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VARIETIES OF APOLAR SUBSCHEMES OF TORIC
SURFACES

MATTEO GALLET, KRISTIAN RANESTAD, AND NELLY VILLAMIZAR

ABSTRACT. Powersum varieties, also called varieties of sums of powers,
have provided examples of interesting relations between varieties since
their first appearance in the 19th century. One of the most useful tools
to study them is apolarity, a notion originally related to the action of
differential operators on the polynomial ring. In this work we make
explicit how one can see apolarity in terms of the Cox ring of a variety.
In this way powersum varieties are a special case of varieties of apolar
schemes; we explicitely describe examples of such varieties in the case
of two toric surfaces, when the Cox ring is particularly well-behaved.

1. INTRODUCTION

Powersum varieties for homogeneous forms provide examples of surpris-
ing relations between varieties, in particular between hypersurfaces and the
variety of expressions of the defining form as a sum of powers of linear forms.

These varieties have been widely studied since the 19th century: Sylvester
considered and solved the case of binary forms (see [20,21]). A number of
further cases have been treated more recently, see [10], [13], [14], [16], [17]
and [18].

Powersum varieties are special cases of a general construction: given a
projective variety X C P", let y € P™ be a general point and k be the
minimal natural number such that there are k points in X whose span
contains y. Thus k is the smallest integer such that the (k — 1)-th secant
variety of X fills the space P".

Define VPSx(y, k) to be the closure in Hilbg(X) of the set of smooth
subschemes of length k& whose span contains y. If X is the d-uple embedding
of P", then one may interpret y as the class [f] of a homogeneous form f
of degree d. The k-tuples of points on X whose span contains [f] represent
expressions of f as a sum of d-th powers of linear forms. The closure of
this set of k-tuples in the Hilbert scheme is denoted VSP(f, k) and coincides
with the variety VPSx (f, k).

The notion VPSx (y, k) can be read as “Variety of aPolar Subschemes”:
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Definition 1.1. A subscheme Z C X is called apolar to y € P, if y is
contained in the linear span of Z in P".

Note that VPSx(y, k) contains only those apolar subschemes that are in
the closure of the set of smooth apolar subschemes. When dim X > 3, then
the general point y may have singular apolar subschemes of length k£ that
do not belong to this closure.

Apolar schemes have been studied (in the classical setting of powersum
varieties) considering the ideal, in the polynomial ring, of differential oper-
ators annihilating a given homogeneous form. In this paper we generalize
this approach to the general setting of the VPS, using the Cox ring of X, the
graded C-algebra of sections of all line bundles on X, graded by the Picard
group Pic(X). When X is a toric variety, the Cox ring is a polynomial ring
(see [3]).

Let S and T be two copies of the Cox ring of X, with grading given by
the Picard group Pic(X). For each element A € Pic(X) we let S4 be the
space of linear forms on 7'4. For each nonzero f € Sy we let Hy C Ty be the
hyperplane of sections that vanish at the point [f] € P(S4). In the classical
setting of powersum varieties, Hy is a hyperplane of differential operators
annihilating f.

If A is very ample on X, then its global sections T'4 define the embedding
vg : X < P(S4). Thus Ty is the space of linear forms on P(S4). For a
subscheme Z C X C P(Sy4) we set

Iz 4= {g €Ta: glz EO}.

The above definition of apolar subschemes may be formulated in terms of
ideals:

Definition 1.2. A subscheme Z C X is called apolar to f € Sy if Iz 4 C
Hy.

For each B € Pic(X), we define
I o Hf:TA_B:{gETB:g-TA_Bng}, ifA-—B>0
1B Tp, otherwise,
where A — B > 0 if the line bundle A — B has global sections, and set
;= @ IscT
BePic(X)
Similarly, a subscheme Z C X has ideal
IZ = @ IZ’BQT; IZ,B:{QGTB3 g|ZEO}.
BePic(X)
The classical apolarity lemma (see [9, Lemma 1.15]) can be read as follows.

Lemma 1.3. If Z is a subscheme of X and f € Sa, then Iz C Iy if and
only if Iz o C Iy a= Hy



VARIETIES OF APOLAR SUBSCHEMES OF TORIC SURFACES 3

Proof. Tt suffices to show the if-direction of the equivalence. If B > A then
I+ p = Tp, so it suffices to consider B < A. But

Izp-Ta-pCIz4aC Hy
implies
Izp C Hp:Ta p=Ifp,
so the lemma follows. O

For each pair of classes A, B € Pic(X) and element f € S4 we define a

linear map
¢ Tp — Sa-B; g~ 9g(f) (1)
such that
9()g)=4g9(f) €C for ¢ €Tap
ie.,
Hyp) = (Hy : (9)) < Ta-p-

Note that ker ¢5 p = Iy p.

In this paper we present three examples where we describe the VPSx (f, ry)
where X is a toric surface different from the projective plane, f a general
section in S4 for some A € Pic(X) and ry the minimal integer r such that
VPSx(f,r) is not empty. The paper is structured in the following way. In
Section [ we set up the theory for apolarity in the case X = P! x P'. We
prove the following two theorems in Sections Bl and Ml respectively.

Theorem 1.4. Let X = P! x P!, A = (2,2) € Pic(X) and f € Sa be a
general section. The VPSpiypi(f,4) is a threefold isomorphic to a smooth
linear complex in the Grassmannian G(2,4) blown up along a smooth ratio-
nal normal quartic curve.

Theorem 1.5. Let X = P! x P!, A = (3,3) € Pic(X) and f € Sa be a
general section. The VPSpi pi(f,6) is isomorphic to a smooth Del Pezzo
surface of degree 5.

In Section [ we focus on the case X = F}, namely the blow up of P? in
one point embedded as a cubic scroll in P*. We prove the following result.

Theorem 1.6. Let X = F; with hyperplane class H, let A = 3H and
f € Sa be a general section. The VPSE, (f,8) is isomorphic to P? blown up
m 8 points.

Apolar rational or elliptic curves play a crucial role in arguments, in
particular in the use of the following facts. For rational curves Sylvester
showed (see [20]):

Lemma 1.7. Let C C P?1 be an rational normal curve of degree 2d — 1
and y a general point in P21 then there is a unique d-secant P*1 to C
that pass though a general point, i.e. VPSc(y,d) = {pt}. Let C C P?? be
an rational normal curve of degree 2d and y a general point in P*¢=1, then
VPSc(y,d+1) = C.
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For elliptic curves, the following lemma follows from Room’s description
of determinantal varieties. We give a proof (Lemma [5.3]) in Section

Lemma 1.8. Let C C P22 be an elliptic normal curve of degree 2d — 1
and y a general point in P31, then VPS¢ (y,d) = C.

2. APOLARITY FOR P! x P!

Let us consider X = P! xP!. In this case, the Picard group of X
is Z? and its Cox ring is S = C[zo,1][y0,%1], namely the polynomial
ring Cl[zg, 21, Yo, y1] together with the bigrading defined by the matrix

To T1 Yo Y1

1 1 0 0

0 0 1 1
We can write S = @ Sap, where S, 5, is the set of bihomogeneous polyno-

a,beZ
mials of bidegree (a,b). Consider the ring
T = Clto, t1][uo, w1],
which is a copy of S, and the action of T" on S by differentiation
t; =0/0x; and w; =0/dy;, fori=0,1.

Definition 2.1. For a bihomogeneous form f € S,;, the orthogonal ft
of f is defined as the ideal of the elements of T" annihilating f, i.e.,

fr={geT: g(f)=0}.

Notice that for a bihomogeneous form f € S, one has faf = Hy, where
Hy is the hyperplane defined in Section [Il Moreover, Cl’d = fafb: Tla—cp—a)
for all ¢ < a and d < b. This shows that f+ = Iy, where Iy is the ideal
defined in Section I The maps ¢y (,) from Equation (Il) are in this case

given by applying the elements of T as differential operators to f. It follows
that ker ¢ (45 is the set of forms of bidegree (a,b) in f L namely al’b.

In the case of P! x P!, every divisor of class (a,b) with a,b > 0 is very
ample and determines the Segre-Veronese embedding

Vab: ]Palx]pl N ]P)ab-i-a—i-b
(51,62) — l‘flg,

where 1 € (zg,21), l2 € (yo,v1), and P®+a*+0 is identified with P(S, ).
In this way, we can interpret the variety of apolar schemes as a variety of
sums of powers. In fact, a bihomogeneous form f € S of bidegree (a,b)
can be written as a sum f =3 . I, 15., for linear forms ly; € (g, 1) and
l2i € (yo,y1), if and only if the scheme I' = ((l11,121), - - -, (l1r, l2r)) lies in
the span of v, (Pl X ]P’l). Since Ty are the linear forms on P(Sgy), the

(2)
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linear forms vanishing on v, ;(I") are the elements of bidegree (a,b) of the
ideal It of I'. From this we see that

[f] € span Va,b(r) — IF,(a,b) - f(i_b :

By Lemma [I.3] this is equivalent to the fact that I' is apolar to f. Hence
VPS(f,r) can be interpreted as the Zariski closure

{([ln, l21], ey [llr,lgr]) € Hﬂbr Pl x P! : f = Zl% lgz}
i=1
As in the standard homogeneous case we define the notion of rank of
bihomogeneous polynomials in S.

Definition 2.2. For a bihomogeneous form f of bidegree (a,b), the rank
of f is defined as

rank(f) = min {T‘ s f= Zl(fl lgl with [y; € <l‘0,l‘1> and lg; € <y0,y1>} .
1=1

We can give a geometric description of rank(f) as follows. Identifying
Pab+ath with P (S,;), we can associate to every form f € S, a point [f] €
Pab+atb T this way, the forms in Saqp of rank 1 correspond to points lying
on the Segre-Veronese variety. Moreover, a form has rank r if and only if it
lies in the span of exactly (not less than) r points in the Segre-Veronese.

The previous interpretation connects the rank of bihomogeneous forms
with the theory of secant varieties of the Segre-Veronese. In particular, a
general bihomogeneous form in S,; has rank r if and only if the r-secant
variety coincides with Pa0+atb,

The computation of the dimension of secant varieties carried by Catal-
isano, Geramita and Gimigliano in [2, Corollary 2.3], implies that if f is a
bihomogeneous general form of bidegree (a,b), then

{%] i (,5) # (2,24d),
2 +2 if (a,b) = (2,2d).

For a general form f of bidegree (a,b), the dimension of VSPpi,p1(f,r)
is determined by the rank of f as described in the following proposition —
similar to the classical case, see for example [4, Proposition 3.2].

rank(f) = 3)

Proposition 2.3. Let f € S, be a general bihomogeneous form of rank r.
Then VSPpiypi (f,7) is an irreducible variety of dimension

3<’7(a+1)3(b+1)—‘ B (a+1)3(b+1)> if (a.b) £ (2,2d),
3 if (a,b) = (2,2d).
Proof. Let us denote Hilb, P! x P! by H. We consider the incidence variety
x = {(IT, /1) € H x P+ 1) € VSPpip(f,7) }

dlm VSPPI %P1 (f, 7") =
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Then we have the two projection maps:
m: X —H Ty X — pobtatd

Let U be the open subset of H parametrizing zero-dimensional schemes
given by 7 distinct points in P! x P!, Then for every [I'] € U we have that
I'=(P,...,P.). Also, it is possible to restrict U so that the (a, b)-th powers
of all linear forms associated to the points P;’s are linearly independent. In
this way we can prove that my is dominant. Moreover, if [I'] € U, then the
fiber of 7, over [I'] is an open set of a linear space of dimension r — 1. Since
H is irreducible and nonsingular (see [7]), then also X is irreducible and
of dimension 3r — 1. The fiber of 7y over [f] € P®+a+b is VSPp1 p1 (f,7),
so we get that for a general f, the variety VSPpi,pi(f,r) has dimension
3r —1— (ab+ a+b). Using Equation (3) the statement follows. O

3. BIHOMOGENEOUS FORMS OF BIDEGREE (2, 2)

The Segre-Veronese embedding from Equation (2) is in this case the (2, 2)
embedding of P! x P! in P®, denoted

vog: P x Pt s P8,

If f is a general bihomogeneous form in Sy, then by Equation (B]) ap-
plied to the case (a,b) = (2,2d) with d = 1, the rank of f is 4, hence
dim VSPp1p1(f,4) = 3 by Proposition 23l In order to study the geometry
of this variety we use apolarity.

Lemma 3.1. For a general form f € So9 the orthogonal ft is generated
by fil,fllg,f?fo and f(fg. Moreover, both f2L,1 and fll’2 have dimension 4.

Proof. Since dimT5 1 = 6 and dim Sy = 2, and f is general, the kernel f2f1
of the map ¢y, ( 1) has dimension 4. By symmetry, also flJ,_2 has dimension 4.

Consider the vector subspace Tp - le’l - f2L,23 if it is of dimension 8,
it means that we do not need elements from f2f2 to generate f. Suppose
that dim T 1 - sz,l < 8: if g1,...,94 is a basis for fol, then wg g1, ..., uo g4,
u191,---,U1 g4 are not linearly independent. So, for some hy,hy € f2L,1 we
have ug h1 +wuq ho = 0. This implies that there exists a nonzero he Tp 2 such
that hy = uy h and —hy = ugh. Hence Toq - h C f+, which forces h e ft.
But £ has bidegree (2,0), and by the generality assumption on f there is no
nontrivial element in sz,o- Hence dim Tj 1 - sz,l =8, and so Tp 1 - sz,l = foQ.

Moreover, since f is a form of bidegree (2, 2), then (f,_b = T4, whenever a
or b is greater than or equal to 3. Notice that T53; = T30 - Tpp, and T, 3 =
To3 - Thy, for every a,b > 1. Thus, f2l71, flJ,_2 together with f?fo = T3 and
f&g = Tp,3 generate the ideal f - O
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The space of sections le’l define a linear system of (2, 1)-curves on P! x P!
and, by Lemma (.1}, a rational map d21: P! x P — P3 fitting in the dia-
gram

72,1 ]PTE)

P! x P! | m21 (4)
~ o v
d2,1  ~ P3

where 72 1 is the map induced by the complete linear systems of (2, 1)-curves
in P! x P!, and my; is a linear projection. Notice that all constructions and
results from now on apply to both f2l71 and fll,Q.

First, we prove that d5 1 is a morphism. For this we analyse the projection
center Lo of mg 1. By definition, Ly C P(S3 1) is spanned by the forms
annihilated by f2l71, i.e. by the partials df/dyo and df/dy;. Consider first
the surface scroll Yo := 121 (P* x P) C P(S21) = P®. The (1,0)-curves
on P! x P! are mapped to lines in Y5 1, while the (0, 1)-curves are mapped to
conics. The planes of these conics are the planes spanned by forms ¢(zg, x1)-
L(yo,y1) € S2.1, where {(yo,y1) € (yo,y1) is a fixed linear form. We let Wy ;
be the threefold union of these planes. In the following lemma we show that
for a general (2, 2)-form f, the projection center Lo 1 does not intersect W ;.

Lemma 3.2. Let f € Sy be a general form. Then no linear combination of
its partial derivatives Of /0yg and Of /0yy is of the form q(xo,x1) - (Yo, y1),
where ¢ and | are respectively a quadratic and a linear form. In particular,
the line Loy C P(S2,1) does not intersect the threefold scroll Wy 1.

Proof. Write f as

Y% Q+yon @ +yi Q"
Then, a linear combination \9f/ay, + p 9f/ay, is of the form ¢ -1 if and only if
AQ + p@’ is proportional to AQ’ + pu@”. Since f is general, we can suppose
that Q, Q" and Q" are linearly independent. Then the two pencil of quadrics
AQ + @' and A\Q' + pQ"” have at most one point in common, which hence
must coincide with @’. But

AN +pQ =Q & A=0,
' +pQ"=Q & p=0.
This proves the claim. O
Notice also that Lemma holds for any (2,2)-form f for which the
quadratic forms @, Q' and Q" are linearly independent.
Consider the diagram () above:
Corollary 3.3. The map d2,1 defined by f2l71 is a morphism. Moreover,
all lines in Zay = 021 (]P’1 X ]P’l) are linear projections of lines in Yo 1 =

72,1 (]P’1 X ]P’l). In particular, no conic in Ya1 is mapped to a line by mo 1.
The analogous result holds for the (1,2) case.
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Proof. Since the projection center Lo does not intersect Wa1 2 Y5 1, the
projection o 1 restricted to Y31 and hence also do; is a morphism, and no
conic in Y51 is mapped to a line in Zy := do1 (]P’l X ]P’l). Furthermore,
flfl = {0}, so Ly does not lie in the span of any (1,1)-curve in Y51,
therefore every line in Zs; is the linear projection of a (1,0) curve, i.e. a
line in Y5 1. O

Lemma 3.4. Let f € So2 be a general form and suppose that g1, g2 € f2f1
span a linear space of dimension 2. Then either the ideal (g1,g2) defines a
scheme of length 4 in P! x P!, or the pencil of (2,1) curves defined by g1
and ga has a common component, a (1,0) curve.

Proof. We need to exclude that the pencil of (2,1) curves defined by g1
and go has a fixed component that is a (2,0) curve, a (1,1) curve or a (0,1)
curve. We treat these cases one by one.

If there is a common (2,0) curve, then all curves in the pencil split into
it and a (0, 1) line. Therefore there exists a ¢ € Clug, u1]2 such that

(at0+5t1)Qf:O vaw@eca

hence q € f&Q, but this contradicts Lemma 3.1l Similarly, if we assume that
there is a common (1,1) curve, then f1L,1 would be non-trivial and this again
contradicts Lemma [3.11

We are left with the case when the pencil (g1, g2) has a (0,1) curve £ in its
base locus. Consider the maps in the diagram (4)), with Lo ; the center of the
projection 7 1. Then £ is sent to a conic by 72 1. Hence there is a pencil of
hyperplanes in P° passing through L, 1 and having a conic in its base locus.
Since the base locus of a pencil of hyperplanes in P? is a 3-dimensional linear
space, both the conic and the line Lo lie in a P3. The latter happens if
and only if Lo ; intersects the plane spanned by such a conic, but this is not
possible by Corollary 3.3 O

The image Zo 1 of P! x P! under the map 02,1 is a rational scroll, since it
is rational and covered by the images of the lines in the scroll 12 1 (]P’1 X ]P’l).
In the following we describe its singular locus.

Lemma 3.5. 75 is a quartic surface in P3 that has double points along a
twisted cubic curve and no triple points.

Proof. A scheme z of length 3 in P! x P! is contained in a (1,1)-curve C, so
if z is mapped to a point by d2 1 = 721 © 12,1 the projection center Lo is
contained in the span of z C Y5 1, and hence in the span of the image of C
in Y. But then C is mapped to a line in Z3 1, excluded by Corollary B3]
Therefore Z5 1 has no triple points. A general plane section of Z;; is the
image of a smooth rational quartic curve in Y3 ;. Therefore a general plane
section of Z is a rational quartic curve, and therefore has 3 singular points
that span a plane, hence Sing(Z3,1) spans P3 and is a cubic curve. From
the double point formula (see [8, Theorem 9.3]) we see that the double point
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locus of the restriction 7r|yz1 is a curve on Y3 1 of degree 6 because it is lin-
early equivalent to —Ky, , (the anticanonical divisor of Y3 1). If Sing(Z2)
is not a twisted cubic, then it has to contain a line. The preimage under m
of such a line is then either a conic C or two skew lines F7 and F>. In the
first case the center Ly of 7y intersects span(C'), but this is not possible
because of Lemma In the second case we have Ly C span(E; U E»).
Since span(F; U Ey) 22 P3| there is a pencil of hyperplanes in P° containing
it; each of them intersects X in EF7 U Es and in a residual conic D. Hence
we obtain a pencil of conics D such that span(D) intersects span(E; U E2)
in a line F. In this way we get a pencil of lines F' in span(F; U E»); such
pencil fills a quadric in span(E; U Es), and therefore the center L intersects
this quadric in 2 points; this situation is again ruled out by Lemma
Therefore the only possibility left is that Sing (Z2 1) is a twisted cubic. O

Remark 3.6. Consider a smooth scheme [I'] € VSPp1,p1(f,4) apolar to f,
namely Ir C f+. Notice that the dimension of It (2,1) equals the number
of linearly independent planes in P? passing through 92,1 (I"). Moreover 2 <
dim It (2,1) < 3, where the latter inequality follows since d2,1 is defined on the
whole P! x P!. However, Lemma [3.5] excludes that the dimension of It 21)
is 3, since in that case we would have that d(I") is a point. Therefore
dim It (5 1) = 2 and d21(I") spans a line.

Remark [3.6] yields a rational map

®o1: VSPpiypi(f,4) -—» G(27f2{_1)

5
] = Ir e ©)

Consider the rational scroll Z3 1 = d2,1 (]P’1 X ]P’l) and the rational curve

Doy = {[z] € G<2,f2fl> L lC zz,l}. (6)

Lemma 3.7. For a general bihomogeneous form f of bidegree (2,2), the
rational map ®o1 in Equation (Bl) extends to a morphism on the whole
VSPpiypi(f,4). Moreover, the fiber over a point p under ®21 is a smooth
rational curve if p € Doy and it is at most one point when p & Daq. In
particular, ®o 1 is birational.

Proof. Since being collinear (see Remark [3.0]) is a closed property, ®5 1 ex-
tends to the closure of smooth apolar schemes, namely to VSPpi,p1(f,4).

Let [['] € VSPpi,p1(f,4) and let /- be the line in P3 containing d21(T).
If [lr] & Do, then ¢r N Zy; is a scheme of length 4, namely it is o 1(T).
Hence the fiber over /1 is exactly [[]. Therefore, if £ C P3 is any line not
contained in Z3 1, then either [¢] is not in the image of ® 1, or it is the image
of exactly one scheme in VSPpi,pi(f,4).

Let £ C P3 be a line contained in Zs;. Denote by ¢ the (1,0) line
in P! x P! such that d51(¢') = ¢. Since the preimage of Sing(Zs ;) under
the projection is linearly equivalent to the anticanonical divisor of Y, and
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so every line in Y51 intersects it in two points, then ¢ intersects Sing(Z2 ;)
in 2 points. In fact, by Corollary 3.3l every line in Zy; is a projection of a
line in Y. We know that the preimage of /N Sing(Z> 1) under d2 ; consists of
a scheme of length 4 that intersects ¢’ in a subscheme of length 2. Summing
up, 52_%(6) = 0" U{z}, where 2, is a scheme of length 2 that is mapped to ¢
by 52’1.

Let I' C P! x P! be an apolar scheme such that d21(I") is contained in ¢.
Since I" has length 4 and I' C 4 1(¢), then the span of 721 (T") must contain
¢’. On the other hand, since I' is apolar to f, it is also apolar to both
0f/0yo and Of /0y;. Therefore the span of 1y 1(I") contains the line that is
the center of the projection 7o ; in Equation (). This rules out immediately
the case spanT' = P! and spanT = P2, since in both cases the center of the
projection would intersect Y51, contradicting Corollary B3l Hence 7 1(I)
spans a P? in P, and therefore there is a length 2 subscheme of I' that is
not contained in ¢'. Clairly, this subscheme has to coincide with z,.

Let us consider a plane in P3 through ¢. By construction of the map ¢,
such plane defines (up to scalars) a form g € sz,l that factors as g = [ g,
where [ is a (1,0) form whose vanishing locus in P! x P! is ¢/. If g vanishes
on a scheme I' of length 4, that is apolar to f and is mapped to £ by 621,
then zy; C I' and ¢ must vanish on the length 2 subscheme z,. In fact there
is a pencil of (1,1)-forms vanishing on z, that together with [ vanish on
I'. Therefore every subscheme in the fiber over a ®9(I') contains z, and is
contained in the reducible curve ¢/ U Z(g).

The set of apolar subschemes of length 4 in ¢/ U Z(g) are described in the
following lemma.

Lemma 3.8. Let g € f2L,1 such that g = 1 g for forms | and g of bide-
gree (1,0) and (1,1) respectively. Then the zero locus Cy of g supports two
pencils of length 4 apolar schemes. One pencil has a common subscheme
of length 2 on Z(g) and a moving subscheme of length 2 on Z(l), while the
subschemes of the other pencil has a unique common point on Z(l), and a
moving subscheme of length 3 on Z(g).

Proof. The fact that g is apolar to f means that the point [f] is contained
in the span of the (2,2) embedding of Cy, also denoted Cy. By construction,
Cy splits as Cy = C1 U Cy where C is a conic and C3 is a quartic rational
normal curve. Notice that spanC; = P? and span Cy = P*. Consider the
projection from [f], denoted by p: span C, = P9 --» P5. Notice that p|spanc,
and plspan ¢, are isomorphisms, because otherwise Cy or Cy will be apolar
to f which contradicts Lemma Bl Set P to be the preimage under p of
the line p(span Cl) N p(span Cg), and define the lines L1 = PNspan Cy and
Ly = PNspan Cs.

Let us focus on the line Li: by construction, it passes through @ =
C1 N Cq, the only singularity of C,, and then intersects the conic C in
another point 7. The line through [f] and T is contained in the plane P,
hence intersects Lo in a point 7. Since Cj is a smooth rational quartic, the
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set
{trisecant planes of Cs passing through T }

corresponds to the variety of sum of powers of a quartic bivariate form de-
composed into three summands, and by Sylvester’s result it is isomorphic
to P'. If we pick the three points of intersection of such a trisecant plane
with C5 and we add the point T', we obtain four points whose span con-
tains [f]. Thus, we have constructed a P! of schemes of length 4 apolar to f
constituted of 3 points lying on C5, and one common point lying on Cf.
Consider now the line Lo: by construction, it passes through the sin-
gularity @, and it intersects the secant variety of Cy (a cubic threefold
in span Cq) in another point R. The line through [f] and R is also contained
in the plane P, hence intersects L; in a point R. Since R is in the secant
variety of Uy, there exist two points in Cy whose span contains R. Moreover,
there is a pencil of lines in span C; passing through R, that defines a pencil
of length 2 schemes. In this way we produce a pencil of length 4 schemes
apolar to f, all of them having a length 2 scheme on C3 in common. (]

To complete the proof of Lemma 3.7 we apply Lemma B8 to ¢/ U Z(g).
Only the pencil of apolar subschemes with a fixed subscheme of length 2
on Z(g) is mapped to ¢ by d2,1. This completes the proof of LemmaB7l O

Lemma 3.9. Let g € f2L,1 such that g = Iy lo | for forms l; of bidegree (1,0)
and | of bidegree (0,1). Then the zero locus Cy of g supports three pencils
of length 4 apolar schemes. Two of the three pencils are fibers of ® 1, while
the third one is mapped isomorphically to a line in G(2, lel)

Proof. The first part of the proof follows a similar argument as that in
Lemma 3.8} so we only provide a sketch. The (2,2) embedding of Cy splits
into three conics Cp,Cy and C, such that C; N C = {Q1}, CoNC = {Qy}
and C; N Cy = 0.

By projecting from [f] one can prove that there exists a plane P such
that P NspanCy = 41, PN Span(é’ U Cy) = ly where (1, ¢y are lines, and
P contains the line through [f] and (1. The line ¢; meets C; in @ and in
another point R;. The line through Ry and [f] meets {5 in a point 7. By
a similar argument but projecting from 7', we obtain a point Ry € Cy and
a pencil of pairs of points R3, Ry € C such that T is in span({Rz, Rs, R4}).
It follows that [f] belongs to span({Ri, Rz, R3, R4}). In this way we find
a pencil of apolar schemes with Ry and Ry as fixed points, one on each of
the curves C; and Cs, and a moving part of length on C. On Za.1, the
curves C7 and C are mapped to lines by do 1, while C is mapped to a
conic. Their union is a plane section Z1, and the apolar schemes are all
collinear. Since Ry and R clearly are mapped to the same point, this pencil
of apolar schemes must be the pencil of lines through the image of Ry and
Ry. Therefore the image of this pencil in G(2, f2ll) is a line. Two other
pencils of such schemes with mobile parts supported on C7 and C5 can be
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constructed similarly. Each of the latter two pencils are mapped to a line
in Z3 1, namely the images of C and Cy, and are therefore, by Lemma 3.7,
the fiber of the morphism ®3; over a point in D;2. This concludes the
proof. O

Proposition 3.10. For a general bihomogeneous form f of bidegree (2,2)
the image of the map ®o1 from Equation (Bl) is a smooth linear section of
the Grassmannian G(2, le’l).

Proof. Since dim VSPpi,p1(f,4) = 3, dim G(2,f2f1) = 4 and ®, is bira-
tional onto its image, the image is a hypersurface U in G(2, le’l).

The degree 3 component of the Chow group of G(2, f2l71) is generated
freely by one Schubert class 31, so [U] = d 31 for some d. The intersection
of an a-plane Y9 with Xq gives the only class X3 in degree 1 in the Chow
group. Hence [U] - 39 = d X3. We prove that d = 1.

Let us consider the intersection of U with an a-plane Ys. Every a-plane
in G(2, f2J,'1) is of the form

S2(9) = {(g91,92) € fa1: 9 € {91, 92)},

forag e f2l71. On the other hand such a form g defines a rational curve Cy,

and its (2,2) embedding in P® (also denoted by C;) has degree 6. Therefore,
the intersection of U with 3(g) has preimage under ®3; given by

<1>2_&(U NX2(g)) = {[[] € VSPpiyp1(f,4) : g € Ir 2,1y}
= {[I'] € VSPpiyp1(f,4) : T C Cy}.

If Cy is smooth, then from Sylvester’s result on general sextic binary forms
(see for example [5, Theorem 1.5.3]) we derive that <I>2_% (UNXy(g)) =P

Consider now the case when Cj is not smooth. If C; C P! x P! splits into
the union of a line and a smooth conic (intersecting in a point), then C; C P8
splits into a conic Cy and a quartic Cs, both rational and smooth. In this
case, (132_7 %(U N Eg(g)) has two irreducible components, both rational and
smooth, by Lemma 3.8 We claim that these are the only two components
of maximal dimension of the scheme ®, ! (UNX2(g)). In fact, if there were
[I'] € VSPp1yp1(f,4) such that I' C Cy and I' C C1, then the conic C would
be apolar to f. This would imply that there is a non-zero element in flJ,_Ov
and this is not possible by Lemma Bl An analogous argument excludes the
possibility that I' € C5. On the other hand, there is at most one scheme I"
formed by three points on C and one point B on Cs. In fact, by construction
[f] € spanT, thus the line through [f] and B intersects P? = span C1, so it
is contained in the plane P. Since P N (s is the singular point ), such line
coincides with the line through [f] and @, and that means that we have at
most one scheme I" of this kind.

IfC, C P! x P! splits into the union of three lines, then C, C P® splits
into three conics C, Cy and C. In this case, <I>2_&(U N 5(g)) has three
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irreducible components, all rational and smooth, but, by Lemma [3.9, only
one of them is not contracted by ®3 ;.

Therefore, as the a-planes vary, we obtain a family of smooth and rational
curves. Hence the only possibility is that U is a linear complex, i.e., a
hyperplane section of G(2, le’l).

Let X5 1 be the image of ®51, we now show that X5 is smooth. For
this, assume for contradiction that X ; is singular. Then it contains two
families of planes. In particular, it contains a family of a-planes as planes in
G (2, f2l71). But any a-plane in G (2, f2l71) is of the form X(g) and intersects
X1 in a curve, so cannot be contained in X5 ;. This is a contradiction that
proves that Xs 1 is smooth. O

Proposition 3.11. Every [I'] € VSPpipi(f,4) is apolar to f.

Proof. Let [I] € VSPpipi(f,4), we have to show that Ir C f+. By
Lemma 3.7 both It N f2L71 and It N f1L72 are two-dimensional. If both It (5 1)
and It (1) are two-dimensional, then Iy C f+. Suppose now that I 21)
has dimension 3: then, by Lemma[3.4] the system of (2, 1)-curves in IrN f2f1
must have a common component, a (1,0) line . Suppose first that ¢ is
a common component of the whole system It (51). Then the residual 3-
dimensional family of (1,1) curves can have at most one point in common.
Therefore the line ¢ contains a length 3 subscheme of I'. The image of ¢
under d1 5 is a conic, but this contradicts the fact that d; 2(I") is collinear.
Suppose next that £ is not a common component of the linear system I (5 1.
Then It 2,1y = (91, 92, 93) With g3 & Ip N f2f1 and ¢ and the zero locus of g3
intersect in a point. Let g1 = [ g1 and g9 = [ go, where [ is the linear fac-
tor corresponding to £. Then a subscheme of length 3 of I' is contained
in the zero-locus of g and go. This forces g1 and g to have a common
component ¢, because otherwise their zero locus (being the intersection of
two (1,1) curves) have length at most 2. Then £ is either a (1,0) or a (0,1)
line. In the first case, we can repeat the previous argument and apply 012
to I', obtaining a contradiction; in the second case we use d21. The case
with I (1 9y is analogous. (]

Corollary 3.12. For a general bihomogeneous form f of bidegree (2,2) the
variety VSPpip1(f,4) is a smooth 3-fold.

Proof. First of all, the Hilbert scheme Hilbs (P! x P!) itself is smooth (see [7]).
Consider next, in Hilby(P* x P!), the open subset U of schemes I" whose ideal
Ir C T has codimension 4 in bidegree (2,2).

Over U we consider the rank 5 vector bundle Fy; with fibre over a scheme
[['] the dual of the space I (32) C Th2 of (2,2) forms in the ideal of I'. The
linear form

G122 Toa—C
defines a section on Ey. If VPSpipi(f,4) C U, then VPSpipi(f,4) is the
0-locus, by Proposition 311 of a this section.
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Lemma 3.13. Let f € Sy be general, then VPSp1,p1(f,4) CU.

Proof. Tt suffices to prove that for any [I'] € VPSp1,p1(f,4), the space It (3 9)
has dimension 5, or equivalently, the image v 2(I") spans a P3. For this, as-
sume that 15 2(T) spans a plane Pr. If the intersection Pr N wvgq(P! x P1)
is finite, I is either curvilinear or it contains the neighbourhood of a point.
In the latter case, Pr must be a tangent plane to 1/272(191 x P1), but a tan-
gent plane intersects V272(]P’1 x P1) only in a scheme of length 3, so this is
impossible. If T" is curvilinear it is contained in a smooth hyperplane sec-
tion of 15 9(I"), an elliptic normal curve of degree 8. But on any such curve
any subscheme of length 4 spans a P32, again a contradiction. Finally, if
Prn 1/2,2(]}”1 X ]P’l) is infinite, it contains a curve. But the only plane curves
on v95(P! x P1) are conics, and they are the intersection of their span with
v22(P! x P1). So in this case I' is contained in a (0, 1) curve or a (1,0) curve.
If I is apolar to f, this is impossible, so the lemma follows. O

The space of forms ¢y (52) form a linear space (= S3,2) of sections of Ey
without basepoints on U, so for a general f the 0-locus VPSpi,p1(f,4) is
smooth. This finishes the proof of Corollary O

Theorem [I.4] is now equivalent to the following:

Theorem 3.14. For a general bihomogeneous form f of bidegree (2,2), the
variety VSPpiypi1(f,4) is isomorphic to the graph of the birational auto-
morphism on a smooth quadric threefold Q defined by the linear system of
quadrics in the ideal of a rational normal quartic curve C C Q.

Proof. We first show that the natural map
E: VSPpipi(f,4) — G(2,f3) x G (2 fi%)
] — Ir 21y, Ir(1,2)
is an injective morphism.

From Proposition B.I1] all schemes [I'] € VSPp1,p1(f,4) are apolar to f,
so It C f1. By Remark 3.6] both images of " under 02,1 and 01 2 lie exactly
on one line, so

dimIn(Lg) = dimlp,(m) = 2.
Hence = is a morphism.

We now show the injectivity of =. From LemmaB.7and the fact that I" is
apolar to f we have that the only points where 27! is possibly not defined
are the schemes I' that contains a subscheme of length 2 on a (1,0)-line,
and a subscheme of length 2 on a (0, 1)-line. If these two subschemes of T’
do not intersect, then the union of the two lines is defined by a (1,1) form
that must be apolar to f, contradicting the generality assumption on f (see
Lemma [BJ]). If the two subschemes intersect, the scheme I' is mapped to
a line in both Z5; and Z;>. In this case I' has a subscheme of length 3
contained in the union of a (0,1)-line and a (1,0)-line and a residual point
that lies in the double curve and thus is mapped to the singular curve in
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both Zs; and Z; 5. Assume that I' and I' are two apolar schemes of length 4
and that
=) = Z(1).

Then both T and I have a subscheme of length 3 contained in a pair of lines
LUL' that together form a (1, 1)- curve, and they each have a residual point
that is mapped to a singular point in both Z;; and Z;. Then for each
line L and L’ the subschemes of I' and I residual to the line must coincide.
But both schemes must also contain the point of intersection of L and L/,
so the two schemes coincide. Hence = is injective.

Since VPSp1,p1(f,4) is smooth, it suffices to complete the proof to iden-
tify the image of = and show that the image is smooth.

Now, the collection of lines Dy C X3 as defined in Equation (@) is a
smooth rational quartic curve. It is normal, otherwise it would span a P3
and therefore be contained in a special linear complex, i.e. all lines in Z3 1
would intersect some fixed line, which is ruled out by Corollary B3] above.
In the planes spanned by two intersecting lines in Z; the pencil of lines
through the intersection point is a line in X5 ;. For each double point on
Z2,1 we obtain such a line, so they form a surface scroll Vo1 C X5 1, and by
construction, Dy 1 is contained in this scroll, intersecting the general line in
the scroll in two points. So Va1 is also contained in the secant variety of
D5 1, a cubic hypersurface SDj ;. Therefore the scroll has degree at most
6 and is contained in the complete intersection SDa1 N Xa 1. To see that
Vo1 = SD21 N X217 we compute its degree. This is computed from the
bidegree (di,dz) in the Grassmannian. Notice that Z,; parametrizes the
lines in X5 ; that pass through a singular point in Zs 1, and that the lines
in X1 that pass through a singular point in Z,; all lie in a plane spanned
by the two lines in Z3 ; that pass through the singular point. The number d;
counts the number of lines in a general plane that belong to V5 1. A general
plane contains three singular points, and one line through each of these
lie in the plane, so di = 3. The number dy counts the number of lines
through a general point that belong to V2 1. A general point lies in three
planes that intersect Zs 1 in a conic sections, hence also in two lines, so also
dy = 3. We conclude that V5 has degree 6, and therefore that V5 is a
complete intersection. Consider now a Veronese surface V C G (2, le’l) that
contains Dj 1. The Cremona transformation on P> defined by the quadrics
in the ideal of V contracts the secant variety of V' to a Veronese surface V’,
while the strict transform of V' is mapped to the secant variety of V'. The
Cremona transformation restricts to a birational map on

Y211 Xoq - X' C P!

where X’ C P* is a smooth quadric 3-fold. In fact, the restriction is defined
by the quadrics in the ideal of Dg; in Xa;. This space of quadrics is
5-dimensional, and the image is a hyperplane section X’ of the Pliicker
quadric, defined by the quadratic relation between the quadrics in the ideal
of Dy 1 in P%. Consider the closure of the graph YV C Xo 1 x X " of the rational
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map 72,1. The strict transform of Dy ; in ) is mapped to a scroll 77 in X', the
intersection of the secant variety of a Veronese surface V' with the quadric
threefold X’. The strict transform in ) of V5 is mapped to a rational
normal quartic curve C’ . We now compare the map 7,1 with the rational
map p: Xo1 --» Xi12. Since ®9; is bijective outside the preimage of the
curve Dy 1, the rational map p is defined outside Dg ;. On the other hand
p is not defined anywhere on Dy ;. The Picard group of X ; is generated
by the hyperplane bundle, so the map p must be defined by a 5-dimensional
space of sections in H°(Zp,,(d)) for some d, where Zp,, is the sheaf of
ideals of Do 1 on the quadric 3-fold X5 1. To find the degree d we consider
a general curve C defined by a section in f2L,1- On the surface Za; C P3 the
curve C' is mapped to a plane quartic curve with a linear pencil of lines that
cut the curve in the image of schemes of length 4 that are apolar to f. This
pencil form a line in Xo; that does not intersect Do 1. Now, the image C of
the curve C' on Zj 2 has degree 5. The pencil of apolar schemes of length 4
on C' are mapped to schemes that are collinear also in Zj 2, so they define
on C a pencil of 4-secant lines. Assuming C' is smooth, any two of these
four- secant lines are disjoint, otherwise C' would have a plane section of
length 7 or 8, impossible. Therefore the pencil of 4- secant lines are the
lines of one family of lines in a smooth quadric surface. This means that
the image of this pencil of lines in X9 is a conic, and hence the degree d
is 2. Since dim H°(Zp,,(2)) = 5 we may conclude that the map p coincides
with 721. Clearly 712 is the inverse of 791, and the graph Y of p is the
blowup of X3 ; along the smooth curve D1, so Y is smooth. There is a
map from the graph of v; 2 to VPSp1,p1(f,4) which sends a graph point to
the ideal generated by the two pencils, one in each Grassmannian. Therefore
the graph ) is identified with the image E(VPSP1Xp1( f 4)) The graph is
smooth, so VPSpi,p1(f,4) and the graph Y are isomorphic. O

4. BIHOMOGENEOUS FORMS OF BIDEGREE (3, 3)

Let f be a bihomogeneous form in S of bidegree (3, 3). The Segre-Veronese
embedding from Equation (2)) in this case is given by

v33: Pt x Pt s P15,
By Equation (B]), we have rank(f) = 6 and dimVSPp1p1(f,6) = 2.

We identify P(S33) with a linear subspace P C ]P)((C[Z(],Zl,ZQ,Zg]g) =
P, where 29 = xoyo, 21 = Zoy1, 22 = T1Yo, and z3 = x1y;. Thus, we can
see [f] € P! as a cubic form in four variables [F] € P'9. More precisely,
cubics F' € Clz, 21, 22, 23]3 coming from forms f € S33 are characterized
by the property that the coefficient of 23 23 equals the coefficient of zq 21 22,

and similarly for the coefficients of the pairs of monomials (zg 21 23, zf 29),
2 2
(20 22 23, 21 25) and (2o 23, 21 22 23).

Remark 4.1. Given f € S33 we can associate to it two orthogonal ideals:
first of all we have the orthogonal f+ C Cltg,t1][ug, u1] that we introduced



VARIETIES OF APOLAR SUBSCHEMES OF TORIC SURFACES 17

and used in the previous sections; moreover, once we interpret f as a cu-
bic form F, we have also F+ C Cluvg,...,vs], a homogeneous ideal in a
polynomial ring in 4 variables, that act on C[zg, 21, 22, 23] by differentiation,

vi(f) = 0/0z;(f) f € Clzg, 21, 22, 23].

There is a close relation between f' and F~, namely there is a correspon-
dence between bihomogenous polynomials in f+ and homogeneous polyno-
mials in F that satisfy the analogous constraints on the coefficients that
we remarked above.

Lemma 4.2. For a general bihomogeneous form f € Sz 3, the orthogonal
ideal f is generated by 5 bihomogeneous forms of bidegree (2,2) in T, to-
gether with f:’)L,17f1l,3af4L,0 and f&4.

Proof. Let us consider the maps ¢y (, ) as we did in Section Bl The kernels
of these maps are the bihomogeneous components of the orthogonal ideal
of f. Since f is a general form, we may assume that the maps ¢y ;) have
maximal rank, i.e. are either injective or surjective. Thus we may assume
they are injective when

(a7 b) E {(07 0)7 (07 1)7 (17 0)7 (17 2)7 (27 1)7 (07 3)7 (37 O)} .
The map ¢y (29 is then surjective, since dim 752 = 9 and dim 511 = 4, so
dim f2f2 = 5. Similarly, we also have

dim f3; = dim fi3 = dim fi; = dim fg; = 5.

dim f35 = dim f3, = 10, dim f35 = 15.
By an analogous procedure to that in the proof of Lemma Bl it follows
that fog =Tp1 - f2l72 and fgfz =T - f2l72, and that f* is generated by ;,_b
for a,b < 3 together with T, ¢ and T 4.

We are left to prove that f?fg is generated by foQ, fgfl, and fﬁ3- If not,
then in particular the multiplication map flfg ®Tho — f?fg, is not onto. But
then there is a relation gg— ¢'q’ = 0, where say g,¢' € flfg, while ¢, ¢’ € T .
By unique factorization, ¢ and ¢’ must have a common factor, so gl = ¢'l'
for some I,1" € Ty 9. By assumption, g, ¢’ are independent, so [,I" generate
T, and g = gol’ and ¢’ = gol. This is possible only if gy € f(f?), against our
assumption. O

Let f be a general bihomogeneous form of bidegree (3,3) and let F €
Clzo, 21, 22, 23] be the cubic associated to f. If F'is not a cone, the orthog-
onal F- is generated by 6 quadrics. By Sylvester’s Pentahedral Theorem
(see [2I] and for example [I5, Theorem 3.9] and [12, Example 12.4.2.3])
the powersum variety VSPps(F,5) is just a point corresponding to a scheme
'y € P3 given by a set of 5 points. The ideal of I'y is generated by 5 quadrics,
so a general quadric apolar to F' does not intersect I'g. In fact we may as-
sume that vy 1(P! x P!) in P3 is defined by a general quadric polynomial
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orthogonal to F', and hence that
I'oN 1/171(]?1 X ]P’l) = 0.

We consider the closure Hsiy1(I'g) in the Hilbert scheme of twisted cubic
curves, of the set of curves that contain I'y.

Proposition 4.3. (Kapranov)[11, Theorem 4.3.3] Hsi1(I'g) is isomorphic
to a smooth Del Pezzo surface of degree 5, i.e. isomorphic to the blowup
of P? in 4 points.

Let f be a general bihomogeneous form of bidegree (3, 3), and let I'g be the
unique set of 5 points in P? that is apolar to the cubic form F corresponding

to f.

Lemma 4.4. Let f be a general bihomogeneous form of bidegree (3,3), and
let Tg be the unique set of 5 points in P3 that is apolar to the cubic form F
corresponding to f. Then for every smooth I' € VSPp1p1(f,6), there exists
a (possibly reducible) twisted cubic curve Cr passing through Ty and T', in
particular [Cr] € Hsi11(To).

Proof. Consider 6 general points on V171(]P’1 x P1) C P3. They are the inter-
section of v 1 (P! x P!) with a twisted cubic curve. This is a particular case
of a classical result on n + 3 general points in P", attributed to Veronese
in [I], but often called Castelnuovo’s lemma:

Lemma 4.5. Through n+ 3 points in P™ no n of which lie in a P"~2, there
is a unique reduced and connected curve of degree n and arithmetic genus 0.

Therefore, if I' € VSPpi,pi(f,6) is an apolar scheme constituted of 6
general points, then I' € Cr C P2, where Cr is a twisted cubic. By the
apolarity lemma, it follows that Ir C F*, and since I, C It we get I C
FL. One can also show that I'q C Cr. In fact, under the 3-uple Veronese
embedding CT becomes a rational curve of degree 9, and since Cr is apolar
to F, the point [F] lies in the span of this degree 9 curve. Therefore F
can be interpreted as a general binary form of degree 9, and by the result
of Sylvester (Lemma [[7), such a binary form has rank 5, so [F] lies on
the span of 5 points belonging to the degree 9 curve. On the other hand,
the only scheme of 5 points apolar to F' is I'y, therefore those 5 points are
nothing but the image of I'y under the 3-uple Veronese embedding, which
implies that Cr passes through I'y.

We consider now the other kinds of smooth schemes in VPSpi,pi1(f,6).
If no plane passes through 4 of the points of I', then we are in the general
situation and the previous argument shows that we have a unique (smooth)
twisted cubic through I' and I'y. Suppose that exactly 4 points of I' lie on a
plane, and no three of them are on a line. Then there is a pencil of conics
passing through those planar points, and a line ¢ through the remaining
two points; thus there exists a unique conic C in this pencil meeting ¢. We
prove that 'y is contained in C'U ¢, which hence is an element in Hsz;11(Tg)
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(corresponding in the Del Pezzo surface to a point lying on one of the 10 lines
of the surface). Under the 3-uple Veronese embedding, the line ¢ is mapped
to a twisted cubic D1, and the conic C' is mapped to a rational sextic Dy. By
construction, the point [F] lies on the span of D1 U Dy. We denote by @ the
point of intersection between D¢ and Dy. We use the same technique as in
the proof of Lemma [3.8] to construct a scheme of length 5 apolar to F'. Let
E = span Dy and F = span Do, then F = P3 and F = PS. After projection
from the point [F] into P® the two linear spaces E and F will intersect in a
line, so there is a unique plane P containing the line m and intersecting F
in a line /g and F in a line £r. The variety of 3-secant planes to Ds is a
quartic hypersurface in F', and a general line meeting D5 intersects it in a
unique further point. In particular ¢z intersects Dy in ) and the variety of
3-secant planes in a further point 7. Therefore we may assume that there
are three points py,p2 and p3 in Dy whose span contains 7. Consider now
the line [F|T: since it is contained in P, it meets {g in one point R. A
general point in F lies in a unique secant to D, so we obtain two points
P4, ps in Dy whose span contains R. In this way [F] € span({pl, .. ,p5}).
As above {p1,...,p5} = I'p under the 3-uple Veronese embedding, so the
lemma follows also in this case.

Eventually, we rule out all the cases that are left. Suppose in fact that
3 of the 6 points of I' are collinear on a line ¢, or 5 of the 6 points lie in a
plane. In the first case, the three collinear points may be replaced in I' by a
scheme of length 2, so that f is apolar to a scheme of length 5 on P! x P!. In
the second case, the five coplanar points may be replaced in I" by a scheme
of length 4, so that f is apolar to a scheme of length 5 on P! x P!. In both
cases this is against the generality assumption of f. ([

We now reformulate and prove Theorem

Theorem 4.6. For a general bihomogeneous form f of bidegree (3,3) the
variety VPSpiyp1 (f,6) is isomorphic to a smooth Del Pezzo surface of de-
gree 5.

Proof. Let 'y be the set of 5 points apolar to the cubic form F' associated
to f as in Lemma 4l Let Hsi1(Ip) be the Hilbert scheme of twisted cubic
curves through I'y.

If [C] € H3141(Tg), then C is a cubic curve through Iy, that is apolar
to F. Moreover vy 1(P! x P1)NC is a scheme of length 6. In fact every com-
ponent of C' contains some subset of I'g and therefore intersects 1 1 (P! x P1)
properly.

Thus, we get a morphism

Y Hzp1(To) — VPSpiyp1(f,6)

This morphism is injective, because otherwise there would be two cubic
curves C' and C’ that pass through I'g and have a common intersection
with vy 3 (]P’l X ]P’l). Since I'g has no common point with v 1 (Pl X IP’l) this
is impossible by Castelnuovo’s lemma. To show that the morphism ) is



20 M. GALLET, K. RANESTAD, AND N. VILLAMIZAR

surjective, we first note that both Hsz;11(I'g) and the variety VPSpip1(f,6)
are surfaces, so it suffices to show that 1 is onto the set of smooth schemes
in VPSpi,p1(f,6). This is precisely the content of Lemma [£.41

It remains to show that the bijective morphism v is an isomorphism.

Lemma 4.7. If f is a general (3,3)-form and [I'] € VPSpi,p1(f,6) then T’
is apolar to f.

Proof. The ideal of each curve C' in Hs;1(I'g) is contained in the ideal of T’y
and is therefore apolar to the cubic form F associated to f. The scheme
of intersection vy (P! x P) N C is therefore apolar to f. This intersec-
tion has length 6 and belongs to the closure of the smooth apolar schemes
in VPSp1p1(f,6). Since 9 is a surjective morphism, the lemma follows. [

To show that 1) is an isomorphism, we show that VPSp1 p1 (f, 6) is smooth.
First of all, the Hilbert scheme Hilbg(P! x P!) itself is smooth (see [7]). Con-
sider next, in Hilbg(P* x P'), the open subset U of schemes that lie on a
unique curve in the Hilbert scheme of twisted cubic curves in P?, and whose
ideal on P! x P! has dim It (33 = 10, or equivalently, such that the span
of v33I' is a P5. Over U we consider the rank 10 vector bundle E;; whose
fibre over a scheme [I'] is the dual of the space Ir 33 C T{33) of (3, 3) forms in
the ideal of I'. The linear form ¢y 33): T(33) — C defines a section on Fy.
If VPSpiyp1(f,6) C U, then VPSp1,p1(f,6) is the 0-locus of this section, by
Lemma 4.7

Lemma 4.8. If f € S33 is general, then VPSp1,p1(f,6) CU.

Proof. 1t suffices to prove that for any [I'] € VPSp1,p1(f,6) the span of v3 3(I")
is a P°. For a general f, consider the 5 points I'g apolar to the cubic form F
on P? associated to f. We may assume that every line through a pair of
points of I'g intersects v 1 (]P’1 X ]P’l) transversally. Therefore the intersec-
tion of any cubic curve in Hsi11(Ig) with vy 3 (IP’l X IP’l) is curvilinear. If
the cubic curve has a component of degree d, then the intersection with
2 (IP’l X IP’l) has degree 2d. On the 3-uple embedding of this curve, any
such curvilinear scheme spans a P°. O

The space of forms ¢y (33) form a linear space (= S(33)) of sections of
Ey without basepoints on U, so for a general f the 0-locus VPSpip1(f,6)
is smooth. Since % is a bijective map between smooth surfaces, it is an
isomorphism. O

5. CUBIC FORMS ON A CUBIC SURFACE SCROLL

Let ¥ be a cubic scroll in P*. The Picard group Pic(X) is free of rank 2
generated by the class of curves F and F, where E? = —1, E- F = 1 and
F? = 0. The linear system |E + F| defines a morphism 7: ¥ — P2, which
is the blowup of a point pr € P? with exceptional divisor 77 (pg) = E.



VARIETIES OF APOLAR SUBSCHEMES OF TORIC SURFACES 21

The Cox ring of ¥ is isomorphic to a bihomogeneous polynomial ring S =
(C[x(b x1,Y0, yl] SUCh that

SE = Ho(g, Oz(E)) = (a;0>

Sp=H’(Z,05(F)) = (yo, y1),
and
Sp+r = H°(E,05(E + F)) = (zoyo, Toy1, 21).

Let T = Clto, t1,u0,u1] with tg,t; dual to zg,x; and ug,u; dual to yo,y1,
generating an action of T on S by differentiation, that defines the apolarity
of the introduction in coordinates. In fact, we may then interpret ¥ C
P(Sgt2r) as a set of forms:

2 = {[ao20 {(yo, y1) + a121 L(yo, y1)?] €P(SE42r) :
ao,a1 € C, l(yo,y1) € (yo,11)}

Let f € Ssprer C Sym35E+2F. Thus f maybe interpreted as a cubic
form F on P* restricted to ¥. We let

VPSx(f,8) = {[F] € HilbgX : [f] € span (1/3E+6F(I‘))}.
The following theorem is equivalent to Theorem

Theorem 5.1. For a general f € Sspier, the variety VPSs(f,8) is iso-
morphic to P? blown up in 8 points.

Proof. Recall that we may interpret [f] as a point [F] in the linear span
inside P34 = P(C[zo, 21, 22, 23, 24]3) of the 3-uple embedding of ¥.. We may
clearly interpret I as a general cubic form in P%. Therefore F, and hence
f, is not apolar to any rational quartic curve. In particular, we may assume
that Ifspior = It py3r = 0. Furthermore, we may assume that the map

¢rop+3F: Topi3r — SE43F

has maximal rank, so Iy opi3r = ker ¢fopy3F is 2-dimensional, i.e. defines a
pencil of curves in K C |2E + 3F|. Notice that, by the apolarity lemma [[.3]
every curve in K is apolar to f.

Lemma 5.2. For a general f € Ssgpier, the singular curves in K are
wrreducible nodal curves and the basepoints I'g of K are 8 general points
m .

Proof. Let I'g C X be 8 general points. In degree 2F + 3F, the ideal of 'y
is 2-dimensional. Furthermore, the set of forms f’ € S3ggp for which Iy is
apolar is the 7-dimensional subspace in S3ger orthogonal to It 3p+6r C
T3p16r. These f’ are precisely the forms that are apolar to every curve in K.
Now, P(S3g+6r) has dimension 21, while the set of pencils in P(T5g13r) has
dimension 14, so the general pencil is apolar to some form f and the lemma
follows. O
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Now any scheme I' in VSPyx(f,8) has length 8, so it lies in a curve in
|2E + 3F|. Therefore, if T" is apolar, it lies in a curve in K. Now the base
scheme I'g of K has length 8, so this scheme is the only one of length 8 that
lies on all curves in K. The other schemes I' C C' C X of length 8 that are
apolar to f lies in a unique curve C' € K.

Let C' € K. Then C is apolar to f, so may consider the variety

Let [I'l € VPSc(f,8). Then I' C C' is a subset of the intersection with a
curve C' in |3E + 3F)|.

The residual part of the intersection Cr N C’ is a unique point on Cr that
we denote by pr. We thus get a map for C' € K

ve: VPSe(f,8) — C
T —  pr.

The map )¢ is defined also on I'g since any curve C’ + E, with C’ € K, lies
in |3F + 3F| and intersect C' in I'g and in the residual point £ N C.
Composing ¢ with the blowup map 7, we get a morphism

7 ovo: VPSc(f,8) — P?

that we want to extend to all of VPSx(f,8). For this, consider, in the Hilbert
scheme of length 8 subschemes of X, the open set U of schemes I' that are
contained in a unique pencil of curves Nr in |3E + 3F|. Let T C X be the
baselocus of Np. If T is finite, then it has length 9 and there is a unique
point pr € ¥ residual to I' in I'. Composing with 7 we get a rational map

v U --» P2
Clearly the restriction of ¢ to VPSc(f,8) extends to the morphism ¢
for every curve C € K. Since 9c(Iy) = w(E) for each C, and every

other I' in VPSx(f,8) lies in a unique C, we see that the restriction of ¢
to VPSs(f,8) extends to a morphism

Yy VPSx(f,8) — P?

such that the restriction of ¥y to VPSc(f,8) coincides with ¢ for each
CeK.

We proceed to show that ¢ is an isomorphism for every curve C' € K.
For this we first give a more general fact for elliptic curves, equivalent to

Lemma [I.8l

Lemma 5.3. Let C C P29=2 pe an elliptic normal curve of degree 2d — 1,
then the set of d-secant P41 ’s to C' that pass though a general point in P24=2
correspond one to one to points on C'.

Proof. Let C be an elliptic normal curve of degree 2d embedded by a line
bundle £, then the d — 1-secant variety of C' is a complete intersection of a
pencil of determinantal hypersurfaces of degree d, that each are defined by
a pair of line bundles of degree d that add up to £ (see [6] Theorem 1.3,
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Lemma 2.9], [19]). Furthermore, for a general line that intersects C' in a
point g, every point outside C' lies on a unique hypersurface in the pencil, so
after projection the curve C from ¢ has degree 2d — 1 and through a general
point the d-secants correspond one to one to line bundles of degree d on C,
i.e. one to one to points on C. U

Lemma 5.4. Assume f is general, so that the singular curves in K are
wrreducible and nodal and that the basepoints I'g of K are 8 points disjoint
from E. Then the morphism c: VSPo(f,8) — C is an isomophism for
every C € K.

Proof. Consider the embedding C' — P C P(S3z,6r) defined by the linear
system |(3E 4 6F)¢| of divisors on C, defined by the linear system of curves
|3E +6F| restricted to C. It is the composition of the embedding defined by
|[4F + 6F| and the projection from the point £ N C. We consider Weil and
Cartier divisors on C' (if C' is smooth they of course coincide). While Weil
divisors may have multiplicity one at a node po of C, any effective Cartier
divisor has multiplicity at least two at pc. Any Weil divisor I" of degree 8
on C is contained in a unique Cartier divisor I' of degree 9 defined on C
by the pencil Dr of curves in [3E + 3F| that contain I'. The uniqueness
of Dr, implies both that the map ©c: I' — ppr = I' — I is well-defined, and
that it is injective as soon as there is a unique divisor in the linear system
in |[(3E 4+ 3F)c — pr| in VPSc(f,8). Any curve Gr in [4E + 6F| that is
not a multiple of C' and contains the Cartier divisor I', defines on C' a Weil
divisor IV = Gr N C —T of degree 8 that contains the point pp. Thus I' +I"
is a hyperplane section of C' C P'5 C P(S;g46r) and define a pair of linear
systems

Ly .= |(4E +6F)¢ —F/| and Ly :=|4E +6F)c — T,

like in the Lemma [5.3] above for smooth elliptic curves. Since I' + IV =
(4E +6F)c, and '+ pr = (3E + 3F)¢, we get IV —ppr = (E + 3F)¢, ie.
I"=(E+3F)c+pr. Now, [(E+3F)c+p|=|(E+3F)c+p'| if and only
if |(F)e + p| = |(F)c + p'| which again is equivalent to p = p’. Therefore
the linear system Ly is uniquely defined by pr.

A general point in P'® lies in the span of a unique divisor in each of
these linear systems of degree 8. So, after projection from the point £ N C,
through a general point [f] € P! in the span of C C P* C P(S3g46r), the
set of subschemes I' of length 8 on C' whose span contains [f] are in one
to one correspondence with linear systems Lt and hence of the points pr
on C. And the correspondence coincides with the map o : VPS¢ (f,8) — C
above. O

Every [I'] € VPSx(f,8) belongs to VPSc(f,8) for some C' € K, so in
particular, every [I'] € VPSx(f,8) is apolar to f. Consider therefore the
open subset U’ C U C Hilbg(X) of the smooth open set U above consisting
of schemes T', such that dim It 3p46r) = 18, or equivalently, such that
v3p46r(I) spans a P7. Let Ly be the vector bundle of rank 18 over & whose



24 M. GALLET, K. RANESTAD, AND N. VILLAMIZAR

fiber over [I'] is the dual of the space of sections in degree 3E + 6F of the
ideal IF,(3E+6F) - T3E+6F. The linear form ¢f7(3E+6F): T(373) — C defines
a section on Ey. If VPSy(f,8) C U’, then VPSx(f,8) is the O-locus of this
section, since any I' in VPSx/(f,8) is apolar to f.

Lemma 5.5. If f € Sspigr is general, then VPSx(f,8) CU'.

Proof. Tt suffices to show that for any [I'] € VPSx(f,8) the image vs3gy6r(T)
spans a P7. But this follows from the above, since I' C C' for some irreducible

curve C' in K, and any subscheme of length 8 on the curve v3p¢r(C) spans
a P O

The space of forms ¢ (3p46r) form a linear space (= Szpy6r)) of sections
of Ey without basepoints on U, so for a general f the 0-locus VPSx(f,8) is
smooth.

Now, every point outside I'g lies in a unique curve C' € K, so 9y is
a birational morphism from a smooth surface and has an inverse that is
defined outside 7(I'g). Let 7’': ¥’ — P? be the blowup along 7(Ig). Since,
by assumption, all C' € K are smooth at I'g, the inverse map to ¢y lifts to
a morphism ¢}3 ¥ — VPSx(f,8) that restricts to the inverse of ¥¢ on the

strict transform of 7(C) on ¥/. Therefore ¢} is an inverse of v, and hence
an isomorphism. O
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