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We consider graphene in the presence of elastic deformations that cause emergent magnetic field.
This emergent magnetic field results in the appearance of Landau levels in the spectrum of quasi-
particles. In addition to emergent magnetic field the quasiparticles in graphene experience the
emergent gravity. We consider the particular choice of elastic deformation, which gives constant
emergent magnetic field and vanishing torsion. Emergent gravity may be considered as perturba-
tion. We demonstrate that the corresponding first order approximation does not affect the energies
of the Landau levels. However, the degeneracy of each Landau level receives correction, which
depends essentially on the geometry of the sample.

I. INTRODUCTION

The two dimensional Weyl semimetal - graphene - has attracted recently a lot of attention [1] not only because it
has unusual electronic properties. The second important reason is that it may represent the arena for the observation
in laboratory of various effects specific for the high energy physics. The low energy physics of graphene is described by
relativistic effective action for the fermions. The elastic deformations [2–8] in topological media with Fermi points give
rise to emergent gravity [9–11]. For graphene the emergent gravity corresponding to elastic deformations was derived
in [12, 13] (see also [14, 15]). It accompanies the emergent gauge field, which was discussed in a number of papers
[16–23]. In general case for the strained graphene the emergent gravity gives corrections to various quantities, which
are typically calculated using the emergent gauge field only. In particular, in [24] the scattering of the quasiparticles
on the dislocations has been discussed. It has been shown that the Aharonov - Bohm phase originated from the
emergent magnetic flux carried by the dilocation receives the correction originated from the emergent gravitational
field.
In the present paper we extend the discussion of possible effects caused by emergent vielbein to the consideration

of the Landau Levels. Those Landau levels originate from the emergent (or external) magnetic field. The presence
of gravity cannot affect the existence of the lowest Landau level (LLL). Symmetry prompts that such a level with
zero energy exists also when gravity is taken into account. The degeneracy of the LLL in the presence of gravity is
to be described by a certain type of the Atiyah - Patodi - Singer (APS) theorem [25]. Its simplified form for the
case when gravity is absent is discussed, for example, in [26] - the theorem relates the number of the zero modes of
Dirac - Maxwell operator with the total magnetic flux through the surface. When the definition of Dirac operator is
extended to include Riemannian gravity the expression for the number of zero modes for the surface with boundary is
expressed through the surface curvature - dependent term, through the total magnetic flux and through the boundary
term [25], which should depend essentially on the boundary conditions. The boundary term in general case modifies
the expression for the number of zero modes. The case, when gravity is not Riemannian was discussed, for example,
in [27], where the boundary terms were not considered. We deal with the graphene surface with boundary, while the
gravity is not Riemannian. We assume free boundary conditions and impose on the zero modes the condition that
they are localized inside the surface. In the considered particular case the direct counting of such zero modes gives
expression that contains the term proportional to the product of the total magnetic flux through the surface and the
linear size of the sample. Presumably, this term should have its origin at the boundary term of the corresponding
version of the APS theorem. However, we do not consider in the present paper the general formulation of the APS
theorem for surfaces with boundary and with the non - Riemannian gravity, and restrict our consideration to the
particular configuration of the emergent vielbein and emergent magnetic field.
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A priori this is not clear are there the corrections to the higher Landau levels and to their degeneracies. We
perform the explicit check for the particular elastic deformation, which gives rise to constant emergent magnetic field
and vanishing torsion. It appears, that in this particular case in the leading order in the perturbation caused by
gravity there are no corrections to all Landau levels. However, in this approximation the degeneracy of the Landau
levels receives correction that depends on the particular form of the sample.

II. FROM THE TIGHT - BINDING MODEL TO THE LOW ENERGY EFFECTIVE FIELD THEORY

Let us recall briefly the basic facts about the low energy field theory of graphene. We start from the the nearest-
neighbor tight-binding Hamiltonian of graphene:

Ĥt = −t
∑

~A,i,σ

(a†( ~A)σbσ( ~A+~bi) +H.c),

Here a†( ~A) is the creation operator that refers to the sites of the triangular sublattice A. By ~A we denote the position

of an atom of the sublattice A, by b( ~A+~bi) we denote the electron annihilation operator that refers to the sublattice

B, and is located at ~B = ~bi + ~A. By t we denote the hopping parameter. In general case the values of t may be
different for different points of the honeycomb lattice. However, first we consider the unperturbed case, when the
values of t are equal for all lattice sites. The Brillouin zone is a hexagon with the opposite sides identified. There
are two different vertices of the hexagon, that are denoted by K+ and K−. Since the quasiparticle energy vanishes at
these points, they represent the Fermi points. The low energy expansion around any of these two Fermi points K±

gives the effective low energy hamiltonian. At K− it is reduced to the massless Weyl hamiltonian:

H− = vf

∫

d2~rΨ̄(~r)(iσ3)(iσ1∂x + iσ2∂y)Ψ(~r) (1)

where σi are Pauli matrices, while vf = 3td
2 is Fermi velocity, t is the hopping parameter, d is the distance between

the nearest atoms of carbon. Ψ(~r) is the two - component spinor, which may be interpreted as the left - handed spinor
after the constant linear transformation Ψ̄ → Ψ̄(−iσ3). The Hamiltonian at K+ is reduced to

H+ = vf

∫

d2~rΨ̄(~r)σ2(iσ3)(iσ1∂x + iσ2∂y)σ
2Ψ(~r) (2)

We interpret it as the Hamiltonian for the right - handed spinors, that are related to the original ones by the
transformations Ψ̄ → Ψ̄(−iσ2σ3), and Ψ → σ2Ψ̄ The external gauge field is taken into account via the substitution
i∂i → Di = i∂i+Ai. Contrary to the external gauge field the emergent gauge field has opposite signs for the opposite
Fermi points.

III. LANDAU LEVELS IN THE PRESENCE OF CONSTANT EXTERNAL MAGNETIC FIELD

Here we remind the derivation of the Landau levels in graphene and introduce notations to be used further. The
Landau levels appear in the presence of the uniform magnetic field H, which is directed along the z axis (Hi =
ǫijk∂jAk). We use the gauge Ax = − 1

2Hy,Ay = 1
2Hx (here it is assumed, that H > 0) and consider the Hamiltonian

for the fermions near the K− Fermi point

Ĥ−(Ak) = iσ3σk[i∂k +Ak]

In the remaining part of the paper we will use complex coordinates z = x + iy, z̄ = x − iy. The corresponding
derivatives are defined as ∂z = 1

2 (∂x − i∂y), ∂z̄ = 1
2 (∂x + i∂y). We have

Ĥ− = vf

(

0 −2∂z +
1
2Hz̄

2∂z̄ +
1
2Hz 0

)

= vf
√
2H

(

0 a+

a 0

)

, a =

√

2

H
∂z̄ +

√

H

8
z (3)

The zero modes of the Hamiltonian satisfy equation ĤΨ = 0 with Ψ = (ψ, ψ′)T :

(−∂z +
1

4
Hz̄)ψ′ = 0

(∂z̄ +
1

4
Hz)ψ = 0 (4)
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The solution of this system is

ψ′(x, y) = P2(z, z̄)e
1

4
Hz̄z

ψ(x, y) = P1(z, z̄)e
− 1

4
Hz̄z (5)

Here P1,2 is polynomial. The component ψ is localized in the bulk while ψ′ is localized at infinity. Therefore, we
neglect ψ′.
The simplest way to obtain the complete set of the zero modes is to introduce operators b, b+ such that [b, b+] = 1,

while [a, b+] = [a+, b] = [a, b] = [a+, b+] = 0. We define

b =

√

2

H
∂z +

√

H

8
z̄

The sequence of the states ψ
(n)
0 , n = 0, ... that correspond to the LLL starts from the state ψ

(0)
0 , which satisfies

aψ
(0)
0 = 0, bψ

(0)
0 = 0 (6)

We have

ψ
(0)
0 = const e−

1

4
Hz̄z

The remaining LLL states are given by

ψ
(n)
0 = const (b+)nψ

(0)
0

In order to obtain the upper Landau levels and the corresponding states we need to solve equation

Hψ = EΨ

There are two sequences of solutions that start from

Ψ
(0)
0 =

(

ψ
(0)
0

0

)

and are given by

〈z, z̄|n, k, λ〉 ≡ Ψ
(k)
λ,n =

1√
2

(

ψ
(k)
n

λψ
(k)
n−1

)

, ψ(0)
n =

(a+)n√
n!

ψ
(0)
0 , 〈z, z̄|n, k〉 ≡ ψ(k)

n =
(b+)k√
k!
ψ(0)
n (7)

where λ = ±1, and the plus and the minus signs correspond to electrons and holes respectively. Energy is given by
E2

λ,n = 2v2fHn and

Eλ,n = λv2f
√
2nH

Above we considered the Hamiltonian for positive values of H . For the negative values the eigenvalues are λ
√

2n|H |
with the eigenstates given by (ψ

(k)
−1 = 0):

Ψ
(k)
λ,n =

1√
2

(

λψ̃
(k)
n−1

ψ̃
(k)
n

)

, ψ̃(0)
n =

(ã+)n√
n!

ψ
(0)
0 , ψ̃(k)

n =
(b̃+)k√
k!
ψ̃(0)
n (8)

with

ã = −
√

2

|H |∂z −
√

|H |
8
z̄

b̃ =

√

2

|H |∂z̄ +
√

|H |
8
z (9)

The Hamiltonian H+(Ak) = σ2H−(Ak)σ
2 for the fermions living near the K+ Fermi point may be considered in

the similar way. In the presence of the external gauge field the corresponding spectrum is identical to that of the
Hamiltonian at K−.
In the presence of the emergent gauge field, which corresponds to the constant emergent magnetic field H the

Hamiltonian at the K+ Fermi point remains the same while the Hamiltonian at K− differs from Eq. (3) by the
change H → −H .
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IV. INFLUENCE OF ELASTIC DEFORMATIONS ON THE LOW ENERGY EFFECTIVE THEORY OF

GRAPHENE

In the presence of elastic deformations Eqs. (1) and (2) are modified as follows:

H− = vf

∫

d2~rΨ̄(~r)eka(iσ
3)iσaD

(−)
k Ψ(~r)

H+ = vf

∫

d2~rΨ̄(~r)ekaσ
2(iσ3)iσaD

(+)
k σ2Ψ(~r) (10)

Here

D
(±)
k = ∂k ∓ iAk

and Ak is the emergent gauge field.
In the case of weak elastic deformations the hopping parameters differ from each other for different points on the

graphene sheet. The simplest model relates the hopping parameters with the tensor of elastic deformations in such a
way, that the hopping parameter corresponding to the jump between the two sites x and x+bj depends only on the
real distance between these two sites given by r(x,bj) = |u(x+ bj)− u(x)|, where u is the displacement vector. We
define the linearized tensor of elastic deformations as follows

ukm =
1

2
(∂kum + ∂muk) (11)

and introduce the Gruneisen parameter β [17]. The emergent gauge fields are given by

Ay =
β

2d
(uyy − uxx)

Ax = −β
d
uxy

As it was already mentioned, if we consider in the same way the fermions near the second Fermi point, the corre-
sponding emergent gauge field will have the opposite sign.
The emergent zweibein eka was derived in [12] and for both Fermi points is given by

eia =

(

δia(1 +
β

2
uaa)− β

[

u11 u21
u12 u22

]

)

for i, a = 1, 2. Notice, that this expression for the emergent vielbein refers to the so - called accompanying reference
frame, in which the coordinates that parametrize the positions of the Carbon atoms are the same as the coordinates
in the unperturbed graphene.
In the following we will consider the particular configuration of elastic deformations that gives constant value of

emergent magnetic field H . This configuration is derived in Appendix A and is given by

ux =
d

β
(
1

4
Hy2 − 1

4
Hx2), uy =

d

β

1

2
Hyx (12)

Notice, that this theory is applicable for the small deformations only. The deformations are small if

dHR << 1

where R is the linear size of the sample. The important property of the configuration of Eq. (12) is that torsion
T a
ij = ∂ie

a
j − ∂je

a
i vanishes. In order to demonstrate this let us calculate the vielbein eia and its inverse eai :

eia =

(

δia −
Hd

2

[

−x y
y x

]

)

(13)

and

eai ≈
(

δia +
Hd

2

[

−x y
y x

]

)
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The direct calculations using the last expression give T a
ij = 0 in the approximation linear in the tensor of elastic

deformations.
If we would neglect the nontrivial part of the vielbein and set eia = δia, then the dynamics of the quasiparticles

is described by expressions of Sect. III. Then we should take into account nontrivial contribution to the vielbein as
perturbation. In this situation the spectrum of the quasiparticles may be modified. Instead of the given Landau level
Eλ,n with huge degeneracy the several energy levels or several pieces of continuous energy spectrum may appear. A
priori this is not clear what will happen to the Landau levels in the presence of gravity even if torsion vanishes. In the
following sections we will demonstrate, that at least in the leading order in tensor of elastic deformations the energies
of the Landau levels remain unchanged while their degeneracies receive corrections.

V. INFLUENCE OF THE EMERGENT GRAVITY ON THE LOWEST LANDAU LEVEL

In the following we will discuss the consequences for the Landau level spectrum that follow from the emergent
gravity given by the nontrivial emergent vielbein eka. We take for the reference the particular elastic deformations
given by Eq. (12). In the present section the lowest Landau level (LLL) will be considered.
The elastic deformations of Eq. (12) give rise to constant emergent magnetic field H and to vanishing torsion.

However, the vielbein remains nontrivial and is given by Eq. (13). The Hamitonian at K+ takes the form

σ2H+σ
2 = iσ3σaeka ◦ [i∂k +Ak] = iσ3σa[ekai∂k +

i

2
(∂ke

k
a) + ekaAk]

Let us substitute into the Hamiltonian the above expression for the vielbein. Using complex variables we rewrite
the Hamiltonian as follows (see Appendix B)

σ2H+σ
2 = vf

(

0 −2∂z +
H
2 z̄ − zHd∂z̄ − 1

4HdHz
2

2∂z̄ +
H
2 z + z̄Hd∂z − 1

4HdHz̄
2 0

)

(14)

The zero modes satisfy equations:

(2∂z̄ +
H

2
z + z̄Hd∂z −

1

4
HdHz̄2)ψ′ = 0

and

(−2∂z +
H

2
z̄ − zHd∂z̄ −

1

4
HdHz2)ψ = 0

As above, the nonzero solution of the second equation is localized at infinity. The first equation has the particular
solution

ψ
(0)
0 = exp

(

− H

4
zz̄ +

H2d

12
z̄3
)

It appears, that operator b̂ annihilates ψ
(0)
0 as well. One can easily find that the general solution of equation Âψ = 0

has the form:

ψf = f
(

z − Hd

4
z̄2
)

ψ
(0)
0 (15)

where arbitrary function f satisfies 2∂z̄f + zHd
2 ∂zf = 0 simply because of the choice of the argument.

The Hamiltonian at K− has the form

H− = vf

(

0 −2∂z − H
2 z̄ − zHd∂z̄ +

1
4HdHz

2

2∂z̄ − H
2 z + z̄Hd∂z +

1
4HdHz̄

2 0

)

The zero modes satisfy equations:

(2∂z̄ −
H

2
z + z̄Hd∂z +

1

4
HdHz̄2)ψ = 0

and

(−2∂z −
H

2
z̄ − zHd∂z̄ +

1

4
HdHz2)ψ′ = 0
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Now the nonzero solution of the first equation is localized at infinity. The second equation has the particular solution

ψ̃
(0)
0 = exp

(

− H

4
zz̄ +

H2d

12
z3
)

The general solution for the zero mode has the form:

ψ̃f = f
(

z̄ − Hd

4
z2
)

ψ̃
(0)
0 (16)

where function f is arbitrary.

VI. DEGENERACY OF THE LOWEST LANDAU LEVEL

Arbitrary functions f enter the expressions for the wave functions of the zero modes Eqs. (15), (16). In order to
construct the complete set of the wave functions we may start from fn(z) = zn for n = 0, 1, ..., and orthogonalize

this set with the weight |ψ(0)
0 |2 at K− and correspondingly, with |ψ̃(0)

0 |2 at K+. For example, f1 → f1 − f0
(f1|f0)
(f0|f0)

.

The highest degree of z in fn after the application of this procedure remains equal to n. Say, at K+ the values of

the scalar products are given by (fi|fj) =
∫

dz̄dzf̄i(z)fj(z)e
−H

2
z̄z+Re H

2
d

6
z3

. They depend essentially on the boundary
conditions. However, in order to count the number of the zero modes we do not need to know the details of these
conditions.
Let us suppose, that H > 0, while graphene surface has the form of the circle with radius R. The boundary

conditions at r = R are free. Then the number of the zero modes N for the fermions at K+ may be estimated as
the number of the function fN such that the corresponding wave function has its maximum at |z| = R. In radial
coordinates z = reiφ we have

|ψfN (r, φ)|2 ∼ r2N (1 − Hd

4
re3iφ)N (1− Hd

4
re−3iφ)Nexp

(

− H

2
r2 +

H2d

12
r3(ei3φ + e−3iφ)

)

We need to find the position of the maximum of expression

log |ψfN (r, φ)|2 ∼ 2N log(r) +N log(1− Hd

2
r cos(3φ))− 1

2
Hr2 +

H2d

6
r3 cos(3φ)

∼ 2N log(r) − 1

2
Hr2 +

(H2d

6
r3 −N

Hd

2
r
)

cos(3φ) (17)

The zero order approximation (which corresponds to the case when the gravitational contribution is neglected) gives

N (0) = HR2/2 =
HπR2

2π

that is the number of the zero modes is equal to the normalized magnetic flux through the sample.
When the gravitational corrections are taken into account maximum of the wave function is achieved when cos(3φ) =

−1. This gives

N
(

1 +
HdR

4

)

=
1

2
HR2

(

1 +
HdR

2

)

(18)

Thus in the leading approximation we arrive at the following expression: N =
∫
dxdyH

2π

(

1 + HdR
4

)

. The direct

calculation gives the same result for the fermions at the Fermi point K+.
Recall, that above we have calculated the degeneracy for the positive values of H . For negative H the calculation

is similar and it gives

N =

∫

dxdy|H |
2π

(

1 +
|H |dR

4

)

(19)

It is worth mentioning, that if we turn on the external magnetic field B in addition to the emergent magnetic field

H the result for the degeneracy of the LLL at K± is given by N =
∫
dxdy|±H+B|

2π

(

1 + |H|dR
4

)

.

Thus the degeneracy of the LLL receives correction that is proportional both to the interatomic distance d and the
linear size of the sample R. This is an interplay between the infrared and the ultraviolet cutoffs of the low energy
effective theory. The dependence on the infrared cutoff R means, that the particular form of the sample influences
essentially the correction to the degeneracy.
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VII. CORRECTIONS TO THE HIGHER LANDAU LEVELS

The wave functions of the Landau levels of arbitrary order near to the Fermi point K+ in the absence of gravity
are given by Eq. (7). The corrections due to gravity result from the perturbation

σ2V̂+σ
2 = −vfHd

(

0 (a+ b+)a
(a+ + b)a+ 0

)

Its matrix elements that determine the first order corrections to the n - th level are proportional to

< n− 1,m|(a+ + b)a+|n, q > +h.c =
√
n+ 1 < n− 1,m|a+ + b|n+ 1, q > +h.c =

= (
√

(n+ 1)(n+ 2) < n− 1,m|n+ 2, q > +
√

(n+ 1)q < n− 1,m|n+ 1, q + 1 >) + h.c

From this expression one can easily see, that the Landau Levels have no first order corrections.
Let us define

Â = a−
√

H

2
d([â+]2 + b̂â+)

One can see, that equation for the zero mode ψ
(0)
0 is written as Âψ

(0)
0 = 0 while

[Â, Â+] = 1 +Hd2
z∂z − z̄∂z̄ −Hz̄z

2

Let us introduce the operator B+, that produces the sequence of the zero modes ψ
(k)
0 described in the previous section

starting from ψ
(0)
0 . (We do not need its explicit form here.) Now the eigenvectors of Hamiltonian corresponding to

the eigenvalues λ
√
2nH may be constructed as follows (up to the terms linear in the lattice spacing d)

Ψ
(k)
λ,n =

1√
2

(

ψ
(k)
n

λψ
(k)
n−1

)

, ψ(k)
n =

(Â+)n√
n!

ψ
(k)
0 , ψ

(k)
0 =

(B+)k√
k!

ψ
(0)
0 (20)

with ψ
(0)
0 = exp

(

− H
4 zz̄ +

H2d
12 z̄

3
)

. The second term in the commutator [Â, Â+] gives corrections proportional to d2

both to the energy levels and to the eigenfunctions of the Hamiltonian. We neglect these corrections in our study. In
the case, when the size of the sample is sufficiently large, for the observed Landau levels n≪ k, and we may estimate
the degeneracy of each Landau level in the same way as we did for the LLL. This gives the same expression Eq. (19)
in the leading order.
In the similar way the same conclusion is reached for the fermions living at K−. The inclusion into consideration of

the constant external magnetic field B is straightforward. In this case we have the Landau levels at K± with energies

λvf
√

2n|B ±H | with the degeneracy
∫
dxdy|B±H|

2π

(

1 + |H|dR
4

)

.

Let us also notice the conditions, under which our consideration of the possible corrections to Landau levels is
relevant:

1 ≪ |H |R2, |H |dR ≪ 1 (21)

that is 1/R2 ≪ |H | ≪ 1/(Rd).

VIII. CONCLUSIONS

To conclude, we considered graphene in the presence of the elastic deformation of particular form, which gives
constant emergent magnetic field. This elastic deformation also causes the appearance of emergent gravity with
vanishing torsion. In the absence of gravity the well - known (relativistic) Landau levels appear in the spectrum of
the fermionic quasiparticles. A priori this was not clear what happens to those Landau levels when gravity is taken
into account. In principle, one might expect, that instead of each single Landau level with huge degeneracy the set of
discrete energy levels (or the set of the pieces of continuum energy spectrum) may appear.
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We investigate by direct calculation of spectrum the influence of the emergent gravity on Landau levels and on their
degeneracy. It appears, that in the same approximation, in which the expression for the emergent vielbein was derived
in [12] the energies of Landau levels are not affected by gravity. This conclusion is also not altered if the constant
external magnetic field is taken into account. However, the degeneracy of the Landau levels receives correction, which
is proportional to the interatomic distance, to the linear size of the sample, and to the emergent magnetic field. The
dependence on the linear size of the sample means that the precise expression of this correction depends essentially
on the particular form of the graphene sample.
Unfortunately, we were not able to consider the given problem for the elastic deformations of arbitrary form, which

is much more complicated technically. However, the results obtained in the present paper for the given particular
case indicate, that the emergent gravity does not influence the energies of the Landau levels in the leading order in
elastic deformations at least in the case, when torsion vanishes.
It is worth mentioning, that the present work has appeared as a response to the advise by Patrick Lee addressed to

one of the authors (M.A.Z.) to investigate the influence of emergent gravity on the Landau levels in graphene. The
work of M.A.Z. was partially supported by Ministry of science and education of Russian Federation under the contract
02.A03.21.0003, and by grant RFBR 14-02-01261. The work of Z.V.K. was supported by grant RFBR 14-02-01185.

Appendix A. Elastic deformations that correspond to the constant emergent magnetic field

Let us find the configuration that corresponds to the constant magnetic field. We will not try to find all possible
configurations of the strain field, which corresponds to the constant magnetic field and will obtain the particular
configuration to be used later for the investigation of the influence of emergent gravity on the Landau levels.
The displacement field uix we are looking for satisfies the following equation

∂xAy − ∂yAx =
β

2a
(∂x(uyy − uxx) + 2∂yuxy) = H

Let us consider the gauge field of the form

Ay = (1 − l)Hx+ ∂yα(x, y), Ax = −lHy + ∂xα(x, y) (22)

where l is the real number, while α(x, y) is the real - valued function. We also assume ux = ∂xφ, uy = ∂yφ, which
leads to the following equations

β

2d
(∂2y − ∂2x)φ = (1− l)Hx+ ∂yα,

−β
d
∂x∂yφ = −lHy + ∂xα

Let also require

∂2xφ+ ∂2yφ = 0

It appears, that even with these constraints the choice of the displacement vector is not unique. We begin with the
solution for the case α = 0. Then the system of equations can be written as

β

d
∂2xφ = −(1− l)Hx

β

d
∂2yφ = (1− l)Hx (23)

−β
d
∂x∂yφ = −lHy

From this system of equations we derive

φ =
d

β
(
1

4
Hy2x− 1

12
Hx3), l = 1/2
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and

ux =
d

β
(
1

4
Hy2 − 1

4
Hx2), uy =

d

β

1

2
Hyx

Notice, that this theory is applicable for the small deformations only. The deformations are small if

dHR << 1

where R is the linear size of the graphene sample.

Appendix B. Correction to the Hamiltonian due to gravity

Let us start from the calculation of the product

ekaAk =

(

δia −
Hd

2

[

−x y
y x

]

)

×
[

− 1
2Hy

1
2Hx

]

=

[

− 1
2Hy − Hd

2 Hyx
1
2Hx− Hd

4 (Hx2 −Hy2)

]

Here we assume H > 0. The Hamiltonian contains the products of the sigma matrices

iσ3σx = −σy; iσ3σy = σx

We have

−σyekxAk =

[

0 i(− 1
2Hy − Hd

2 Hyx)
−i(− 1

2Hy − Hd
2 Hyx) 0

]

and

σxekyAk =

[

0 1
2Hx− Hd

4 (Hx2 −Hy2)
1
2Hx− Hd

4 (Hx2 −Hy2) 0

]

Therefore,

−σyekxAk + σxekyAk =

=

[

0 1
2Hx− Hd

4 (Hx2 −Hy2) + i(− 1
2Hy − Hd

2 Hyx)
1
2Hx− Hd

4 (Hx2 −Hy2)− i(− 1
2Hy − Hd

2 Hyx) 0

]

=

[

0 1
2Hz̄ − 1

4HdHz
2

1
2Hz − 1

4HdHz̄
2 0

]

and the complete Hamiltonian at K+ receives the form

σ2Ĥ+σ
2 = vf

(

0 −2∂z +
H
2 z̄ − zHd∂z̄ − 1

4HdHz
2

2∂z̄ +
H
2 z + z̄Hd∂z − 1

4HdHz̄
2 0

)

= (24)

= vf

(

0 −2∂z +
H
2 z̄ − zHd(∂z̄ +

1
4Hz)

2∂z̄ +
H
2 z + z̄Hd(∂z − 1

4Hz̄) 0

)

(25)

Recall that a+ =
√

2
H
(−∂z + H

4 z̄) Therefore,

σ2Ĥ+σ
2 = vf

√
2H

(

0 a+ − zHda/2
a− z̄Hda+/2 0

)

Using

z̄ =

√

2

H
(a+ + b)
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we come finally to

σ2Ĥ+σ
2 = vf

√
2H





0 a+ −
√

H
2 (a+ b+)da

a−
√

H
2 (a

+ + b)da+ 0
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