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We consider Coulomb drag in capacitively coupled quantum dots (QDs) — a bias-driven dot
and an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this
end, we develop a master-equation approach which accounts for energy-dependent lead couplings,
and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multi-electron tunneling
processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the
drag current in terms of microscopic system parameters. Interestingly, the direction of the drag
current is not determined by the drive current, but by an interplay between the energy-dependent
lead couplings. Studying the drag mechanism in a graphene-based QD structure, we show that the
predictions of our theory are consistent with recent experiments on Coulomb drag in such structures.
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Electronic systems brought into close proximity may
exhibit Coulomb drag [1, 2]: a current in one system in-
duces a current (or a voltage) in a nearby undriven sys-
tem. Importantly, the effect arises solely due to Coulomb
interactions between the charge carriers in the two sys-
tems. Coulomb drag has been studied extensively in cou-
pled two-dimensional systems, both experimentally [3–5]
and theoretically [6–9], and has recently experienced a
revival in one-dimensional systems [10–14] and graphene
heterostructures [15–20].

In mesoscopic systems with broken translational in-
variance, e.g. quantum point contacts or quantum dots
(QDs), momentum is not a good quantum number as in
extended systems. Instead of momentum transfer, it is
more natural to view mesoscopic Coulomb drag [21–23]
as an interaction mediated energy transfer between the
drive and the drag system. Such energy-transfer drag
plays a central role in, for example, quantum measure-
ments where a detector and a system exchange energy in
a measurement on the system [24]. In this case, the drag
can either constitute the signal in the detector generated
by the measured quantum noise in the system [25–27],
or be a disturbance in the system due to the measure-
ment [28, 29], i.e. detector back-action.

In addition to energy transfer, Coulomb drag in capac-
itively coupled QDs (CQDs) relies on an asymmetry in
the drag system [23]. This has been demonstrated in cou-
pled double quantum dots [30], and recently in coupled
single QDs [31, 32] where the asymmetry originates from
the couplings to the leads. In the latter, Coulomb-drag
effects beyond conventional mesoscopic QD drag [23, 33]
were reported [31]. Not only are such effects of funda-
mental scientific interest, but they may also be important
for the operating principles of novel QD devices [34–37].

In this work we provide a theoretical framework for the
description of Coulomb drag in CQDs taking into account
higher-order tunneling processes, and thereby going be-
yond conventional QD drag [23]. We uncover a drag

mechanism driven by nonlocal correlated multi-electron
tunneling (cotunneling) processes. The drag stems from
a ratchet mechanism where energy transfer is mediated
by bias-induced switching between the CQD states at the
honeycomb vertex of the stabilily diagram [38] sketched
in Fig. 1(a). We identify both a cotunneling-only [ar-
row in Fig. 1(a)] and a cotunneling-assisted [circle in
Fig. 1(a)] drag mechanism. In the latter, the system
makes excursions around the triple point in the stability
diagram like in charge pumping [39]. Our theory pin-
points the conditions for drag in terms of microscopic
quantities and shows that the direction of the drag cur-
rent is independent on the drive current and exhibits a
nontrivial dependence on the lead couplings in the drag
system.
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FIG. 1. (color online) (a) Stability diagram (honeycomb ver-
tex) of two capacitively coupled QDs as a function of their
gate detuning δ = V2−V1 and common gate ε = V1 +V2. (b)
Illustration of a graphene-based CQD heterostructure with
two QDs defined in stacked graphene layers separated by a
thin isolating dielectric [31]. A series of top and bottom gates
control the potentials on the quantum dots (V1/2) and their
adjacent graphene leads. (c) Sequence of tunneling processes
underlying the drag mechanism [closed circle in (a); see also
Eq. (9)]. Energy-dependent lead couplings are essential to
induce a directional drag current.
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We demonstrate the rich properties of the drag mecha-
nism by studying drag in the graphene-based CQD struc-
ture illustrated in Fig. 1(b). Such experimentally re-
alizable graphene-based QD structures are unique due
their large tunability [40–44], large interdot charging en-
ergies [31], and built-in graphene leads. We envision
structures in which local gating allows to control the
chemical potentials of the lead regions [45, 46] and create,
e.g., p-QD-n junctions across the individual QDs. As we
demonstrate below, this opens the opportunity to control
the direction of the drag current. Finally, we elaborate on
the role of the drag mechanism in the recently observed
Coulomb drag in a graphene-based CQD structure [31].

General model and theory.—We consider a generic
(spinless) model for two capacitively coupled QDs—a
drive (i = 1) and a drag (i = 2) dot—with one level
each, HCQD =

∑
i εini + U12n1n2, where the dot levels

are controlled by gate voltages εi = −eVi, ni = d†idi
is the dot occupation, and U12 = e2/2C is the capac-
itive inter-dot coupling. The dots are coupled to sep-
arate source and drain contacts, Hα =

∑
k ξαkc

†
αkcαk,

ξαk = εk − µα (α = Li, Ri), via tunnel Hamiltonians

HT =
∑
αk tαkc

†
αkdi + hc. In contrast to the usual wide-

band approximation where the lead couplings are as-
sumed constant, we here consider energy-dependent cou-
plings Γα(ε) = 2πρα(ε)|tα(ε)|2, where ρα is the density
of states (DOS) in lead α and tα is the tunnel coupling.
Like in conventional QD drag [23, 31], this is the key
ingredient for the drag mechanism described below.

We describe the transport through the drive and drag
dots with a master equation approach valid for kBT &
Γα [47]. The occupation probabilities pm for the CQD
states, |m〉 = |n1n2〉 ∈ {|00〉, |10〉, |01〉, |11〉}, are deter-
mined by the rate equations

ṗm = −pm
∑

n 6=m
Γmn +

∑

n 6=m
pnΓnm, (1)

which together with the normalization condition∑
m pm = 1 are solved for the steady-state probabilities,

i.e. ṗm = 0.
The rates for tunneling-induced transition between the

states are obtained from the generalized Fermi golden
rule [47],

Γmn =
2π

~
∑

i′f ′

Wi′ |〈f |T |i〉|2δ(Ef − Ei). (2)

Here, |i/f〉 = |m/n〉⊗|i′/f ′〉 are products of QD and lead
states, the sum is over possible initial |i′〉 and final |f ′〉
states of the leads, Wi′ is the probability for the initial
lead state |i′〉, and T = HT + HTG0HT + . . . is the T -
matrix with G0 = 1

Ei−H0
denoting the Green function in

the absence of tunneling, i.e. H0 = HCQD +
∑
αHα. The

correlations between real and virtual occupations of the
QDs in tunneling processes are fully accounted for in G0

which is treated exactly.

To lowest-order in the tunneling Hamiltonian, the tran-
sitions between the states are given by sequential tunnel-
ing processes with rates

Γαm,11 = ~−1Γα(∆m,11)fα(∆m,11) (3)

Γαm,00 = ~−1Γα(∆m,00) [1− fα(∆m,00)] (4)

Γα00,n = ~−1Γα(∆00,n)fα(∆00,n) (5)

Γα11,n = ~−1Γα(∆11,n) [1− fα(∆11,n)] , (6)

where m,n ∈ {10, 01}, fα is the Fermi function in lead
α, and ∆mn = En − Em.

The next-to-leading order term in the T -matrix gives
rise to elastic and inelastic cotunneling through the in-
dividual dots [48–50]. In addition, a nonlocal cotunnel-
ing process mediated by the capacitive inter-dot coupling
arises. This is a correlated two-electron tunneling event
in which the CQD switches between the 10 ↔ 01 states
in one coherent process. The rate for nonlocal cotunnel-
ing processes which transfer an electron from lead α to
lead β is given by

Γαβmn =

∫
dε

2π~
Γα(ε+ ∆mn)Γβ(ε)fα(ε+ ∆mn)[1− fβ(ε)]

×
∣∣∣∣

1

ε−∆01,11
− 1

ε+ ∆10,00

∣∣∣∣
2

, (7)

where m,n ∈ {10, 01} and the terms in the last line ac-
count for the energy of the virtually-occupied interme-
diate 00/11 states. To evaluate the cotunneling rates
at finite temperature and bias, we have generalized the
commonly applied regularization scheme [51, 52] to the
situation with energy-dependent lead couplings [53] .

From the solution to the master equation (1), the cur-
rents in the various leads are obtained as

Iα = −e
∑

mn

pm (Γ→αmn − Γα→mn ) , (8)

where Γ→α (Γα→) denotes the rate for processes which
transfer an electron into (out of) lead α, and the drive
and drag currents are defined as Idrive = IL1

= −IR1
and

Idrag = IL2
= −IR2

, respectively.
Drag mechanism.—At the honeycomb vertex of the

CQD stability diagram in Fig. 1(a), a current can pass
through the biased drive dot (µL1/R1

= ±eVsd/2; the
drag dot is kept unbiased throughout) along the degen-
eracy lines where its occupation can fluctuate via sequen-
tial or cotunneling (full and dashed red lines, respec-
tively). Fixing the gate voltages to, e.g., the point below
the 10/11 degeneracy line at the upper triple point in
Fig. 1(a), this involves the sequence of transitions

|10〉 co↔ |01〉 seq↔ |11〉 seq→ |10〉, (9)

where, for eVsd > ∆mn � kBT , the two first transitions
are open in both directions, whereas the third transition
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is only open in the forward direction because the drag
dot is unbiased. In addition to the drive current, this
may induce a drag current via steps where the drag dot
is repeatedly filled and emptied. This is possible via the
first step alone (cotunneling-only drag), or through the
full sequence (cotunneling-assisted drag) which is illus-
trated in Fig. 1(c). Note that the nonlocal cotunneling
process is instrumental in both cases.

In order to generate a drag current, the drag dot
must be filled and emptied at preferentially separate drag
leads. This requires an asymmetry in the drag system.
To identify the exact conditions, we expand the lead
couplings around the equilibrium chemical potentials µ0,
Γα(ε) ≈ Γα0+ξ∂Γα, where ξ = ε−µ0, Γα0 = Γα(µ0), and
∂Γα = ∂Γα/∂ε|ε=µ0 . Along the 10/01 degeneracy line,
∆10,01 = 0, and in the nonlinear regime eVsd � kBT (but
still eVsd < U12) where the transport in the drive dot is
unidirectional, we find for the drag current,

Idrag ∼
ΓL10ΓR10(ΓL20∂ΓR20 − ΓR20∂ΓL20)

ΓL20 + ΓR20
F (Vsd),

(10)
where F (Vsd) = V 2

sd, log Vsd away from (cotunneling-
only) and at the triple points (cotunneling-assisted), re-
spectively. The factor in parentheses in the numerator
gives the conditions for drag. Notably, the drag is zero if
the lead couplings of the drag dot are constant or differ
by a multiplicative factor. Furthermore, the direction of
the drag current is determined by two factors concerning
the lead couplings to the drag dot: (i) their asymmetry,
and (ii) their derivatives.

Drag in graphene-based CQDs.—In the following
we study the drag effect in an idealized version of the
graphene-based CQD structure illustrated in Fig 1(b).
The QDs are assumed to be connected to bulk graphene
leads with linear DOS, ρα(ε) = gsgv

2π(~vF )2 |ε− Eα0|, which

govern the energy dependence of the lead couplings, i.e.
Γα(ε) = 2πρα(ε)|tα|2 where tα is constant, and where
the positions of the Dirac points in the leads, Eα0 =
−eVα, are controlled by local gates [see Fig. 3(a)]. This
allows to tune both the strength of the lead couplings,
Γα0 ∝ |µ0 − Eα0|, as well as their derivatives, ∂Γα ≷ 0
on the upper/lower Dirac cones. In order to meet the
conditions for a nonzero drag current, EL20 6= ER20 like
in Fig. 3(a) is necessary. Asymmetric tunnel couplings
alone, tL2 6= tR2 → ΓL2(ε) ∝ ΓR2(ε), is not enough.

In Fig. 2(a),(c) we show the current through the drive
and drag dots as a function of gate voltages for the sit-
uation in Fig. 3(a) with U12 > eVsd � kBT . The cur-
rent through the drive dot in Fig. 2(a) is nonzero along
the 00/10 and 01/11 degeneracy lines, and the 10/01
degeneracy line where it is dominated by, respectively,
sequential tunneling and nonlocal cotunneling. In addi-
tion, elastic cotunneling through the drive dot appears
as a background in the Coulomb-blockaded regions.

The induced drag current is shown in Fig. 2(c). A
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FIG. 2. (color online) Current through the drive (top) and
drag (bottom) dots for the situation in Fig. 3(a). (a),(c) Cur-
rent vs common gate and gate detuning with a bias voltage
eVsd = 0.2 applied to the drive dot. (b),(d) Bias dependence
of the drive and drag currents at the gate voltages (V2 −
V1, V1 + V2) marked by dots in the left plots [red: (0.0, 1.0),
yellow: (0.0, 0.8), green: (0.0, 0.0), blue: (−0.2, 0.0)]. Param-
eters (in units of U12): U12 = 1, ΓL10/R10 = ΓL20/R20 =
0.01 ≡ Γ, ∂ΓL2 = −∂ΓR2 , tL2 = tR2 , kBT = 0.01.

finite drag current is observed along the 10/01 degener-
acy line where the nonlocal cotunneling channel is open.
With the bias applied symmetrically in the drive dot, the
drag region is limited by |∆10,01| = e|V2 − V1| < eVsd/2
on the horizontal axis. Away from the triple points
(|∆10/01,00/11| � eVsd), the drag is driven solely by the
nonlocal cotunneling process. In the vicinity of the up-
per (lower) triple point, eVsd & |∆01,11| (∆10,00), the
bias on the drive dot opens the 01↔ 11 (10↔ 00) tran-
sition via sequential tunneling, and the drag changes to
cotunneling-assisted drag. This results in an enhanced
drag current compared to the cotunneling-only drag.

Figure 2(b),(d) show the bias dependence of the drive
and drag currents at the gate voltages marked by dots in
Fig. 2(a),(c). In the linear low-bias regime, eVsd < kBT ,
Idrive ∝ Vsd and Idrag ∝ V 2

sd for |∆10,01| < kBT (red,
yellow and green dots). Away from the degeneracy
line where |∆10,01| > kBT (blue dot), the nonlocal co-
tunneling process is exponentially suppressed, Γ10,01 ∼
e−∆10,01/kBT , resulting in a vanishing drag current. How-
ever, the drive current remains finite due to elastic cotun-
neling. In the nonlinear regime, eVsd > kBT , Idrag ∼ V 2

sd

up to eVsd ∼ max(2|∆10,01|, |∆10/01,11|) where it experi-
ences a crossover to a Idrag ∼ log Vsd dependence in agree-
ment with Eq. (10). At even higher bias, eVsd & U12, the
conventional drag mechanism [23] which is driven by se-
quential tunneling takes over (see also below).

From Eq. (10) it is clear that the direction of the drag
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current depends, in a nontrivial way, on the lead cou-
plings in the drag system. This is demonstrated in Fig. 3
which shows the drag current at the upper triple point as
a function of the positions of the Dirac point in the drag
leads. At the diagonal we have ΓL2

(ε) = ΓR2
(ε), and

hence the drag vanishes. Off the diagonal, ΓL20 6= ΓR20

and ∂ΓL2
= ∂ΓR2

, the factor ΓL20−ΓR20 governs the sign
of the drag current. Upon crossing the Dirac point in one
of the leads, the drag changes sign due to an inversion in
the sign of the corresponding DOS derivative. Remark-
ably, the drag becomes independent on |µ0 − EL20/R20|
in this case. This follows from the fact that for symmet-
ric tunnel couplings, ∂ΓL2

= −∂ΓR2
, which leads to a

cancellation of the ΓL20 + ΓR20 factors in Eq. (10). For
asymmetric tunnel couplings this is not the case. The
unconventional sign of the mesoscopic drag, which we
have verified also holds for the conventional drag mech-
anism [23], is in stark contrast to that of the drag in
coupled graphene layers [19].

In bias spectroscopy of CQDs, the drag mechanism
leaves distinct fingerprints inside the so-called Coulomb-
blockade diamonds where the sequential tunneling drive
and drag currents are suppressed. Figure 4 shows the
drive (top) and drag (bottom) currents at the center of
the honeycomb vertex (green dot in Fig. 2) as a function
of gate detuning and drive bias. In the low-bias Coulomb-
blockaded regime, eVsd < U12 + e|V2 − V1|, the drive
current is dominated by elastic and nonlocal cotunneling,
with the latter limited to the region Vsd/2 > |V2−V1|. A
cotunneling-driven drag current is observed in the same
region.

At higher bias, eVsd > U12 + e|V2−V1|, the resonances
to the 00 and 11 states enter the bias window, and se-
quential tunneling dominates both the drive and drag
currents. However, outside the interval e|V2 − V1| < U12

on the horizontal axis, the sequential-tunneling driven
drag mechanism is quenched [23], and the cotunneling-
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FIG. 3. (color online) (a) Energy level diagram of a graphene-
based CQD where the QD levels, εi = −eVi, and the positions
of the Dirac points in the leads, Eα0 = −eVα, are controlled
by local gates [see also illustration in Fig. 1(b)]. (b) Drag
current at the upper triple point as a function of gate volt-
age on the leads of the drag system (see Dirac cone insets).
Parameters (in units of U12): U12 = 1, ΓL10/R10 = 0.01 ≡ Γ,
ΓL20/R20 ∝ |µ0 − EL20/R20|, ∂ΓL2/R2

= sgn(µ0 − EL20/R20),
tL2 = tR2 , eVsd = 0.1, kBT = 0.01.
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FIG. 4. (color online) Bias spectroscopy of the drive [(a),(b)]
and drag [(c),(d)] dots at the center of the 10/01 degeneracy
line and with the bias applied to the drive dot. (a),(c): linear
scale. (b),(d): log scale. The dashed (dotted) lines mark the
boundaries of the regions dominated by nonlocal cotunneling
(sequential tunneling). See caption of Fig. 2 for parameters.

assisted mechanism takes over for eVsd/2 > e|V2 − V1| >
U12. The different slopes s of the boundaries to the re-
gions where, respectively, sequential tunneling (dotted,
|s| = 1) and nonlocal cotunneling (dashed, |s| = 2) dom-
inates the drive and drag currents (see log plots in Fig. 4),
is a direct fingerprint of nonlocal cotunneling dominated
transport [53].

Finally, we estimate the magnitude of the drag cur-
rents. Taking Γα, kBT ∼ 0.1U12, a drag current of the
order of Idrag & (U12/meV)2 pA [& 0.1 (U12/meV)2 nA]
is predicted for cotunneling-assisted (sequential) drag for
eVsd & kBT,max(2|∆10,01|, |∆10/01,00/11|) (& U12). The
cotunneling-driven drag is thus well within experimen-
tally detectable currents, and its signatures in bias spec-
troscopy have recently been observed experimentally in
Ref. 31.

Conclusions.—In summary, we have identified a
ratchet-like drag mechanism in CQDs driven by nonlocal
cotunneling processes. The key ingredient for the drag
mechanism is that the coupling to the leads be energy de-
pendent. This can be achieved via, e.g., gate-dependent
tunnel barriers [36, 55], or be intrinsic to the QD sys-
tem as in graphene-based quantum-dot structures with
built-in graphene leads [31]. Studying Coulomb drag in
an idealized version of such a QD structure, we demon-
strated the nontrivial dependence of the drag current
on the lead couplings and its fingerprints in bias spec-
troscopy. Possible routes for future explorations of drag
in CQDs include shot noise and cross correlations charac-
teristics [23, 56, 57], the effect of level broadening [58, 59]
and Kondo physics [60, 61] which become important at
Γα > kBT , as well as drag due to other coupling mecha-
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nisms between the QDs [62].
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S1. BIAS SPECTROSCOPY WITH THE BIAS VOLTAGE APPLIED ASYMMETRICALLY

In experiments, the bias voltage on the drive system is often applied to the source, or the drain, electrode only. In
order to ease the comparison with our theoretically calculated bias spectroscopy diagrams (Fig. 4 of the main text
where the bias has been applied symmetrically to the source and drain electrodes) we give in Fig. S1 the results for
an asymmetrically applied bias voltage, i.e. µL1

= eVsd + µ0 and µR1
= µ0.
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FIG. S1. (Color online) Current through the drive (left) and drag (right) dots at the center of the 10/01 degeneracy line vs
bias and gate detuning with the bias on the drive dot applied asymmetrically, i.e. µL1 = eVsd and µR1 = 0. Parameters (in
units of U12): U12 = 1, ΓL10/R10 = ΓL20/R20 = 0.01 ≡ Γ, ∂ΓL2 = −∂ΓR2 , tL2 = tR2 , kBT = 0.01.

The main difference between the bias spectroscopy diagrams in Fig. 4 of the main text and those in Fig. S1
above, is the suppression of the currents at negative (positive) detuning, V2−V1, and positive (negative) bias polarity.
Furthermore, the slopes s of the boundaries to the regions where, respectively, sequential tunneling (dotted, |s| = 1/2)
and nonlocal cotunneling (dashed, |s| = 1) dominates the drive and drag currents (see log plots in Fig. S1) are different.

Interestingly, we note that a feature similar to the one in the low-bias cotunneling-dominated drag current in the
rightmost plot of Fig. S1, has been observed in the transconductance of two capacitively coupled QDs in Ref. 1 [their
Fig. 4(g)].

S2. COTUNNELING REGULARIZATION SCHEME

In this section, we generalize the commonly applied cotunneling regularization scheme2,3 to the situation where the
lead couplings are energy dependent. The result obtained here applies to general energy-dependent lead couplings
which may originate from the either the lead density of states (DOS) and/or the tunnel couplings to the leads (see
below). Furthermore, the generic form for the cotunneling rates considered below, allows for a straight-forward
generalization to cotunneling in other QD systems.

From a T -matrix calculation4 of cotunneling in the QD system considered in the main text, the rate for transfering
an electron from lead α to lead β in a cotunneling process (elastic or nonlocal) which, at the same time, changes the
QD state from |m〉 to |n〉 (|m〉 = |n〉 for elastic cotunneling) can be written on the generic form

Γαβmn =

∫
dε

2π~
Γα(ε+ ∆mn)Γβ(ε)

∣∣∣∣
A

ε−∆1
+

B

ε−∆2

∣∣∣∣
2

fα(ε+ ∆mn) [1− fβ(ε)]

= nB(µβ − µα + ∆mn)

∫
dε

2π~
Γα(ε+ ∆mn)Γβ(ε)

∣∣∣∣
A

ε−∆1
+

B

ε−∆2

∣∣∣∣
2

[fβ(ε)− fα(ε+ ∆mn)] . (S1)

Here, ∆1,2 denotes the energy differences associated with the two possible intermediate states and A,B = ±1 for
electron- and hole-like intermediate states, respectively. Furthermore, Γα(ε) = 2πρα(ε)|tα(ε)|2 is the energy-dependent
lead coupling, ρα is the density of states (DOS) in lead α, tα is the tunneling amplitude, ∆mn = En − Em is the
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energy difference between the initial and final states, fα is the Fermi function of lead α with chemical potential µα,
and nB is the Bose-Einstein distribution. In the last equality, we have recast the integrand into a form that is easier
to tackle.

In the expression for the cotunneling rate above, the energy denominators associated with the virtually-occupied
intermediate states give rise to a diverging cotunneling rate when the intermediate states go “on-shell”. To deal with
this divergence, we follow the standard regularization scheme2,3 and introduce a phenomenological tunnel broadening
of the QD states (not accounted for in a T -matrix calculation) by adding an imaginary infinitesimal iγ (regularizer)
in the energy denominators. The integral can then be evaluated after which the regularized cotunneling rates are
obtained by taking the limit γ → 0.

A. General expression for the regularized cotunneling rates

With the regularizer added in the energy denominators of Eq. (S1), the cotunneling rate can be expressed as

Γαβmn =
nB(µβ − µα + ∆mn)

2π~
lim
γ→0

[
A2I1(∆1) +B2I1(∆2) + 2ABI2(∆1,∆2)

]
(S2)

where the integrals I1/2 are given by (with their ∆n dependence suppressed in the following)

In =

∫ ∞

−∞
dεΓα(ε+ ∆mn)Γβ(ε)Fn(ε)

[
fβ(ε)− fα(ε+ ∆mn)

]
, (S3)

and the functions Fn are defined by the terms which result from the absolute-value squared factor,

∣∣∣∣
A

ε−∆1 + iγ
+

B

ε−∆2 + iγ

∣∣∣∣
2

=

∣∣∣∣
A

ε−∆1 + iγ

∣∣∣∣
2

+

∣∣∣∣
B

ε−∆2 + iγ

∣∣∣∣
2

+ 2Re

(
A

ε−∆1 + iγ

B

ε−∆2 − iγ

)

≡ A2F1(ε; ∆1) +B2F1(ε; ∆2) + 2ABF2(ε; ∆1,∆2). (S4)

This leaves us with two types of integrals, I1,2, to evaluate.
We proceed to evaluate the integrals in Eq. (S3) using contour integration. To this end, we start by rewriting the

Fermi functions as

fα(ε) =
1

2

[
1− tanh

(
ε− µα
2kBT

)]
=

1

2

[
1 +

i

π

[
Ψ+
α (ε)−Ψ−α (ε)

]]
, (S5)

where

Ψ±α (ε) = Ψ

(
1/2± i β

2π
(ε− µα)

)
, (S6)

Ψ is the digamma function5, and β = 1/kBT . The two digamma functions Ψ± have poles zn = µα ± i2π/β
(
n+ 1

2

)
,

n ∈ N, which lie in the positive and negative complex half-planes, respectively. We therefore split up the integral into
two subintegrals, In = I+n − I−n , which deal with the contributions from Ψ± separately,

I±n =
i

2π

∫ ∞

−∞
dεΓα(ε+ ∆mn)Γβ(ε)Fn(ε)

[
Ψ±β (ε)−Ψ±α (ε+ ∆mn)

]
. (S7)

This has the advantage that upon extending the integrations to closed contours in the complex plane, the poles of the
Ψ± functions can be avoided by closing the contours in the half plane where Ψ± do not have any poles. If the lead
couplings Γα/β are well-behaved functions without singularities, the resulting contour integrals I±c are thus given by
the sum over residues of the integrand at the poles zi of Fn which are enclosed by the integration contours,

I±cn =
i

2π

∮

C∓

dz Γα(z + ∆mn)Γβ(z)Fn(z)
[
Ψ±β (z)−Ψ±α (z + ∆mn)

]
= 2πi

∑

i

Res(zi). (S8)

Here, the contours are chosen as semicircles C∓ with radius R → ∞ closed in the negative/positive complex half-
planes, respectively (see Fig. S2).

Writing the contour integrals as a sum over the different contributions from the integration contour,

I±cn = ∓I±n + I±CR∓n
, (S9)
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where ∓ in front of the first term accounts for the direction of the contour along the real axis and I±CR∓
denote the

contribution from the semi-circle arcs, the integrals along the real axis in Eq. (S3) can be obtained as

In = I+n − I−n = I+CR−n
+ I−CR+

n − I+cn − I−cn ≡ ICRn − Icn. (S10)

In the following subsections, we evaluate the different contributions to the I1/2 integrals one by one. The contri-
butions from the semi-circle arcs CR± need special attention since they, depending on the energy dependence of the
lead couplings, might have nonzero values.

1. Icn: Contributions from residues

As the integrands in Eq. (S8) are of the form g(z)/h(z), where h denotes the denominators of the Fn functions
defined in Eq. (S4), the residues at the simple poles zi of Fn, where h(zi) = 0, h′(zi) = 0 and g(zi) 6= 0, can be
obtained as Res(g/h, zi) = g(zi)/h

′(zi).

Ic1: F1(z) = 1
(z−∆i)2+γ2

The function F1 has simple poles in z±i = ∆i± iγ, i = 1 or i = 2, which contribute to the integrals I∓ci , respectively.
From the residues we get

I±c1 = ±2πi
i

2π

i

2γ
Γα(∆i + ∆mn ∓ iγ)Γβ(∆i ∓ iγ)

[
Ψ±β (∆i ∓ iγ)−Ψ±α (∆i + ∆mn ∓ iγ)

]
(S11)

The sum of the contributions is

−Ic1 = −I+c1 − I−c1 =
i

2γ

[
Γα(∆i + ∆mn + iγ)Γβ(∆i + iγ)

[
Ψ−α (∆i + ∆mn + iγ)−Ψ−β (∆i + iγ)

]

+ Γα(∆i + ∆mn + iγ)∗Γβ(∆i + iγ)∗
[
Ψ−β (∆i + iγ)∗ −Ψ−α (∆i + ∆mn + iγ)∗

]]

=
1

γ
Im

[
Γα(∆i + ∆mn + iγ)Γβ(∆i + iγ)

[
Ψ−β (∆i + iγ)−Ψ−α (∆i + ∆mn + iγ)

]]
(S12)

= − 1

γ
Im

[
Γα(∆i + ∆mn − iγ)Γβ(∆i − iγ)

[
Ψ+
β (∆i − iγ)−Ψ+

α (∆i + ∆mn − iγ)
]]
, (S13)

where we have used the property Ψ(z)∗ = Ψ(z∗)→ Ψ+(z∗) = Ψ−(z)∗ of the digamma function.
This contribution diverges when we take the γ → 0 limit. Following the standard recipe2,3, we therefore expand in

γ, Ic1 ≈ Ic1(γ = 0) + γI ′c1(γ = 0), and discard the diverging O(γ−1) term which can be associated with sequential
tunneling already included in a separate lowest-order calculation of the tunneling rates. The remaining O(γ0) term
gives the desired contribution to the cotunneling rate,

−Ic1[O(γ0)] = Re

[[
Γ′α(∆i + ∆mn)Γβ(∆i) + Γα(∆i + ∆mn)Γ′β(∆i)

][
Ψ−β (∆i)−Ψ−α (∆i + ∆mn)

]]

+
β

2π
Im

[
Γα(∆i + ∆mn)Γβ(∆i)

[
Ψ−β
′
(∆i)−Ψ−α

′
(∆i + ∆mn)

]]
, (S14)

where Γ′ denotes the derivative of the lead couplings and Ψ′ is the trigamma function.

Ic2: F2(z) = Re 1
(z−∆1+iγ)(z−∆2−iγ)

The function F2 has simple poles in z±i = ∆i± iγ, i = 1, 2, which contribute to the integrals I∓c2, respectively. From
the residues we get

I+c2 = 2πi
i

2π
Re

1

∆1 −∆2 − 2iγ
Γα(∆1 + ∆mn − iγ)Γβ(∆1 − iγ)

[
Ψ+
β (∆1 − iγ)−Ψ+

α (∆1 + ∆mn − iγ)

]
(S15)
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FIG. S2. Integration contours C± for the integrals I∓n in Eq. (S8). The contour integrals are given by the residues at the
simples poles z±i = ∆i ± iγ of the Fn functions defined in Eq. (S4).

and

I−c2 = 2πi
i

2π
Re

1

∆2 −∆1 + 2iγ
Γα(∆2 + ∆mn + iγ)Γβ(∆2 + iγ)

[
Ψ−β (∆2 + iγ)−Ψ−α (∆2 + ∆mn + iγ)

]
, (S16)

respectively.

The sum of the contributions is

−Ic2 = −I+c2 − I−c2 = Re
1

∆1 −∆2 − 2iγ

[
Γα(∆1 + ∆mn − iγ)Γβ(∆1 − iγ)

[
Ψ+
β (∆1 − iγ)−Ψ+

α (∆1 + ∆mn − iγ)
]

− Γα(∆2 + ∆mn + iγ)Γβ(∆2 + iγ)
[
Ψ−β (∆2 + iγ)−Ψ−α (∆2 + ∆mn + iγ)

]]

γ→0
=

1

∆1 −∆2
Re

[
Γα(∆1 + ∆mn)Γβ(∆1)

[
Ψ+
β (∆1)−Ψ+

α (∆1 + ∆mn)
]

− Γα(∆2 + ∆mn)Γβ(∆2)
[
Ψ−β (∆2)−Ψ−α (∆2 + ∆mn)

]]
. (S17)

Here we do not encounter any problems taking the γ → 0 limit.

2. ICRn: Contributions from semi-circle arcs

In order to calculate the contributions from the integrals along the semi-circle arcs in the limit R→∞, we use the
asymptotic expansion of the digamma function5

lim
|z|→∞

Ψ(z) = −γ +
∞∑

n=1

z

n(n+ z)
= ln z − 1

2z
−
∞∑

n=1

B2n

2nz2n
, (S18)

where γ is the Euler-Mascheroni constant and B2n are Bernoulli numbers. From the asymptotic expansion, we find
for the factors in Eq. (S8) involving the Ψ± functions

lim
|z|→∞

[
Ψ+
β (z)−Ψ+

α (z + ∆mn)
]

= ln

[
1 +

iβ

2π

µα − µβ −∆mn

1/2 + iβ/2π(z + ∆mn − µα)

]
− 1

1 + iβ(z − µβ)/π
+

1

1 + iβ(z + ∆mn − µα)/π
+ . . .

≈ ln

[
1 +

µα − µβ −∆mn

z

]
+ i

µβ − µα + ∆mn

βz2/π
+ . . .

≈ µα − µβ −∆mn

z
(S19)
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and

lim
|z|→∞

[
Ψ−β (z)−Ψ−α (z + ∆mn)

]
= ln

[
1− iβ

2π

µα − µβ −∆mn

1/2− iβ/2π(z + ∆mn − µα)

]
− 1

1− iβ(z − µβ)/π
+

1

1− iβ(z + ∆mn − µα)/π
+ . . .

≈ ln

[
1 +

µα − µβ −∆mn

z

]
− iµα − µβ −∆mn

βz2/π
+ . . .

≈ µα − µβ −∆mn

z
, (S20)

respectively.
In addition we have that lim|z|→∞ Fn(z) = z−2. Inserting in Eq. (S8) with z = Reiθ → dz = iReiθdθ on the

semi-circle arcs, we find

ICRn = I+CR−
+ I−CR+

=
i2

2π

∫ 0

−π
dθ ReiθΓα(Reiθ)Γβ(Reiθ)

1

R2e2iθ
µα − µβ −∆mn

Reiθ

+
i2

2π

∫ π

0

dθ ReiθΓα(Reiθ)Γβ(Reiθ)
1

R2e2iθ
µα − µβ −∆mn

Reiθ

=
µβ − µα + ∆mn

2π

∫ π

−π
dθ

Γα(Reiθ)Γβ(Reiθ)

R2e2iθ
(S21)

Thus, as long as the asymptotic behavior of the lead couplings is lim|z|→∞ Γα(z) = zn with n < 1, the integrals along
the semi-circle arcs vanish for R→∞. For graphene leads, this is not the case (see below).

It should be noted that for A = −B, i.e. with one electron- and one hole-like intermediate state, the semi-circle
contributions from the different terms in Eq. (S2) cancel in the cotunneling rate.

B. Linearized lead couplings

At low bias (compared to the energy scale at which the lead couplings show nonlinear energy dependence), we can
expand the lead couplings around the equilibrium chemical potentials µ0 of the leads, Γα(ε) ≈ Γα0 + ξ∂Γα, where
ξ = ε − µ0, Γα0 = Γα(µ0), and ∂Γα = ∂Γα/∂ε|ε=µ0

. With this approximation, lim|z|→∞ Γα(z) = z∂Γα, and the
integrals along the semi-circle arcs in Eq. (S21) attain a finite value,

ICRn = ∂Γα∂Γβ (µβ − µα + ∆mn) . (S22)

It should be pointed out that the apparent contradiction associated with the fact that we here have used the |z| → ∞
limit of an expansion valid at low energies only, is both physically and mathematically sound. The integral along the
real axis in Eq. (S1) [and Eq. (S7)] is cut off by the Fermi functions and does not depend on the behavior of the lead
couplings at ε→∞. Only when the real-axis integrals in Eq. (S7) are expressed in terms of the different contributions
to the contour integrals in Eq. (S8), as in Eq. (S10), does the z →∞ limit of the lead couplings enter.

Graphene leads

For bulk graphene leads with linear DOS, ρ(ε) ∝ |ε|, the lead couplings acquire the linear energy dependence of the
DOS if the tunnel couplings are assumed independent on energy, i.e. Γ(ε) ∝ ρ(ε). In this case the result in Eq. (S22)
above applies. However, it should be noted that, as the graphene DOS is nonanalytic at the Dirac point where the
DOS vanishes, the result obtained here strictly only holds away from the Dirac point.
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