form given in Lemma 2 with parameters CLR, µ, v > 0.
Let vε > 0 and define for any set J ⊂ [2V ] the widened cone C := B(v+2vε)|t|(J), then there exists a constant C̃LR(dL), such
that ∥∥∥∥ ∑

(kj)j∈J /∈C×|J|

∏
j∈J

Wj,kj (t) ckj

∥∥∥∥ ≤ C̃LR(dL)|J |2e−µvε|t| . (D6)

Proof. We begin by splitting the sum according to whether the first index is inside the cone or not. All other indices are free if
kj1 is outside the cone, while at least one other index is outside the cone if kj1 lies in it. Using Lemma 9, we obtain∥∥∥∥ ∑

(kj)j∈J /∈C×|J|

∏
j∈J

Wj,kj (t) ckj

∥∥∥∥ ≤ ∥∥∥∥ ∑
kj1 /∈C

Wj1,kj1
(t) ckj1

∥∥∥∥∥∥∥∥ ∏
j∈J\{j1}

cj(t)

∥∥∥∥
+

∥∥∥∥ ∑
kj1∈C

Wj1,kj1
(t) ckj1

∥∥∥∥∥∥∥∥ ∑
(kj)j∈J\{j1} /∈C

×|J|−1

∏
j∈J\{j1}

Wj,kj (t) ckj

∥∥∥∥
≤
∥∥∥∥ ∑
kj1 /∈C

Wj1,kj1
(t) ckj1

∥∥∥∥+

∥∥∥∥ ∑
(kj)j∈J\{j1} /∈C

×|J|−1

∏
j∈J\{j1}

Wj,kj (t) ckj

∥∥∥∥ . (D7)

The first term in the above equation now, due to Lemma 2, satisfies∥∥∥∥ ∑
kj1 /∈C

Wj1,kj1
(t) ckj1

∥∥∥∥ ≤ CLR

V∑
l=(v+2vε) |t|

|Bl+1(J)\Bl(J)| eµ (v |t|−l)

≤ 2dL+1 dL |J |CLR eµ v |t|
∞∑

l=(v+2vε) |t|

ldL−1 e−µ l , (D8)
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where we have used that the number |Bl+1(J)\Bl(J)| of points in the surface of a cone with radius l around J in a cubic lattice
is bounded by 4 dL |J | (2l)dL−1. Shifting the limits of the sum then yields∥∥∥∥ ∑

kj1 /∈C

Wj1,kj1
(t) ckj1

∥∥∥∥ ≤ e−µ vε |t| |J | 2dL+1 dL CLR

∞∑
l=0

(l + (v + 2vε)|t|)dL−1
e−µ (l+vε|t|) . (D9)

We now define the time independent constant

C̃LR(dL) := sup
t∈R+

2dL+1 dL CLR

∞∑
l=0

(l + (v + 2vε)|t|)dL−1
e−µ (l+vε|t|) (D10)

which can be written in terms so of the Hurwitz-Lerch-Phi function Φ (also known as Lerch transcendent)

C̃LR(dL) := sup
t∈R+

2dL+1 dL CLR Φ(e−µ, 1− dL, (v + 2vε)|t|)e−µvε|t| . (D11)

Inserting the estimate into Eq. (D7) and iteratively using the resulting inequality |J |-times gives the result as stated.
As argued above, the constant is directly related Hurwitz-Lerch-Phi function and can easily be explicitly evaluated for physical

dimensions dL = 1, 2, 3. In one dimension, the constant takes the form

C̃LR(1) = 4CLR
1

1− e−µ
. (D12)

2. Partitions: Tracking indices on the lattice

Using the result of Lemma 10 we can restrict the time evolution in Eq. (A12) to the Lieb-Robinson cone at the cost of an
exponentially suppressed error term. In this section we therefore look

ALRJ (t) :=
∑

(kj)j∈J∈C×|J|

(∏
j∈J

Wj,kj (t) ckj

)
, (D13)

the restriction of a term of the form Eq. (A12) to the widened Lieb-Robinson cone C = B(v+2vε)|t|(J). By grouping summands
according to how close the respective indices kj are on the lattice we will rewrite ALRJ (t) as a sum over partitions of the sub-
index set J . This will later allow us to factorize certain expectation values using the exponential decay of correlations in the
initial state.

We start by introducing some notation. Given a finite non-empty set J , a partition P of J is a set of non-empty subsets
(patches) of J , whose union is J , i.e., P :=

⋃
p∈P p = J . We denote by πm(P ) := {p ∈ P : |p| = m} the subset of all patches

in a partition with a given size m and by π>m(P ) = {p ∈ P : |p| > m} that of all patches with size larger than m. We refer
to patches of size two as pairs and patches of size at least four as clusters. Partitions will be called even, if all patches in it have
an even size. We further denote by P(J) = {P : P partition of J} the set of all partitions of J , and by Pm(J) and P>m(J) the
sets of all partitions into patches of size exactly equal to, or larger than m, respectively. Given two partitions P,Q we say that Q
is a coarsening of P and write Q < P if ∀q ∈ Q∃p ∈ P : q ⊂ p and Q 6= P .

Next we introduce the notion of a ∆-partition of the sub-index set J . Such a partition To each configuration of indices (kj)j∈J ,
we assign a unique partition P of the subindices j such that all indices (kj)j∈p with subindices that lie within one set p of the
partition are connected by a path of steps with maximal length ∆ and all indices kj corresponding to subindices in two different
sets of the partition lie more than a distance ∆ apart.

Definition 4 (∆-partition). Given a distance ∆ > 0, a finite set J ⊂ N, a finite set M equipped with a pseudometric d, and a
sequence of elements (kj)j∈J ∈M×|J|. We define the ∆-partition P∆(J, (kj)j∈J) to be the unique partition of J which fulfills
(1) Each set in the partition is path connected by hops of length at most ∆ in the sense that

∀p ∈ P∆(J, (kj)j∈J) : ∀x, y ∈ p∃z1, . . . , zN ∈ p : x = z1, y = zN ∧ ∀i ∈ [N − 1] : d(kzi , kzi+1) ≤ ∆. (D14)

(2) The different patches in the partition are separated by a distance larger than ∆ in the sense that

∀p 6= q ∈ P∆(J, (kj)j∈J) : ∀x ∈ p, y ∈ q : d(kx, ky) > ∆. (D15)
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k1 k7 k2 k5

cluster

exclusion region I

∆

k3 k6

pair

k4 k8

pair

Figure 4. Illustration of a ∆-partition of a given index configuration with ∆ = 3 and J = {1, . . . , 8}. To the above configuration of the
indices k1, . . . k8 we associate the ∆-partition {{1, 2, 5, 7}, {3, 6}, {4, 8}} such that a patch of size four and two patches of size two (pairs)
are formed. Around each patch exists an buffer region (shaded nodes) which separates different patches. For a given ∆-partition P we obtain
all possible index configurations in KM

P by placing the patches iteratively. A placed patch will hereby create an exclusion region consisting of
the patch itself and the buffer region around it in which no further patch can be placed.

In addition, we define a compact notation for index configurations distributed over the lattice such that their ∆-partition agrees
with a given partition P .

Definition 5 (Index sets respecting ∆-partitions). Given a distance ∆ > 0, the set [2V ] of all sites on the lattice equipped with
a pseudometric d, a sub-index set M ⊂ [2V ], and a partition P ∈ P(J). We denote the set of sequences contained in M whose
∆ partitions is equal to P by

KMP := {(kj)j∈P ∈M
×|P | : P∆(P , (kj)j∈P ) = P}. (D16)

The notation introduced above allows us to rewrite the sum over the indices (kj)j∈J in Eq. (D13) inside the cone by sorting
them according to their associated ∆-partition.

ALRJ (t) =
∑

(kj)j∈J∈C×|J|

(∏
j∈J

Wj,kj (t) ckj

)
=

∑
P∈P(J)

∑
(kj)j∈J∈KCP

∏
j∈J

Wj,kj (t) ckj

=
∑

P∈P(J)

sign(P )
∑

(kj)j∈J∈KCP

∏
p∈P

P̂ (kj)j∈p
p , (D17)

where for each p ∈ P we have introduced a patch operator P̂ (kj)j∈p
p , defined by

P̂ (kj)j∈p
p =

∏
j∈p

Wj,kj (t)ckj . (D18)

The sign(P ) denotes the sign picked up from reordering the fermionic basis operators into the corresponding patches, where
keeping the relative order of the operators inside each patch fix.

3. Factorizing expectation values

In the last section, we have developed the formalism to group indices on the lattice according to their distribution on the
lattice and introduced the patch operators P̂ (kj)j∈p

p . We now use the exponential clustering of correlations in the initial state to
show that expectation values of products of such patch operators can be factorized into a product of expectation values of the
individual patch operators up to a small error.

Lemma 11 (Factorizing expectation values in states with exponential clustering of correlations). Let ρ be a state that exhibits
exponential clustering of correlations as defined in Definition 1 with system size independent parameters CClust, ξ > 0. Let
J ⊂ [2V ] and P ∈ P(J) be a partition of J . Then for any distance ∆ > 0 it holds that

∑
(kj)j∈J∈KCP

∣∣∣∣∣∣
〈∏
p∈P

P̂ (kj)j∈p
p

〉
ρ

−
∏
p∈P
〈P̂ (kj)j∈p
p 〉ρ

∣∣∣∣∣∣ ≤ |J |3 CClust |C||J|e−∆/ξ . (D19)

Proof. We begin by factorizing out the contribution from the first patch p1 ∈ P . Using Lemma 9 and the exponential clustering
of the initial state, we find for a given (kj)j∈J ∈ KCP∣∣∣∣∣∣

〈∏
p∈P

P̂ (kj)j∈p
p

〉
ρ

− 〈P̂ (kj)j∈p1
p1 〉ρ

〈 ∏
p∈P\{p1}

P̂ (kj)j∈p
p

〉
ρ

∣∣∣∣∣∣ ≤ |p1| |P \ p1|CClust e−∆/ξ . (D20)
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Using the trivial bound |p1| |P \ p1| ≤ |J |2, iterating the step above |P | ≤ |J | times and using that |KCP | ≤ |C||J| yields the
result as stated.

From Lemma 8 follows that the same theorem applies to the Gaussified version of a state exhibiting clustering of correlations
if we allow CClust to scale with the size of the support according to CClust → CClust4

|J||J ||J|.

4. Suppression of non-Gaussian contributions

In the last two sections we have bounded the error made in approximating expectation values of terms of the from given in
Eq. (A12) by certain sums of products of expectation values of patch operators. This allows us to bound the the difference
between the left and right hand side of

tr[A(t) ρ)− tr(A(t) ρG] ≈
∑
J⊂S̃

a(J)
∑

P∈P(J)

sign(P )
∑

(kj)j∈J∈KCP

∏
p∈P
〈P̂ (kj)j∈p
p 〉ρ −

∏
p∈P
〈P̂ (kj)j∈p
p 〉ρG

 . (D21)

It is obvious that to the right hand side only partitions P in which all patches p are of even size can contribute, as ρ and ρG have
an even particle number parity. Moreover, as the second moments of ρ and ρG are equal by definition, the difference between
the products also vanishes whenever all patches have size exactly 2. Hence, every contributing term contains at least one patch
of size at least 4. In the remainder of this section we now bound the contribution of such partitions to the right hand side of the
above equation. The combinatorial nature of the problem makes this a tedious endeavor. The final result is summarized in the
following lemma, which is the last result that we need before we can assemble all the parts of the proof in Section D 5.

Lemma 12 (Bounding contributions from partitions that contain large patches). Let ρ be a state exhibiting exponential clustering
of correlations as defined in Definition 1 with system size independent parameters CClust, ξ > 0 and ρG its Gaussified version.
Let ∆ ≥ 1, J ⊂ [2V ], and P ∈ P(J) be an even partition that contains a patch of size at least four (cluster), and m := |π2(P )|
many patches of size two (pairs). Given that the time evolution of the system is governed by a Hamiltonian showing delocalizing
transport as defined in Definition 2 with parameter CTrans, for all t ∈ (0,min(tRec, V )] and σ ∈ {ρ, ρG} it holds that

RP (J,m, t) :=

∣∣∣∣∣∣
∑

(kj)j∈J∈KCP

∏
p∈P
〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣ (D22)

≤ (|C|1/4CTranst
−dL/32dL+1|J |dL∆dL)|J|−2m

×

(1 + CClust|C|2e−∆/ξ) + 2(dL+1)|J||J |(dL+1)|J|+1

|J|/2∑
r=0

(|C|1/4CTranst
−dL/3∆dL)2r+4

m .

Proof. In order to prove the above bound we separate the partition into a part containing only pairs and one containing the rest

P = π2(P ) ∪ π>2(P ) . (D23)

For every given fixed position of the indices corresponding to clusters in π>2(P ), the indices corresponding to the pairs are
restricted to the set K := C \ B∆({kj}j∈π>2(P )

), as all patches are separated by a distance larger than ∆. Thus, we can write

RP (J,m, t) =

∣∣∣∣∣∣∣∣∣∣
∑

(kj)j∈π>2(P )
∈KCπ>2(P )


 ∏
p∈π>2(P )

〈P̂ (kj)j∈p
p 〉σ

 ∑
(kj)j∈π2(P )

∈KKπ2(P ),

K:=C\B∆({kj}j∈π>2(P )
)

∏
p∈π2(P )

〈P̂ (kj)j∈p
p 〉σ


∣∣∣∣∣∣∣∣∣∣
. (D24)

The homogeneous suppression due to delocalizing transport for t ∈ (0,min(tRec, V )] and that |π>2(P )| = |J | − 2m implies∥∥∥∥∥∥
∏

p∈π>2(P )

P̂ (kj)j∈p
p

∥∥∥∥∥∥ ≤ (CTranst
−dL/3)|J|−2m . (D25)
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Using this and the triangle inequality for the first sum in Eq. (D24) we arrive at

RP (J,m, t) ≤ (CTranst
−dL/3)|J|−2m

∑
(kj)j∈π>2(P )

∈KCπ>2(P )

∣∣∣∣∣∣∣∣∣∣
∑

(kj)j∈π2(P )
∈KKπ2(P ),

K=C\B∆({kj}j∈π>2(P )
)

∏
p∈π2(P )

〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣∣∣∣∣
. (D26)

At this point, the inner sum still depends on the position of the clusters, as they create an exclusion region for the pairs (see
Fig. 4). Taking the supremum over such exclusion regions decouples the sum. Then bounding the possible number of positions
of the |J | − 2m indices in the |π>2(P )| clusters

|(kj)j∈π>2(P )
∈ KCπ>2(P )| ≤ |C|

|π>2P |(2dL+1|J |dL∆dL)|J|−2m , (D27)

gives

RP (J,m, t) ≤ |C||π>2(P )|(CTranst
−dL/32dL+1|J |dL∆dL)|J|−2m max

I⊂C

∣∣∣∣∣∣∣
∑

(kj)j∈π2(P )
∈KC\I

π2(P )

∏
p∈π2(P )

〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣∣
≤ (|C|1/4CTranst

−dL/32dL+1|J |dL∆dL)|J|−2m max
M⊂J:|M |=2m

max
I⊂C,

P∈P2(M)

∣∣∣∣∣∣∣
∑

(kj)j∈M∈KC\IP

∏
p∈P
〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣∣ . (D28)

We now define

f(m, t) := max
M⊂J:|M |=2m

max
I⊂C,

P∈P2(M)

∣∣∣∣∣∣∣
∑

(kj)j∈M∈KC\IP

∏
p∈P
〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣∣ (D29)

and apply an recursive argument to achieve a bound of the form

f(m, t) ≤ C(m, t) . (D30)

a. Start of recursion: For the case of one pair (m = 1), by using Lemma 9, we can bound the appearing maximum as
follows

f(1, t) = max
M⊂J:|M |=2

max
I⊂C

∣∣∣∣∣∣∣
∑

(kj)j∈M∈KC\I{M}

〈P̂ (kj)j∈M
M 〉σ

∣∣∣∣∣∣∣ = max
M⊂J:|M |=2

max
I⊂C

∣∣∣∣∣∣∣∣∣∣∣
∑

kl1 ,kl2∈C\I,
{l1,l2}=M :

d(kl1 ,kl2 )≤∆

〈P̂ (kj)j∈M
M 〉σ

∣∣∣∣∣∣∣∣∣∣∣

≤ max
M⊂J:|M |=2

max
I⊂C


∣∣∣∣∣∣∣∣

∑
kl1 ,kl2∈C\I,
{l1,l2}=M

〈P̂ (kj)j∈M
M 〉σ

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣∣∣
∑

kl1 ,kl2∈C\I,
{l1,l2}=M :

d(kl1 ,kl2 )>∆

〈P̂ (kj)j∈M
M 〉σ

∣∣∣∣∣∣∣∣∣∣∣


≤ max
M⊂J:|M |=2

max
I⊂C

(1 + |C|2CCluste
−∆/ξ)

=1 + |C|2CCluste
−∆/ξ . (D31)

With this, we can move to setting up the recursion.
b. Setting up the recursion: To obtain a recursion formula for an upper bound C(m, t) on f(m, t) we now relax the

condition that different pairs may not occupy close-by lattice regions. If we drop this constraint, the only remaining constraint
is that paired indices kl and kl′ lie close to each other, i.e. d(kl, kl′) ≤ ∆. For any set M ⊂ J with |M | = 2m, set I ⊂ C,
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P ∈ P2(M) Eq. (D31) yields directly∣∣∣∣∣∣∣
∏
p∈P

∑
(kj)j∈p∈KC\I{p}

〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣∣ ≤ (1 + CClust|C|2e−∆/ξ)m. (D32)

This leaves us with controlling the difference between the constrained and unconstrained pairs and yields

f(m, t) ≤
(

1 + |C|2CCluste
−∆/ξ

)m
+ max
M⊂J:|M |=2m

max
I⊂C,

P∈P2(M)

g(M,P, I), (D33)

g(M,P, I) :=

∣∣∣∣∣∣∣
∑

(kj)j∈M∈KC\IP

∏
p∈P
〈P̂ (kj)j∈p
p 〉σ −

∏
p∈P

∑
(kj)j∈p∈KC\I{p}

〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣∣ . (D34)

In order to get the error under control, we need the notion of a coarsening of a partition defined above [34]. The key insight
here is that the above difference between constrained and unconstrained pairs precisely amounts to all possible coarsening of the
partition P

g(M,P, I) =

∣∣∣∣∣∣∣∣∣∣
∑

Q∈P(M):
Q>P

∑
(kj)j∈M∈KC\IQ :

∀{l,l′}∈P :d(kl,kl′ )≤∆

∏
p∈P
〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣∣∣∣∣
≤
m−2∑
w=0

∑
Q∈P(M):

Q>P,|π2(Q)|=w

∣∣∣∣∣∣∣∣∣∣
∑

(kj)j∈M∈KC\IQ :

∀{l,l′}∈P :d(kl,kl′ )≤∆

∏
p∈P
〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣∣∣∣∣
,

(D35)

where we have applied the triangle inequality and sorted the coarsenings by the numbers of pairs w they have. This is almost
the original expression RP (J,m, t) which this lemma is trying to bound, with the exception that there is still a signature left of
the fact that the clusters were created by joining pairs, such that consecutive indices have to be at most distance ∆ apart in the
cluster. Following the same steps as above, one can show that

g(M,P, I) ≤
m−2∑
w=0

∑
Q∈P(M):

Q>P,|π2(Q)|=w

∣∣∣∣∣∣∣∣∣∣
∑

(kj)j∈M∈KC\IQ :

∀{l,l′}∈P :d(kl,kl′ )≤∆

∏
p∈P
〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣∣∣∣∣
≤
m−2∑
w=0

∑
Q∈P(M):

Q>P,|π2(Q)|=w

(CTranst
−dL/3)2m−2w

∑
(kj)j∈π>2(P )

∈KCπ>2(P )

∀{l,l′}∈P :d(kl,kl′ )≤∆

∣∣∣∣∣∣∣∣∣∣
∑

(kj)j∈π2(P )
∈KKπ2(P ),

K=C\B∆({kj}j∈π>2(P )
)

∏
p∈π2(P )

〈P̂ (kj)j∈p
p 〉σ


≤
m−2∑
w=0

(2m)2m(|C|1/4CTranst
−dL/32dL+1|J |dL∆dL)2m−2wf(w, t) , (D36)

where we used that for a finite set M , we can upper bound the number of partitions of this set by |P(M)| ≤ |M ||M |. Thus we
obtain for the function f(m, t) the following upper bound

f(m, t) ≤
(

1 + |C|2CCluste
−∆/ξ

)m
+

m−2∑
w=0

|J ||J|(|C|1/4CTranst
−dL/32dL+1|J |dL∆dL)2m−2wf(w, t)

≤
(

1 + |C|2CCluste
−∆/ξ

)m
+ 2(dL+1)|J||J |(dL+1)|J|

m−2∑
w=0

(|C|1/4CTranst
−dL/3∆dL)2m−2wf(w, t)

≤
(

1 + |C|2CCluste
−∆/ξ

)m
+ 2(dL+1)|J||J |(dL+1)|J|

|J|/2∑
r=0

(|C|1/4CTranst
−dL/3∆dL)2r+4

m−2∑
w=0

f(w, t)

≤ αm + δ

m−1∑
w=0

C(w, t) =: C(m, t) , (D37)
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where we overestimated by introducing the sum over r and adding the m − 1 term to the second sum and have introduced the
abbreviations

α = (1 + CClust|C|2e−∆/ξ), (D38)

δ = 2(dL+1)|J||J |(dL+1)|J|
|J|/2∑
r=0

(|C|1/4CTranst
−dL/3∆dL)2r+4 . (D39)

By now setting

C(0, t) := f(0, t) = 1, (D40)
C(1, t) := α+ δ ≥ α ≥ f(1, t), (D41)

∀m ≥ 1 : C(m, t) = αm + δ

m−1∑
w=0

C(w, t), (D42)

we now have a recursively defined upper bound C(m, t) on f(m, t).
c. Solving the recursion: To resolve the recursion, we first show that

αC(m, t) ≤ C(m+ 1, t) , (D43)

by relying on an induction. To begin with, we have

αC(0, t) = α ≤ α+ δ = C(1, t) . (D44)

For the induction step, we use

αC(m, t) = αm+1 + δ

m−1∑
w=0

αC(w, t) (D45)

≤ αm+1 + δ

m−1∑
w=0

C(w + 1, t)

≤ αm+1 + δ

m∑
w=0

C(w, t) = C(m+ 1, t) ,

where we used the induction when moving from the first to the second line by relying on the fact that the sum only goes until
w = m−1 and we added δC(0, t) > 0 in the last line. From this, we immediately know thatC(m, t) is monotonically increasing
as a function of m, since α ≥ 1. This implies

C(m, t) ≤ αC(m, t) ≤ C(m+ 1, t) . (D46)

This allows us to resolve the recursion by iteratively using this estimate as follows

C(m, t) = αm + δ

m−1∑
w=0

C(w, t) (D47)

≤ αm + (m− 1)δC(m− 1, t)

≤
m∑
j=0

αm−jδj
m!

(m− j)!

≤
m∑
j=0

αm−jδj
m!

(m− j)!
|J |j

j!

= (α+ |J |δ)m.

For f(m, t), we hence obtain

f(m, t) ≤ (α+ |J |δ)m

=

(1 + CClust|C|2e−∆/ξ) + |J |2(dL+1)|J||J |(dL+1)|J|
|J|/2∑
r=0

(|C|1/4CTranst
−dL/3∆dL)2r+4

m (D48)
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and for the original quantity considered in this lemma, this yields

RP (J,m, t) ≤ (|C|1/4CTranst
−dL/32dL+1|J |dL∆dL)|J|−2m (D49)

×

(1 + CClust|C|2e−∆/ξ) + |J |2(dL+1)|J||J |(dL+1)|J|
|J|/2∑
r=0

(|C|1/4CTranst
−dL/3∆dL)2r+4

m ,

which concludes the proof.

5. Overview of the proof of Theorem 1

Collecting all the results of the preceding sub-sections, we can now proof the following result, which directly implies theo-
rem 1 in the main text.

Theorem (Gaussification in finite time). Let CClust, ξ, CTrans > 0. Consider a family of systems on cubic lattices of increasing
volume V and let S be some fixed finite region of sites. Let the corresponding initial states exhibit exponential clustering of
correlations with constant CClust and correlation length ξ. Let the Hamiltonians of these systems be quadratic finite range and
let them exhibit delocalizing transport with constantCTrans and a recurrence time tRec increasing as some function of the volume
V . Then for any ε > 0 there exists a relaxation time tRelax > 0 independent of the system size such that for all t ∈ [tRelax, tRec]
it holds that ‖ρS(t)− ρSG(t)‖1 ≤ ε.

Proof. To begin with we rewrite the one-norm as

‖ρS(t)− ρSG(t)‖1 = sup
A∈AS

tr (A(t)(ρ− ρG)) , (D50)

and expand the operator A in the basis of fermionic operators

A(t) =

1∑
b1,...,b2|S|=0

ab1,··· ,b2|S| cs1(t)b1 . . . cs2|S|(t)
b2|S| . (D51)

Normalization of the operator ‖A‖ = 1 implies that all of the 22|S| coefficients satisfy |ab1,··· ,b2m | ≤ 1, thus

‖ρS(t)− ρSG(t)‖1 ≤ 22|S|max
J⊂S̃

∣∣∣∣tr(∏
j∈J

cj(t) (ρ− ρG)

)∣∣∣∣
≤ 22|S|max

J⊂S̃

∣∣∣∣ ∑
(kj)j∈J∈[2V ]×|J|

tr

(∏
j∈J

Wj,kj (t) ckj (ρ− ρG)

)∣∣∣∣ . (D52)

Using the Lieb-Robinson bound stated in Lemma 10, we can restrict the sum in the right hand side of the previous inequality to
the Lieb-Robinson cone C. This leads to an error term that is exponentially suppressed in time t and we obtain

‖ρS(t)− ρSG(t)‖1 ≤ 22|S|max
J⊂S̃

(∣∣∣∣ ∑
(kj)j∈J∈[C]×|J|

tr

(∏
j∈J

Wj,kj (t) ckj (ρ− ρG)

)∣∣∣∣+ 2C̃LR(dL)|J |2e−µvε|t|
)
. (D53)

We now reorder the terms in the sum according to how the indices kj are distributed on the lattice. To that end, in Section D 2,
we have introduced the concept of a ∆-partition. We turn the sum into a sum over all possible partitions P(J) and then, for each
partition P ∈ P(J), sum over all possible ways KCP to distributed the indices over the lattice whose ∆-partition coincides with
that given partition P . Partitions consist of patches and we collect the factors Wj,kj (t) ckj from the product over j ∈ J into

patch operators P̂ (kj)j∈p
p for each patch p, as defined in Eq. (D18). Together with the triangle inequality this yields

‖ρS(t)− ρSG(t)‖1 ≤ 22|S|max
J⊂S̃

( ∑
P∈P(J)

∣∣∣∣ ∑
(kj)j∈J∈KCP

(
〈
∏
p∈P

P̂ (kj)j∈p
p 〉ρ − 〈

∏
p∈P

P̂ (kj)j∈p
p 〉ρG

)∣∣∣∣+ 2C̃LR(dL)|J |2e−µvε|t|
)
.

(D54)
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Lemma 11 allows us to factor the expectation values with respect to ρ and using Lemma 8 its Gaussified version ρG into products
of expectation values of the individual patch operators. This leads to an additional error term that grows polynomially with the
size of the cone, but is exponentially suppressed in the minimal patch distance ∆, so that we get

‖ρS(t)− ρSG(t)‖1 ≤ 22|S|max
J⊂S̃

( ∑
P∈P(J)

∣∣∣∣ ∑
(kj)j∈J∈KCP

(∏
p∈P
〈P̂ (kj)j∈p
p 〉ρ −

∏
p∈P
〈P̂ (kj)j∈p
p 〉ρG

)∣∣∣∣
+ (1 + 22|J||J ||J|)|J ||J|+3CClust|C||J|e−∆/ξ + 2C̃LR(dL)|J |2e−µvε|t|

)
.

(D55)

It is now apparent that partitions that contain at least one patch of odd size do not contribute to the sum as then the corresponding
patch operator does not fulfill the parity super-selection rule. Likewise, partitions that contain only patches of size two do not
contribute, as the expectation values of their patch operators are the same in ρ and ρG. It remains to bound the contribution
from the remaining partitions. For these we cannot use cancellations between the parts coming from ρ and those coming from
ρG, but instead bound them in absolute value. All these partitions contain at least one cluster of size at least four, which
allows us to bound the corresponding term from the homogeneous suppression of the elements of the propagator implied by
the delocalizing transport (see Definition 2). Doing this explicitly is tedious because of the interplay of contributions from
the larger patches and those of size two, and the involved combinatorics of how the smaller patches can be distributed on the
lattice. All this is done by first ordering contributions according to the number m of patches of size two they contain and then
applying Lemma 12, which internally uses a recursive argument. It yields an upper bound on absolute value of sums of the form∑

(kj)j∈J∈KCP

∏
p∈P
〈P̂ (kj)j∈p
p 〉ρ that grows with ∆ but is algebraically suppressed with time t. Assuming ∆ ≥ 1 this yields for

t ≤ min(tRec, V ) the following bound

‖ρS(t)− ρSG(t)‖1 ≤ 22|S|
(

22|S|+1|S|2|S|
|S|∑
m=0

(22dL+1|S|dL |C|1/4CTranst
−dL/3∆dL)2m+4

[
1 + CClust|C|2e−∆/ξ

+ 24(dL+1)|S|+1|S|2|S|(dL+1)+1

|S|∑
r=0

(|C|1/4CTranst
−dL/3∆dL)2r+4

]|S|
+ 8C̃LR(dL)|S|2e−µvε|t| + 28|S|+4|S|4|S|+3CClust|C|2|S|e−∆/ξ

)
.

(D56)

Recalling that |C| ≤ 2|S|[2(v + 2vε)t + 1]dL one realizes that by letting ∆ grow in time as ∆ = max(1, tdL/24) all terms are
at least algebraically suppressed in t. Therefore for every ε there exists a critical system size from which on the bound above
decays below ε for a suitable relaxation time tRelax ≤ min(tRec, V ). As the saturation of the the delocalizing transport once t is
of the order of V implies a saturation of the bound above at a value defined by t = V we set for systems smaller than the critical
system size tRelax > tRec. It follows then that ‖ρS(t)− ρSG(t)‖1 ≤ ε for all t ∈ [tRelax, tRec].
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