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VARIETIES OF APOLAR SUBSCHEMES OF TORIC

SURFACES

MATTEO GALLET, KRISTIAN RANESTAD, AND NELLY VILLAMIZAR

Abstract. Powersum varieties, also called varieties of sums of powers,
have provided examples of interesting relations between varieties since
their first appearance in the 19th century. One of the most useful tools
to study them is apolarity, a notion originally related to the action of
differential operators on the polynomial ring. In this work we make
explicit how one can see apolarity in terms of the Cox ring of a variety.
In this way powersum varieties are a special case of varieties of apolar
schemes; we explicitely describe examples of such varieties in the case
of two toric surfaces, when the Cox ring is particularly well-behaved.

1. introduction

Powersum varieties for homogeneous forms provide examples of surpris-
ing relations between varieties, in particular between hypersurfaces and the
variety of expressions of the defining form as a sum of powers of linear forms.

These varieties have been widely studied since the 19th century: Sylvester
considered and solved the case of binary forms (see [20, 21]). A number of
further cases have been treated more recently, see [10], [13], [14], [16], [17]
and [18].

Powersum varieties are special cases of a general construction: given a
projective variety X ⊆ P

n, let y ∈ P
n be a general point and k be the

minimal natural number such that there are k points in X whose span
contains y. Thus k is the smallest integer such that the (k − 1)-th secant
variety of X fills the space P

n.
Define VPSX(y, k) to be the closure in Hilbk(X) of the set of smooth

subschemes of length k whose span contains y. If X is the d-uple embedding
of Pr, then one may interpret y as the class [f ] of a homogeneous form f
of degree d. The k-tuples of points on X whose span contains [f ] represent
expressions of f as a sum of d-th powers of linear forms. The closure of
this set of k-tuples in the Hilbert scheme is denoted VSP(f, k) and coincides
with the variety VPSX(f, k).

The notion VPSX(y, k) can be read as “Variety of aPolar Subschemes”:
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Definition 1.1. A subscheme Z ⊆ X is called apolar to y ∈ P
n, if y is

contained in the linear span of Z in P
n.

Note that VPSX(y, k) contains only those apolar subschemes that are in
the closure of the set of smooth apolar subschemes. When dimX > 3, then
the general point y may have singular apolar subschemes of length k that
do not belong to this closure.

Apolar schemes have been studied (in the classical setting of powersum
varieties) considering the ideal, in the polynomial ring, of differential oper-
ators annihilating a given homogeneous form. In this paper we generalize
this approach to the general setting of the VPS, using the Cox ring of X, the
graded C-algebra of sections of all line bundles on X, graded by the Picard
group Pic(X). When X is a toric variety, the Cox ring is a polynomial ring
(see [3]).

Let S and T be two copies of the Cox ring of X, with grading given by
the Picard group Pic(X). For each element A ∈ Pic(X) we let SA be the
space of linear forms on TA. For each nonzero f ∈ SA we let Hf ⊆ TA be the
hyperplane of sections that vanish at the point [f ] ∈ P(SA). In the classical
setting of powersum varieties, Hf is a hyperplane of differential operators
annihilating f .

If A is very ample on X, then its global sections TA define the embedding
νA : X →֒ P(SA). Thus TA is the space of linear forms on P(SA). For a
subscheme Z ⊆ X ⊆ P(SA) we set

IZ,A =
{

g ∈ TA : g|Z ≡ 0
}

.

The above definition of apolar subschemes may be formulated in terms of
ideals:

Definition 1.2. A subscheme Z ⊆ X is called apolar to f ∈ SA if IZ,A ⊆
Hf .

For each B ∈ Pic(X), we define

If,B =

{

Hf : TA−B = {g ∈ TB : g · TA−B ⊆ Hf}, if A−B > 0

TB, otherwise,

where A−B > 0 if the line bundle A−B has global sections, and set

If =
⊕

B∈Pic(X)

If,B ⊆ T.

Similarly, a subscheme Z ⊆ X has ideal

IZ :=
⊕

B∈Pic(X)

IZ,B ⊆ T ; IZ,B = {g ∈ TB : g|Z ≡ 0}.

The classical apolarity lemma (see [9, Lemma 1.15]) can be read as follows.

Lemma 1.3. If Z is a subscheme of X and f ∈ SA, then IZ ⊆ If if and
only if IZ,A ⊆ If,A = Hf
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Proof. It suffices to show the if-direction of the equivalence. If B > A then
If,B = TB , so it suffices to consider B < A. But

IZ,B · TA−B ⊆ IZ,A ⊆ Hf

implies
IZ,B ⊆ Hf : TA−B = If,B ,

so the lemma follows. �

For each pair of classes A,B ∈ Pic(X) and element f ∈ SA we define a
linear map

φf,B : TB → SA−B; g 7→ g(f) (1)

such that
g(f)(g′) = g′g(f) ∈ C for g′ ∈ TA−B

i.e.,
Hg(f) :=

(

Hf : 〈g〉
)

⊆ TA−B .

Note that ker φf,B = If,B.

In this paper we present three examples where we describe the VPSX(f, rf )
where X is a toric surface different from the projective plane, f a general
section in SA for some A ∈ Pic(X) and rf the minimal integer r such that
VPSX(f, r) is not empty. The paper is structured in the following way. In
Section 2 we set up the theory for apolarity in the case X = P

1 × P
1. We

prove the following two theorems in Sections 3 and 4, respectively.

Theorem 1.4. Let X = P
1 × P

1, A = (2, 2) ∈ Pic(X) and f ∈ SA be a
general section. The VPSP1×P1(f, 4) is a threefold isomorphic to a smooth
linear complex in the Grassmannian G(2, 4) blown up along a smooth ratio-
nal normal quartic curve.

Theorem 1.5. Let X = P
1 × P

1, A = (3, 3) ∈ Pic(X) and f ∈ SA be a
general section. The VPSP1×P1(f, 6) is isomorphic to a smooth Del Pezzo
surface of degree 5.

In Section 5 we focus on the case X = F1, namely the blow up of P2 in
one point embedded as a cubic scroll in P

4. We prove the following result.

Theorem 1.6. Let X = F1 with hyperplane class H, let A = 3H and
f ∈ SA be a general section. The VPSF1

(f, 8) is isomorphic to P
2 blown up

in 8 points.

Apolar rational or elliptic curves play a crucial role in arguments, in
particular in the use of the following facts. For rational curves Sylvester
showed (see [20]):

Lemma 1.7. Let C ⊆ P
2d−1 be an rational normal curve of degree 2d − 1

and y a general point in P
2d−1, then there is a unique d-secant Pd−1 to C

that pass though a general point, i.e. VPSC(y, d) ∼= {pt}. Let C ⊆ P2d be
an rational normal curve of degree 2d and y a general point in P

2d−1, then
VPSC(y, d+ 1) ∼= C.
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For elliptic curves, the following lemma follows from Room’s description
of determinantal varieties. We give a proof (Lemma 5.3) in Section 5:

Lemma 1.8. Let C ⊆ P
2d−2 be an elliptic normal curve of degree 2d − 1

and y a general point in P
2d−1, then VPSC(y, d) ∼= C.

2. Apolarity for P
1 × P

1

Let us consider X = P
1 × P

1. In this case, the Picard group of X
is Z

2 and its Cox ring is S = C[x0, x1][y0, y1], namely the polynomial
ring C[x0, x1, y0, y1] together with the bigrading defined by the matrix

x0 x1 y0 y1
( )

1 1 0 0

0 0 1 1

We can write S =
⊕

a,b∈Z

Sa,b, where Sa,b is the set of bihomogeneous polyno-

mials of bidegree (a, b). Consider the ring

T = C[t0, t1][u0, u1],

which is a copy of S, and the action of T on S by differentiation

ti = ∂/∂xi and ui = ∂/∂yi, for i = 0, 1.

Definition 2.1. For a bihomogeneous form f ∈ Sa,b, the orthogonal f⊥

of f is defined as the ideal of the elements of T annihilating f , i.e.,

f⊥ =
{

g ∈ T : g(f) = 0
}

.

Notice that for a bihomogeneous form f ∈ Sa,b one has f⊥a,b = Hf , where

Hf is the hyperplane defined in Section 1. Moreover, f⊥c,d = f⊥a,b : T(a−c,b−d)

for all c 6 a and d 6 b. This shows that f⊥ = If , where If is the ideal
defined in Section 1. The maps φf,(a,b) from Equation (1) are in this case
given by applying the elements of T as differential operators to f . It follows
that kerφf,(a,b) is the set of forms of bidegree (a, b) in f⊥, namely f⊥a,b.

In the case of P1 × P
1, every divisor of class (a, b) with a, b > 0 is very

ample and determines the Segre-Veronese embedding

νa,b : P
1 × P

1 →֒ P
ab+a+b

(ℓ1, ℓ2) 7→ la1 l
b
2,

(2)

where l1 ∈ 〈x0, x1〉, l2 ∈ 〈y0, y1〉, and P
ab+a+b is identified with P(Sa,b).

In this way, we can interpret the variety of apolar schemes as a variety of
sums of powers. In fact, a bihomogeneous form f ∈ S of bidegree (a, b)
can be written as a sum f =

∑r
i=1 l

a
1i l

b
2i, for linear forms l1i ∈ 〈x0, x1〉 and

l2i ∈ 〈y0, y1〉, if and only if the scheme Γ =
(

(l11, l21), . . . , (l1r, l2r)
)

lies in

the span of νa,b
(

P
1 × P

1
)

. Since Ta,b are the linear forms on P(Sa,b), the
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linear forms vanishing on νa,b(Γ) are the elements of bidegree (a, b) of the
ideal IΓ of Γ. From this we see that

[f ] ∈ span νa,b(Γ) ⇐⇒ IΓ,(a,b) ⊆ f⊥a,b .

By Lemma 1.3, this is equivalent to the fact that Γ is apolar to f . Hence
VPS(f, r) can be interpreted as the Zariski closure

{

(

[l11, l21], . . . , [l1r, l2r]
)

∈ Hilbr P1 × P1 : f =

r
∑

i=1

la1i l
b
2i

}

.

As in the standard homogeneous case we define the notion of rank of
bihomogeneous polynomials in S.

Definition 2.2. For a bihomogeneous form f of bidegree (a, b), the rank
of f is defined as

rank(f) = min

{

r : f =
r
∑

i=1

la1i l
b
2i with l1i ∈ 〈x0, x1〉 and l2i ∈ 〈y0, y1〉

}

.

We can give a geometric description of rank(f) as follows. Identifying
P
ab+a+b with P (Sa,b), we can associate to every form f ∈ Sa,b a point [f ] ∈

P
ab+a+b. In this way, the forms in Sa,b of rank 1 correspond to points lying

on the Segre-Veronese variety. Moreover, a form has rank r if and only if it
lies in the span of exactly (not less than) r points in the Segre-Veronese.

The previous interpretation connects the rank of bihomogeneous forms
with the theory of secant varieties of the Segre-Veronese. In particular, a
general bihomogeneous form in Sa,b has rank r if and only if the r-secant

variety coincides with P
ab+a+b.

The computation of the dimension of secant varieties carried by Catal-
isano, Geramita and Gimigliano in [2, Corollary 2.3], implies that if f is a
bihomogeneous general form of bidegree (a, b), then

rank(f) =







⌈

(a+1)(b+1)
3

⌉

if (a, b) 6= (2, 2d),

2d+ 2 if (a, b) = (2, 2d).
(3)

For a general form f of bidegree (a, b), the dimension of VSPP1×P1(f, r)
is determined by the rank of f as described in the following proposition —
similar to the classical case, see for example [4, Proposition 3.2].

Proposition 2.3. Let f ∈ Sa,b be a general bihomogeneous form of rank r.
Then VSPP1×P1(f, r) is an irreducible variety of dimension

dimVSPP1×P1(f, r) =







3

(⌈

(a+1)(b+1)
3

⌉

− (a+1)(b+1)
3

)

if (a, b) 6= (2, 2d),

3 if (a, b) = (2, 2d).

Proof. Let us denote Hilbr P
1 × P

1 by H. We consider the incidence variety

X =
{

(

[Γ], [f ]
)

∈ H × P
ab+a+b : [Γ] ∈ VSPP1×P1(f, r)

}

.
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Then we have the two projection maps:

π1 : X −→ H π2 : X −→ P
ab+a+b

Let U be the open subset of H parametrizing zero-dimensional schemes
given by r distinct points in P

1 × P
1. Then for every [Γ] ∈ U we have that

Γ = (P1, . . . , Pr). Also, it is possible to restrict U so that the (a, b)-th powers
of all linear forms associated to the points Pi’s are linearly independent. In
this way we can prove that π1 is dominant. Moreover, if [Γ] ∈ U , then the
fiber of π1 over [Γ] is an open set of a linear space of dimension r− 1. Since
H is irreducible and nonsingular (see [7]), then also X is irreducible and
of dimension 3r − 1. The fiber of π2 over [f ] ∈ P

ab+a+b is VSPP1×P1(f, r),
so we get that for a general f , the variety VSPP1×P1(f, r) has dimension
3r − 1− (ab+ a+ b). Using Equation (3) the statement follows. �

3. Bihomogeneous forms of bidegree (2, 2)

The Segre-Veronese embedding from Equation (2) is in this case the (2, 2)
embedding of P1 × P

1 in P
8, denoted

ν2,2 : P
1 × P

1 →֒ P
8.

If f is a general bihomogeneous form in S2,2, then by Equation (3) ap-
plied to the case (a, b) = (2, 2d) with d = 1, the rank of f is 4, hence
dimVSPP1×P1(f, 4) = 3 by Proposition 2.3. In order to study the geometry
of this variety we use apolarity.

Lemma 3.1. For a general form f ∈ S2,2 the orthogonal f⊥ is generated

by f⊥2,1, f
⊥
1,2, f

⊥
3,0 and f⊥0,3. Moreover, both f⊥2,1 and f⊥1,2 have dimension 4.

Proof. Since dimT2,1 = 6 and dimS0,1 = 2, and f is general, the kernel f⊥2,1
of the map φf,(2,1) has dimension 4. By symmetry, also f⊥1,2 has dimension 4.

Consider the vector subspace T0,1 · f⊥2,1 ⊆ f⊥2,2: if it is of dimension 8,

it means that we do not need elements from f⊥2,2 to generate f⊥. Suppose

that dimT0,1 · f
⊥
2,1 < 8: if g1, . . . , g4 is a basis for f⊥2,1, then u0 g1, . . . , u0 g4,

u1 g1, . . . , u1 g4 are not linearly independent. So, for some h1, h2 ∈ f⊥2,1 we

have u0 h1+u1 h2 = 0. This implies that there exists a nonzero h̃ ∈ T0,2 such

that h1 = u1 h̃ and −h2 = u0h̃. Hence T0,1 · h̃ ⊆ f⊥, which forces h̃ ∈ f⊥.

But h̃ has bidegree (2, 0), and by the generality assumption on f there is no
nontrivial element in f⊥2,0. Hence dimT0,1 · f

⊥
2,1 = 8, and so T0,1 · f

⊥
2,1 = f⊥2,2.

Moreover, since f is a form of bidegree (2, 2), then f⊥a,b = Ta,b whenever a
or b is greater than or equal to 3. Notice that T3,b = T3,0 · T0,b, and Ta,3 =

T0,3 · Ta,0, for every a, b > 1. Thus, f⊥2,1, f
⊥
1,2 together with f⊥3,0 = T3,0 and

f⊥0,3 = T0,3 generate the ideal f⊥. �
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The space of sections f⊥2,1 define a linear system of (2, 1)-curves on P
1 × P

1

and, by Lemma 3.1, a rational map δ2,1 : P
1 × P

1 −→ P
3 fitting in the dia-

gram

P
5

π2,1

��
✤

✤

✤

P
1 × P

1

η2,1 44❥❥❥❥❥❥❥❥

δ2,1 **❚
❚

❚
❚

P
3

(4)

where η2,1 is the map induced by the complete linear systems of (2, 1)-curves
in P

1 × P
1, and π2,1 is a linear projection. Notice that all constructions and

results from now on apply to both f⊥2,1 and f⊥1,2.
First, we prove that δ2,1 is a morphism. For this we analyse the projection

center L2,1 of π2,1. By definition, L2,1 ⊆ P(S2,1) is spanned by the forms

annihilated by f⊥2,1, i.e. by the partials ∂f/∂y0 and ∂f/∂y1. Consider first

the surface scroll Y2,1 := η2,1(P
1 × P

1) ⊆ P (S2,1) = P
5. The (1, 0)-curves

on P
1 × P

1 are mapped to lines in Y2,1, while the (0, 1)-curves are mapped to
conics. The planes of these conics are the planes spanned by forms q(x0, x1)·
l(y0, y1) ∈ S2,1, where l(y0, y1) ∈ 〈y0, y1〉 is a fixed linear form. We let W2,1

be the threefold union of these planes. In the following lemma we show that
for a general (2, 2)-form f , the projection center L2,1 does not intersectW2,1.

Lemma 3.2. Let f ∈ S2,2 be a general form. Then no linear combination of
its partial derivatives ∂f/∂y0 and ∂f/∂y1 is of the form q(x0, x1) · l(y0, y1),
where q and l are respectively a quadratic and a linear form. In particular,
the line L2,1 ⊆ P(S2,1) does not intersect the threefold scroll W2,1.

Proof. Write f as
y20 Q+ y0y1Q

′ + y21 Q
′′.

Then, a linear combination λ ∂f/∂y0+µ ∂f/∂y1 is of the form q · l if and only if
λQ+ µQ′ is proportional to λQ′ + µQ′′. Since f is general, we can suppose
that Q, Q′ and Q′′ are linearly independent. Then the two pencil of quadrics
λQ+ µQ′ and λQ′ + µQ′′ have at most one point in common, which hence
must coincide with Q′. But

λQ+ µQ′ = Q′ ⇔ λ = 0,

λQ′ + µQ′′ = Q′ ⇔ µ = 0.

This proves the claim. �

Notice also that Lemma 3.2 holds for any (2, 2)-form f for which the
quadratic forms Q, Q′ and Q′′ are linearly independent.

Consider the diagram (4) above:

Corollary 3.3. The map δ2,1 defined by f⊥2,1 is a morphism. Moreover,

all lines in Z2,1 := δ2,1
(

P
1 × P

1
)

are linear projections of lines in Y2,1 =

η2,1
(

P
1 × P

1
)

. In particular, no conic in Y2,1 is mapped to a line by π2,1.
The analogous result holds for the (1, 2) case.
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Proof. Since the projection center L2,1 does not intersect W2,1 ⊇ Y2,1, the
projection π2,1 restricted to Y2,1 and hence also δ2,1 is a morphism, and no
conic in Y2,1 is mapped to a line in Z2,1 := δ2,1

(

P
1 × P

1
)

. Furthermore,

f⊥1,1 = {0}, so L2,1 does not lie in the span of any (1, 1)-curve in Y2,1,

therefore every line in Z2,1 is the linear projection of a (1, 0) curve, i.e. a
line in Y2,1. �

Lemma 3.4. Let f ∈ S2,2 be a general form and suppose that g1, g2 ∈ f⊥2,1
span a linear space of dimension 2. Then either the ideal (g1, g2) defines a
scheme of length 4 in P

1 × P
1, or the pencil of (2, 1) curves defined by g1

and g2 has a common component, a (1, 0) curve.

Proof. We need to exclude that the pencil of (2, 1) curves defined by g1
and g2 has a fixed component that is a (2, 0) curve, a (1, 1) curve or a (0, 1)
curve. We treat these cases one by one.

If there is a common (2, 0) curve, then all curves in the pencil split into
it and a (0, 1) line. Therefore there exists a q ∈ C[u0, u1]2 such that

(α t0 + β t1) q · f = 0 ∀α, β ∈ C,

hence q ∈ f⊥0,2, but this contradicts Lemma 3.1. Similarly, if we assume that

there is a common (1, 1) curve, then f⊥1,1 would be non-trivial and this again
contradicts Lemma 3.1.

We are left with the case when the pencil 〈g1, g2〉 has a (0, 1) curve ℓ in its
base locus. Consider the maps in the diagram (4), with L2,1 the center of the
projection π2,1. Then ℓ is sent to a conic by η2,1. Hence there is a pencil of
hyperplanes in P

5 passing through L2,1 and having a conic in its base locus.
Since the base locus of a pencil of hyperplanes in P

5 is a 3-dimensional linear
space, both the conic and the line L2,1 lie in a P

3. The latter happens if
and only if L2,1 intersects the plane spanned by such a conic, but this is not
possible by Corollary 3.3. �

The image Z2,1 of P1 × P
1 under the map δ2,1 is a rational scroll, since it

is rational and covered by the images of the lines in the scroll η2,1
(

P
1 × P

1
)

.
In the following we describe its singular locus.

Lemma 3.5. Z2,1 is a quartic surface in P
3 that has double points along a

twisted cubic curve and no triple points.

Proof. A scheme z of length 3 in P
1 × P

1 is contained in a (1, 1)-curve C, so
if z is mapped to a point by δ2,1 = π2,1 ◦ η2,1 the projection center L2,1 is
contained in the span of z ⊆ Y2,1, and hence in the span of the image of C
in Y2,1. But then C is mapped to a line in Z2,1, excluded by Corollary 3.3.
Therefore Z2,1 has no triple points. A general plane section of Z2,1 is the
image of a smooth rational quartic curve in Y2,1. Therefore a general plane
section of Z is a rational quartic curve, and therefore has 3 singular points
that span a plane, hence Sing (Z2,1) spans P

3 and is a cubic curve. From
the double point formula (see [8, Theorem 9.3]) we see that the double point
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locus of the restriction π|Y2,1
is a curve on Y2,1 of degree 6 because it is lin-

early equivalent to −KY2,1
(the anticanonical divisor of Y2,1). If Sing (Z2,1)

is not a twisted cubic, then it has to contain a line. The preimage under π
of such a line is then either a conic C or two skew lines E1 and E2. In the
first case the center L2,1 of π2,1 intersects span(C), but this is not possible
because of Lemma 3.2. In the second case we have L2,1 ⊆ span(E1 ∪ E2).
Since span(E1 ∪E2) ∼= P

3, there is a pencil of hyperplanes in P
5 containing

it; each of them intersects X in E1 ∪ E2 and in a residual conic D. Hence
we obtain a pencil of conics D such that span(D) intersects span(E1 ∪ E2)
in a line F . In this way we get a pencil of lines F in span(E1 ∪ E2); such
pencil fills a quadric in span(E1 ∪E2), and therefore the center L intersects
this quadric in 2 points; this situation is again ruled out by Lemma 3.2.
Therefore the only possibility left is that Sing (Z2,1) is a twisted cubic. �

Remark 3.6. Consider a smooth scheme [Γ] ∈ VSPP1×P1(f, 4) apolar to f ,

namely IΓ ⊆ f⊥. Notice that the dimension of IΓ,(2,1) equals the number

of linearly independent planes in P
3 passing through δ2,1(Γ). Moreover 2 6

dim IΓ,(2,1) 6 3, where the latter inequality follows since δ2,1 is defined on the

whole P
1 × P

1. However, Lemma 3.5 excludes that the dimension of IΓ,(2,1)
is 3, since in that case we would have that δ2,1(Γ) is a point. Therefore
dim IΓ,(2,1) = 2 and δ2,1(Γ) spans a line.

Remark 3.6 yields a rational map

Φ2,1 : VSPP1×P1(f, 4) 99K G
(

2, f⊥2,1
)

[Γ] 7→ IΓ,(2,1)
(5)

Consider the rational scroll Z2,1 = δ2,1
(

P
1 × P

1
)

and the rational curve

D2,1 =
{

[l] ∈ G
(

2, f⊥2,1

)

: ℓ ⊆ Z2,1

}

. (6)

Lemma 3.7. For a general bihomogeneous form f of bidegree (2, 2), the
rational map Φ2,1 in Equation (5) extends to a morphism on the whole
VSPP1×P1(f, 4). Moreover, the fiber over a point p under Φ2,1 is a smooth
rational curve if p ∈ D2,1 and it is at most one point when p 6∈ D2,1. In
particular, Φ2,1 is birational.

Proof. Since being collinear (see Remark 3.6) is a closed property, Φ2,1 ex-
tends to the closure of smooth apolar schemes, namely to VSPP1×P1(f, 4).

Let [Γ] ∈ VSPP1×P1(f, 4) and let ℓΓ be the line in P
3 containing δ2,1(Γ).

If [ℓΓ] 6∈ D2,1, then ℓΓ ∩ Z2,1 is a scheme of length 4, namely it is δ2,1(Γ).
Hence the fiber over ℓΓ is exactly [Γ]. Therefore, if ℓ ⊆ P

3 is any line not
contained in Z2,1, then either [ℓ] is not in the image of Φ2,1, or it is the image
of exactly one scheme in VSPP1×P1(f, 4).

Let ℓ ⊆ P
3 be a line contained in Z2,1. Denote by ℓ′ the (1, 0) line

in P
1 × P

1 such that δ2,1(ℓ
′) = ℓ. Since the preimage of Sing(Z2,1) under

the projection is linearly equivalent to the anticanonical divisor of Y , and
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so every line in Y2,1 intersects it in two points, then ℓ intersects Sing(Z2,1)
in 2 points. In fact, by Corollary 3.3, every line in Z2,1 is a projection of a
line in Y . We know that the preimage of ℓ∩Sing(Z2,1) under δ2,1 consists of
a scheme of length 4 that intersects ℓ′ in a subscheme of length 2. Summing
up, δ−1

2,1(ℓ) = ℓ′ ∪ {zℓ}, where zℓ is a scheme of length 2 that is mapped to ℓ
by δ2,1.

Let Γ ⊆ P
1 × P

1 be an apolar scheme such that δ2,1(Γ) is contained in ℓ.

Since Γ has length 4 and Γ ⊆ δ−1
2,1(ℓ), then the span of η2,1(Γ) must contain

ℓ′. On the other hand, since Γ is apolar to f , it is also apolar to both
∂f/∂y0 and ∂f/∂y1. Therefore the span of η2,1(Γ) contains the line that is
the center of the projection π2,1 in Equation (4). This rules out immediately
the case spanΓ ∼= P

1 and spanΓ ∼= P
2, since in both cases the center of the

projection would intersect Y2,1, contradicting Corollary 3.3. Hence η2,1(Γ)
spans a P

3 in P
5, and therefore there is a length 2 subscheme of Γ that is

not contained in ℓ′. Clairly, this subscheme has to coincide with zℓ.
Let us consider a plane in P

3 through ℓ. By construction of the map ℓ,
such plane defines (up to scalars) a form g ∈ f⊥2,1 that factors as g = l g̃,

where l is a (1, 0) form whose vanishing locus in P
1 × P

1 is ℓ′. If g vanishes
on a scheme Γ of length 4, that is apolar to f and is mapped to ℓ by δ2,1,
then zℓ ⊆ Γ and g̃ must vanish on the length 2 subscheme zℓ. In fact there
is a pencil of (1, 1)-forms vanishing on zℓ that together with l vanish on
Γ. Therefore every subscheme in the fiber over a Φ2,1(Γ) contains zℓ and is
contained in the reducible curve ℓ′ ∪ Z(g̃).

The set of apolar subschemes of length 4 in ℓ′ ∪Z(g̃) are described in the
following lemma.

Lemma 3.8. Let g ∈ f⊥2,1 such that g = l g̃ for forms l and g̃ of bide-
gree (1, 0) and (1, 1) respectively. Then the zero locus Cg of g supports two
pencils of length 4 apolar schemes. One pencil has a common subscheme
of length 2 on Z(g̃) and a moving subscheme of length 2 on Z(l), while the
subschemes of the other pencil has a unique common point on Z(l), and a
moving subscheme of length 3 on Z(g̃).

Proof. The fact that g is apolar to f means that the point [f ] is contained
in the span of the (2, 2) embedding of Cg, also denoted Cg. By construction,
Cg splits as Cg = C1 ∪ C2 where C1 is a conic and C2 is a quartic rational
normal curve. Notice that spanC1

∼= P
2 and spanC2

∼= P
4. Consider the

projection from [f ], denoted by ρ : spanCg
∼= P

6 99K P
5. Notice that ρ|spanC1

and ρ|spanC2
are isomorphisms, because otherwise C1 or C2 will be apolar

to f which contradicts Lemma 3.1. Set P to be the preimage under ρ of
the line ρ

(

spanC1

)

∩ ρ
(

spanC2

)

, and define the lines L1 = P ∩ spanC1 and
L2 = P ∩ spanC2.

Let us focus on the line L1: by construction, it passes through Q =
C1 ∩ C2, the only singularity of Cg, and then intersects the conic C1 in
another point T . The line through [f ] and T is contained in the plane P ,

hence intersects L2 in a point T̃ . Since C2 is a smooth rational quartic, the



VARIETIES OF APOLAR SUBSCHEMES OF TORIC SURFACES 11

set
{

trisecant planes of C2 passing through T̃
}

.

corresponds to the variety of sum of powers of a quartic bivariate form de-
composed into three summands, and by Sylvester’s result it is isomorphic
to P

1. If we pick the three points of intersection of such a trisecant plane
with C2 and we add the point T , we obtain four points whose span con-
tains [f ]. Thus, we have constructed a P

1 of schemes of length 4 apolar to f
constituted of 3 points lying on C2, and one common point lying on C1.

Consider now the line L2: by construction, it passes through the sin-
gularity Q, and it intersects the secant variety of C2 (a cubic threefold
in spanC2) in another point R. The line through [f ] and R is also contained

in the plane P , hence intersects L1 in a point R̃. Since R is in the secant
variety of C2, there exist two points in C2 whose span contains R. Moreover,
there is a pencil of lines in spanC1 passing through R̃, that defines a pencil
of length 2 schemes. In this way we produce a pencil of length 4 schemes
apolar to f , all of them having a length 2 scheme on C2 in common. �

To complete the proof of Lemma 3.7 we apply Lemma 3.8 to ℓ′ ∪ Z(g̃).
Only the pencil of apolar subschemes with a fixed subscheme of length 2
on Z(g̃) is mapped to ℓ by δ2,1. This completes the proof of Lemma 3.7. �

Lemma 3.9. Let g ∈ f⊥2,1 such that g = l1 l2 l̃ for forms li of bidegree (1, 0)

and l̃ of bidegree (0, 1). Then the zero locus Cg of g supports three pencils
of length 4 apolar schemes. Two of the three pencils are fibers of Φ2,1, while

the third one is mapped isomorphically to a line in G(2, f⊥2,1).

Proof. The first part of the proof follows a similar argument as that in
Lemma 3.8, so we only provide a sketch. The (2, 2) embedding of Cg splits

into three conics C1, C2 and C̃, such that C1 ∩ C̃ = {Q1}, C2 ∩ C̃ = {Q2}
and C1 ∩ C2 = ∅.

By projecting from [f ] one can prove that there exists a plane P such

that P ∩ spanC1 = ℓ1, P ∩ span(C̃ ∪ C2) = ℓ2 where ℓ1, ℓ2 are lines, and
P contains the line through [f ] and Q1. The line ℓ1 meets C1 in Q and in
another point R1. The line through R1 and [f ] meets ℓ2 in a point T . By
a similar argument but projecting from T , we obtain a point R2 ∈ C2 and
a pencil of pairs of points R3, R4 ∈ C̃ such that T is in span({R2, R3, R4}).
It follows that [f ] belongs to span({R1, R2, R3, R4}). In this way we find
a pencil of apolar schemes with R1 and R2 as fixed points, one on each of
the curves C1 and C2, and a moving part of length on C̃. On Z2,1, the

curves C1 and C2 are mapped to lines by δ2,1, while C̃ is mapped to a
conic. Their union is a plane section Z2,1, and the apolar schemes are all
collinear. Since R1 and R2 clearly are mapped to the same point, this pencil
of apolar schemes must be the pencil of lines through the image of R1 and
R2. Therefore the image of this pencil in G(2, f⊥2,1) is a line. Two other
pencils of such schemes with mobile parts supported on C1 and C2 can be
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constructed similarly. Each of the latter two pencils are mapped to a line
in Z2,1, namely the images of C1 and C2, and are therefore, by Lemma 3.7,
the fiber of the morphism Φ2,1 over a point in D1,2. This concludes the
proof. �

Proposition 3.10. For a general bihomogeneous form f of bidegree (2, 2)
the image of the map Φ2,1 from Equation (5) is a smooth linear section of

the Grassmannian G(2, f⊥2,1).

Proof. Since dimVSPP1×P1(f, 4) = 3, dimG(2, f⊥2,1) = 4 and Φ2,1 is bira-

tional onto its image, the image is a hypersurface U in G(2, f⊥2,1).

The degree 3 component of the Chow group of G(2, f⊥2,1) is generated

freely by one Schubert class Σ1, so [U ] = dΣ1 for some d. The intersection
of an α-plane Σ2 with Σ1 gives the only class Σ3 in degree 1 in the Chow
group. Hence [U ] · Σ2 = dΣ3. We prove that d = 1.

Let us consider the intersection of U with an α-plane Σ2. Every α-plane
in G(2, f⊥2,1) is of the form

Σ2(g) = {〈g1, g2〉 ⊆ f⊥2,1 : g ∈ 〈g1, g2〉},

for a g ∈ f⊥2,1. On the other hand such a form g defines a rational curve Cg,

and its (2, 2) embedding in P
8 (also denoted by Cg) has degree 6. Therefore,

the intersection of U with Σ2(g) has preimage under Φ2,1 given by

Φ−1
2,1

(

U ∩ Σ2(g)
)

=
{

[Γ] ∈ VSPP1×P1(f, 4) : g ∈ IΓ,(2,1)
}

=
{

[Γ] ∈ VSPP1×P1(f, 4) : Γ ⊆ Cg

}

.

If Cg is smooth, then from Sylvester’s result on general sextic binary forms

(see for example [5, Theorem 1.5.3]) we derive that Φ−1
2,1

(

U ∩ Σ2(g)
)

∼= P
1.

Consider now the case when Cg is not smooth. If Cg ⊆ P
1 × P

1 splits into
the union of a line and a smooth conic (intersecting in a point), then Cg ⊆ P

8

splits into a conic C1 and a quartic C2, both rational and smooth. In this
case, Φ−1

2,1

(

U ∩ Σ2(g)
)

has two irreducible components, both rational and
smooth, by Lemma 3.8. We claim that these are the only two components
of maximal dimension of the scheme Φ−1

2,1

(

U ∩Σ2(g)
)

. In fact, if there were

[Γ] ∈ VSPP1×P1(f, 4) such that Γ ⊆ Cg and Γ ⊆ C1, then the conic C1 would

be apolar to f . This would imply that there is a non-zero element in f⊥1,0,
and this is not possible by Lemma 3.1. An analogous argument excludes the
possibility that Γ ⊆ C2. On the other hand, there is at most one scheme Γ
formed by three points on C1 and one point B on C2. In fact, by construction
[f ] ∈ spanΓ, thus the line through [f ] and B intersects P

2 = spanC1, so it
is contained in the plane P . Since P ∩ C2 is the singular point Q, such line
coincides with the line through [f ] and Q, and that means that we have at
most one scheme Γ of this kind.

If Cg ⊆ P
1 × P

1 splits into the union of three lines, then Cg ⊆ P
8 splits

into three conics C1, C2 and C̃. In this case, Φ−1
2,1

(

U ∩ Σ2(g)
)

has three
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irreducible components, all rational and smooth, but, by Lemma 3.9, only
one of them is not contracted by Φ2,1.

Therefore, as the α-planes vary, we obtain a family of smooth and rational
curves. Hence the only possibility is that U is a linear complex, i.e., a
hyperplane section of G(2, f⊥2,1).

Let X2,1 be the image of Φ2,1, we now show that X2,1 is smooth. For
this, assume for contradiction that X2,1 is singular. Then it contains two
families of planes. In particular, it contains a family of α-planes as planes in
G
(

2, f⊥2,1
)

. But any α-plane in G
(

2, f⊥2,1
)

is of the form Σ(g) and intersects
X2,1 in a curve, so cannot be contained in X2,1. This is a contradiction that
proves that X2,1 is smooth. �

Proposition 3.11. Every [Γ] ∈ VSPP1×P1(f, 4) is apolar to f .

Proof. Let [Γ] ∈ VSPP1×P1(f, 4), we have to show that IΓ ⊆ f⊥. By

Lemma 3.7, both IΓ ∩ f
⊥
2,1 and IΓ ∩ f

⊥
1,2 are two-dimensional. If both IΓ,(2,1)

and IΓ,(1,2) are two-dimensional, then IΓ ⊆ f⊥. Suppose now that IΓ,(2,1)
has dimension 3: then, by Lemma 3.4, the system of (2, 1)-curves in IΓ∩f

⊥
2,1

must have a common component, a (1, 0) line ℓ. Suppose first that ℓ is
a common component of the whole system IΓ,(2,1). Then the residual 3-
dimensional family of (1, 1) curves can have at most one point in common.
Therefore the line ℓ contains a length 3 subscheme of Γ. The image of ℓ
under δ1,2 is a conic, but this contradicts the fact that δ1,2(Γ) is collinear.
Suppose next that ℓ is not a common component of the linear system IΓ,(2,1).

Then IΓ,(2,1) = 〈g1, g2, g3〉 with g3 6∈ IΓ ∩ f⊥2,1 and ℓ and the zero locus of g3
intersect in a point. Let g1 = l g̃1 and g2 = l g̃2, where l is the linear fac-
tor corresponding to ℓ. Then a subscheme of length 3 of Γ is contained
in the zero-locus of g̃1 and g̃2. This forces g̃1 and g̃2 to have a common
component ℓ̃, because otherwise their zero locus (being the intersection of

two (1, 1) curves) have length at most 2. Then ℓ̃ is either a (1, 0) or a (0, 1)
line. In the first case, we can repeat the previous argument and apply δ1,2
to Γ, obtaining a contradiction; in the second case we use δ2,1. The case
with IΓ,(1,2) is analogous. �

Corollary 3.12. For a general bihomogeneous form f of bidegree (2, 2) the
variety VSPP1×P1(f, 4) is a smooth 3-fold.

Proof. First of all, the Hilbert scheme Hilb4(P
1 × P

1) itself is smooth (see [7]).
Consider next, in Hilb4(P

1 × P
1), the open subset U of schemes Γ whose ideal

IΓ ⊆ T has codimension 4 in bidegree (2, 2).
Over U we consider the rank 5 vector bundle EU with fibre over a scheme

[Γ] the dual of the space IΓ,(2,2) ⊆ T2,2 of (2, 2) forms in the ideal of Γ. The
linear form

φf,(2,2) : T2,2 → C

defines a section on EU . If VPSP1×P1(f, 4) ⊆ U , then VPSP1×P1(f, 4) is the
0-locus, by Proposition 3.11, of a this section.
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Lemma 3.13. Let f ∈ S2,2 be general, then VPSP1×P1(f, 4) ⊆ U .

Proof. It suffices to prove that for any [Γ] ∈ VPSP1×P1(f, 4), the space IΓ,(2,2)
has dimension 5, or equivalently, the image ν2,2(Γ) spans a P

3. For this, as-
sume that ν2,2(Γ) spans a plane PΓ. If the intersection PΓ ∩ ν2,2(P

1 × P
1)

is finite, Γ is either curvilinear or it contains the neighbourhood of a point.
In the latter case, PΓ must be a tangent plane to ν2,2(P

1 × P
1), but a tan-

gent plane intersects ν2,2(P
1 × P

1) only in a scheme of length 3, so this is
impossible. If Γ is curvilinear it is contained in a smooth hyperplane sec-
tion of ν2,2(Γ), an elliptic normal curve of degree 8. But on any such curve
any subscheme of length 4 spans a P

3, again a contradiction. Finally, if
PΓ ∩ ν2,2(P

1 × P
1) is infinite, it contains a curve. But the only plane curves

on ν2,2(P
1 × P

1) are conics, and they are the intersection of their span with
ν2,2(P

1 × P
1). So in this case Γ is contained in a (0, 1) curve or a (1, 0) curve.

If Γ is apolar to f , this is impossible, so the lemma follows. �

The space of forms φf,(2,2) form a linear space (= S2,2) of sections of EU

without basepoints on U , so for a general f the 0-locus VPSP1×P1(f, 4) is
smooth. This finishes the proof of Corollary 3.12. �

Theorem 1.4 is now equivalent to the following:

Theorem 3.14. For a general bihomogeneous form f of bidegree (2, 2), the
variety VSPP1×P1(f, 4) is isomorphic to the graph of the birational auto-
morphism on a smooth quadric threefold Q defined by the linear system of
quadrics in the ideal of a rational normal quartic curve C ⊆ Q.

Proof. We first show that the natural map

Ξ: VSPP1×P1(f, 4) −→ G
(

2, f⊥2,1
)

×G
(

2, f⊥1,2
)

[Γ] 7→ IΓ,(2,1) , IΓ,(1,2)

is an injective morphism.
From Proposition 3.11 all schemes [Γ] ∈ VSPP1×P1(f, 4) are apolar to f ,

so IΓ ⊆ f⊥. By Remark 3.6, both images of Γ under δ2,1 and δ1,2 lie exactly
on one line, so

dim IΓ,(1,2) = dim IΓ,(1,2) = 2.

Hence Ξ is a morphism.
We now show the injectivity of Ξ. From Lemma 3.7 and the fact that Γ is

apolar to f we have that the only points where Ξ−1 is possibly not defined
are the schemes Γ that contains a subscheme of length 2 on a (1, 0)-line,
and a subscheme of length 2 on a (0, 1)-line. If these two subschemes of Γ
do not intersect, then the union of the two lines is defined by a (1, 1) form
that must be apolar to f , contradicting the generality assumption on f (see
Lemma 3.1). If the two subschemes intersect, the scheme Γ is mapped to
a line in both Z2,1 and Z1,2. In this case Γ has a subscheme of length 3
contained in the union of a (0, 1)-line and a (1, 0)-line and a residual point
that lies in the double curve and thus is mapped to the singular curve in
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both Z2,1 and Z1,2. Assume that Γ and Γ′ are two apolar schemes of length 4
and that

Ξ(Γ) = Ξ(Γ′).

Then both Γ and Γ′ have a subscheme of length 3 contained in a pair of lines
L∪L′ that together form a (1, 1)- curve, and they each have a residual point
that is mapped to a singular point in both Z2,1 and Z1,2. Then for each
line L and L′ the subschemes of Γ and Γ′ residual to the line must coincide.
But both schemes must also contain the point of intersection of L and L′,
so the two schemes coincide. Hence Ξ is injective.

Since VPSP1×P1(f, 4) is smooth, it suffices to complete the proof to iden-
tify the image of Ξ and show that the image is smooth.

Now, the collection of lines D2,1 ⊆ X2,1 as defined in Equation (6) is a
smooth rational quartic curve. It is normal, otherwise it would span a P

3

and therefore be contained in a special linear complex, i.e. all lines in Z2,1

would intersect some fixed line, which is ruled out by Corollary 3.3 above.
In the planes spanned by two intersecting lines in Z2,1 the pencil of lines
through the intersection point is a line in X2,1. For each double point on
Z2,1 we obtain such a line, so they form a surface scroll V2,1 ⊆ X2,1, and by
construction, D2,1 is contained in this scroll, intersecting the general line in
the scroll in two points. So V2,1 is also contained in the secant variety of
D2,1, a cubic hypersurface SD2,1. Therefore the scroll has degree at most
6 and is contained in the complete intersection SD2,1 ∩ X2,1. To see that
V2,1 = SD2,1 ∩ X2,1 we compute its degree. This is computed from the
bidegree (d1, d2) in the Grassmannian. Notice that Z2,1 parametrizes the
lines in X2,1 that pass through a singular point in Z2,1, and that the lines
in X2,1 that pass through a singular point in Z2,1 all lie in a plane spanned
by the two lines in Z2,1 that pass through the singular point. The number d1
counts the number of lines in a general plane that belong to V2,1. A general
plane contains three singular points, and one line through each of these
lie in the plane, so d1 = 3. The number d2 counts the number of lines
through a general point that belong to V2,1. A general point lies in three
planes that intersect Z2,1 in a conic sections, hence also in two lines, so also
d2 = 3. We conclude that V2,1 has degree 6, and therefore that V2,1 is a

complete intersection. Consider now a Veronese surface V ⊆ G
(

2, f⊥2,1
)

that

contains D2,1. The Cremona transformation on P
5 defined by the quadrics

in the ideal of V contracts the secant variety of V to a Veronese surface V ′,
while the strict transform of V is mapped to the secant variety of V ′. The
Cremona transformation restricts to a birational map on

γ2,1 : X2,1 99K X
′ ⊆ P

4

where X ′ ⊆ P
4 is a smooth quadric 3-fold. In fact, the restriction is defined

by the quadrics in the ideal of D2,1 in X2,1. This space of quadrics is
5-dimensional, and the image is a hyperplane section X ′ of the Plücker
quadric, defined by the quadratic relation between the quadrics in the ideal
of D2,1 in P

4. Consider the closure of the graph Y ⊆ X2,1×X
′ of the rational
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map γ2,1. The strict transform ofD2,1 in Y is mapped to a scroll T ′ inX ′, the
intersection of the secant variety of a Veronese surface V ′ with the quadric
threefold X ′. The strict transform in Y of V2,1 is mapped to a rational
normal quartic curve C ′ . We now compare the map γ2,1 with the rational
map ρ : X2,1 99K X1,2. Since Φ2,1 is bijective outside the preimage of the
curve D2,1, the rational map ρ is defined outside D2,1. On the other hand
ρ is not defined anywhere on D2,1. The Picard group of X2,1 is generated
by the hyperplane bundle, so the map ρ must be defined by a 5-dimensional
space of sections in H0(ID2,1

(d)) for some d, where ID2,1
is the sheaf of

ideals of D2,1 on the quadric 3-fold X2,1. To find the degree d we consider

a general curve C defined by a section in f⊥2,1. On the surface Z2,1 ⊆ P
3 the

curve C is mapped to a plane quartic curve with a linear pencil of lines that
cut the curve in the image of schemes of length 4 that are apolar to f . This
pencil form a line in X2,1 that does not intersect D2,1. Now, the image C of
the curve C on Z1,2 has degree 5. The pencil of apolar schemes of length 4
on C are mapped to schemes that are collinear also in Z1,2, so they define

on C a pencil of 4-secant lines. Assuming C is smooth, any two of these
four- secant lines are disjoint, otherwise C would have a plane section of
length 7 or 8, impossible. Therefore the pencil of 4- secant lines are the
lines of one family of lines in a smooth quadric surface. This means that
the image of this pencil of lines in X1,2 is a conic, and hence the degree d
is 2. Since dimH0(ID2,1

(2)) = 5 we may conclude that the map ρ coincides
with γ2,1. Clearly γ1,2 is the inverse of γ2,1, and the graph Y of ρ is the
blowup of X2,1 along the smooth curve D2,1, so Y is smooth. There is a
map from the graph of γ1,2 to VPSP1×P1(f, 4) which sends a graph point to
the ideal generated by the two pencils, one in each Grassmannian. Therefore
the graph Y is identified with the image Ξ

(

VPSP1×P1(f, 4)
)

. The graph is
smooth, so VPSP1×P1(f, 4) and the graph Y are isomorphic. �

4. Bihomogeneous forms of bidegree (3, 3)

Let f be a bihomogeneous form in S of bidegree (3, 3). The Segre-Veronese
embedding from Equation (2) in this case is given by

ν3,3 : P
1 × P

1 →֒ P
15.

By Equation (3), we have rank(f) = 6 and dimVSPP1×P1(f, 6) = 2.
We identify P(S3,3) with a linear subspace P

15 ⊆ P
(

C[z0, z1, z2, z3]3
)

=

P
19, where z0 = x0y0, z1 = x0y1, z2 = x1y0, and z3 = x1y1. Thus, we can

see [f ] ∈ P
15 as a cubic form in four variables [F ] ∈ P

19. More precisely,
cubics F ∈ C[z0, z1, z2, z3]3 coming from forms f ∈ S3,3 are characterized
by the property that the coefficient of z20 z3 equals the coefficient of z0 z1 z2,
and similarly for the coefficients of the pairs of monomials (z0 z1 z3, z

2
1 z2),

(z0 z2 z3, z1 z
2
2) and (z0 z

2
3 , z1 z2 z3).

Remark 4.1. Given f ∈ S3,3 we can associate to it two orthogonal ideals:

first of all we have the orthogonal f⊥ ⊂ C[t0, t1][u0, u1] that we introduced
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and used in the previous sections; moreover, once we interpret f as a cu-
bic form F , we have also F⊥ ⊆ C[v0, . . . , v3], a homogeneous ideal in a
polynomial ring in 4 variables, that act on C[z0, z1, z2, z3] by differentiation,

vi(f) = ∂/∂zj(f) f ∈ C[z0, z1, z2, z3].

There is a close relation between f⊥ and F⊥, namely there is a correspon-
dence between bihomogenous polynomials in f⊥ and homogeneous polyno-
mials in F⊥ that satisfy the analogous constraints on the coefficients that
we remarked above.

Lemma 4.2. For a general bihomogeneous form f ∈ S3,3, the orthogonal

ideal f⊥ is generated by 5 bihomogeneous forms of bidegree (2, 2) in T , to-
gether with f⊥3,1, f

⊥
1,3, f

⊥
4,0 and f⊥0,4.

Proof. Let us consider the maps φf,(a,b) as we did in Section 3. The kernels
of these maps are the bihomogeneous components of the orthogonal ideal
of f . Since f is a general form, we may assume that the maps φf,(a,b) have
maximal rank, i.e. are either injective or surjective. Thus we may assume
they are injective when

(a, b) ∈
{

(0, 0), (0, 1), (1, 0), (1, 2), (2, 1), (0, 3), (3, 0)
}

.

The map φf,(2,2) is then surjective, since dimT2,2 = 9 and dimS1,1 = 4, so

dim f⊥2,2 = 5. Similarly, we also have

dim f⊥3,1 = dim f⊥1,3 = dim f⊥4,0 = dim f⊥0,4 = 5.

dim f⊥2,3 = dim f⊥3,2 = 10, dim f⊥3,3 = 15.

By an analogous procedure to that in the proof of Lemma 3.1, it follows
that f⊥2,3 = T0,1 · f

⊥
2,2 and f⊥3,2 = T1,0 · f

⊥
2,2, and that f⊥ is generated by f⊥a,b

for a, b 6 3 together with T4,0 and T0,4.

We are left to prove that f⊥3,3 is generated by f⊥2,2, f
⊥
3,1, and f

⊥
1,3. If not,

then in particular the multiplication map f⊥1,3⊗T2,0 → f⊥3,3, is not onto. But

then there is a relation gq−g′q′ = 0, where say g, g′ ∈ f⊥1,3, while q, q
′ ∈ T2,0.

By unique factorization, q and q′ must have a common factor, so gl = g′l′

for some l, l′ ∈ T1,0. By assumption, g, g′ are independent, so l, l′ generate

T1,0 and g = g0l
′ and g′ = g0l. This is possible only if g0 ∈ f⊥0,3, against our

assumption. �

Let f be a general bihomogeneous form of bidegree (3, 3) and let F ∈
C[z0, z1, z2, z3] be the cubic associated to f . If F is not a cone, the orthog-
onal F⊥ is generated by 6 quadrics. By Sylvester’s Pentahedral Theorem
(see [21] and for example [15, Theorem 3.9] and [12, Example 12.4.2.3])
the powersum variety VSPP3(F, 5) is just a point corresponding to a scheme
Γ0 ⊆ P

3 given by a set of 5 points. The ideal of Γ0 is generated by 5 quadrics,
so a general quadric apolar to F does not intersect Γ0. In fact we may as-
sume that ν1,1(P

1 × P
1) in P

3 is defined by a general quadric polynomial
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orthogonal to F , and hence that

Γ0 ∩ ν1,1(P
1 × P

1) = ∅.

We consider the closure H3t+1(Γ0) in the Hilbert scheme of twisted cubic
curves, of the set of curves that contain Γ0.

Proposition 4.3. (Kapranov)[11, Theorem 4.3.3] H3t+1(Γ0) is isomorphic
to a smooth Del Pezzo surface of degree 5, i.e. isomorphic to the blowup
of P2 in 4 points.

Let f be a general bihomogeneous form of bidegree (3, 3), and let Γ0 be the
unique set of 5 points in P

3 that is apolar to the cubic form F corresponding
to f .

Lemma 4.4. Let f be a general bihomogeneous form of bidegree (3, 3), and
let Γ0 be the unique set of 5 points in P

3 that is apolar to the cubic form F
corresponding to f . Then for every smooth Γ ∈ VSPP1×P1(f, 6), there exists
a (possibly reducible) twisted cubic curve CΓ passing through Γ0 and Γ, in
particular [CΓ] ∈ H3t+1(Γ0).

Proof. Consider 6 general points on ν1,1(P
1 × P

1) ⊆ P
3. They are the inter-

section of ν1,1(P
1 × P

1) with a twisted cubic curve. This is a particular case
of a classical result on n + 3 general points in P

n, attributed to Veronese
in [1], but often called Castelnuovo’s lemma:

Lemma 4.5. Through n+3 points in P
n no n of which lie in a P

n−2, there
is a unique reduced and connected curve of degree n and arithmetic genus 0.

Therefore, if Γ ∈ VSPP1×P1(f, 6) is an apolar scheme constituted of 6
general points, then Γ ⊆ CΓ ⊆ P

3, where CΓ is a twisted cubic. By the
apolarity lemma, it follows that IΓ ⊆ F⊥, and since ICΓ

⊆ IΓ we get ICΓ
⊆

F⊥. One can also show that Γ0 ⊆ CΓ. In fact, under the 3-uple Veronese
embedding CΓ becomes a rational curve of degree 9, and since CΓ is apolar
to F , the point [F ] lies in the span of this degree 9 curve. Therefore F
can be interpreted as a general binary form of degree 9, and by the result
of Sylvester (Lemma 1.7), such a binary form has rank 5, so [F ] lies on
the span of 5 points belonging to the degree 9 curve. On the other hand,
the only scheme of 5 points apolar to F is Γ0, therefore those 5 points are
nothing but the image of Γ0 under the 3-uple Veronese embedding, which
implies that CΓ passes through Γ0.

We consider now the other kinds of smooth schemes in VPSP1×P1(f, 6).
If no plane passes through 4 of the points of Γ, then we are in the general
situation and the previous argument shows that we have a unique (smooth)
twisted cubic through Γ and Γ0. Suppose that exactly 4 points of Γ lie on a
plane, and no three of them are on a line. Then there is a pencil of conics
passing through those planar points, and a line ℓ through the remaining
two points; thus there exists a unique conic C in this pencil meeting ℓ. We
prove that Γ0 is contained in C ∪ ℓ, which hence is an element in H3t+1(Γ0)
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(corresponding in the Del Pezzo surface to a point lying on one of the 10 lines
of the surface). Under the 3-uple Veronese embedding, the line ℓ is mapped
to a twisted cubic D1, and the conic C is mapped to a rational sextic D2. By
construction, the point [F ] lies on the span of D1∪D2. We denote by Q the
point of intersection between D1 and D2. We use the same technique as in
the proof of Lemma 3.8 to construct a scheme of length 5 apolar to F . Let
E = spanD1 and F = spanD2, then E ∼= P

3 and F ∼= P
6. After projection

from the point [F ] into P
8 the two linear spaces E and F will intersect in a

line, so there is a unique plane P containing the line [F ]Q and intersecting E
in a line ℓE and F in a line ℓF . The variety of 3-secant planes to D2 is a
quartic hypersurface in F , and a general line meeting D2 intersects it in a
unique further point. In particular ℓF intersects D2 in Q and the variety of
3-secant planes in a further point T . Therefore we may assume that there
are three points p1, p2 and p3 in D2 whose span contains T . Consider now
the line [F ]T : since it is contained in P , it meets ℓE in one point R. A
general point in E lies in a unique secant to D1, so we obtain two points
p4, p5 in D2 whose span contains R. In this way [F ] ∈ span

(

{p1, . . . , p5}
)

.
As above {p1, . . . , p5} = Γ0 under the 3-uple Veronese embedding, so the
lemma follows also in this case.

Eventually, we rule out all the cases that are left. Suppose in fact that
3 of the 6 points of Γ are collinear on a line ℓ, or 5 of the 6 points lie in a
plane. In the first case, the three collinear points may be replaced in Γ by a
scheme of length 2, so that f is apolar to a scheme of length 5 on P

1 × P
1. In

the second case, the five coplanar points may be replaced in Γ by a scheme
of length 4, so that f is apolar to a scheme of length 5 on P

1 × P
1. In both

cases this is against the generality assumption of f . �

We now reformulate and prove Theorem 1.5.

Theorem 4.6. For a general bihomogeneous form f of bidegree (3, 3) the
variety VPSP1×P1(f, 6) is isomorphic to a smooth Del Pezzo surface of de-
gree 5.

Proof. Let Γ0 be the set of 5 points apolar to the cubic form F associated
to f as in Lemma 4.4. Let H3t+1(Γ0) be the Hilbert scheme of twisted cubic
curves through Γ0.

If [C] ∈ H3t+1(Γ0), then C is a cubic curve through Γ0, that is apolar
to F . Moreover ν1,1(P

1 × P
1)∩C is a scheme of length 6. In fact every com-

ponent of C contains some subset of Γ0 and therefore intersects ν1,1(P
1 × P

1)
properly.

Thus, we get a morphism

ψ : H3t+1(Γ0) −→ VPSP1×P1(f, 6)

This morphism is injective, because otherwise there would be two cubic
curves C and C ′ that pass through Γ0 and have a common intersection
with ν1,1

(

P
1 × P

1
)

. Since Γ0 has no common point with ν1,1
(

P
1 × P

1
)

this
is impossible by Castelnuovo’s lemma. To show that the morphism ψ is
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surjective, we first note that both H3t+1(Γ0) and the variety VPSP1×P1(f, 6)
are surfaces, so it suffices to show that ψ is onto the set of smooth schemes
in VPSP1×P1(f, 6). This is precisely the content of Lemma 4.4.

It remains to show that the bijective morphism ψ is an isomorphism.

Lemma 4.7. If f is a general (3, 3)-form and [Γ] ∈ VPSP1×P1(f, 6) then Γ
is apolar to f .

Proof. The ideal of each curve C in H3t+1(Γ0) is contained in the ideal of Γ0

and is therefore apolar to the cubic form F associated to f . The scheme
of intersection ν1,1(P

1 × P
1) ∩ C is therefore apolar to f . This intersec-

tion has length 6 and belongs to the closure of the smooth apolar schemes
in VPSP1×P1(f, 6). Since ψ is a surjective morphism, the lemma follows. �

To show that ψ is an isomorphism, we show that VPSP1×P1(f, 6) is smooth.
First of all, the Hilbert scheme Hilb6(P

1 × P
1) itself is smooth (see [7]). Con-

sider next, in Hilb6(P
1 × P

1), the open subset U of schemes that lie on a
unique curve in the Hilbert scheme of twisted cubic curves in P

3, and whose
ideal on P

1 × P
1 has dim IΓ,(3,3) = 10, or equivalently, such that the span

of ν3,3Γ is a P
5. Over U we consider the rank 10 vector bundle EU whose

fibre over a scheme [Γ] is the dual of the space IΓ,3,3 ⊆ T(3,3) of (3, 3) forms in
the ideal of Γ. The linear form φf,(3,3) : T(3,3) → C defines a section on EU .
If VPSP1×P1(f, 6) ⊆ U , then VPSP1×P1(f, 6) is the 0-locus of this section, by
Lemma 4.7.

Lemma 4.8. If f ∈ S3,3 is general, then VPSP1×P1(f, 6) ⊆ U .

Proof. It suffices to prove that for any [Γ] ∈ VPSP1×P1(f, 6) the span of ν3,3(Γ)
is a P

5. For a general f , consider the 5 points Γ0 apolar to the cubic form F
on P

3 associated to f . We may assume that every line through a pair of
points of Γ0 intersects ν1,1

(

P
1 × P

1
)

transversally. Therefore the intersec-

tion of any cubic curve in H3t+1(Γ0) with ν1,1
(

P
1 × P

1
)

is curvilinear. If
the cubic curve has a component of degree d, then the intersection with
ν1,1

(

P
1 × P

1
)

has degree 2d. On the 3-uple embedding of this curve, any

such curvilinear scheme spans a P
5. �

The space of forms φf,(3,3) form a linear space (= S(3,3)) of sections of
EU without basepoints on U , so for a general f the 0-locus VPSP1×P1(f, 6)
is smooth. Since ψ is a bijective map between smooth surfaces, it is an
isomorphism. �

5. Cubic forms on a cubic surface scroll

Let Σ be a cubic scroll in P
4. The Picard group Pic(Σ) is free of rank 2

generated by the class of curves E and F , where E2 = −1, E · F = 1 and
F 2 = 0. The linear system |E + F | defines a morphism π : Σ → P

2, which
is the blowup of a point pE ∈ P

2 with exceptional divisor π−1(pE) = E.
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The Cox ring of Σ is isomorphic to a bihomogeneous polynomial ring S =
C[x0, x1, y0, y1] such that

SE = H0
(

Σ,OΣ(E)
)

= 〈x0〉

SF = H0
(

Σ,OΣ(F )
)

= 〈y0, y1〉,

and

SE+F = H0
(

Σ,OΣ(E + F )
)

= 〈x0y0, x0y1, x1〉.

Let T = C[t0, t1, u0, u1] with t0, t1 dual to x0, x1 and u0, u1 dual to y0, y1,
generating an action of T on S by differentiation, that defines the apolarity
of the introduction in coordinates. In fact, we may then interpret Σ ⊆
P(SE+2F ) as a set of forms:

Σ =
{[

a0z0 l(y0, y1) + a1z1 l(y0, y1)
2
]

∈P(SE+2F ) :

a0, a1 ∈ C, l(y0, y1) ∈ 〈y0, y1〉
}

Let f ∈ S3E+6F ⊆ Sym3SE+2F . Thus f maybe interpreted as a cubic
form F on P

4 restricted to Σ. We let

VPSΣ(f, 8) =
{

[Γ] ∈ Hilb8Σ : [f ] ∈ span (ν3E+6F (Γ))
}

.

The following theorem is equivalent to Theorem 1.6.

Theorem 5.1. For a general f ∈ S3E+6F , the variety VPSΣ(f, 8) is iso-
morphic to P

2 blown up in 8 points.

Proof. Recall that we may interpret [f ] as a point [F ] in the linear span
inside P

34 = P(C[z0, z1, z2, z3, z4]3) of the 3-uple embedding of Σ. We may
clearly interpret F as a general cubic form in P

4. Therefore F , and hence
f , is not apolar to any rational quartic curve. In particular, we may assume
that If,2E+2F = If,E+3F = 0. Furthermore, we may assume that the map

φf,2E+3F : T2E+3F → SE+3F

has maximal rank, so If,2E+3F = kerφf,2E+3F is 2-dimensional, i.e. defines a
pencil of curves in K ⊆ |2E+3F |. Notice that, by the apolarity lemma 1.3,
every curve in K is apolar to f .

Lemma 5.2. For a general f ∈ S3E+6F , the singular curves in K are
irreducible nodal curves and the basepoints Γ0 of K are 8 general points
in Σ.

Proof. Let Γ0 ⊆ Σ be 8 general points. In degree 2E + 3F , the ideal of Γ0

is 2-dimensional. Furthermore, the set of forms f ′ ∈ S3E+6F for which Γ0 is
apolar is the 7-dimensional subspace in S3E+6F orthogonal to IΓ0,3E+6F ⊆
T3E+6F . These f

′ are precisely the forms that are apolar to every curve inK.
Now, P(S3E+6F ) has dimension 21, while the set of pencils in P(T2E+3F ) has
dimension 14, so the general pencil is apolar to some form f and the lemma
follows. �
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Now any scheme Γ in VSPΣ(f, 8) has length 8, so it lies in a curve in
|2E + 3F |. Therefore, if Γ is apolar, it lies in a curve in K. Now the base
scheme Γ0 of K has length 8, so this scheme is the only one of length 8 that
lies on all curves in K. The other schemes Γ ⊆ C ⊆ Σ of length 8 that are
apolar to f lies in a unique curve C ∈ K.

Let C ∈ K. Then C is apolar to f , so may consider the variety

VPSC(f, 8) ⊆ VPSΣ(f, 8).

Let [Γ] ∈ VPSC(f, 8). Then Γ ⊆ C is a subset of the intersection with a
curve C ′ in |3E + 3F |.

The residual part of the intersection CΓ∩C
′ is a unique point on CΓ that

we denote by pΓ. We thus get a map for C ∈ K

ψC : VPSC(f, 8) → C

Γ 7→ pΓ.

The map ψC is defined also on Γ0 since any curve C ′ +E, with C ′ ∈ K, lies
in |3E + 3F | and intersect C in Γ0 and in the residual point E ∩ C.

Composing ψC with the blowup map π, we get a morphism

π ◦ ψC : VPSC(f, 8) → P
2

that we want to extend to all of VPSΣ(f, 8). For this, consider, in the Hilbert
scheme of length 8 subschemes of Σ, the open set U of schemes Γ that are
contained in a unique pencil of curves NΓ in |3E + 3F |. Let Γ ⊆ Σ be the
baselocus of NΓ. If Γ is finite, then it has length 9 and there is a unique
point pΓ ∈ Σ residual to Γ in Γ. Composing with π we get a rational map

ψ : U 99K P
2.

Clearly the restriction of ψ to VPSC(f, 8) extends to the morphism ψC

for every curve C ∈ K. Since ψC(Γ0) = π(E) for each C, and every
other Γ in VPSΣ(f, 8) lies in a unique C, we see that the restriction of ψ
to VPSΣ(f, 8) extends to a morphism

ψf : VPSΣ(f, 8) → P
2

such that the restriction of ψf to VPSC(f, 8) coincides with ψC for each
C ∈ K.

We proceed to show that ψC is an isomorphism for every curve C ∈ K.
For this we first give a more general fact for elliptic curves, equivalent to
Lemma 1.8.

Lemma 5.3. Let C ⊆ P
2d−2 be an elliptic normal curve of degree 2d − 1,

then the set of d-secant Pd−1’s to C that pass though a general point in P
2d−2,

correspond one to one to points on C.

Proof. Let C be an elliptic normal curve of degree 2d embedded by a line
bundle L, then the d− 1-secant variety of C is a complete intersection of a
pencil of determinantal hypersurfaces of degree d, that each are defined by
a pair of line bundles of degree d that add up to L (see [6, Theorem 1.3,
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Lemma 2.9], [19]). Furthermore, for a general line that intersects C in a
point q, every point outside C lies on a unique hypersurface in the pencil, so
after projection the curve C from q has degree 2d− 1 and through a general
point the d-secants correspond one to one to line bundles of degree d on C,
i.e. one to one to points on C. �

Lemma 5.4. Assume f is general, so that the singular curves in K are
irreducible and nodal and that the basepoints Γ0 of K are 8 points disjoint
from E. Then the morphism ψC : VSPC(f, 8) → C is an isomophism for
every C ∈ K.

Proof. Consider the embedding C → P
14 ⊂ P(S3E+6F ) defined by the linear

system |(3E+6F )C | of divisors on C, defined by the linear system of curves
|3E+6F | restricted to C. It is the composition of the embedding defined by
|4E + 6F | and the projection from the point E ∩ C. We consider Weil and
Cartier divisors on C (if C is smooth they of course coincide). While Weil
divisors may have multiplicity one at a node pC of C, any effective Cartier
divisor has multiplicity at least two at pC . Any Weil divisor Γ of degree 8
on C is contained in a unique Cartier divisor Γ̄ of degree 9 defined on C
by the pencil DΓ of curves in |3E + 3F | that contain Γ. The uniqueness
of DΓ, implies both that the map ψC : Γ 7→ pΓ = Γ̄− Γ is well-defined, and
that it is injective as soon as there is a unique divisor in the linear system
in |(3E + 3F )C − pΓ| in VPSC(f, 8). Any curve GΓ in |4E + 6F | that is
not a multiple of C and contains the Cartier divisor Γ̄, defines on C a Weil
divisor Γ′ = GΓ ∩C −Γ of degree 8 that contains the point pΓ. Thus Γ+Γ′

is a hyperplane section of C ⊆ P
15 ⊂ P(S4E+6F ) and define a pair of linear

systems

LΓ := |(4E + 6F )C − Γ′| and LΓ′ := |(4E + 6F )C − Γ|,

like in the Lemma 5.3 above for smooth elliptic curves. Since Γ + Γ′ ≡
(4E + 6F )C , and Γ + pΓ ≡ (3E + 3F )C , we get Γ′ − pΓ ≡ (E + 3F )C , i.e.
Γ′ ≡ (E + 3F )C + pΓ. Now, |(E + 3F )C + p| = |(E + 3F )C + p′| if and only
if |(F )C + p| = |(F )C + p′| which again is equivalent to p = p′. Therefore
the linear system LΓ is uniquely defined by pΓ.

A general point in P
15 lies in the span of a unique divisor in each of

these linear systems of degree 8. So, after projection from the point E ∩C,
through a general point [f ] ∈ P

14 in the span of C ⊆ P
14 ⊂ P(S3E+6F ), the

set of subschemes Γ of length 8 on C whose span contains [f ] are in one
to one correspondence with linear systems LΓ and hence of the points pΓ
on C. And the correspondence coincides with the map ψC : VPSC(f, 8) → C
above. �

Every [Γ] ∈ VPSΣ(f, 8) belongs to VPSC(f, 8) for some C ∈ K, so in
particular, every [Γ] ∈ VPSΣ(f, 8) is apolar to f . Consider therefore the
open subset U ′ ⊆ U ⊆ Hilb8(Σ) of the smooth open set U above consisting
of schemes Γ, such that dim IΓ,(3E+6F ) = 18, or equivalently, such that

ν3E+6F (Γ) spans a P
7. Let EU be the vector bundle of rank 18 over U whose
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fiber over [Γ] is the dual of the space of sections in degree 3E + 6F of the
ideal IΓ,(3E+6F ) ⊆ T3E+6F . The linear form φf,(3E+6F ) : T(3,3) → C defines
a section on EU . If VPSΣ(f, 8) ⊆ U ′, then VPSΣ(f, 8) is the 0-locus of this
section, since any Γ in VPSΣ(f, 8) is apolar to f .

Lemma 5.5. If f ∈ S3E+6F is general, then VPSΣ(f, 8) ⊆ U ′.

Proof. It suffices to show that for any [Γ] ∈ VPSΣ(f, 8) the image ν3E+6F (Γ)
spans a P7. But this follows from the above, since Γ ⊆ C for some irreducible
curve C in K, and any subscheme of length 8 on the curve ν3E+6F (C) spans
a P

7. �

The space of forms φf,(3E+6F ) form a linear space (= S(3E+6F )) of sections
of EU without basepoints on U , so for a general f the 0-locus VPSΣ(f, 8) is
smooth.

Now, every point outside Γ0 lies in a unique curve C ∈ K, so ψf is
a birational morphism from a smooth surface and has an inverse that is
defined outside π(Γ0). Let π′ : Σ′ → P

2 be the blowup along π(Γ0). Since,
by assumption, all C ∈ K are smooth at Γ0, the inverse map to ψf lifts to
a morphism ψ′

f : Σ
′ → VPSΣ(f, 8) that restricts to the inverse of ψC on the

strict transform of π(C) on Σ′. Therefore ψ′
f is an inverse of ψf , and hence

an isomorphism. �
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