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DEGENERATION OF TORSORS

OVER FAMILIES OF DEL PEZZO SURFACES

ULRICH DERENTHAL AND NORBERT HOFFMANN

Abstract. Let S be a split family of del Pezzo surfaces over a discrete
valuation ring R such that the general fiber is smooth and the special
fiber has ADE-singularities. Let G be the reductive group given by the
root system of these singularities. We construct a G-torsor over S whose
restriction to the generic fiber is the extension of structure group of the
universal torsor. This extends a construction of Friedman and Morgan
for individual singular del Pezzo surfaces.
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1. Introduction

Let S be a split cubic surface over a field k. Assume that S is singular
and that its singularities are rational double points. Then its minimal desin-

gularization S̃ has a Picard group Pic(S̃) of rank 7, and we have a universal

torsor T over S̃ (see [CTS87]), which is a torsor under the Néron–Severi

torus T associated to Pic(S̃). As S̃ is split, T is unique up to isomorphism.
If k is the field C of complex numbers, Friedman and Morgan [FM02]

observed that the universal torsor T over S̃ does not descend to S. It is
well-known that there is a natural root system Ψ of type E6 in the lattice

Pic(S̃). It contains a subsystem Φ corresponding to the singularities of S.
Let G ⊂ H be the split reductive groups associated to these root systems.
Let B ⊂ C be Borel subgroups of G ⊂ H which contain T . Friedman and

Morgan show that it is possible to lift T to a C-torsor over S̃ such that the
induced H-torsor descends to S [FM02, Theorem 3.1].

Now let R be a discrete valuation ring. We consider a family S of split
cubic surfaces over R, whose generic fiber is smooth over the quotient field
of R, and whose special fiber is singular over the residue field of R. Our
main result is:

Theorem. The universal torsor T over S̃ can be lifted to a B-torsor B over

S̃ such that the induced G-torsor G descends to S.
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2 ULRICH DERENTHAL AND NORBERT HOFFMANN

In the special fiber, we recover the construction of Friedman and Morgan
via extension of the structure group. Hence our work reduces the structure
group in the work of Friedman and Morgan, generalizes it to the split case
over arbitrary fields, and shows that it can be put into families containing
also smooth cubic surfaces. For more details and the proof, see Theorem 3.5
below.

Actually, all this works not only for cubic surfaces, but also for arbitrary
del Pezzo surfaces of degree at most 6.

For a related construction of vector bundles over families of rational sur-
faces over C, using a Fourier-Mukai transform, see [DW15].

2. Degenerating del Pezzo surfaces

Let R be a discrete valuation ring with quotient field K, maximal ideal
m ⊂ R and residue field k = R/m. Choose d ∈ {1, . . . , 6}, and let

x1, . . . , x9−d ∈ P
2(K)

be points in general position. By the latter, we mean distinct points such
that no line in P2 contains more than two of them, no quadric curve in P2

contains more than five of them, and no singular cubic curve in P
2 contains

eight with one lying in its singularity. We consider the chain of blow-ups

S̃ = S̃9−d

p9−d
−−−→ S̃8−d −→ . . . −→ S̃2

p2
−→ S̃1

p1
−→ S̃0 = P

2
R

where pi : S̃i → S̃i−1 is the blow-up in the closure x̄i ∈ S̃i−1(R) of the

preimage of xi in S̃i−1(K). The generic fiber S̃K is the blow-up of P2
K in

x1, . . . , x9−d, and therefore a del Pezzo surface of degree d over K.

We assume that the images of x̄i in S̃i−1(k) are in almost general position,

by which we mean that the image of x̄i does not lie on a (−2)-curve in S̃i−1,k.

Then the special fiber S̃k is a generalized (or: weak) del Pezzo surface over
k [Dem80], or in other words a smooth rational surface whose anticanonical
class is nef and big.

Lemma 2.1. The canonical bundle ω
S̃k

of the special fiber S̃k is isomorphic

to the restriction of the canonical bundle ω
S̃
of the total space S̃.

Proof. The two differ by the normal bundle of S̃k in S̃, which is the pullback
of the normal bundle of Spec(k) in Spec(R), and therefore trivial. �

Lemma 2.2. The R-module H0(S̃, ω−m

S̃
) is free, and the natural map

H0(S̃, ω−m

S̃
)⊗R k → H0(S̃k, ω

−m

S̃k

)

is an isomorphism, for each integer m > 0.

Proof. We carry some arguments from [Kol96, §III.3] over to the generalized

del Pezzo surface S̃k. We have

H1(S̃k,OS̃k
) = 0

since this is a birational invariant [Har77, Proposition V.3.4]. Let D be a

general member of the anticanonical linear system on S̃k. Then D does not
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contain any (−2)-curve on S̃k, since ω−1

S̃k

is globally generated. Therefore,

H0(D,ωm

S̃k
⊗OD) = 0

for m > 1. Being a local complete intersection, D has dualizing sheaf

ωD = det(I
D⊂S̃k

/I2
D⊂S̃k

)∨ ⊗ ω
S̃k

∼= OS̃k
(−D)∨|D ⊗OS̃k

(D) = OD

according to [Liu02, Definition 6.4.7]. Therefore, Serre duality on D implies

H1(D,ω−m

S̃k

⊗OD) = 0

for m > 1. By means of the exact sequence

H1(S̃k, ω
−(m−1)

S̃k

)→ H1(S̃k, ω
−m

S̃k

)→ H1(D,ω−m

S̃k

⊗OD) = 0,

and induction over m, we conclude that

H1(S̃k, ω
−m

S̃k

) = 0

for m > 0. Using Cohomology and Base Change [Har77, Theorem III.12.11]
together with Lemma 2.1, the claim follows. �

Choosing a sufficiently large integer m and a basis of H0(S̃, ω−m

S̃
), we get

an anticanonical map

φ : S̃ ։ S ⊂ P
N
R .

Up to isomorphism over R, the scheme S does not depend in the choices
made. As S is integral and R is a discrete valuation ring, S is flat over R
by [Har77, Proposition III.9.7]. Lemma 2.2 implies that the special fiber Sk

of S is the anticanonical image of the generalized del Pezzo surface S̃k.
In particular, Sk is a del Pezzo surface with at most rational double points,

and φ contracts precisely the (−2)-curves on S̃k.

Proposition 2.3. φ∗OS̃
= OS.

Proof. Since φ∗ commutes with flat base change, and the completion of R
is flat over R, we may assume without loss of generality that R is complete.

We show by induction that φ∗OnS̃k
= OnSk

and R1φ∗OnS̃k
= 0. For

n = 1, this holds by [Dem80, Théorème V.2]. The induction step follows
from the short exact sequence

0→ O(n−1)S̃k

·π
−→ O

nS̃k
→ O

S̃k
→ 0,

where π ∈ R is a generator of m, and its analog for Sk.

It follows that the formal completions (S̃)̂of S̃ along S̃k and Ŝ of S along
Sk satisfy φ∗O(S̃)̂

= O
Ŝ
. By [Gro61, Corollaire 5.1.6], the claim follows. �

For the rest of this section, we fix one singular point x on Sk. Let

D1, . . . ,Dr be the (−2)-curves on S̃k that map to x. Let

Z = n1D1 + · · ·+ nrDr

with n1, . . . , nr > 1 denote the fundamental cycle on S̃k over x (see [Art66]).
It has the property that (Z,Di) 6 0 for all i = 1, . . . , r, and is minimal with

this property. Here (·, ·) denotes the intersection number of divisors on S̃k.
Put N := n1 + · · · + nr, and Zred := D1 + · · ·+Dr.
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Lemma 2.4. There is a sequence of effective divisors

0 = Z0 < Z1 < Z2 < · · · < Zr = Zred < · · · < ZN = Z

on S̃k such that

• Zj − Zj−1 is a (−2)-curve Dij for all j = 1, . . . , N , and
• (Zj ,Di) 6 1 for all i = 1, . . . , r and j = 1, . . . , N .

Proof. The classes of D1, . . . ,Dr are the simple roots of an irreducible root
system of type An (n > 1) or Dn (n > 4) or En (n = 6, 7, 8).

For Ar, we have Z = Zred = D1+ · · ·+Dr, with N = r. We may assume
that the configuration of D1, . . . ,Dr is given by the Dynkin diagram

D1 D2 . . . Dr

Then we can clearly choose Zj := D1 + · · ·+Dj for j = 1, . . . , r.
For Dr, we may assume that the Dynkin diagram is

D1 D2 D3 . . . Dr−1

Dr

Then Z = D1 + 2(D2 + · · · + Dr−2) + Dr−1 + Dr, with N = 2r − 3. We
can again start with Zj := D1 + · · ·+Dj for j = 1, . . . , r, and then we may

continue with Zj := Zred +D2 + · · · +Dj−r+1 for j = r + 1, . . . , 2r − 3.
For Er, we may assume that the Dynkin diagram is

D1 D2 D3 D4 . . . Dr−1

Dr

Here the divisor Z and the number N are given by the following table.

type fundamental cycle Z N

E6 D1 + 2D2 + 3D3 + 2D4 +D5 + 2D6 11

E7 2D1 + 3D2 + 4D3 + 3D4 + 2D5 +D6 + 2D7 17

E8 2D1 + 4D2 + 6D3 + 5D4 + 4D5 + 3D6 + 2D7 + 3D8 29

We take Zj := D1 + · · · + Dj for j = 1, . . . , r. For j = r + 1, . . . , N , we
choose ij as any index with (Zj−1,Dij ) = 1, and define Zj := Zj−1+Dij . It
is easy to check that this gives a sequence with the desired properties. �

Lemma 2.5. Let Zj ⊂ S̃k be the closed subschemes given by Lemma 2.4.

(i) H1(Dij ,IZj−1⊂Zj
) = 0 for j = 1, . . . , N .

(ii) H1(Z,In
Z⊂S̃k

/In+1

Z⊂S̃k

) = 0 for n > 0.

Proof. The ideal sheaf of the effective divisor Z on the smooth projective

surface S̃k is the line bundle O(−Z) := O
S̃k
(−Z). Therefore, we have

(1)
In
Z⊂S̃k

In+1

Z⊂S̃k

∼=
O(−nZ)

O(−(n+ 1)Z)
∼=
O

S̃k

I
Z⊂S̃k

⊗O(−nZ) ∼= OZ ⊗O(−nZ).
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Since Zj − Zj−1 = Dij according to Lemma 2.4, we similarly have

(2) IZj−1⊂Zj
∼=
O(−Zj−1)

O(−Zj)
∼=
O

S̃k

I
Dij

⊂S̃k

⊗O(−Zj−1) ∼= ODij
⊗O(−Zj−1),

which is a line bundle of degree (−Zj−1,Dij ) > −1 on Dij
∼= P

1. But the
first cohomology of any such line bundle vanishes. This proves part (i).

Twisting the isomorphism (2) by the line bundle O(−nZ) on S̃k, we get

IZj−1⊂Zj
⊗O(−nZ) ∼= ODij

⊗O(−Zj−1 − nZ),

which is now a line bundle of degree (−Zj−1−nZ,Dij ) onDij
∼= P

1. But this
degree is still > −1, because the fundamental cycle Z satisfies (Z,Dij ) 6 0
by definition, and n > 0 by assumption. Hence we have more generally

H1(Dij ,IZj−1⊂Zj
⊗O(−nZ)) = 0.

Using induction over j, and the short exact sequences

0→ IZj−1⊂Zj
→ OZj

→ OZj−1
→ 0

twisted by the line bundle O(−nZ) on S̃k, we conclude that

H1(Z,OZ ⊗O(−nZ)) = 0.

Because of the isomorphism (1), this proves part (ii) of the lemma. �

Proposition 2.6. H1(Z,In
Z⊂S̃

/In+1

Z⊂S̃
) = 0 for n > 0.

Proof. Let π ∈ R be a generator of m. We first claim that the inclusion

(3) πIn
Z⊂S̃

⊂ In+1

Z⊂S̃
∩ πO

S̃

is an equality. It suffices to check this over the local ring O
S̃,z

of each point

z ∈ Z. We choose a local function f ∈ O
S̃,z

whose residue class

f ∈ O
S̃,z

/πO
S̃,z

= O
S̃k,z

is a local equation for the divisor Z ⊂ S̃k. Then π and f generate I
Z⊂S̃

in

z. Hence πIn
Z⊂S̃

and fn+1 generate In+1

Z⊂S̃
in z. Suppose that

fn+1g ∈ πO
S̃,z

for some g ∈ O
S̃,z

. Then its residue class g ∈ O
S̃k ,z

satisfies

f
n+1

g = 0 ∈ O
S̃k ,z

.

Since S̃k is integral and f 6= 0, this implies g = 0, and hence g ∈ πO
S̃,z

. In

particular, fn+1g lies in πIn
Z⊂S̃

. Therefore, (3) is indeed an equality.

Because of the natural short exact sequence

0→ O
S̃

·π
−→ I

Z⊂S̃
→ I

Z⊂S̃k
→ 0,

the induced map In
Z⊂S̃

/In+1

Z⊂S̃
→ In

Z⊂S̃k

/In+1

Z⊂S̃k

is surjective with kernel

(In
Z⊂S̃
∩ πO

S̃
)/(In+1

Z⊂S̃
∩ πO

S̃
).
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As (3) is an equality, this kernel is πIn−1

Z⊂S̃
/πIn

Z⊂S̃
. Thus the sequence

0→ In−1

Z⊂S̃
/In

Z⊂S̃

·π
−→ In

Z⊂S̃
/In+1

Z⊂S̃
→ In

Z⊂S̃k
/In+1

Z⊂S̃k

→ 0

is exact. The proposition follows from this by induction over n, using part
(ii) of Lemma 2.5 for the case n = 0 and for the induction step. �

3. Reductive groups and universal torsors

We continue in the setting of Section 2 and construct certain algebraic

groups naturally associated to the Picard group of S̃k.

Since S̃, S̃K and S̃k are obtained by the same sequence of blow-ups of a
P
2, the canonical restriction maps

Pic(S̃K)← Pic(S̃)→ Pic(S̃k)

are isomorphisms; we denote this abelian group by Λ. Given λ ∈ Λ, we

denote by Lλ the corresponding line bundle on S̃, and by Lλ,K and Lλ,k its

restrictions to S̃K and S̃k, respectively. The canonical bundles of S̃, S̃K and

S̃k define the same class in Λ due to Lemma 2.1; we denote it by K
S̃
∈ Λ.

The intersection forms on S̃K and on S̃k define the same bilinear form (·, ·)
on Λ. Let Λ∨ be the dual of Λ, and denote the canonical pairing between
Λ∨ and Λ by 〈·, ·〉. Let

Ψ := {α ∈ Λ | (α,α) = −2, (α,−K
S̃
) = 0}

be the set of roots. For α ∈ Ψ, define α∨ ∈ Λ∨ by 〈α∨, x〉 := (−α, x). Put

Ψ∨ := {α∨ ∈ Λ∨ | α ∈ Ψ}.

Then a simple computation shows that (Λ,Ψ,Λ∨,Ψ∨) is a reduced root
datum in the sense of [DG70, Exposé XXI, Définition 1.1.1, 2.1.3]. Let
H be the associated split reductive group over R [DG70, Exposé XXV,

Corollaire 1.2]. Note that H corresponds to Ẽ9−d in [FM02, Section 2].

Let Φ ⊂ Ψ be the set of roots that are effective or anti-effective on S̃k,
and let Φ∨ be the associated subset of Λ∨. Let G be the split reductive
group over R associated to the root datum (Λ,Φ,Λ∨,Φ∨).

Then H contains G. The maximal torus T of G is also a maximal torus
of H, and its character group is Λ. Therefore, T , TK and Tk are the Néron-

Severi tori of S̃, S̃K and S̃k, respectively. Let B be the Borel subgroup of G
containing T such that the associated set ∆ of simple roots in Φ is the set

of classes of the (−2)-curves on S̃k. The corresponding set Φ+ of positive

roots consists precisely of the effective (−2)-classes on S̃k.

Lemma 3.1. For α ∈ Φ+, the R-module H1(S̃, Lα) is non-zero, cyclic and
torsion (hence isomorphic to R/mnα for some nα > 1), the canonical map

(4) H1(S̃, Lα)⊗R k → H1(S̃k, Lα,k)

is an isomorphism, and H0(S̃, Lα) = H2(S̃, Lα) = 0.

Proof. Since α is effective on S̃k, we know that

dimH i(S̃k, Lα,k) =

{
1 for i = 0, 1

0 for i = 2
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Indeed, pa(S̃k) = pa(P
2
k) = 0 since the arithmetic genus is a birational

invariant, and hence the Riemann–Roch formula gives

χ(Lα,k) = 0.

The class K
S̃
− α has intersection number −d < 0 with the nef class −K

S̃
,

and is therefore not effective. Consequently, Serre duality gives

H2(S̃k, Lα,k) = 0.

Since the anticanonical morphism S̃k → Sk is birational, there are only

finitely many curves on S̃k whose intersection number with −K
S̃
is 0. But

every curve of class α has this property, which implies

dimH0(S̃k, Lα,k) 6 1.

As α is effective on S̃k, we get H0(S̃k, Lα,k) ∼= k, and hence also

(5) H1(S̃k, Lα,k) ∼= k.

Over K instead of k, the same arguments apply, but α is not effective

over S̃K , and therefore H i(S̃K , Lα,K) = 0 for i = 0, 1, 2.

This implies that H1(S̃, Lα) is torsion, and H2(S̃, Lα) = 0 by Grauert’s
Theorem [Har77, Corollary III.12.9]. Each section of the line bundle Lα

vanishes on the generic fiber S̃K , and hence on S̃. Therefore, H0(S̃, Lα) = 0.
Applying cohomology and base change, we consider the natural maps

ϕi : H i(S̃, Lα)⊗R k → H i(S̃k, Lα,k).

For i = 2, both sides vanish. Using [Har77, Theorem III.12.11] twice, we
conclude first that ϕ1 is surjective, and then that ϕ1 is an isomorphism. Due

to (5), this implies that H1(S̃, Lα) is non-zero and cyclic. �

Let T be the universal T -torsor over over S̃. The next step is to lift T to

a B-torsor B over S̃. We construct B as follows.
For α ∈ Φ+, let Uα

∼= Ga,R be the associated root group in B. Let U>2 be
the subgroup of B generated by all Uα with α 6∈ ∆, and put B61 := B/U>2.
We have the exact sequence

(6) 0→ U=1 :=
⊕

α∈∆

Uα → B61 → T → 0.

Here T acts on U=1 by conjugation. Associated to the T -torsor T over S̃,

we thus obtain a fibration over S̃ with fiber U=1. This group scheme over S̃
is by construction the underlying additive group scheme of

⊕
α∈∆ Lα.

We will first lift T to a B61-torsor B61 over S̃. This is possible because
(6) admits a splitting T → B61. Such lifts are parameterized by

H1(S̃,
⊕

α∈∆

Lα)

due to the previous paragraph (see [Hof10, Proposition 3.1.ii], for example).
We choose a lift B61 such that, for each α ∈ ∆, the component

(7) cα ∈ H1(S̃, Lα)

of the class of B61 generates this R-module. This is possible by Lemma 3.1.
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Lemma 3.2. This B61-torsor B61 can be lifted to a B-torsor B over S̃.

Proof. Let Φ+
=n (resp. Φ+

>n) be the set of all α ∈ Φ+ that are sums of
precisely (resp. at least) n not necessarily distinct simple roots. Generalizing
the above notation, we let U>n be the subgroup of B generated by all Uα

with α ∈ Φ+
>n, and put B6n := B/U>n+1. We have the exact sequences

(8) 0→ U=n :=
⊕

α∈Φ+
=n

Uα → B6n → B6n−1 → 0,

in which B6n = B/U>n+1 acts on U=n by conjugation. Here U>1/U>n+1

acts trivially, because [U>1, U>n] ⊂ U>n+1. Therefore, the action descends

to an action of B/U>1 = T on U=n. Associated to the T -torsor T over S̃,

we thus obtain a fibration over S̃, with fiber U=n. This group scheme over

S̃ is by construction the underlying additive group scheme of
⊕

α∈Φ+
=n

Lα.
Using induction, we assume that B61 can be lifted to a B6n−1-torsor

B6n−1 for some n > 2. We try to lift B6n−1 to a B6n-torsor B6n along the
exact sequence (8). The obstruction against such a lift is an element in

H2(S̃,
⊕

α∈Φ+
=n

Lα)

(see [Hof10, Proposition 3.1.i]). This cohomology vanishes by Lemma 3.1.
For sufficiently large n, we have B>n = B, and B := B>n is the required

lift of B>1. �

Lemma 3.2 allows us to lift B61 to a B-torsor. We choose such a lift B.

Extending its structure group to G, we obtain a G-torsor G over S̃.

Proposition 3.3. This G-torsor G is trivial on every (−2)-curve D ⊂ S̃k.

Proof. Let α ∈ ∆ be the class of D. The restriction Lα|D is a line bundle of

degree (α,α) = −2 on D ∼= P
1
k, which implies

(9) H1(D,Lα|D) ∼= H1(P1
k,OP1

k
(−2)) ∼= k.

Tensoring the short exact sequence

0→ O
S̃k
(−D)→ O

S̃k
→ OD → 0

with the line bundle Lα,k
∼= OS̃k

(D), we get a short exact sequence

0→ O
S̃k
→ Lα,k → Lα|D → 0

of coherent sheaves on S̃k. Since H i(S̃k,OS̃k
) vanishes for i = 1, 2 by their

birational invariance [Har77, Proposition V.3.4], the associated long exact
cohomology sequence shows that the restriction homomorphism

(10) H1(S̃k, Lα,k)→ H1(D,Lα|D)

is bijective. For β ∈ Φ+ with β 6= α, the degree of Lβ|D on D ∼= P
1
k is

(α, β) = −〈β∨, α〉 =: n ∈ {−1, 0, 1},

because α 6= β are roots in the simply laced root system Φ. This implies

(11) H1(D,Lβ|D) ∼= H1(P1
k,OP1

k
(n)) = 0.
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Let Gα ⊂ G be the split reductive subgroup with the same maximal torus
T and only the two roots ±α. Then Bα := B ∩Gα sits in an exact sequence

0→ Uα → Bα → T → 0.

Let the Bα-torsor Bα on S̃ be the lift of the T -torsor T corresponding to

the class cα chosen in (7). Let Gα be the Gα-torsor over S̃ induced by Bα.
The B-torsor induced by Bα becomes isomorphic to B when both are

restricted to D, because there the lifting over each Uβ with β ∈ Φ+ \ {α} is
unique by (11). Hence it suffices to prove that Gα is trivial on D.

By [Dem80, II.2(6)], we have α = e1− e2 for two classes ei ∈ Λ satisfying
(ei, ei) = −1 and (e1, e2) = 0. Let Σ be the subgroup of Λ generated by
e1 and e2. Let Σ⊥ be its orthogonal complement in Λ with respect to the
intersection form. Then Λ = Σ⊕ Σ⊥, since

λ+ (λ, e1)e1 + (λ, e2)e2 ∈ Σ⊥

for any λ ∈ Λ. Here α ∈ Σ, and also α∨ ∈ Σ∨ because

〈α∨,Σ⊥〉 = (−α,Σ⊥) = 0.

Choosing a basis e3, . . . , e10−d of Σ⊥, we thus obtain

(Λ, {±α},Λ∨, {±α∨}) ∼= (Σ, {±α},Σ∨, {±α∨})⊕ (Z, ∅,Z∨, ∅)8−d

as root data. This corresponds to a decomposition

Gα
∼= GL2×G

8−d
m

which induces a decomposition of Bα, and the decomposition T ∼= G
10−d
m

given by e1, . . . , e10−d. Under these decompositions, the Bα-torsor Bα corre-

sponds to the 10−d line bundles Lei over S̃ and the vector bundle extension

0→ Le1 → E → Le2 → 0

of class cα ∈ Ext1(Le2 , Le1)
∼= H1(S̃, Lα), and the Gα-torsor Gα corresponds

to the vector bundle E and the line bundles Le3 , . . . , Le10−d
over S̃.

The restriction of Lei to D ∼= P
1
k is a line bundle of degree (α, ei). For

i > 3, we have (α, ei) = 0, and therefore Lei|D is trivial. Since (α, e1) = −1

and (α, e2) = 1, the restriction of E to D ∼= P
1
k is given as an extension

(12) 0→ OP1
k
(−1)→ E|D → OP1

k
(1)→ 0,

whose class in H1(P1
k,OP1

k
(−2)) ∼= k corresponds to the restricted class

cα|D ∈ H1(D,Lα|D)

under the isomorphism in (9). This class is nontrivial since the class

c
α|S̃k
∈ H1(S̃k, Lα,k)

is nontrivial by the choice of cα in (7) together with Lemma 3.1, and the

restriction map from S̃k to D in (10) is bijective. Therefore, the extension
(12) does not split. This implies that the vector bundle E|D over D ∼= P

1
k is

trivial. Hence the Gα-torsor Gα|D over D is also trivial, as required. �
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Corollary 3.4. Let x be a singular point on Sk. The G-torsor G over S̃

constructed above becomes trivial over the following fiber product S̃x:

(13)

S̃x S̃

Spec(ÔS,x) S

φx φ

Proof. We work with the sequence of effective divisors on S̃k

0 = Z0 < Z1 < · · · < Zr = Zred < · · · < ZN = Z

from Lemma 2.4, where Z is still the fundamental cycle on S̃k over x.
First, we show that G is trivial on Zj for j = 1, . . . , r. Indeed, by induc-

tion, we can find a trivialization of G on Zj−1. Then

Zj = Zj−1 ∪Dij

where Dij meets Zj−1 in at most one point. Proposition 3.3 states that G is
trivial onDij . We can trivialize onDij in such a way that both trivializations
agree on Zj−1 ∩Dij . Then they define a trivialization of G on Zj .

Next, we show by induction that G is trivial on Zj for all j = r+1, . . . , N .
Since G is trivial on Dij by Proposition 3.3, its adjoint vector bundle

ad(G)→ S̃

is also trivial on Dij . Therefore, Lemma 2.5 implies that

(14) H1(Dij ,IZj−1⊂Zj
⊗ ad(G)|Dij

) = 0.

Assuming by induction that G is trivial on Zj−1, the vanishing of (14) means
that G is also trivial on Zj [Ill72, Théorème VII.2.4.4].

In particular, G is trivial on Z. Therefore, Proposition 2.6 implies that

(15) H1(Z,In
Z⊂S̃

/In+1

Z⊂S̃
⊗ ad(G)|Z) = 0.

Let mx ⊂ OS denote the ideal sheaf of x. We have

I
Z⊂S̃

= φ∗(mx)

according to [Art66, Theorem 4], and therefore

In
Z⊂S̃

= φ∗(mn
x).

Let Z(n) denote the closed subscheme in S̃ with this ideal sheaf. Assuming
by induction that we have a section of G over Z(n), the vanishing of (15)

means that this section can be extended to a section of G over Z(n+1).
These compatible sections induce a section of G over S̃x by Grothendieck’s

Existence Theorem [Gro61, Scholie 5.4.2], since S̃ is proper over S. �

Theorem 3.5. Let the B-torsor B over S̃ be a lift of the universal torsor
T as given by Lemma 3.2. Then the induced G-torsor G descends to S.

Proof. Since G is an affine scheme over S̃, we have

G ∼= SpecO
S̃
(A)
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for some quasicoherent O
S̃
-algebra A. We define

G′ := SpecOS
(φ∗A).

The adjunction morphism φ∗φ∗A → A induces a natural map

(16) G → G′ ×S S̃.

Assume that G is the spectrum of the R-algebra A. The group action

G×R G → G

induces a morphism A → A⊗R A of O
S̃
-algebras, and hence a morphism

φ∗A→ φ∗(A⊗R A) = A⊗R (φ∗A)

of OS-algebras. Here, the last equality holds because G, and hence also A,
is flat over R. This morphism of OS-algebras induces a morphism

(17) G×R G
′ → G′

over S. We claim that the following statements hold:

• The morphism (17) is a group action of G on G′ over S.
• This group action turns G′ into a G-torsor over S.
• The natural map (16) is an isomorphism of G-torsors.

According to [Gro65, Propositions 2.5.1 and 2.7.1], all this can be tested
locally in the fpqc-topology on S. We use the fpqc-covering

(S \ Ssing
k )∐

∐

x∈Ssing

k

Spec(ÔS,x)→ S

where Ssing
k ⊂ Sk ⊂ S denotes the singular locus of Sk.

All our claims hold over S\Ssing
k because φ is an isomorphism there. They

also hold over each Spec(ÔS,x) because G is trivial there, and

(φx)∗OS̃x
= OSpec(ÔS,x)

by Proposition 2.3 and flat base change in the diagram (13). �

Remark 3.6. The restriction of G to the generic fiber SK is induced by
the T -torsor T . But over the special fiber Sk, the restriction of G does not

come from a T -torsor. The universal T -torsor over the desingularization S̃k

is nontrivial on the (−2)-curves, and therefore does not descend to Sk.

Corollary 3.7. The universal torsor T over S̃ can be lifted to a torsor C
under the Borel subgroup C ⊂ H such that the induced H-torsor H over S̃
descends to an H-torsor H′ over S.

Proof. The torsors C, H andH′ can be obtained by extension of the structure
group from the torsors B, G and G′ constructed above. �
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