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Abstract

The purpose of this article is to give a Chlodowsky type generalization of Szész operators defined
by means of the Sheffer type polynomials. We obtain convergence properties of our operators with
the help of Korovkin’s theorem and the order of convergence by using a classical approach, the second
order modulus of continuity and Peetre’s K-functional. Moreover, we study the convergence of these
operators in a weighted space of functions on a positive semi-axis and estimate the approximation by
using a new type of weighted modulus of continuity introduced by Gadjiev and Aral in [12]. An algo-
rithm is also given to plot graphical examples, and we have shown the convergence of these operators
towards the function and these examples can be take as a comparison between the new operators with
the previous one too. Finally, some numerical examples are also given.

Keywords and phrases: Szasz operators, Modulus of continuity, Rate of convergence, Weighted
space, Sheffer polynomials.
AMS Subject Classifications (2010): 41A10, 41A25, 41A36.

1. Introduction and preliminaries

In approximation theory, the positive approximation processes discovered by Korovkin play a
central role and arise in a natural way in many problems connected with functional analysis, harmonic
analysis, measure theory, partial differential equations and probability theory. The most useful exam-

ples of such operators are Széasz [1] operators.

Szész [1] defined the positive linear operators:

Su(fiz) = e S <”,§>’“f(§) (1)

k=0

where © > 0 and f € C[0,00) whenever the above sum converges. Motivated by this work, many
authors have investigated several interesting properties of the operators (1.1).

Later, Jakimovski and Leviatan [9] obtained a generalization of Szész operators by means of
Appell polynomials. Let g(z) = > 5o, arz” (ao # 0) be an analytic function in the disk |2| < R, (R >
1) and suppose that g(1) # 0. The Appell polynomials p(z) have generating functions of the form

gw)e =3 pu(a)t. (1.2)
k=0

Under the assumption that py(x) > 0 for z € [0, 00), Jakimovski and Leviatan introduced the positive
linear operators P, (f;x) via

—nx o0

Patsia) =y oot () (1)
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and gave the approximation properties of the operators.

Case 1. For g(1) = 1, with the help of (1.2) we easily find pi(z) = %T and from (1.3) we meet
again the Szdsz operators given by (1.1).

Then, Ismail [I0] presented another generalization of Szész operators (1.1) and Jakimovski and
Leviatan operators (1.3) by using Sheffer polynomials. Let A(z) = > p2 arz® (ag # 0) and H(z) =
> pey hez® (k1 # 0) be analytic functions in the disk |z| < R (R > 1) where a; and hy, are real. The
Sheffer polynomials pi(x) have generating functions of the type

A()e™™ D = "p(a)t, |t < R. (1.4)
k=0

Using the following assumptions:

(i) for x € [0,00), px(x) >0,

(ii) A(1)#0and H'(1) =1, (1.5)
Ismail investigated the approximation properties of the positive linear operators given by

—nzxH(1) =° k
Zpk(n:r)f(ﬁ), for n € N. (1.6)
0

k=

e
To(f; =

(i) =
Case 1. For H(t) = t, it can be easily seen that the generating functions (1.4) return to (1.2) and,
from this fact, the operators (1.6) reduce to the operators (1.3).

Case 2. For H(t) =t and A(t) =1, one get the Szdsz operators from the operators (1.6).

In [9], Biiyiikyazic et al. introduced the Chlodowsky [2] variant of operators (1.3). Guided by
their work we give the Chlodowsky type generalization of operators (1.6) as follows:

— 2 xH(1) o
e n n k
T*(f: = —_ —b, 1.7
= g () 1 () (1.7
with b,, a positive increasing sequence with the properties
. . b
lim b,, = oo, lim — =0 (1.8)
n— o0 n—oo N
and py are Sheffer polynomials defined by (1.4). For other generalization of operators (1.6) one can
refer to [11].

The rest of the paper is organized as follows. In Section 2 we obtain some local approximation
results by the generalized Szdsz operators given by (1.7). In particular, the convergence of operators
is examined with the help of Korovkin’s theorem. The order of approximation is established by means
of a classical approach, the second-order modulus of continuity and Peetre’s K-functional. An algo-
rithm and some graphical examples are also given to in claim of convergence of operators towards
the function. Section 3 is devoted to study the convergence of these operators in a weighted space
of functions on a positive semi-axis and estimate the approximation by using a new type of weighted
modulus of continuity introduced by Gadjiev and Aral in [I2]. Finally, some numerical examples are
also given in section 4.

Note that throughout the paper we will assume that the operators T, are positive and we use
the following test functions _
ei(x)=2", i€{0,1,2}.



2. Local approximation properties of T)'(f;x)

We denote by Cglo,00) the set of all continuous functions f on [0,00) with the property that
|f(z)] < pe*® for all x > 0 and some positive finite o and 5. For a fixed r € N we denote by
Crl0,00) = {f € Cgl0,00) : £/, f",--, f") € Cg[0,00)}. Using equality (1.1) and the fundamental
properties of the T)F operators, one can easily get the following lemmas:

Lemma 2.1. For all z € [0, 00), we have

Ti(eoir) = 1 (2.1)

Tr(er;x) = x4+ %i((ll))’ (2.2)
/ " 2 Al "

To(eyz) — 24 %A(l) +24 (/11)(;5 AWHE"Q) %%, (2.3)

It follows from Lemma 2.1 that,

Ty ((ex —z);2) =0, (2.4)
2 A’ "
Ty ((er —2)%x) = %(1+H”(1))x+%% 2.5)

Theorem 2.2. For f € Cg[0,00), the operators T converge uniformly to f on [0,a] as n — oco.
Proof. According to (2.1)-(2.3), we have

lim T, (e;;x) =e;(x),i € {0,1,2}.

n—00

If we apply the Korovkin theorem [5], we obtain the desired result.
Algorithm

Graphically, to show the approximation of a given function f(z) by positive linear operators T, (f; )
and T7 (f;x) given by (1.7), the algorithm is summarized as below.

Step 1: Choose the functions A(t) and H(t) such that A(t) # 0 and H'(1) = 1.
Step 2: Find out the Sheffer polynomials py(z) with the help of relation (1.4).
Step 3: Check pg(x) > 0 for z > 0.

Step 4: Choose the sequence b,, under the condition given in (1.8).

Step 5: Plot the graph of function f(z) and the operators T, (f;x) and T%(f;x) for the different
values of n.

Example 2.3. For (i) A(t) = e’ and H(t) = t, (ii) A(t) = t and H(t) = t, the convergence of the
two operators T, (f;x) and T*(f;z) to f(x) are illustrated in Figs. 1, 2, 3 and 4 respectively, where
f(z) = —4ze=3*, n = 10, 50, 100, 200, 300, and b, = /n.

Remark. From figure 1 and figure 3, we can see that when the value of n is increasing, the graph
of operators T,,(f;x) are going far away form the graph of the function f(z) but with our proposed
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operators T.*(f;x), the convergence towards the function can be seen very clearly from figure 2 and
figure 4. In a nut shell, we can claim that to approximate a function our operators 7, (f; z) are better
in comparison of T,,(f; z).
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Now, we concerned with the estimate of the order of approximation of a function f by means of
the positive operators L*, using the first and second order modulus of continuity [6].



If § > 0, the modulus of continuity w(f,d) of f € C[a,b] is defined by

w(f,0) = sup |f (@) = f(y)l-

z,y€(ab], l[v—y|<s

The second order modulus of continuity of f € Cp[0,00) is defined by

wa(f,0) = Sup. 1FC+2t) =2f(+8) + FO)lles

0<t<

where C'p[0, 00) is the class of real valued functions defined on [0, co) which are bounded and uniformly
continuous with the norm || flcy = sup,e(o o0y |f(@)]-

The Peetre’s K-functional [6] of the function f € Cp[0,00) is defined by

K(f,0) = e {Ilf = glles +dllgllcs, }
where
C%[Oa OO) = {g € CB[()?OO) : g/a g” S OB[Oa OO)}
and the norm (gl ¢z, == [lgllcs + [|9'[lcs + 19" [lcs- It is clear that the following inequality:

K(f,6) < M{ws(f,V3) +min(1,6)[ fllos }
is valid, for all § > 0. The constant M is independent of f and §.

Lemma 2.4 ([7]). Let g € C?[0,00) and (P,),>0 be a sequence of positive linear operators with the
property P,(1;z) = 1. Then

Po(giz) = g(@)| < llg'll/ Pn Hg”HP — )% 7).

Lemma 2.5 ([§]). Let f € C[a,b] and h € (0,%52). Let f; be the second-order Steklov function

attached to the function f. Then the following inequalities are satisfied:

(i) [lfn = fII < 3walf, h),
(i) I/l < spzwa(fsh).

Theorem 2.6. If f € Cg[0,00), then for any = € [0, a] we have

. , by A'(1) 4+ A" b,

Proof. We will use the relation (2.5) and the well-known properties of the modulus of continuity. We
have

e sTH(1) n
IT:(fi2) — f(z)] < sz_opk(w)\ f(%bn)— (a)|

{3 S () [ el Jots

IN



Recalling the Cauchy-Schwartz inequality we obtain the formula below:

{3 i =) o

_ {1+% T (e — )% 2) Jw(f.6). (2.6)

IN

T (f5 %) = f(2)]

By means of (2.5), for 0 < x < a, one gets

b b2 A'(1) + A"(1)
T ((t—2z)%2) < =1+ H"(1 - 2.
a((t =)o) < 2+ HI M)+ J5 == (2.7)
Using (2.7) and taking 6 = \/%" in (2.9), we obtain the desired result.
Theorem 2.7. For f € C[0, a], the following inequality:
* 2 2 3 2
T3(F:) — @) < 2102+ 2t 24 B2)en(f, 1)
is satisfied where
h:= hn(.I) =4 T;((el — 117)2,17)
and the second order modulus of continuity is given by wa(f,d) with the norm ||f|| = max_|f(x)|.

z€[a,b]

Proof. Let f; be the second-order Steklov function attached to the function f. By virtue of the
identity (2.1), we have

T, (f;2) — f(=)] T3 (f = fo; )| + 1T, (fr; @) — fu()| + [fu(z) — f(2)]
2 fn = FI +1T5 (fri @) — ful2)]. (2.8)

Taking into account the fact that f, € C?[0,a], it follows from Lemma 2.4 that

<
<

T (fns @) = fu(@)] < ISRl T ((er — 2)%2) + %I\fﬁ’l\TZ((ﬁ — )% ). (2.9)

Combining the Landau inequality and Lemma 2.5, we can write

2 a
IR < 217l + 505

2 3a 1
< a”f” + ZﬁwQ(‘f’ h).
From the last inequality, (2.9) becomes, on taking h = /T ((e1 — )?; z),
. 2 5  3a 3 5
T3 ) = Su)| < 2071% 4+ 2, ) + S, ). (2.10)

Substituting (2.10) in (2.9), Lemma 2.5 hence gives the proof of the theorem.

Theorem 2.8. Let f € C%[0,00). Then
T3 (f52) = f(@)] < (@) flley,

where

1

1(@) = (@) = 5 Ti (6 = 2)% ).

7



Proof. Using the Taylor expansion of f, the linearity property of the operators T and (2.1), it
follows that

Ti(f) — f@) = F@Tier - ma) + 5/ O)T (0 - 0)%2), ne (). (210)

Taking into account the fact that
Ty ((er —x);2) >0

for © <'t, by combining Lemmas 2.1 and (2.5) in (2.11) we are led to

Th(fsz) = fl2) < 5 AT (¢ —2)%2) I llos

1
2
% {Tr((t—2)%2) HIfll ez,

<

which completes the proof.

Theorem 2.9. Let f € Cg[0,00). Then
Ty (f5) = f(2)] < 2M {ws(f,V5) +min(1,6)||fllcs }

where § := 8, (z) = $7n(z) and M > 0 is a constant independent of the function f and J. Note that
n(2) is defined as in Theorem 2.8.

Proof. Let g € C3[0,00). Theorem 2.8 allows us to write
T3 (fr0) = f(@)] < [T(f = g o) + [T (g5 2) — g(@)] + [9(x) — f(2)]
1 *
201f = gllew + 5 {Ta (¢ = 2)%2) }Hlgllez,
2{IIf = gllcs +dllgllos }- (2.12)

IN

The left-hand side of inequality (2.12) does not depend on the function g € C%[0, ), so

T (f52) — f(a)| < 2K(f,9). (2.13)

By using the relation between Peetre’s K-functional and second modulus of smoothness, (2.13) be-
comes

Ty (f52) = ()] < 2M {wa(f,V5) + min(1,6)| fllcp }-

3. Approximation properties in weighted spaces

Now we give approximation properties of the operators T, of the weighted spaces of continuous
functions with exponential growth on RJ = [0,00) with the help of the weighted Korovkin type
theorem proved by Gadjiev in [3 [4]. For this purpose, we consider the following weighted spaces of
functions which are defined on the RJ = [0, 00).

Let p(z) be the weighted function and M/ a positive constant, then we define

By(Ry) = {f€ERy):[f(z) < Msp(x)l},
C,(RT) = {f€ B,(R}): fis continuous},

k(m+ _ +\ . im f(i[:) — 00
C,(Ry) = {f € C,(Ry) : nl_)oO —p(x) Ky < }

8



It is obvious that C¥(R{) € C,(Ry) C B,(RY). The space B,(R) is a normed linear space with the
following norm:
|f ()]

Hf”p = Ssup Tﬂﬁ)

xeRg

The following results on the sequence of positive linear operators in these spaces are given [3| [4].
Lemma 3.1 ([3, [/]). The sequence of positive linear operators (L,),>1 which act from C,(R7) to
B,(R{) if and only if there exists a positive constant k such that

Ly(p;z) < kp(x), ie.

| o), < k.

Theorem 3.2 ([3, [4/). Let (L,)n,>1 be the sequence of positive linear operators which act from
C,(RT) to B,(RY) satisfying the conditions

lim ||L,(t5;z) — 2|, =0, i€ {0,1,2},
n—oo

then for any function f € C%(R{)
Jim Laf — fll, =0

Lemma 3.3. Let p(x) = 1+ 2?2 be a weight function. If f € C,(Ry), then
T3 (p:)lp < 14 M.

Proof. Using (2.1) and (2.3), one has

bu A(D) +24'(1) + A)H"(1) B3 A'(1) + A"(1)

Tr(p;x) = 1+I2+g A z+ 3 A
. B 1 o by A(1) +24'(1) + A(D)H"(1) b2 A'(1) + A”(1)
Tl = swda (et A s )
b A(1) +2A'(1) + A(L)H"(1) b2 A'(1) + A”(1)
s by A1) T AN

Since lim,,— oo % = 0, there exists a positive M such that
15 (ps )l <1+ M
so the proof is completed.

By using Lemma 3.3, we can easily see that the operators T;* defined by (1.7) act from C,(R{)
to B,(R{).

Theorem 3.4. Let T)* be the sequence of positive linear operators defined by (1.7) and p(z) = 1+ 22,
then for each f € C;f R

T |75 (f5) = F(2)], = 0.

Proof. It is enough to prove that the conditions of the weighted Korovkin type theorem given by
Theorem 3.2 are satisfied. From (2.1), it is immediately seen that

lim |75 (e0; 2) — eo(a) |, = 0. (3.1)

n—oo



Using (2.2) we have

. b, A'(1)
HTn(el;‘r) - 61($)||p = ; (1) (32)
this implies that
Jim [T (ex; 2) = ea ()], = 0. (3-3)
By means of (2.3) we get
. by A(1) +2A'(1) + A(L)H"(1) = b2 A1)+ A"(1) 1
Tr(eg;x) — = — —=
1T (e2;2) — e2(x)|, xseugo " A(1) 1+22  n? A(1) 1+ 22
< bn A1) +2A'(1) + A(L)H"(1) @ A1)+ A"(1) (3.4)
~ n A1) n? A1) ' '
Using the conditions (1.8), it follows that
lim |7 (e2; ) — ea(x)||, = 0. (3.5)

n—00

From (3.1), (3.2) and (3.5), for ¢ € {0, 1,2} we have
Jim [T (ei;2) — ei()]|, = 0,

If we apply Theorem 3.2, we obtain the desired result.

Now, for any weighted function p(z), we want to find the approximation and rate of approxi-
mation of the functions f € C/j (R{) by using the operators T on R{ = [0,00). For this we define
new positive linear operators which are a generalization of the T)f operators. It is well-known that
the usual first modulus of continuity does not tend to zero as § — 0 on Rar , so we use the following
new type of weighted modulus of continuity introduced by Gadjiev and Aral in [12]:

- - . 1/ (t) = f(=)]
D (£,0) = Qf, O)gy = prck ot —p(myj<s 1000) — p@)[ + 1p(z)

(3.6)

where p is satisfying the following assumptions:
(i) pis a continuously differentiable function on R and p(0) = 1,
(ii) infy>op'(z) > 1.

The weighted modulus of continuity Q,(f,d) given by (3.6) has some properties given in the
following lemma (see [12]).

Lemma 3.5 [12] . For any f € C}(Ry) then
lim Q,(f,0) =0
61_1)% p(f7 ) s
and for each z,t € Rar the inequality

2
10~ )] < 20(a)1 + 7)1+ M)Qp(ﬁ 9)

holds, where § is any fixed positive number.

The estimates of the approximation of functions by positive linear operators by means of the
new type of modulus of continuity are given in the following theorem [12]:

10



Theorem 3.6 [12] . Let p(x) < ¢ (z), k = 1,2,3 and the sequences of the positive linear operators
(Lpn)n>1 satisfying the conditions

”Ln(lax) - 1H1111 = Qn, (37)
||Ln(p; x) - pHdlz = ﬂnv (38)
L (p?;2) = 1y = Vs (3.9)

where a,,, B, and 7, tend to zero as n — oo and ¥(z) = max {1 (), ¥2(z),¥3(z)}. Then for all
fe C/j (R{) the inequality

ILn(f52) = F(@)llppe < 169, (f, v an + 260 + ) + anllfll,

holds for n large enough.

Now we define following a sequence of positive linear operators P} with the help of T defined
by (1.7)

v PP)e T S (2h,) n
Pr(fix) = e 2 p2(%bn)pk< > (3.10)

Theorem 3.7. Let P* be the sequence of the positive linear operators defined by (3.10) and ¢ (z) =
1+22 If f € CH(RY), then
127 (f52) = F@)llprw < 169 (f, v/ +28n) + anllfl,

Proof. By simple calculations we get

Pt 1= 2[5 (1) - o] (3.11)

a2 " ) @

e TeHL) 2 1 n 1
i)~ ote) =90 | g 3 e (50 g (3.12)
Pi(p*;x) — p*(x) = 0. (3.13)

From (3.3) and (3.5) we have

—2xH(1) o°
e n 1 n 1
lim Pk <—I> - ’ =0,
n—00 A1) ]§) p%(£b,,) by, p*() ||,
li eTmntH 20 ( n > 1 ‘ 0
1m Pl —x | — ——= =
nTreo A1) =0 p(%bn) bn p(x) W

using (3.4) and (3.11) we obtain

|1 Py (1) = 1| oy =

e B eH) &2 1 n 1

A(D) ;pz<gbn)p’“<ﬁ> ) ’w
by A1) + 24(1) + AL H"(1) b2 A'(1) + A”(1)
’ AD) 2T A

= .

IN

11



By means of (3.2) and (3.12), one gets

—2xH(1) ©o°
e bn 1 n 1
Pr(piz) = pllppy = pk<—x)——’
H ( ) Hp P A(l) kgo (%bn) b p(:zr) “
I

< b, A'(1)

- n A1)
finally from (3.13), we obtain

1P (% 2) = PPllp2y = O

Thus the (3.7)-(3.9) assumptions of Theorem 3.6 are satisfied for the operators (3.10). From
Theorem 3.6, we have

1Py (f;2) = f(@)ll oy < 16Q(f, Van + 280 +7n) + anll fll,
for each f € C/j (R{). This completes the proof.

4. Numerical Examples

Example 4.1. The sequence {(1 + z)¥}°, which is the Sheffer sequence for A(t) = e! and H(t) =t
has the generating function of the following type
oo k
1+z)t _ (I+2)"
o Z k! £

el
k=0

Let us select pi(z) = uz—f)k Making use of above knowledge pi(z) > 0 for x € [0, 00), A(1) # 0 and
H'(1) = 1 are provided. Considering these polynomials in (1.7), we obtain operators as follows

. PP CLr o DL
Ti(fse) = e oty e (ﬁbn).
k=0 ’

—3x t

The error bound for the function f(z) = —4xe under the condition condition A(t) = e* and

H(t) =t is computed in the following Table 1:

Example 4.2. The sequence {z¥~112° | which is the Sheffer sequence for A(t) =t and H(t) =t has
the generating function of the following type

te*t = i ﬂtk.
Pt (k—1)!

Let us select pi(z) = % Making use of above knowledge pi(x) > 0 for z € [0,00), A(1) # 0 and
H'(1) = 1 are provided. Considering these polynomials in (1.7), we obtain operators as follows

* — — (%x)k_l k
i) =S B r(5).

12



n Error estimate by T operators including {(1+x)*}2°, sequence

10 0.9481710727

103 0.8474426939

10° 0.3806348279

107 0.1348930985

10° 0.0442354247

10t 0.0141505650

1013 0.0044911482

101° 0.0014218648

1017 4.4979717260e-004

1019 1.4225476356e-004

Table 1: The error bound of function f(x) = —4xe™3® by using modulus of continuity

n Error estimate by T operators including {#*~1}2°, sequence
10 0.8938844531

103 0.8409966996

10° 0.3803350939

107 0.1348824385

10° 0.0442350750

10t 0.0141505538

1013 0.0044911478

1019 0.0014218647

1017 4.4979717224e-004

1019 1.4225476355e-004

Table 2: The error bound of function f(x) = —4xe3® by using modulus of continuity

The error bound for the function f(x) = —4xe~3* under the condition condition A(t) =t and H(t) =t
is computed in the following Table 2:

Conclusion

We introduced the Chlodowsky variant of generalized Szasz operators by means of Sheffer polynomials
and established different approximation results. We have also given an algorithm to plot the graphs
of the positive linear operators and with the help of these graphical examples, we claimed that our
operators are better than the old operators to approximate a given function. Some numerical examples
are also provided and we found the error bound of a given function by using modulus of smoothness.

References

[1] O. Szdsz, Generalization of S. Bernstein’s polynomials to the infinite interval, J. Research Nat.
Bur. Standards 45 (1950) 239-245.

. odowsky, Sur le développement des fonctions définies dans un intervalle infini en séries de
2] I. Chlodowsky, Sur le dével des fi i définies d i lle infini éries d
polynomes de M.S. Bernstein, Compos. Math. 4 (1937) 380-393.

13



3]

A.D. Gadjiev, The convergence problem for a sequence of positive linear operators on bounded
sets and theorems analogous to that of P.P. Korovkin, Dokl. Akad. Nauk SSSR 218 (5) (1974);
Transl. in Soviet Math. Dokl. 15 (5) (1974) 1433-1436.

A.D. Gadjiev, On P. P. Korovkin type theorems, Mat. Zametki 20 (1976) 781-786; Transl. in
Math. Notes (5-6) (1978) 995-998.

F. Altomare, M. Campiti, Korovkin Type Approximation Theory and its Applications, in: De
Gruyter Studies in Mathematics, vol. 17, Walter de Gruyter, Berlin, New York, 1994.

Z. Ditzian, V. Totik, Moduli of Smoothness, Springer-Verlag, New York, 1987.

I. Gavrea, I. Rasa, Remarks on some quantitative Korovkin-type results, Rev. Anal. Numér.
Théor. Approx. 22 (2) (1993) 173-176.

V.V. Zhuk, Functions of the Lipl class and S. N. Bernstein’s polynomials, Vestnik Leningrad.
Univ. Mat. Mekh. Astronom. 1 (1989) 25-30. (Russian).

Ibrahim Biiyiikyazici, Hande Tanberkan, Sevilay Kirc1 Serenbay, Approximation by Chlodowsky
type Jakimovski-Leviatan operators, Cigdem Atakut, Journal of Computational and Applied
Mathematics, 259 (2014) 153-163.

M.E.H. Ismail, On a generalization of Szdsz operators, Mathematica (Cluj) 39 (1974) 259-267.

Sezgin Sucu and Ibrahim Biiyiikyazic1, Integral operators containing Sheffer polynomials, Bull.
Math. Anal. Appl., Vol. 4 Issue 4 (2012), 56-66.

A.D. Gadjiev, A. Aral, The estimates of approximation by using a new type of weighted modulus
of continuity, Comput. Math. Appl. 54 (2007) 127-135.

14



