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SMART: The Stochastic Monotone Aggregated Root-Finding Algorithm
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Abstract We introduce the Stochastic Monotone Aggregated Root-Finding (SMART) algorithm, a new
randomized operator-splitting scheme for finding roots of finite sums of operators. These algorithms are
similar to the growing class of incremental aggregated gradient algorithms, which minimize finite sums of
functions; the difference is that we replace gradients of functions with black-boxes called operators, which
represent subproblems to be solved during the algorithm. By replacing gradients with operators, we increase
our modeling power, and we simplify the application and analysis of the resulting algorithms. The operator
point of view also makes it easy to extend our algorithms to allow arbitrary sampling and updating of blocks
of coordinates throughout the algorithm. Implementing and running an algorithm like this on a computing
cluster can be slow if we force all computing nodes to be synched up at all times. To take better advantage
of parallelism, we allow computing nodes to delay updates and break synchronization.

This paper has several technical and practical contributions. We prove the weak, almost sure convergence
of a new class of randomized operator-splitting schemes in separable Hilbert spaces; we prove that this
class of algorithms convergences linearly in expectation when a weak regularity property holds; we highlight
connections to other algorithms; and we introduce a few new algorithms for large-scale optimization.

1 Introduction

The guiding problems in optimization are evolving. While all optimization problems can be reduced to
minimizing functions over sets, prototypical optimization problems, like minx∈C f(x), hide structure that is
found throughout modern applications, and this structure is useful for designing algorithms for large-scale
problems (e.g., problems with gigabytes to terabytes of data). Among these structures, the finite sum is the
most pervasive:

minimizex∈C
1

n

n∑

i=1

fi(x). (1.1)
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Large sums (n ≫ 0) are common in statistical and machine learning, where the functions fi often, but not
always, correspond one-to-one with points in a dataset. When the fi are summed together, the minimization
problem (1.1) grows in complexity, but the prevailing and realistic assumption in applications is that it is
drastically simpler (in terms memory or computational complexity) to perform operations, like differentiation,
on the fi than it is to perform the same operations on the entire sum.

Large sums, like (1.1), come from large datasets, even low dimensional ones. But modern applications
often involve high dimensional datasets. When the decision variable x ∈ R

m is high-dimensional (m ≫ 0),
the prevailing and realistic assumption in applications is that it is drastically simpler to compute partial
derivatives of the fi, or other componentwise quantities, than it is to compute full derivatives of the fi.

These two structural assumptions, and the host of algorithms that adopt them, have led to big im-
provements in large-scale algorithm design (for examples, see [28,17,33,35,34,16,20,15,25,29,9,5,8,36,4,
27,6,31]). And we do not have to look far to find problems for which these assumptions make sense.
A simple problem with n ≫ 0 and m ≫ 0 comes from regularized least squares problems with matrix

A =
[
AT

1 , . . . , A
T
n

]T ∈ R
n×m, vector b ∈ R

n, and regularizer induced by K ∈ R
m×m:

minimize
x∈Rm

1

n

n∑

i=1




1

2

∥∥∥∥∥∥∥
Ai



x1
...
xm


− bi

∥∥∥∥∥∥∥

2

+
1

2
〈Kx, x〉


 . (1.2)

The two prevailing assumptions are clearly satisfied for this example when each row of Ai is sparse: each term
in the sum is simple and partial derivatives of the terms are easier to compute than full derivatives. Absent
other special structure in the matrices A and K (like bandlimitedness), a conceptually simple operation like
differentiating the objective function requires O(max{mn,m2}) operations. With problems of this scale, full
gradient computations cannot lie at the heart of a practical iterative algorithm for solving (1.2).

The algorithms that have sprung from these structural assumptions all look alike. They all form a sequence
of points {xk}k∈N that converge (in some appropriate sense of the word) to a minimizer of (1.1). They all
make a series of choices at each time step: given xk

1. choose (randomly or otherwise) indices i ∈ {1, . . . , n} and j ∈ {1, . . . ,m};
2. get xk+1 (in some undetermined way) from xk and ∇jfi(x

k) by only changing a single component of xk

(possibly using some combination of the previous terms {xl}l∈{0,...,k}).

At this moment, the differences between these algorithms is immaterial. What matters is the contrast between
these algorithms and the overwhelmingly costlier algorithms that form sequences {xk}k∈N by getting xk+1

from xk and ∇ [
∑n

i=1 fi] (xk); we simply cannot afford to compute these full gradients for every k ∈ N.
When looking at this 2-step prototypical algorithm, there is a looming temptation to generalize and to

replace the partial derivatives of the fi with something else. To find a good generalization, we only need to
look at the optimality conditions of (1.1):

Find x∗ such that:
1

n

n∑

i=1

∇fi(x∗) = 0. (1.3)

At once we reduce our cognitive load by changing notation and forgeting that there ever was a function
called fi. We simply replace every occurrence of ∇fi with a mapping called Si:

Find x∗ such that: S(x∗) :=
1

n

n∑

i=1

Si(x
∗) = 0. (1.4)
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The Si take, as input, points in a space H, like R
n, and output points in H. We follow mathematical tradition

and call the Si operators. We do not, however, forget about our structural assumptions: for any given x ∈ H,
we still expect Si(x) to be drastically simpler to compute than n−1

∑n
i=1 Si(x), and we still expect the jth

component, denoted by (Si(x))j , to be drastically simpler to compute than the full operator Si(x). We gain
a lot of flexibility from this generalization.

Each Si(x) can, in principle, be any mapping. But we would never be so optimistic. Instead, a coherence
condition suggests itself: we assume that for each root x∗ of (1.4), we have

(∃βij > 0) : (∀x ∈ H)

m∑

j=1

n∑

i=1

βij‖(Si(x))j − (Si(x
∗))j‖2j ≤ 〈S(x), x− x∗〉. (1.5)

This condition1 is weaker than what can be guaranteed when each Si(·) is the gradient of a convex function.
In that case, the x∗ in (1.5) can even vary beyond the roots of n−1

∑n
i=1 Si(·) to any point in H; the βij are

akin to inverse Lipschitz constants of gradients. But (1.4) is not limited to smooth optimization problems
because (1.5) will be satisfied for Si that are, for example, compositions of proximal and gradient operators.
Beyond the benefits of increased modeling power, though, we make this generalization because it is easy to
design algorithms for (1.4) that hide all of the complicated details that appear in algorithms which solve
specific models, for example, it can be quite technical to design algorithms for (1.1) when two of the terms,
say f1 and f2, are nonsmooth. Instead, we treat Si just like we treat ∇fi.

A need for increased modeling power and algorithms with smaller per-iteration complexity has led us
to Problem (1.4) and a class of algorithms that solve it. We want to parallelize these algorithms. But they
are inherently sequential because each step updates just a single coordinate using just a single function or
operator, and the other coordinates cannot be updated until the active one finishes its work. A big slowdown
occurs if some partial derivatives or operator coordinates are much more complicated to evaluate than all
the others because we will spend most of our time updating just a few coordinates and leaving the others
fixed. A solution is to eliminate the stalling between coordinate updates and allow multiple processors to
work at their own pace, updating whenever they complete their work. We take this approach in this paper
and allow asynchronous updates in our algorithm.

In total, we have taken the basic template for incremental gradient and block-coordinate optimization
algorithms and increased its modeling power by introducing the root finding Problem (1.4) and an algorithm
to solve it. This stochastic monotone aggregated root-finding (SMART)2 algorithm is inspired by another
algorithm called SAGA [15]. In this work we have taken SAGA and generalized it: the SMART algorithm
applies to operators, allows block-coordinate updates, allows asynchronous updates, requires less memory
than SAGA, and requires less computation per iteration than SAGA. The theoretical guarantees for SMART
are also stronger: the sequence of points formed by the algorithm, and not just the function values, will
converge with probability 1 when a solution exists (even in infinite dimensional separable Hilbert spaces, but
in this case SMART converges weakly). Like SAGA, SMART converges linearly when n−1

∑n
i=1 fi is strongly

convex, and beyond that, it converges linearly when n−1
∑n

i=1 Si is essentially quasi-strongly monotone. It
even converges linearly in the asynchronous, block-coordinate case. The rest of this paper describes SMART
and proves that it converges.

1 The technical name might be quasi-cocoercivity; we could not find it discussed elsewhere.
2 We use the term monotone because S is a quasi-monotone operator.
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2 Assumptions and Notation

The SMART algorithm solves (1.4) in a separable Hilbert space, like R
n, which we call H. We assume the

Hilbert space H = H1 ⊕ · · · ⊕Hm is a direct sum of m ∈ N other Hilbert spaces H1, . . . ,Hm. Given a vector
x ∈ H, we denote its jth component by xj ∈ Hj . Given a sequence {xk}k∈N and a vector h ∈ N

m, we define

(∀k ∈ N) xk−h = (xk−h1
1 , . . . , xk−hm

m )

and use the convention that xkj = x0j if k ≤ 0. For j ∈ {1, . . . ,m}, we let 〈·, ·〉j : Hj×Hj → R denote the inner

product on Hj , and we let ‖·‖j be the corresponding norm. For all x, y ∈ H, we let 〈x, y〉prod =
∑m

j=1〈xj , yj〉j
and ‖x‖prod :=

√
〈x, x〉prod be the standard inner product and norm on H. We also fix an inner product

〈·, ·〉 : H×H → R and denote the corresponding norm by ‖ · ‖. We make one assumption about this norm:

(
∃M j ,M j > 0

)
: (∀x ∈ H)

m∑

i=1

M j‖xj‖2j ≤ ‖x‖2 ≤
m∑

i=1

M j‖xj‖2j .

We often choose inner products associated to self-adjoint linear maps, P , which are defined for all x, y ∈ H,
by 〈x, y〉 = 〈x, y〉P := 〈Px, y〉prod = 〈x, Py〉prod. We work with an underlying probability space denoted by
(Ω,F , P ), and we assume that the space H is equipped with the Borel σ-algebra. We always let σ(X) ⊆ F
denote the sub σ-algebra generated by a random variable X . We use the shorthand a. s. to denote almost sure
convergence of a sequence of random variables. We also assume that the operators Si are measurable. We say
that a map T : H → H is nonexpansive if it is 1-Lipschitz continuous, i.e., ‖Tx−Ty‖ ≤ ‖x−y‖ for all x, y ∈ H.
A map T : H → H is called demiclosed at 0 if whenever a sequence {xk}k∈N converges weakly to a point
x ∈ H and xk−Txk converges strongly to 0 ∈ H, then Tx = x; all nonexpansive operators are demiclosed at
0 [2, Corollary 4.8]. Given any nonempty, closed, convex set C, let PC(x) := arg minx∗∈C ‖x−x∗‖ denote its
projection operator, and let dC(x) := minx∗∈C ‖x− x∗‖ denote its distance function. For any closed convex
set, C ⊆ H, we let NC denote the normal cone of C [2, Definition 6.37]. We define

S :=
1

n

n∑

i=1

Si and S := zer(S) = {x ∈ H | S(x) = 0}.

Beyond (1.5), we use a single regularity property

(∃µ > 0) : (∀x ∈ H) 〈S(x), x − PS(x)〉 ≥ µ‖x− PS(x)‖2. (2.1)

Operators that satisfy (2.1) are called essentially strongly quasi-monotone. In order for our most general
results to hold, S need not satisfy (2.1), but when it is satisfied, our algorithm converges linearly. Although
it is hardly comprehensive, one example is noteworthy: property (2.1) holds if S = A∗ ◦∇f ◦A for a strongly
convex function f and a matrix A [25, p. 287]. See [7,37,24] for information on convex error bounds.

Most of the concepts that we use in this paper can be found in [2]. See Table C.1 for a list of symbols.

3 The SMART Algorithm

We develop an iterative algorithm that solves (1.4). The algorithm forms a sequence of primal variables
{xk}k∈N ⊆ H that converges to a root of (1.4). The algorithm also maintains a sequence of dual variables,
one per operator, which is denoted by {(yk1 , . . . , y

k
n)}k∈N ⊆ Hn.

We assume that at least one of m, the number of components, and n, the number of operators, is large,
and so it costs a lot to obtain xk+1 from xk by updating all m of its components, using all n of the operators.
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To lower the cost, we introduce an IID sequence of 2{1,...,m}-valued (subsets of {1, . . . ,m}) random variables
{Sk}k∈N that determines which components of xk we update at the kth iteration. The component-choosing
variable Sk is coupled with an IID sequence of {1, . . . , n}-valued random variables {ik}k∈N that determine
which one of the n operators S1, . . . , Sn are evaluated at the kth iteration. If ik = i and j ∈ Sk, then the jth
component of xk is updated at iteration k using an evaluation of (Si(·))j ; the other operators and components
are left alone. The user can choose {ik}k∈N and {Sk}k∈N however they like as long as

qj := P (j ∈ S0) > 0 for all j; and pij := P (i0 = i|j ∈ S0) > 0 exactly when (Si(·))j 6≡ 0.

Unlike the point sequence {xk}k∈N, the dual variables need not be updated at every iteration. Instead,
we introduce an IID sequence of {0, 1}-valued random variables {ǫk}k∈N that determines if and when we
update the dual variables. If ǫk = 1, then the dual variables are updated at iteration k; otherwise, the dual
variables are left alone. The user can choose {ǫk}k∈N however they like as long as

ρ := P (ǫ0 = 1) > 0.

If ǫk = 1, and thus the dual variables must update at iteration k, we only require, at the absolute
minimum, that ykik be updated; the rest of the variables may stay fixed. However, we allow the update of ykik
to trigger the update of any subset of the other dual variables. The trigger graph G = (V,E) with vertices
V = {1, . . . , n} uses the edge set E ⊆ {1, . . . , n}2 to encode, for each i ∈ V , the set of dual variables that
must be updated when ik = i:

(i, i′) ∈ E if, and only if, ik = i triggers the update of dual variable yki′ .

When (i, i′) ∈ E, we simply say that i triggers i′. We require that for all i, (i, i) ∈ E, but otherwise there are
no constraints on G; it can be absolutely any graph, from a completely disconnected graph, to a complete
graph on n vertices. And one quantity, figuring only in our linear rate of convergence, is important: the
probability that i is triggered and coordinate j is sampled simultaneously

pTij := P ((i0, i) ∈ E, j ∈ S0) = P ((i0, i) ∈ E | j ∈ S0)qj =
∑

(i′,i)∈E pi′jqj ,

which is easily computable, but it need not be known to guarantee convergence.
Often, the matrix of optimal operator values

S∗ := ((Si(x
∗))j)ij , x∗ ∈ S

has some entries which are zero (by (1.5), S∗ is independent of x∗ ∈ S). For these zero entries, we simply set
the corresponding dual variable to zero: yki,j ≡ 0 if S∗

ij = 0. In the extreme case that S∗ = 0, all operators are

zero at the solution, (1.4) reduces to the common zero problem, and the dual variables {(yk1 , . . . , y
k
n)}k∈N ⊆

Hn are all zero. Setting these particular dual variables to zero is not necessary, but by doing so, we use less
memory than we otherwise would.

An algorithm that solves (1.4) might use the following 3-step process: given xk

1. sample Sk, ik, and ǫk;
2. get xk+1 from xk using {(Sik(xk))j | j ∈ Sk} and (yk1 , . . . , y

k
n);

3. if ǫk = 1, get (yk+1
1 , . . . , yk+1

n ) using xk and (yk1 , . . . , y
k
n); otherwise set (yk+1

1 , . . . , yk+1
n ) = (yk1 , . . . , y

k
n).

After ik and Sk are sampled, the inactive operators and the inactive components stall until the active ones
finish Steps 2 and 3. If we have access to a parallel computing device, stalling is wasteful, so in our algorithm
we let all operators work in parallel and update xk whenever they finish their work. Mathematically, we
form sequences of delays {dk}k∈N ⊆ {0, 1, . . . , τp}m and {eik}k∈N ⊆ {0, 1, . . . , τd}m, and we replace several
instances of xk and yki with iterates from the past whose coordinates were formed in the last τp or τd
iterations, respectively. The final algorithm is below:
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Algorithm 1 (SMART) Let {λk}k∈N be a sequence of stepsizes. Choose x0 ∈ H and y01 , . . . , y
0
n ∈ H

arbitrarily except that y0i,j = 0 if S∗
ij = 0. Then for k ∈ N, perform the following three steps:

1. Sampling. choose a set of coordinates Sk, an operator index ik, and dual update decision ǫk.
2. Primal update: set

(∀j ∈ Sk) xk+1
j = xkj − λk

qjm

(
1

npij
(Sik(xk−dk))j −

1

npij
y
k−e

ik
k

ik,j
+

1

n

n∑

i=1

y
k−eik
i,j

)
;

(∀j 6∈ Sk) xk+1
j = xkj .

3. Dual update: If ik triggers i, set
(
∀j ∈ Sk with S∗

ij 6= 0
)

yk+1
i,j = yki,j + ǫk

(
(Si(x

k−dk ))j − yki,j
)

;

(∀j /∈ Sk) yk+1
i,j = yki,j.

Otherwise, set yk+1
i,j = yki,j . ⊓⊔

The xk−dk iterate in SMART can be totally synchronous, in which case dk,j = 0 for all j; it can be
consistent-read asynchronous, in which case dk,j = dk,j′ for all j and j′; or it can be inconsistent-read asyn-
chronous, in which case dk,j 6= dk,j′ for some j and j′. Totally synchronous iterates are not delayed at all, so
xk−dk = xk for all k; consistent-read asynchronous iterates are delayed, but all of their coordinates are de-
layed by the same amount, so xk−dk ∈ {xk, xk−1, . . . , xk−τp} for all k; inconsistent-read asynchronous iterates

are delayed, and their coordinates can be delayed by different amounts, so x
k−dk,j

j ∈ {xkj , xk−1
j , . . . , x

k−τp
j }

for all j, but xk−dk is not necessarily an element of {xk, xk−1, . . . , xk−τp} for all k.

Likewise, the y
k−eik
i iterate in SMART can be totally synchronous, consistent-read asynchronous, or

inconsistent-read asynchronous, corresponding to the cases eik,j = 0 for all j, eik,j = eik,j′ for all j and j′, or

eik,j 6= eik,j′ for some j and j′, respectively.

The delays {dk}k∈N and {eik}k∈N come with no particular order. They can induce maximal delays at all
times, e.g., dk,j = τp for all j and k, in which case the oldest information possible is used in every iteration;
they can be cyclic, e.g., dk,j = k mod (τp + 1) for all j and k, in which case the same information is used for
τp consecutive iterations in a row, and all the intermediate information is thrown away; but in general, the
delays can be arbitrary. These delays are artificially imposed, but we can also incur delays that are beyond
our control.

Uncontrolled delays can occur in the xk iterate when a processor, called Proc1, attempts to read coordi-
nates xk1 , . . . , x

k
m while another processor, called Proc2, attempts to replace xk with xk+1. It can happen that

Proc1 successfully reads coordinate xk1 before Proc2 replaces it with xk+1
1 , but that Proc2 replaces xk2 , . . . , x

k
m

with xk+1
2 , . . . , xk+1

m before Proc1 attempts to read this group of coordinates. When Proc1 finishes reading,
it will have the iterate (xk1 , x

k+1
2 , . . . , xk+1

m ), which is not necessarily equal to any previous iterate xt with
t ≤ k. This effect is exacerbated if multiple processors attempt to write and read simultaneously, but in
SMART, xk−dk is inconsistent-read asynchronous, so these uncontrolled delays cause no trouble.

In general, including inconsistent-read asynchronous iterates leads to tedious convergence proofs with
many-term recursive identities and complicated stepsizes. The recursive identities are necessary to control
algorithm progress in a chaotic environment. The stepsizes, on the other hand, can be be optimized and have
a clear dependence on the delays, sampling probabilities, and problem data. In both the inconsistent-read
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and consistent-read cases, the algorithm will converge with the same range of parameters. However, the rates
of convergence depend on a measure of inconsistency, which we call δ

δ := sup
k∈N

j,j′∈{1,...,m}

|dk,j − dk,j′ |. (3.1)

When δ = 0, the xk−dk are consistent-read asynchronous, and the convergence rates improve. Otherwise
δ ∈ {0, . . . , τp} and the convergence rates degrade with increasing δ. Of course, when δ is not known explicitly,
it can be replaced by its upper bound τp.

If all of the sampling variables are statistically independent and the stepsizes are chosen small enough,
SMART converges:

Theorem 3.1 (Convergence of SMART) For all k ≥ 0, let Ik = σ((ik, Sk)), let Ek = σ(εk), let

Fk := σ({xl}kl=0 ∪ {yl1, . . . , yln}kl=0),

and suppose that {Ik, Ek,Fk} are independent. Suppose that (1.5) holds. Finally, suppose that there are
constants λ, λ > 0 such that {λk}k∈N ⊆ [λ, λ], and

λ
2
<





mini,j

{
2λn2pijβij

3Mjτp

m
√

q
+

2Mj
qm

}
if S∗ = 0;

mini,j

{
λn2pijβij

Mjτp

m
√

q

√
2(τd+2)+

Mj(τd+2)

mq

}
otherwise.

(3.2)

Then

1. Convergence of operator values. For i ∈ {1, . . . , n}, the sequence of H-valued random variables
{Si(x

k−dk)}k∈N a. s. converges strongly to Si(x
∗).

2. Weak convergence. Suppose that I − S is demiclosed at 0. Then the sequence of H-valued random
variables {xk}k∈N a. s. weakly converges to an S-valued random variable.

3. Linear convergence. Let η < mini,j{ρpTij}, let α ∈ [0, 1), let q = minj{qj}, let M = minj{M j}, and let

λ ≤ min
i,j





2η(1 − α)n2pijβij

2Mjη(τd+2)
qjm

(
1 + δη

τd+1 +
5
√

2(τd+2)α2δ

mM
(√

2(τd+2)+τp
√q

)

)
+

Mjητp
√

2(τd+2)

m√q

(
2 + η

1−η

)
+ 4µ(τd + 1)α(1 − α)n2pijβij




.

(3.3)

Then if (2.1) holds, there exists a constant C(z0, φ0) ∈ R≥0 depending on x0 and φ0 such that for all
k ∈ N,

E
[
d2S(xk)

]
≤
(

1 − 2αµλ

τp + 1

)k/(τp+1) (
d2S(x0) + C(x0, φ0)

)
.

The proof of Theorem 3.1 without delay (i.e., dk ≡ 0 and eijk ≡ 0) is presented in Section 7. The proof of
the full theorem is in Appendix A
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Algorithm
Stepsize λ

Rate for best λ
that is largest possible that gives best rate

SAGA (4.2) 1
2L

1
4L+µN

1− µ
4L+µN

SVRG (4.3) 1
2L

1
4L+µτ

1− µ
4L+µτ

average update frequency τ

SVRG (4.4) 1
(τ+2)L

1
2L(τ+2)+µ(τ+1)

1− µ
2L(τ+2)+µ(τ+1)

scheduled update frequency τ

Finito (4.5) 1
2
; γ = 2

L
1
4
; γ = 1

L
1− 1

4N

(

1−
√

1− µ̂
L

)

SDCA (4.8) 3
4

3
8

1− 3µ0
8(L+µ0N)

Alternating Projections (4.10) 1 1
2 1− min{1,ε2L−2}

2Nµ̂

Kaczmarz (4.11) 1 1
2

1− 1
2N‖A−1‖22

Table 4.1: The stepsizes and convergence rates for the special cases of SMART introduced in Section 4

4 Connections with Other Algorithms

4.1 SAGA, SVRG, and S2GD

In the simplest case of (1.4)

minimize
x∈H0

1

N

N∑

i=1

fi(x) (4.1)

where each fi is convex and differentiable, and ∇fi is L-Lipschitz, we set Si := ∇fi. (We also set H = H0,
use the canonical norm ‖ · ‖ = ‖ · ‖0, and ignore coordinates and partial derivatives for the moment.) By
Proposition C.1, we can set βij = (LN)−1 for all i and j. With this choice of operators, the condition (2.1) is,

of course, implied by the µ-strong convexity of f := N−1
∑N

i=1 fi. But whether or not f is strongly convex,
if λ is set according to Theorem 3.1 or Table 4.1, SMART will converge.

The SAGA Algorithm [15] applied to (4.1) selects a function uniformly at random, performs a primal
update, and updates a single dual variable (i.e., the trigger graph is completely disconnected). When, for all
i, we set y0i = ∇fi(φ0i ) with φ0i ∈ H, SAGA takes the form:3

xk+1 = xk − λ

(
∇fik(xk) − ykik +

1

N

N∑

i=1

yki

)
;

yk+1
i =

{
∇fi(xk) if ik = i;

yki otherwise.
(4.2)

3 Use n = N,m = 1, dk ≡ 0, eik ≡ 0, q1 ≡ 1, τp = τd = 0, pij ≡ N−1, ρ = 1, E = {(i, i) | i ∈ V }, pTij = N−1.



SMART: The Stochastic Monotone Aggregated Root-Finding Algorithm 9

In the SAGA algorithm, each dual variable is just a gradient, yki := ∇fi(φki ), for a past iterate φki . The
SAGA algorithm stores the stale gradients {∇fi(φki ) | i = 1, . . . , N}, which, if x ∈ R

d, is the size of a
d×N matrix. However, in logistic and least squares regression problems, the functions fi have a simple form
fi(x) = ψi(〈ai, x〉) where the ψi : R → R are differentiable functions and the ai ∈ R

d are datapoints; in
this case, ∇fi(x) = ψ′

i(〈ai, x〉)ai, so the cost of storing {∇fi(φki ) | i = 1, . . . , N} can be reduced to that of
(ψ′

1(〈a1, φk1〉), . . . , ψ′
N (〈aN , φkN 〉))T ∈ R

d—a d-dimensional vector. But not all problems have this parametric
form, so the SAGA algorithm is somewhat limited in scope.

The Stochastic Variance Reduced Gradient (SVRG) algorithm [20], and the similar S2GD algorithm [23],
solve (4.1), but in contrast to SAGA, these algorithms store just a single vector, namely ∇f(x̃k). As a
consequence, SVRG and S2GD must make repeated, though infrequent, evaluations of the full gradient
∇f—in addition to one extra evaluation of ∇fik per-iteration:

xk+1 = xk − λ

(
∇fik(xk) −∇fik(x̃k) +

1

N

N∑

i=1

∇fi(x̃k)

)
;

x̃k+1 =

{
xk−tk if k ≡ 0 mod τ − 1;

x̃k+1 otherwise;

where {ik}k∈N is an IID sequence of uniformly distributed {1, . . . , N}-valued random variables and {tk}k∈N

is an IID sequence of uniformly distributed {0, . . . , τ −1}-valued random variables. The full gradient ∇f(x̃k)
and the point x̃k are only updated once every τ ∈ N iterations.

The SVRG algorithm4 solves the SAGA storage problem, but it requires f to be strongly convex, so it is
also somewhat limited in scope. SMART can mimic SVRG—even without strong convexity—by selecting a
function uniformly at random, performing a primal update, and updating all dual variables with probability
τ−1 (i.e., the trigger graph is the complete graph). When, for all i, we set y0i = ∇fi(φ0) with φ0 ∈ H, our
SVRG clone takes the form:5

xk+1 = xk − λ

(
∇fik(xk) − ykik +

1

N

N∑

i=1

yki

)
;

(∀i) yk+1
i = yki + ǫk(∇fi(xk) − yki ). (4.3)

As in SAGA, each dual variable is just a gradient yki = ∇fi(φk), for a past iterate φk, but unlike SAGA, the
past iterate is the same for all i. On average, all dual variables yki , and hence the full gradient ∇f(φk), are
only updated once every τ iterations.

Another clone of SVRG, this time with dual variables that update once every τ iterations, comes from
SMART as applied in (4.3), but with a cyclic uniform dual variable delay eik = ek := k mod (τ + 1):6

xk+1 = xk − λ

(
∇fik(xk) − yk−ek

ik
+

1

N

N∑

i=1

yk−ek
i

)
;

(∀i) yk+1
i = ∇fi(xk). (4.4)

The dual variable yki = ∇fi(xk), and hence the full gradient ∇f(xk), is only updated once every τ iterations.

4 From here on, we will ignore the distinction between SVRG and S2GD.
5 Use n = N,m = 1,M1 = 1, dk ≡ 0, eik ≡ 0, qj ≡ 1, τp = τd = 0, pij ≡ N−1, ρ = τ−1, E = V × V , and pTij = 1.
6 Use n = N,m = 1,M1 = 1, dk ≡ 0, eik = k mod τ , qj ≡ 1, τp = 0, τd = τ , pij ≡ N−1, ρ = 1, E = V × V , and pTij = 1.
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4.2 Finito

The Finito algorithm [16] solves (4.1), but unlike SAGA and SVRG, Finito stores one point and one gradient
per function, or a superposition of the two:

xk+1
i =

{
1
N

∑N
l=1(xkl − 1

2µ̂∇fl(xkl )) if i = ik;

xki otherwise,

where each fi is µ̂-strongly convex. For each function fi, Finito stores xki − (2µ̂)−1∇fi(xki ), which can be
substantially costlier than storing a matrix of gradients. In addition, only when each function fi(x) is µ̂-
strongly convex and the bound N ≥ 2Lµ̂−1 holds, is Finito known to converge.

SMART can mimic SAGA and SVRG with multiple operators, but with one operator S = S1, SMART
recovers the Finito algorithm. To get Finito, recast (4.1) into an equivalent form with duplicated variables

minimize
(x1,...,xN )∈HN

0

1

N

N∑

i=1

fi(xi) subject to: x1 = x2 = · · · = xN ,

let D := {(x, . . . , x) ∈ HN
0 | x ∈ H} denote the diagonal set, and define the operator (for a fixed γ > 0)

(
∀x ∈ HN

0

)
S(x) := S1(x) = x− PD (x1 − γ∇f1(x1), . . . , xN − γ∇fN(xN )) .

Then the Finito algorithm, selects a coordinate (and hence a function) uniformly at random and performs a
primal update; the sole dual variable is set to zero at all iterations:7

xk+1
j =

{
(1 − λ)xkj + λ

N

∑N
l=1

(
xkl − γ∇fl(xkl )

)
∀j ∈ Sk;

xkj otherwise.
(4.5)

Unlike the standard Finito algorithm [16], Algorithm (4.5) converges with or without strong convexity.

The constants β1j depend on the constant γ and the inner products that we place on Hj := H0 and
H := HN

0 . The projection operator PD also depends on these inner products. As long as8 γ ≤ 2L−1, the

operator S satisfies (1.5) with β1j ≡ 4−1γL, and if µ := 1 −
√

1 − 2γµ̂+ γ2µ̂L, it is µ-essentially strongly
quasi-monotone—provided that each fi is µ̂-strongly convex and we make the choices 〈xj , zj〉j := 〈xj , zj〉0
and ‖ · ‖ = ‖ · ‖prod; the operator S need not be strongly monotone unless each fi is strongly convex. See
Proposition C.2.

The space H = HN
0 is high-dimensional, so even storing a single vector xk is expensive. And in practice,

the gradients should also be stored—unless they are simple to recompute. Thus, it is clear that Finito, like
SAGA, but unlike SVRG, is impracticable if m is too large and memory is limited. Nevertheless, Finito
performs well in practice, often better than other incremental gradient methods.

7 Use n = 1, m = N,Mj ≡ 1, dk ≡ 0, eik ≡ 0, S∗ = 0, qj ≡ N−1, τp = 0, τd = 0, pij ≡ 1, ρ = 1, E = {(1, 1)}, and pTij = N−1.
8 See Proposition C.2.



SMART: The Stochastic Monotone Aggregated Root-Finding Algorithm 11

4.3 SDCA

The Stochastic Dual Coordinate Ascent (SDCA) algorithm [34] solves a problem different from (4.1):9

minimize
z∈H0

1

N

N∑

j=1

fj(z) +
µ0

2
‖z‖2 (4.6)

SDCA does not solve this primal problem directly; instead, SDCA solves the dual problem.

minimize
(x1,...,xN )∈HN

0

1

N

N∑

j=1

f∗
j (−xj) +

µ0

2

∥∥∥∥∥∥
1

µ0N

N∑

j=1

xj

∥∥∥∥∥∥

2

.

If we define {Sk}k∈N as in SMART and restrict all Sk to have at most one element, SDCA repeatedly does
the following:

xk+1
j =





xkj + arg minxj∈H0

{
f∗
j (−xkj − xj) + µ0N

2

∥∥∥ 1
µ0N

∑N
l=1 x

k
l + 1

µ0N
xj

∥∥∥
2
}

if j ∈ Sk;

xkj otherwise.
(4.7)

For each function fj , SDCA stores the vector xkj . This can be cheap because, as the optimality conditions

of (4.7) show, there is always a point zkj such that xkj ∈ ∂f(xkj ). The drawback to (4.7) is that only when
each fi is differentiable, is SDCA known to converge. In addition, the form (4.7) is opaque, but with a bit of
polishing, it can be made transparent.

Evidently, the first line of (4.7) is a forward-backward step:

xk+1
j = proxµ0Nf∗

j (−·)

(
xkj − µ0N

[
∇g(xk)

]
j

)

where g(x) := 2−1µ0N
∥∥∥(µ0N)−1

∑N
l=1 xl

∥∥∥
2

. Thus, SDCA is an instance of SMART with f∗ :=
∑N

j=1 f
∗
j (xj),

(
∀x ∈ HN

0

)
S(z) = S1(x) := x− proxµ0Nf∗(−·)(x− µ0N∇g(x)),

that selects, at each iteration, a single coordinate (hence, a function) uniformly at random and performs a
primal update; the sole dual variable is set to zero at all iterations:10

xk+1
j =

{
xkj − λ

(
xkj − proxµ0Nf∗

j (−·)

(
xkj − µ0N

[
∇g(xk)

]
j

))
∀j with j ∈ Sk

xkj otherwise.
(4.8)

Unlike (4.7), Algorithm (4.8) converges whether or not any fj is differentiable.
The constants β1j depend on the inner products that we place on Hj := H0 and H := HN

0 ; as we did for
Finito, we set 〈xj , zj〉j := 〈xj , zj〉0, and ‖ · ‖ = ‖ · ‖prod. With this choice, the operator S satisfies (1.5) with

β1j ≡ 3/4, and it is µ0N(µ0N + L)−1-strongly quasi-monotone. See Proposition C.3.
Although the space H is high-dimensional, the condition x0j ∈ range(∂fj) ensures that each component

xkj will lie in the linear span of range(∂fj), which is often one-dimensional.11

9 In the standard SDCA problem, fi(z) := ψi(A
T
i z) for a convex, differentiable function ψi and a matrix Ai. Furthermore,

the squared 2-norm is replaced with a general strongly convex function g.
10 Use n = 1, m = N,Mj ≡ 1, dk ≡ 0, eik ≡ 0, S∗ = 0, qj ≡ N−1, τp = τd = 0, pij ≡ 1, ρ = 1, E = {(1, 1)}, and pTij = N−1.
11 The Moureau identity implies that for all xj , we have proxNµ0f

∗
j
(−·) (xj) ∈ range(∂fj).
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4.4 Randomized Projection Algorithms

Besides minimization problems, SMART also solves feasibility problems:

Find x ∈
s1⋂

i=1

Ci subject to: fi(x) ≤ 0 for i = 1, . . . , s2, (N = s1 + s2) (4.9)

where C1, . . . , Cs1 ⊆ H are closed, convex sets, and fi : H → (−∞,∞) are continuous, convex functions.
To align (4.9) with (1.4), each set and each function are assigned an operator. The sets Ci are assigned the
familiar projection operator PCi

. The functions are assigned a subgradient projector

(∀x ∈ H) Gfi (x) := x− fi(x)

‖gi(x)‖2 gi(x)

where gi : H → H is a measurable subgradient selector ; i.e., for all x ∈ H, gi(x) ∈ ∂fi(x).
Then Problem (4.9) is an instance of (1.4) with n = s1 + s2 and

(∀x ∈ H) Si(x) :=

{
x− PCi

x if i = 1, . . . , s1;

x−Gfi−s1
(x) if i = s1 + 1, . . . , s1 + s2.

With SMART, we can select a function or a set uniformly at random and perform a primal update; all
operators are zero at points in zer(S), so all dual variables are zero:12

xk+1 := xk − λ

{
xk − PCik

xk if ik ∈ {1, . . . , s1};

xk −Gfik−s1
(xk) if ik ∈ {s1 + 1, . . . , s1 + s2}.

(4.10)

In general, the operator S in (4.9) has several nice properties: zer(S) is the set of solutions to (4.9); S
satisfies (1.5) with βi1 ≡ N−1; S is demiclosed; and if

1. {Ci | i = 1, . . . , s1} ∪ {{x | fi(x) ≤ 0} | i = 1, . . . , s2} are µ̂-linearly regular,13

2. there is an ε > 0 such that fi(x) ≥ εd{fi(x)≤0}(x) for all x ∈ H,
3. and there is an L > 0 such that ‖gi(x)‖ ≤ L for all x ∈ H,

then, with µ := (Nµ̂)−1 max{1, ε2L−2}, the operator S is µ-essentially strongly quasi-monotone. Thus, xk

converges linearly, which is a new result for (4.10).14

The randomized Kaczmarz algorithm [35,26], which solves overdetermined linear systems Ax = b, is
a special case of (4.10): if a1, . . . , aN are the rows of A, which we assume, without loss of generality, are
normalized and Ci := {x | 〈ai, x〉 = bi}, then the projection is PCi

(x) = x+ (bi − 〈ai, x〉)ai, and

xk+1 = xk + λ(bik − 〈aik , x〉)ai (4.11)

The Kaczmarz operator is (‖A−1‖−2
2 N−1)-essentially strongly quasi-monotone, and so xk linearly converges

to a solution of Ax = b.15

12 Use n = N,m = 1,M1 ≡ 1, dk ≡ 0, eik ≡ 0, S∗ = 0, qj ≡ 1, τp = τd = 0, pij ≡ N−1, ρ = 1, E = {(i, i) | i ∈ V }, and
pTij = N−1.
13 A set family {D1, . . . ,DN} is µ̂-linearly regular if ∀x ∈ H, dD1∩···∩DN

(x) ≤ µ̂max{dD1
(x), . . . , dDN

(x)}.
14 See Proposition C.4.
15 We define ‖A−1‖2 := inf{M | (∀x ∈ H) M‖Ax‖2 ≥ ‖x‖2}; see Corollary C.1.
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4.5 ARock

When n = 1, and hence, S = S1, SMART recovers the ARock Algorithm [29], which at iteration k, samples
a coordinate j and updates

xk+1
j = xkj − λ

qjm
(S(xk−dk))j ;

(∀j′ 6= j) xk+1
j = xkj .

When we specialize SMART to this simple single operator case, which is the only case that ARock applies
to, there is no difference between ARock and SMART; but Theorem 3.1 guarantees that ARock will converge
under conditions weaker than those presented in [29].

In [29], the underlying Hilbert space H = H1 × · · · × Hm is a product of several other Hilbert spaces,
and for ARock to converge, the norm ‖ · ‖ on H must be equal to the standard product norm: ‖x‖2prod =∑m

j=1 ‖xj‖2j . We removed this assumption, and this significantly extends the problems that ARock can solve;
in Sections 6.3, 6.4, and 6.5 we present new algorithms that use nonstandard norms.

In [29], the operator S must satisfy

(∀x ∈ H) , (∀y ∈ H) 〈S(x) − S(y), x− y〉 ≥ 1

2
‖S(x) − S(y)‖2,

where the inner product on left and the norm on the right are, again, both the standard ones on H. This
cocoercivity condition is plainly stronger than (1.5), and for example, fails for the subgradient projector of
Section 4.4.

ARock converges linearly only when

(∃µ > 0) : (∀x ∈ H), (∀x∗ ∈ S) 〈S(x), x − x∗〉 ≥ µ‖x− x∗‖2,

which is, of course, plainly stronger than (2.1), and for example, requires that S is a singleton.
But the biggest limitation of ARock, a limitation that we remove in SMART, is that to solve simple

problems, such as (4.1), an extra primal variable must be introduced for each smooth term, and these
primal variables are not low dimensional, unlike the dual variables of SMART, which tend to be gradients
of functions of the form f(〈ai, x〉); this difference is comparable to the difference between the low memory
methods SAGA/SVRG and and high memory method Finito.

5 What’s New: Improving Existing Algorithms

In Section 4 we introduced a few algorithms and described how to recover them with SMART, but we did
not discuss new features which are obtainable from SMART. We do that now.

5.1 Weaker Conditions for Convergence

Only when the objectives are differentiable and strongly convex are SVRG, Finito, and SDCA known to
converge. But with SMART, strong convexity can be dropped in all cases. Furthermore, in SDCA, the
objectives, fj, need only be convex, proper, and closed.
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SAGA and SVRG are known to converge linearly when f is strongly convex. By Theorem 1, they converge
linearly when N−1

∑N
i=1 ∇fi(xi) is essentially strongly quasi-monotone, which occurs, for example, when

there is a strongly convex function gi and a linear map Ai such that fi(x) = gi(Aix).
Finito is also known to converge linearly when fj is strongly convex. Again, by Theorem 1, Finito

converges linearly when its operator S is essentially strongly quasi-monotone; the weakest conditions under
which this occurs appears to be an open problem in the study of error bounds.

SDCA is known to converge linearly when each fj is strongly convex and differentiable with Lipschitz
continuous gradient. SDCA will still converge linearly if each fj is just differentiable, but not necessarily
strongly convex; see Lemma C.3 for a proof of this simple fact.

5.2 Proximable Terms

SAGA and SVRG also solve problems in which a single nonsmooth term is added to (4.1):

minimize
x∈H0

g(x) +
1

N

N∑

i=1

fi(x), (5.1)

where g : H0 → [−∞,∞) is closed, proper, and convex. In this composite case, the update rule is only
slightly changed, for example, in SAGA (4.2), we replace the primal update with

xk+1 = proxλg

(
xk − λ

(
∇fik(xk) − ykik +

1

N

N∑

i=1

yki

))
.

This update rule is not a special case of SMART, but with almost no extra work, we can extend our proof
of convergence in the synchronous case (Theorem 7.1) to show that the update rule works. However, when
SMART is asynchronous, we hit a wall; progress seems unlikely.

Instead of pursuing asynchronous versions of this update, we introduce a new update rule: Let

Si =
1

LN
∇fi ◦ proxL−1g i = 1, . . . , N and SN+1 = (I − proxL−1g),

Then, for all k ∈ N, we get the proximal SAGA update:16 select λ < (N + 1)8−1 and iterate

xk+1 = xk − λ





(
2

L(N+1)∇fi(proxL−1g(x)) − 2N
N+1y

k
i + 1

N+1

∑N+1
i=1 yki

)
if ik = i and i < N + 1;(

2
N+1 (I − proxL−1g)(xk) − 2

N+1y
k
N+1 + 1

N+1

∑N+1
i=1 yki

)
if ik = N + 1;

yk+1
i =





1
LN∇fi(proxL−1g(xk)) if ik = i and i < N + 1;(
I − proxL−1g

)
(xk) if i = N + 1;

yki otherwise.

(5.2)

This special case of SMART has a trigger graph that is not completed disconnected, as it is in the standard
SAGA algorithm; instead all vertices i in the graph contain a directed edge starting at i and ending at N+1.

16 Use n = N,m = 1, dk ≡ 0, eik ≡ 0, q1 ≡ 1, τp = τd = 0, pij ≡ (2N)−1 for i < N + 1 and p(N+1)1 = 2−1, ρ = 1,

E = {(i, i) | i ∈ V } ∪ {(i, N + 1) | i ∈ V }, pTi1 = (2N)−1 for i < N + 1, pT
(N+1)1

= 1.
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In a similar fashion, proximal SVRG algorithms arise from our choice of Si, but as in (4.3) and (4.4), the
dual variable update probability should be ρ = τ−1 and the trigger graph should be the complete graph on
N + 1 vertices.

The zero set S of S = (N +1)−1
∑N+1

i=1 Si does not contain the set of minimizers of f +g, but it is related
to the minimizers (if any exist) through the proximal operator of g:

For all x∗ ∈ S, the point proxγg(x∗) minimizes f + g.

Unlike in SAGA and SVRG, the operators Si do not satisfy 〈Si(x)−Si(x
∗), x−x∗〉 ≥ L−1‖Si(x)−Si(x

∗)‖2;
but the sum S satisfies (1.5) with

βi1 =
N

2(N + 1)
i = 1, . . . , N and β(N+1)1 =

1

2(N + 1)
;

in Proposition C.5, we give different possibilities for different γ. But with these parameters, we have

λ ≤ (N + 1)(1 + µgL
−1)

(16 + 2N)(1 + µgL−1) − 2N(
√

1 − µfL−1)
=⇒ linear rate: 1 − 1 + µgL

−1 −
√

1 − µfL−1

(8 +N)(1 + µgL−1) −N(
√

1 − µfL−1)
,

where N−1
∑N

i=1 fi is µf -strongly convex and g is µg-strongly convex.17

5.3 Coordinate Updates

We recover Finito and SDCA with SMART by performing coordinate updates on an operator S. These oper-
ators are block-separable, but all algorithms in Section 4 will still converge if we perform finer, nonseparable
updates.

For example, SAGA will converge all the same if we replace all full derivatives ∇fi with partial derivatives
∇jfi (where fi is now viewed as a function on a space H1 × · · · × Hm, and the partial derivative is taken
with respect to the coordinates in Hj , which could be an infinite dimensional space): given xk, sample
jk ∈ {1, . . . ,m} uniformly at random, and set

xk+1
j =

{
xkj − λ

(
∇jfik(xk) − ykik,j + 1

N

∑N
i=1 y

k
i,j

)
if j = jk;

xkj otherwise.

yk+1
i,j =

{
∇jfi(x

k) if ik = i and jk = j;

yki,j otherwise.
(5.3)

This algorithm converges for the same range of λ as (4.2) (namely, for λ < (2L)−1), but in the strongly
convex case, the step size λ that gives the best rate of convergence rate changes to λ = m(4Lm + µN)−1,
and correspondingly, the convergence rate changes to 1 − µ(4Lm+ µN)−1.

The story is similar for all algorithms in Section 4.

17 In this case, S is ((N + 1)(1 + µgL−1))−1(1 + L−1µg −
√

1− L−1µf ) essentially strongly quasi-monotone.
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5.4 Importance Sampling and Better βij

Until now, the constants βij have been constant and equal to L−1. But by making the finer distinction that
∇fi is Li-Lipschitz continuous, can choose larger λ by sampling ik nonuniformly.

For example, in the SAGA algorithm (4.2), we have

pi1 = P (ik = i) =
Li∑n
i=1 Li

=⇒ λ <
1

2
n

∑n
i=1 Li

. (5.4)

Compared to (2 max{Li})−1, which is the stepsize obtained with uniform ik sampling, the above stepsize
can be much larger. Similarly

ik sampled according to (5.4) =⇒ linear rate: 1 − µ
4
N

∑N
i=1 Li + µN

;

ik sampled uniformly =⇒ linear rate: 1 − µ

4 maxi{Li} + µN
.

Thus, importance sampling replaces maximums of Lipschitz constants by averages of Lipschitz constants.
For smooth functions, the constants βij appearing in (1.5) are related to inverse coordinatewise Lipschitz

constants, which are the minimal values Lij such that

fi(x+ ŷj) ≤ fi(x) + 〈∇fi(x), ŷj〉 +
Lij

2
‖ŷj‖2j ; ŷj = (0, . . . , 0, yj, 0, . . . , 0);

for all x ∈ H and yj ∈ Hj . From the above inequality, comes the relationship18

1

Lij
‖∇jfi(x) −∇jfi(y)‖2j ≤ 〈∇fi(x) −∇fi(y), x− y〉,

which is not a favorable one because the right hand side depends on the full derivative ∇fi.
However, the relationship improves if, say, at most s≪ n partial derivatives ∇jf(x1, . . . , xn) depend on

each coordinate; from that assumption, comes the relationship

n∑

i=1

1

sLij
‖∇jfi(x) −∇jfi(y)‖2j ≤ 〈∇fi(x) −∇fi(y), x− y〉.

But notice that if Li is the minimal Lipschitz constant ∇fi, then L−1
i ≥ minj{(sLij)

−1}.

5.5 Mini Batching

The pre-update mini batching method adjusts problem (4.1) by grouping functions together according to
B ⊆ 2{1,...,N}:

minimize
x∈H

1

N

∑

B∈B

∑

i∈B

1

N(i)
fi; (∀i) N(i) := |{B ∈ B | i ∈ B}|.

Then it runs one of the algorithms from Section 4 with the n = |B| functions
∑

i∈B N(i)−1fi.

18 See Proposition B.4 for a proof in our general case, and [22, Lemma 4] for a proof in the case that Hj = R.
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The parameter n and hence, the number of dual variables in the pre-update mini batching method can
be impractically large. To save memory, only our SVRG clone (4.3) should be used with the pre-update mini
batching method; with this method, a mini batch Bik ∈ B of gradients is computed at every iteration, and
on average all of the dual variables are, and hence, the full gradient is, updated once per τ−1 iterations: label
the elements of B = {B1, . . . , Bn}, and iterate19

xk+1 = xk − λ




∑

l∈Bik

(∇fl(xk) −∇fl(φk)) +
1

N

N∑

i=1

∇fi(φk)



 ;

(∀i) φk+1 = φk + ǫk(xk − φk).

In this SVRG clone, we eliminate all of the dual variables, and as a result, we save a lot of memory.
Unlike the pre-update mini batching method, the post-update mini batching method does not adjust

problem (4.1); it only adjusts the trigger graph. Consequently, there is no grouping B which pairs functions
together. In place of a grouping, for each function, the trigger graph G triggers a gradient computation for
some other set of functions:

xk+1 = xk − λ

(
∇fik(xk) − ykik +

1

N

N∑

i=1

yki

)
;

yk+1
i =

{
∇fi(xk) if ik triggers i;

yki otherwise.

Here the mini batching is arbitrary, but we have already seen three specific examples of trigger graphs: the
completely disconnected graph (SAGA), the completely connected graph (SVRG), and an internally directed
star graph (Proximal SAGA).

Convergence rates improve with post-update mini batching because the parameter η := mini,j{ρpTij},
increases. For example, if every node i ∈ {1, . . . , N} in the trigger graph is triggered by NT other nodes,
then pTij := N−1NT , and the convergence rate of SAGA improves:

λ ≤ 1

4L+ 8µN
NT

=⇒ linear rate: 1 − µ

4L+ 8µN
NT

.

Compared to 1 − µ(4L+ µN)−1, which is the convergence rate for standard SAGA, the above convergence
rate can be much better. See [19] for similar convergence rate improvements from mini batching.

5.6 Asynchronous Updates

Besides ARock, all algorithms in Section 4 are synchronous because the primal and dual updates are not
delayed. On paper, delaying is just a matter of changing indices, as in the asynchronous SAGA algorithm:

xk+1 = xk − λ

(
∇fik(xk−dk) − y

k−eik
ik

+
1

N

N∑

i=1

y
k−eik
i

)
;

yk+1
i =

{
∇fi(xk−dk) if ik = i;

yki otherwise.

19 The pre-update mini batching SVRG clone is similar to the algorithm in [21].
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However, on a computer, implementing an asynchronous algorithm can be difficult. For a brief discussion on
implementation issues, see [29].

6 What’s New: Algorithms

On the surface, the shape of an operator plainly resembles the shape of a gradient, and this is already a
powerful observation, leading to the SAGA and SVRG algorithms. But operators also model nonsmooth op-
timization problems and even monotone inclusions; choosing these operators just requires a bit of experience,
which anyone can acquire, for example, by understanding the five examples presented in this section.

The examples presented here isolate five common optimization problems, reformulate these problems with
operators Si, and then solve these problems with SMART. Once we choose the operators Si, we can apply
SMART in exponentially many ways, for example, by choosing arbitrary delays, sampling probabilities, and
trigger graphs; in this section, we avoid endless customization, and instead, we apply SMART in a simple,
arbitrary manner.

6.1 LinSAGA and LinSVRG

LinSAGA and LinSVRG add a linear constraint to the proximal SAGA and proximal SVRG problems:

minimize
x∈H

g(x) +
1

N

N∑

i=1

fi(x);

subject to: x ∈ V, (6.1)

where the function g : H → (−∞,∞] is closed, proper, and convex; the functions fi : H → (−∞,∞) are
differentiable and the gradients PV ◦ ∇fi ◦ PV are L̂i-Lipschitz continuous;20 and the set V ⊆ H is a vector
space.21 We assume that PV and proxγg are both easy to evaluate.

We model this problem with N + 1 operators (for some γ > 0):

(∀i < N + 1) Si :=
γ

N
PV ◦ ∇fi ◦ PV ◦ proxγg;

SN+1 := (I − 2PV ) ◦ proxγg + PV .

The roots of S := (N + 1)−1
∑N+1

i=1 Si are not solutions of (6.1), but in general,

x ∈ zer(S) =⇒ proxγg(x) solves (6.1),

and zer(S) 6= ∅ if, and only if, zer(∂g +N−1
∑N

i=1 ∇fi +NV ) 6= ∅.
The following iterative algorithm is a special case of SMART.

20 The operator PV ◦∇fi ◦ PV is the gradient of the convex function fi ◦ PV , and its Lipschitz constant, which we denote by
L̂i, is generally smaller than the Lipschitz constant of ∇fi (see the discussion surrounding [12, Lemma 1.3].)
21 Affine constraints, say, Ax = b can replace the linear constraint x ∈ V provided we choose any c ∈ H such that Ac = b,
change f(x) and g(x) to f(x+ c), and g(x+ c), respectively, and set V = ker(A).
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Algorithm 2 (LinSAGA/LinSVRG) Choose initial points x0, y01 , . . . , y
0
N+1 ∈ H. Choose stepsizes

satisfying

λ ≤ (N + 1)

8
and γ =

N
∑N

i=1 L̂i

.

Then for k ∈ N, perform the following four steps:

1. Sampling: Choose dual update decision ǫk ∈ {0, 1}. Choose an index ik ∈ {1, . . . , N + 1} with
distribution

P (ik = i) =

{
1
2 if ik = N + 1

L̂i

2
∑

N
i=1 L̂i

otherwise.

2. Primal update (gradient case): if ik < N + 1, set

xk+1 = xk − λ

(
γ

N(N + 1)pik1
PV ∇fi(PV proxγg(xk)) − 1

(N + 1)pik1
ykik +

1

N + 1

N+1∑

i=1

yki

)
.

3. Primal update (proximal case): if ik = N + 1, set

xk+1 = xk − λ

(
1

(N + 1)pik1

(
(I − 2PV )proxγg(xk) + PV x

k
)
− 1

(N + 1)pik1
ykik +

1

N + 1

N+1∑

i=1

yki

)
.

4. Dual update: set

yk+1
i =

{
yki + ǫk

(
γ
N PV ∇fi(PV proxγg(xk)) − yki

)
if ik triggers i and i < N + 1.

ykN+1 + ǫk
(
(I − 2PV )proxγg(xk) − ykN+1

)
if ik triggers i and i = N + 1.

⊓⊔

As in Section 4.1, the difference between LinSAGA and LinSVRG lies in the trigger graph, and how often
the dual variables are updated: LinSAGA uses the directed star trigger graph in which every node i < N + 1
connects to N + 1; and LinSVRG uses the completely connected trigger graph with dual variable update
frequency P (ǫk = 1) = τ−1 for some τ > 0.

The Properties of S. The operator S satisfies the coherence condition (1.5) with

(∀i ≤ N) βi1 =
N

2γL̂i(N + 1)
and β(N+1)1 =

1

N + 1

(
1 − 1

2N

N∑

i=1

γL̂i

)
,

and with

µ =
1

N + 1

(
1 −

(
1

(1 + (γLg)−1)
+

√
1 − 2γµf + γ2Lµf

(1 + γµg)

))

the operator S is essentially strongly quasi-monotone (if γ ≤ 2L−1 and µ > 0), where L = N−1
∑N

i=1 L̂i, the

function N−1
∑N

i=1 fi is µf -strongly convex, the function g is differentiable and µg-strongly convex, and the
gradient ∇g is Lg-Lipschitz continuous.
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6.2 SuperSAGA and SuperSVRG

SuperSAGA and SuperSVRG add a few nonsmooth terms to the smooth problem (4.1):

minimize
x∈H1

M∑

j=1

gj(z) +
1

N

N∑

i=1

fi(z), (6.2)

where the functions gj : H1 → (−∞,∞] are closed, proper, and convex; and the functions fi : H → (−∞,∞)
are differentiable and the gradients ∇fi are Li-Lipschitz continuous.

It is more convenient for us to work with the reformulated problem:

minimize
z∈H

g(x) +
1

N

N∑

i=1

fi(x1)

subject to: x ∈ D (6.3)

where we define the spaces H := HM
1 and D := {x ∈ H | x1 = · · · = xM}; and for all x ∈ H, we let

g(x) :=
∑M

j=1 g(xi).
Problem (6.3) is evidently a special case of Problem (6.1), so we choose the operators that worked well

there:

(∀i < N + 1) Si :=
γ

N
PD ◦ ∇fi ◦ PD ◦ proxγg;

SN+1 := (I − 2PD) ◦ proxγg + PD.

Provided that M is relatively small, and for each j, the operator proxγgj is easy to evaluate, the operators
Si are easy to evaluate. For example, for all x ∈ H and i < N + 1, we have

PDx =
1

M

M∑

j=1

xj ; proxγg(x) = (proxγgj (xj))
M
j=1; Si(x) =

(
γ

NM
∇fi

(
1

M

M∑

l=1

proxγgl(xl)

))M

j=1

.

And as before, the roots of S := (N + 1)−1
∑N+1

i=1 Si are not solutions of (6.2), but in general,

x∗ ∈ zer(S) =⇒ (∀j) proxγgj (x∗j ) solves (6.2),

and zer(S) 6= ∅ if, and only if, zer(
∑M

j=1 ∂gj +N−1
∑N

i=1 ∇fi) 6= ∅.
The following iterative algorithm is a special case of SMART.
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Algorithm 3 (SuperSAGA/SuperSVRG) Choose initial points x0 ∈ H and y01, . . . , y
0
N+1 ∈ H1.

Choose stepsizes satisfying

λ ≤ (N + 1)

8
and γ =

MN
∑N

i=1 Li

.

Then for k ∈ N, perform the following four steps:

1. Sampling: Choose dual update decision ǫk ∈ {0, 1}. Choose an index ik ∈ {1, . . . , N + 1} with
distribution

P (ik = i) =

{
1
2 if i = N + 1

Li

2
∑

N
i=1 Li

otherwise.

2. Primal update (gradient case): if ik < N + 1, set

(∀j) xk+1
j = xkj − λ


 γ

MN(N + 1)pik1
∇fi


 1

M

M∑

j=1

wk
j


− 1

(N + 1)pik1
ykik +

1

N + 1

k∑

i=1

yki


 ;

wk+1
j = proxγgj (xk+1

j ).

3. Primal update (proximal case): if ik = N + 1, set

(∀j) xk+1
j = xkj − λ



 1

(N + 1)pik1



wk
j − 1

M

M∑

j=1

(2wk
j − xkj )



 − 1

(N + 1)pik1
ykik +

1

N + 1

k∑

i=1

yki



 ;

wk+1
j = proxγgj (xk+1

j ).

4. Dual update: set

yk+1
i =





yki + ǫk

(
γ

MN∇fi
(

1
M

∑M
j=1 w

k
j

)
− yki

)
if ik triggers i and i < N + 1;

yki + ǫk

(
1
M

∑M
j=1(xkj − wk

j ) − yki

)
if ik triggers i and i = N + 1.

⊓⊔

The difference between SuperSAGA and SuperSVRG, again, lies in the trigger graph and the dual variable
update frequency; see the comments following Algorithm 2.

The Properties of S. The operator S is an instance of the LinSAGA/LinSVRG operator defined in Sec-
tion 6.1, so the two operators satisfy the coherence condition (1.5) with the same constants22

(∀i ≤ N) βi1 =
NM

2γLi(N + 1)
and β(N+1)1 =

1

N + 1

(
1 − 1

2N

N∑

i=1

γLi

M

)
,

and both operators are essentially strongly monotone under the same conditions.
In fact, the SuperSAGA/SuperSVRG algorithms and the LinSAGA/LinSVRG algorithms differ in just

one way: for SuperSAGA/SuperSVRG, the dual variables yki are vectors in H0 rather than vectors yki in

22 Clearly, L̂i = LiM−1.
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H = HM
0 , and that saves some memory. We can use yki in place of yki by viewing S as an operator not

on the space HM , but as an operator on the orthogonal decomposition H = D ⊕ D⊥, which has just two
components. Then, the identity

SN+1 = PD⊥proxγg + PD(I − proxγg)

allows us to reparamterize the components of Si into a D component and D⊥ component: for all i ≤ N ,

(Si)D =
γ

N
PD ◦ ∇fi ◦ PD ◦ proxγg; (Si(x))D⊥ ≡ 0;

(SN+1)D = PD(I − proxγg); (SN+1)D⊥ = PD⊥proxγg.

Then, with this new decomposition, we have (Si(x
∗))D⊥ = 0 for all i, which makes saving the full vector yki

superfluous; we need only store the component in D, which is precisely the vector yki .
The above approach saves memory when all M components of x are updated at every iteration and the

coordinates are consistent-read asynchronous or totally synchronous. However, if only some of the coordinates
xj are updated at each iteration or inconsistent-read updates are performed, Theorem 3.1 ceases to apply;
in either of those cases, we must use the full dual variables yki .

6.3 TropicSMART: Randomized Smoothly Coupled Monotropic Programming

The TropicSMART problem is different from all problems we have seen so far:

minimize
xj∈Hj

M∑

j=1

gj(xj) + f(x1, . . . , xM );

subject to:

M∑

j=1

Ajxj = b, (6.4)

where the sets Hj (j = 1, . . . ,M+1) are Hilbert spaces; the sets H′ := H1×· · ·×HM and H := H1×· · ·×HM+1

are product spaces; the functions gj : Hj → (−∞,∞] are closed, proper, and convex (we also let g(x) :=∑M
j=1 g(xj)); the function f : H′ → (−∞,∞) is differentiable and ∇f is L-Lipschitz continuous; the linear

maps Aj : Hj → HM+1 are continuous; and b ∈ HM+1.
There is only one TropicSMART operator: for all x ∈ H, define

(S(x))j :=




xj − proxγjgj

(
xj − γjA

∗
j

(
xM+1 + 2γM+1

(∑M
l=1Alxl − b

))
− γj∇jf(x)

)
if j < M + 1;

−γM+1

(∑M
l=1Alxl − b

)
if j = M + 1.

The roots of S := (N + 1)−1
∑N+1

i=1 Si are not solutions of (6.4), but in general,

x∗ ∈ zer(S) =⇒ (x∗1, . . . , x
∗
M ) solves (6.2),

and zer(S) 6= ∅ if, and only if, zer
(
∂g + ∇f +N{x∈H|∑M

j=1 Ajxj=b}

)
6= ∅.

The following iterative algorithm is a special case of SMART.
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Algorithm 4 (TropicSMART) Choose initial points x0 ∈ H. Choose δ ∈ (0, 1), and choose stepsizes
satisfying

γM+1




M∑

j=1

γj‖Aj‖2

 ≤ δ; max

j
{γj} ≤ 2(1 −

√
δ)

L
; λ ≤ Lmaxj{γj}

4(1 +
√
δ)

.

Then for k ∈ N, perform the following two steps:

1. Sampling: Choose a coordinate jk ∈ {1, . . . ,M + 1} uniformly at random and set Sk = {jk}.
2. Primal update: set

xk+1
M+1 = xkM+1 + γM+1

(
M∑

l=1

Alx
k
l − b

)
;

(∀j ∈ Sk\{M + 1}) xk+1
j = proxγjgj

(
xkj − γjA

∗
j (2xk+1

M+1 − xkM+1) − γj∇jf(xk)
)

;

(∀j ∈ Sk) xk+1
j = xkj − λ

(
xkj − xk+1

j

)
;

(∀j /∈ Sk) xk+1
j = xkj . ⊓⊔

The Properties of S. The operator S satisfies the coherence condition (1.5) with

(∀j) β1j =
Lmaxj{γj}

4γj
.

But the TropicSMART operator S does not satisfy the coherence condition in the standard metric on H;
instead there is a strongly positive self-adjoint linear operator P (e.g., with respect to 〈·, ·〉prod, a symmetric
positive definite matrix) so that

(∀x ∈ H) , (∀x∗ ∈ zer(S)) 〈S(x), x− x∗〉P ≥
M+1∑

j=1

β1j‖(S(x))j‖2j ,

and this linear operator P satisfies
∑M+1

j=1 M j‖xj‖2j ≤ ‖x‖2P ≤∑M+1
j=1 M j‖xj‖2j , where for all j, we have

M j :=
1 −

√
δ

γj
and M j :=

1 +
√
δ

γj
.

The weakest conditions under which S is essentially strongly quasi-monotone are not known.

6.4 ProxSMART: Randomized Proximable Optimization

The ProxSMART algorithm solves the following proximable optimization problem:

minimize
z∈H1

g1(z) +
M∑

j=2

gj(Ajz), (6.5)
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where the sets Hj (j = 1, . . . ,M + 1) are Hilbert spaces; the set H := H1 × · · · ×HM is a product space; the
functions gj : Hj → (−∞,∞] are closed, proper, convex, and nonsmooth; and the linear maps Aj : H1 → Hj

are continuous.

There is only one ProxSMART operator: for all x ∈ H, define

(S(x))j := (S1(x))j =




x1 − proxγ1g1

(
x1 − γ1

∑M
j=2 A

∗
jxj

)
if j = 1;

xj − proxγjg∗
j

(xj + γjAj (2x1 − x1)) otherwise;

where x1 = proxγ1g1

(
x1 − γ1

∑M
j=2 A

∗
jxj

)
. The roots of S := (N + 1)−1

∑N+1
i=1 Si are not solutions of (6.5),

but in general,

x∗ ∈ zer(S) =⇒ x1 solves (6.5),

and zer(S) 6= ∅ if, and only if, zer(∂g1(x) +
∑M

j=2 A
∗
j∂gj ◦Aj) 6= ∅.

The following iterative algorithm is a special case of SMART.

Algorithm 5 (ProxSMART) Choose initial point x0 ∈ H. Choose δ ∈ (0, 1), and choose stepsizes
satisfying

γ1




M∑

j=2

γj‖Aj‖2

 ≤ δ and λ ≤ 1 −

√
δ

1 +
√
δ
.

Then for k ∈ N, perform the following two steps:

1. Sampling. Choose a set of functions (their indices) Sk.
2. Primal update: set

xk+1
1 = proxγ1g1


xk1 − γ1

M∑

j=2

A∗
jx

k
j


 ;

(∀j ∈ Sk\{1}) xk+1
j = proxγjg∗

j

(
xkj + γjAj

(
2xk+1

1 − xk1
))

;

(∀j ∈ Sk) xk+1
j = xkj − λ

qjM

(
xkj − xk+1

j

)
;

(∀j /∈ Sk) xk+1
j = xkj . ⊓⊔

The variables xj for which j > 1 are different from the dual variables in SMART because here n = 1.
However, the xj dual variables play a similar role to the y dual variables, and like the dual variables in
SMART, they are often low dimensional—if Ai is a row vector, then xj is a scalar. Another similarity,
arising in the case λ = 1, is that for j > 1, xkj is a subgradient, much like the dual variables in SMART are

gradients in SAGA and SVRG.23 But even if Ai is the identity map, and λ is arbitrary, xkj is always in the
linear span of ∂f , which may be low dimensional.

23 If z+ = proxγjg
∗ (z), then z+ ∈ ∂g(γ−1(z − z+))
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The Properties of S. The operator S satisfies the coherence condition (1.5) with

(∀j) β1j =
(1 −

√
δ)

γj
.

But like the TropicSMART operator from Section 6.3, the ProxSMART operator S does not satisfy the
coherence condition in the standard metric on H; instead there is a strongly positive self-adjoint linear
operator P so that

(∀x ∈ H) , (∀x∗ ∈ zer(S)) 〈S(x), x − x∗〉P ≥
M∑

j=1

β1j‖(S(x))j‖2j ,

and this linear operator P satisfies
∑M

j=1M j‖xj‖2j ≤ ‖x‖2P ≤∑M
j=1M j‖xj‖2j , where for all j > 0, we have

M j :=
1 −

√
δ

γj
and M j :=

1 +
√
δ

γj
.

essentially strongly quasi-monotone, provided that g1 is µ1-strongly convex and each function gj , j > 1,
is differentiable, the gradient ∇gj is Lj-Lipschitz continuous, and the constants γj are chosen small enough;
we omit the proof of this fact. The weakest conditions under which S is essentially strongly quasi-monotone
are not known.

6.5 ProxSMART+: Randomized Composite Optimization

The ProxSMART+ algorithm solves the following composite optimization problem:

minimize
z∈H1

M∑

j=2

gj(Ajz) +
1

N

N∑

i=1

fi(z). (6.6)

where the sets Hj (j = 1, . . . ,M + 1) are Hilbert spaces; the set H := H1 × · · · × HM is a product space;
the functions gj : Hj → (−∞,∞] are closed, proper, and convex; the functions fi : H1 → (−∞,∞) are
differentiable and ∇fi is Li-Lipschitz continuous; the maps Aj : H1 → Hj are continuous linear maps.

We model the ProxSMART+ problem with N + 1 operators: for all x ∈ H, define

(∀i < N + 1) (Si(x))j :=

{
γ1

N ∇fi
(
x1 − 2γ1

∑M
j=2A

∗
jxj

)
if j = 1;

0 otherwise.

(SN+1(x))j :=

{
γ1
∑M

j=2 A
∗
jxj if j = 1;

xj − proxγjg∗
j

(
xj + γjAj

(
x1 − 2γ1

∑M
j=2 A

∗
jxj

))
otherwise.

The roots of S := (N + 1)−1
∑N+1

i=1 Si are not solutions of (6.6), but in general,

x∗ ∈ zer(S) =⇒ x∗1 − 2γ1

M∑

j=2

A∗
jx

∗
j solves (6.6)

and zer(S) 6= ∅ if, and only if, zer(
∑M

j=2 A
∗
j∂gj ◦Aj +N−1

∑N
i=1 ∇fi) 6= ∅.

The following iterative algorithm is a special case of SMART.
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Algorithm 6 (ProxSMART+) Choose initial points x0 ∈ H and y11, . . . , y(N+1)1 ∈ H1. Choose
δ ∈ (0, 1), and choose stepsizes satisfying

γ1




M∑

j=2

γj‖Aj‖2 +
1

2N

N∑

i=1

Li


 ≤ δ and λ ≤ (N + 1)(1 −

√
δ)M

2
(

1 +
√
δ − 1

2
√
δN

∑N
i=1 Li

)(
M−1

γ1
N

∑

N
i=1 Li

+ 1
) .

Then for k ∈ N, perform the following four steps:

1. Sampling. Choose dual update decision ǫk ∈ {0, 1}. Choose jk ∈ {1, . . . ,m} with distribution (j > 1)

q1 = P (jk = 1) =
1

M−1
γ1
N

∑

N
i=1 Li

+ 1
, qj = P (jk = j) =

1 − q1
M − 1

,

and set Sk = {jk}. Also, given jk, choose ik ∈ {1, . . . , N+1} with distribution (i < N +1 and j > 1)

pi1 =
γ1Li

N
(

γ1

N

∑N
i=1 Li + 1

) ; p(N+1)1 = 1 −
N∑

i=1

pi1;

pij = 0; p(N+1)j = 1.

2. Primal update (gradient case): if ik < N + 1 and x̂k1 = xk1 − 2γ1
∑M

j=2 A
∗
jx

k
j , set

xk+1
1 = xk1 − λ

q1M

(
γ1

N(N + 1)pik1
∇fik

(
x̂k1
)
− 1

(N + 1)pik1
ykik,1 +

1

N + 1

N+1∑

i=1

yki,1

)
;

(∀j > 1) xk+1
j = xkj .

3. Primal update (proximal case): if ik = N + 1 and x̂k1 = xk1 − 2γ1
∑M

j=2 A
∗
jx

k
j , set

xk+1
1 = xk1 −



 γ1
(N + 1)pik1

M∑

j=2

A∗
jx

k
j −

1

(N + 1)pik1
ykik,1 +

1

N + 1

N+1∑

i=1

yki,1



 ;

(∀j ∈ Sk\{1}) xk+1
j = proxγjg∗

j

(
xkj + γjAj x̂

k
1

)
;

(∀j ∈ Sk) xk+1
j = xkj − λ

qjM

(
xkj − xk+1

j

)
;

(∀j /∈ Sk) xk+1
j = xkj .

4. Dual update: if x̂k1 = xk1 − 2γ1
∑M

j=2 A
∗
jx

k
j , set

yk+1
i,1 =

{
yki,1 + ǫk

(
γ1

N ∇fi
(
x̂k1
)
− yki,1

)
if ik triggers i and i < N + 1;

yki,1 + ǫk

(
γ1
∑M

j=2 A
∗
jx

k
j − yki,1

)
if ik triggers i and i = N + 1.

⊓⊔
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As in the ProxSMART+ algorithm, the dual variables xj with j > 1, are subgradients of gj, and they
often live in low-dimensional spaces; see the comments immediately following Algorithm 6.

We save a bit of memory on the yi dual variables, too, because for all j > 1 and for all i, S∗
ij = 0; thus,

we only maintain the first component of these dual variables.

The Properties of S. The operator S satisfies the coherence condition (1.5) with

(∀1 ≤ i < N + 1) βi1 =
N(1 −

√
δ)

2(N + 1)γ21Li
and (∀j) β(N+1)j =

1 −
√
δ

γ1
.

But like the TropicSMART and ProxSMART operators from Sections 6.3 and 6.4, the ProxSMART+ op-
erator S does not satisfy the coherence condition in the standard metric on H; instead there is a strongly
positive self-adjoint linear operator P so that

(∀x ∈ H) , (∀x∗ ∈ zer(S)) 〈S(x), x − x∗〉P ≥
N∑

i=1

M∑

j=1

βij‖(Si(x))j − (Si(x
∗))j‖2j ,

and this linear operator P satisfies
∑M

j=1M j‖xj‖2j ≤ ‖x‖2P ≤∑M
j=1M j‖xj‖2j where for all j > 0, we have

M j :=
1 −

√
δ

γj
and M j :=

1 +
√
δ

γj

The operator S is essentially strongly quasi-monotone, provided that N−1
∑N

i=1 fi is µ1-strongly convex,
each function gj , j > 1, is differentiable, each gradient ∇gj is Lj-Lipschitz continuous, and the constants γj
are chosen small enough; we omit the proof of this fact. The weakest conditions under which S is essentially
strongly quasi-monotone are not known.

7 Proof in the Synchronous Case

The proof that SMART converges is illuminating when the algorithm is totally synchronous, i.e., when dk ≡ 0
and eik ≡ 0. The proof of the following theorem should be read as a warmup before moving onto the proof
of the full theorem, which is presented in Appendix A.

Theorem 7.1 (Convergence of SMART in the Synchronous Case) For all k ≥ 0, let Ik = σ((ik, Sk)),
let Ek = σ(εk), let

Fk := σ({xl}kl=0 ∪ {yl1, . . . , yln}kl=0),

and suppose that {Ik, Ek,Fk} are independent. Suppose that (1.5) holds. Finally assume that dk ≡ 0, eijk ≡ 0,
and λk := λ satisfies

λ <





mini,j

{
n2pijβijqjm

Mj

}
if S∗ = 0;

mini,j

{
n2pijβijqjm

2Mj

}
otherwise.

Then
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1. Convergence of operator values. For i ∈ {1, . . . , n}, the sequence of H-valued random variables
{Si(x

k)}k∈N a. s. converges strongly to Si(x
∗).

2. Weak convergence. Suppose that I − S is demiclosed at 0. Then the sequence of H-valued random
variables {xk}k∈N a. s. weakly converges to an S-valued random variable.

3. Linear convergence. Let η := mini,j{ρpTij}, let α ∈ [0, 1), and let

λ ≤





mini,j

{
(1−α)βijn

2pijqjm

Mj

}
if S∗ = 0;

mini,j

{
η(1−α)βijn

2pijqjm

2Mjη+2µα(1−α)βijn2pijqj

}
otherwise.

(7.1)

Then if (2.1) holds, there exists a constant C(z0, φ0) ∈ R≥0 depending on x0 and φ0 such that for all
k ∈ N,

E
[
d2S(xk)

]
≤
(

1 − 2αµλ

m

)k (
d2S(x0) + C(x0, φ0)

)
.

Proof Notation. Let x∗ ∈ S. The following quantities are often repeated—in both the synchronous and
asynchronous settings.

1. The tk variable. For all k ≥ 0, let tk be the {0, (q1m)−1}× · · · × {0, (qmm)−1}-valued random variable,
which for all j ∈ {1, . . . ,m}, satisfies

tk,j :=

{
1

qjm
if j ∈ Sk;

0 otherwise.

2. The primal and dual Qi operators. For all i, define two new operators Qp
i , Q

d
i : H → H: for all

x, y ∈ H, set

(Qp
i (x))j :=

{
1

npij
(Si(x))j if pij 6= 0;

0 otherwise;
and (Qd

i (y))j :=

{
1

npij
yi,j if pij 6= 0;

0 otherwise.

For all i, define Q∗
i := Qp

i (x∗). By (1.5), Q∗
i is independent of the choice of x∗ ∈ zer(S).

3. The primal and dual rpij functions. For each i and j, define two functions rpij , r
d
ij : H → R+: for all

x, y ∈ H, let

rpij(x) := ‖(Qp
i (x))j − (Q∗

i )j‖2j and rdij(y) := ‖(Qd
i (y))j − (Q∗

i )j‖2j .

4. The Qk random vector. If

Qk = tk ⊙
(
Qp

ik
(xk) −Qd

ik
(ykik) +

1

n

n∑

i=1

yki

)
,

then xk+1 = xk − λQk and E
[
Qk | Fk

]
= m−1S(xk).

5. The γij constants. For all i and j, choose any constants that satisfy24

2M jλ
2

qjm2
< γij <

2λβijn
2pij

m
− 2M jλ

2

qjm2
. (7.2)

24 The constraint (7.2) has a solution by the assumptions of the theorem.
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6. The Rl,ij constants. For all i and j, we define two positive constants25

R1,ij := γij −
2M jλ

2

qjm2
and R2,ij :=

2λβijn
2pij

m
− 2M jλ

2

qjm2
− γij .

Assumption 1 We only address the case in which S∗ is not necessarily the zero matrix. From this case,
and with the help of the identity rdij(y

k
i ) ≡ 0, it is straightforward to retrieve the case in which S∗ = 0.

Parts 1 and 2: Two essential elements feature in our proof. The indispensable supermartingale conver-
gence theorem [32, Theorem 1], with which we show that a pivotal sequence of random variables converges,
is our hammer for nailing down the effect of randomness in SMART:

Theorem 7.2 (Supermartingale convergence theorem) Let (Ω,F , P ) be a probability space. Let F :=
{Fk}k∈N be an increasing sequence of sub σ-algebras of F such that Fk ⊆ Fk+1. Let {Xk}k∈N and {Yk}k∈N

be sequences of [0,∞)-valued random variables such that for all k ∈ N, Xk and Yk are Fk measurable, and

(∀k ∈ N) E [Xk+1 | Fk] + Yk ≤ Xk.

Then
∑∞

k=0 Yk <∞ a. s. and Xk a. s. converges to a [0,∞)-valued random variable.

The other equally indispensable element of our proof is the next inequality, which, when taken together with
the supermartingale convergence theorem, will ultimately show that SMART converges: with

κk :=

m∑

j=1

n∑

i=1

γijpij
ρpTij

rdij(y
k
i ); and Yk := λ2

m∑

j=1

M j

m2
‖(S(xk))j‖2j + 2λ2

m∑

j=1

M j

qjm2

∥∥∥∥∥
1

n

n∑

i=1

yki,j

∥∥∥∥∥

2

j

+

m∑

j=1

n∑

i=1

pijR1,ijr
d
ij(y

k
i ) +

m∑

j=1

n1∑

i=1

pijR2,ijr
p
ij(x

k),

the supermartingale inequality holds

(∀k ∈ N) (∀x∗ ∈ S) E
[
‖xk+1 − x∗‖2 + κk+1 | Fk

]
+ Yk ≤ ‖xk − x∗‖2 + κk. (7.3)

So, by the supermartingale convergence theorem, the sequence Yk is a. s. summable and Xk := ‖xk − x∗‖2 +
κk a. s. converges to a [0,∞)-valued random variable, and these conclusions hold for any element x∗ ∈ S.

At this point, Part 1 of the theorem follows because
∑∞

k=0

∑m
j=1

∑n
i=1 pijR2,ijr

p
ij(x

k) ≤ ∑∞
k=0 Yk <

∞ a. s., and hence, ‖Si(x
k) − Si(x

∗)‖ = (npij)
2rpij(x

k) a. s. converges to 0.

Moreover, the road to almost sure weak convergence of xk is only three steps long:

1. Because
∑∞

k=0 Yk <∞ a. s., we conclude that ‖S(xk)‖ and rdij(y
k
i ) a. s. converge to 0.

2. Because each rdij(y
k
i ) a. s. converges to 0, we conclude that κk a. s. converges to 0.

3. Because κk a. s. converges to 0 and ‖xk −x∗‖2 +κk a. s. converges to a [0,∞)-valued random variable, we
conclude that ‖xk − x∗‖2 a. s. converges to a [0,∞)-valued random variable.

At last, xk weakly converges to an S-valued random vector:

25 By the choice of γij , there is a constant b > 0 such that for all i, j and k, we have R1,ij > b and R2,ij > b.
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Proposition 7.1 (Weak convergence assuming demiclosedness) Suppose that I−S is demiclosed at 0.
Let {zk}k∈N be a sequence of random vectors such that, for all z∗ ∈ zer(S), the sequence {‖zk−z∗‖2}k∈N a. s.
converges to a [0,∞)-valued random variable. In addition, assume that ‖S(zk)‖ a. s. converges to 0. Then
zk a. s. converges to an S-valued random variable.

Proof The set S is closed26, the space H is separable, and for all z∗ ∈ S, the sequence {‖zk − z∗‖}k∈N a. s.
converges, so the exact argument in [9, Prop. 2.3(iii)] shows that there exists Ω̂ ⊆ Ω such that P (Ω̂) = 1
with the property that for all z∗ ∈ zer(S) and for all ω ∈ Ω̂, the sequence {‖zk(ω) − z∗‖2}k∈N converges.

Furthermore, by assumption, there exists Ω̃ ⊆ Ω̂ such that P (Ω̃) = 1 with the property that ‖S(zk(ω))‖ a. s.
almost surely converges to 0.

Finishing the proof with demiclosedness, let ω ∈ Ω̃, and let z be a weak sequential cluster point of
{zk(ω)}k∈N, say zkj(ω) ⇀ z (cluster points exist because {zk}k∈N is bounded). Then ‖zkj(ω) − (zkj (ω) −
S(zkj (ω)))‖ = ‖S(zkj(ω))‖ → 0 so by the demiclosedness of I−S, the limit is a zero: S(z) = 0. In summary,
for all z∗ ∈ S, the sequence {‖zk(ω)− z∗‖}k∈N converges and every weak sequential cluster point of {zk}k∈N

is an element of S. Therefore, by [2, Lemma 2.39], the sequence {zk(ω)}k∈N weakly converges to an element

of S. Because ω ∈ Ω̃ is arbitrary and P (Ω̃) = 1, the sequence {zk}k∈N a. s. weakly converges, and by the
classic result [30, Corollary 1.13], the weak limit of {zk}k∈N is measurable. ⊓⊔

Our task is now clear: we must prove (7.3). But to do so, we must first bound several random variables.
We present the three bounds we need now and defer their proofs until later.

Lemma 7.1 (Variance bound) For j ∈ {1, . . . ,m}, let ηj > 0 be a positive real number. Then for all
s ∈ N, we have

m∑

j=1

ηjE
[
‖Qs

j‖2j | Fs

]
≤ 2

m∑

j=1

n∑

i=1

pij
qjm2

ηjr
p
ij(x

s) + 2

m∑

j=1

n∑

i=1

pij
qjm2

ηjr
d
ij(y

s
i )

− 2
m∑

j=1

1

qjm2
ηj

∥∥∥∥∥
1

n

n∑

i=1

ysi,j

∥∥∥∥∥

2

j

−
m∑

j=1

ηj
m2

‖(S(xs))j‖2j .

Lemma 7.2 (Using (1.5)) For all s ∈ N and λ > 0, we have

2λ〈S(xs), xs − x∗〉 ≥
m∑

j=1

n∑

i=1

2λβijn
2p2ijr

p
ij(x

s).

Lemma 7.3 (Recursive κk bound) For all s ∈ N, we have

E [κs+1 | Fk] ≤ κs −
m∑

j=1

n∑

i=1

pijγijr
d
ij(y

s
i ) +

m∑

j=1

n∑

i=1

pijγijr
p
ij(x

s).

Lemmas in hand, we can now prove (7.3)

Lemma 7.4 (Proof of (7.3)) Equation (7.3) holds for all s ∈ N.

26 Let yk ∈ S and suppose that yk → y ∈ H. We claim that y ∈ S. Indeed, from (1.5), there exists a constant β > 0 such that
β‖S(y)‖2 ≤ 〈S(y), y − yk〉 → 0. Thus, S(y) = 0, and y ∈ S.
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Proof Fix s ∈ N. Then

E
[
‖xs+1 − x∗‖2 + κs+1 | Fs

]

= ‖xs − x∗‖2 − 2λE [〈Qs, xs − x∗〉 | Fs] + λ2E
[
‖Qs‖2 | Fs

]
+ E [κs+1 | Fs]

= ‖xs − x∗‖2 − 2λ

m
〈S(xs), xs − x∗〉 + λ2E

[
‖Qs‖2 | Fs

]
+ E [κs+1 | Fs] .

where the second equality follows from the linearity of expectation. Now, apply Lemmas 7.1, 7.2, and 7.3:

≤ ‖xs − x∗‖2 + κs + λ2E




m∑

j=1

M j‖Qs
j‖2j | Fs





−
m∑

j=1

n∑

i=1

pijγijr
d
ij(y

s
i ) −

m∑

j=1

n∑

i=1

pij

(
2λβijn

2pij
m

− γij

)
rdij(x

s)

≤ ‖xs − x∗‖2 + κs − λ2
m∑

j=1

M j

m2
‖(S(xs))j‖2j − 2λ2

m∑

j=1

M j

qjm2

∥∥∥∥∥
1

n

n∑

i=1

ysi,j

∥∥∥∥∥

2

j

−
m∑

j=1

n∑

i=1

pij

(
γij −

2M jλ
2

qjm2

)
rdij(y

s
i ) −

m∑

j=1

n∑

i=1

pij

(
2λβijn

2pij
m

− 2M jλ
2

qjm2
− γij

)
rpij(x

s).

= ‖xs − x∗‖2 + κs − Ys. ⊓⊔

We finish the proof of Parts 1 and 2 by proving Lemmas 7.1, 7.2, and 7.3.

Proof (of Lemma 7.1 (variance bound)) In the next sequence of inequalities, we use the following vari-
ance identity three times: For any random vector X : Ω → Hj and a sub σ-algebra X on Ω, we have
E
[
‖X − E [X | X ] ‖2j | X

]
= E

[
‖X‖2j | X

]
− ‖E [X | X ] ‖2j . By the law of iterated expectation:

2E

[
‖ts,j((Qd

is(ysis))j − (Q∗
is)j −

1

n

n∑

i=1

ysi,j)‖2j | Fs

]

= 2E

[
E

[
‖ts,j((Qd

is(ysis))j − (Q∗
is)j −

1

n

n∑

i=1

ysi,j)‖2j | σ(ts,j ,Fs)

]
| Fs

]

= 2E



E
[
‖ts,j((Qd

is(ysis))j − (Q∗
is)j)‖2j | σ(ts,j ,Fs)

]
−
∥∥∥∥∥ts,j

1

n

n∑

i=1

ysi,j

∥∥∥∥∥

2

j

| Fs





= 2
n∑

i=1

pij
qjm2

‖((Qd
is(ysi ))j − (Q∗

i )j)‖2j −
2

qjm2

∥∥∥∥∥
1

n

n∑

i=1

ysi,j

∥∥∥∥∥

2

j

.
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Therefore,

E
[
‖Qs

j‖2j | Fs

]

= E

[
‖Qs

j −
1

m
(S(xs))j‖2j | Fs

]
+

1

m2
‖(S(xs))j‖2j

= E

[
‖ts,j

[
(Qd

is(ysis))j − (Q∗
is)j −

1

n

n∑

i=1

ysi,j

]

− ts,j
[
(Qp

is
(xs))j − (Q∗

is)j
]

+
1

m
(S(xs))j‖2j | Fs

]
+

1

m2
‖(S(xs))j‖2j

≤ 2E

[
‖ts,j((Qd

is(ysis))j − (Q∗
is)j −

1

n

n∑

i=1

ysi,j)‖2j | Fs

]

+ 2E

[
‖ts,j((Qp

is
(xs))j − (Q∗

is)j) −
1

m
(S(xs))j‖2j | Fs

]
+

1

m2
‖(S(xs))j‖2j

≤ 2E
[
‖ts,j((Qd

is(ysis))j − (Q∗
is)j)‖2j | Fs

]
+ 2E

[
‖ts,j((Qp

is
(xs))j − (Q∗

is)j)‖2j | Fs

]

− 2

qjm2

∥∥∥∥∥
1

n

n∑

i=1

ysi,j

∥∥∥∥∥

2

j

− 1

m2
‖(S(xs))j‖2j .

≤ 2
n∑

i=1

pij
qjm2

‖((Qd
i (ysi ))j − (Q∗

i )j)‖2j + 2
n∑

i=1

pij
qjm2

‖((Qp
i (xs))j − (Q∗

i )j)‖2j

− 2

qjm2

∥∥∥∥∥
1

n

n∑

i=1

ysi,j

∥∥∥∥∥

2

j

− 1

m2
‖(S(xs))j‖2j .

To get the claimed identity, multiply this inequality by ηj for each j and sum. ⊓⊔
Proof (of Lemma 7.2 (using (1.5))) From (1.5),

〈S(xs), xs − x∗〉 ≥
m∑

j=1

n∑

i=1

βij‖(Si(x
s))j − (Si(x

∗))j‖2j ≥
m∑

j=1

n∑

i=1

βijn
2p2ij‖(Qp

i (xs))j − (Q∗
i )j‖2j .

Proof (of Lemma 7.3 (recursive κk bound)) For any i, j with S∗
ij 6= 0 and γij > 0,

E
[
rdij(y

s+1
i ) | Fk

]
=
(
1 − ρpTij

)
rdij(y

s
i ) + ρpTijr

p
ij(x

s)

because rdij(y
s+1
i ) depends only on ys+1

i,j , not on its other components, and the probability of update for (yki )j
is P ((ik, i) ∈ E, tk,j 6= 0, ǫk = 1) = ρpTij . When S∗

ij = 0, the left hand side of the equation is zero, so the
above equation holds as an inequality. Thus, to get the claimed inequality, multiply both sides of the above
equation by pijγij(ρp

T
ij)

−1 and sum over i and j. ⊓⊔
Part 3: In this part, we no longer work with arbitrary zeros x∗ ∈ S. Instead we work with the sequence

of zeros PS(xk), which, by definition, satisfy

d2S(xk+1) = ‖xk+1 − PS(xk+1)‖2 ≤ ‖xk+1 − PS(xk)‖2.
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But notice that, because they are independent of the fixed zero x∗ from Parts 1 and 2, we can freely use the
inequalities in Lemmas 7.1, 7.2, and 7.3.

In this part, we further constrain the constants γij . (We defer the proof of the lemma for a moment.)

Lemma 7.5 (Choosing γij) Let ξ := 2m−1µαλ. Then for all i and j, there exists γij > 0 such that

2M jλ
2

qjm2
(

1 − ξ
ρpT

ij

) ≤ γij ≤
2(1 − α)λβijn

2pij
m

− 2M jλ
2

qjm2
.

Then we finish off the proof by appealing to the lower bound

〈S(xk), xk − PS(xk)〉 ≥ µ‖xk − PS(xk))‖2

in the following sequence of inequalities

E
[
d2S(xk+1) + κk+1 | Fk

]

≤ E
[
‖xk+1 − PS(xk)‖2 + κk+1 | Fk

]

= ‖xk − PS(xk)‖2 − 2λE
[
〈Qk, xk − PS(xk)〉 | Fk

]
+ λ2E

[
‖Qk‖2 | Fk

]
+ E [κk+1 | Fk]

= ‖xk − PS(xk)‖2 − 2λ

m
〈S(xk), xk − PS(xk)〉 + λ2E

[
‖Qk‖2 | Fk

]
+ E [κk+1 | Fk]

≤
(

1 − 2αµλ

m

)
‖xk − PS(xk)‖2 − 2λ(1 − α)

m
〈S(xk), xk − PS(xk)〉 + λ2E




m∑

j=1

M j‖Qk
j ‖2j | Fk



+ E [κk+1 | Fk]

≤
(

1 − 2αµλ

m

)
‖xk − PS(xk)‖2 + κk (Lemmas 7.1, 7.2, and 7.3 are used below)

−
m∑

j=1

n∑

i=1

pij

(
γij −

2M jλ
2

qjm2

)
rdij(y

k
i ) −

m∑

j=1

n∑

i=1

pij

(
2(1 − α)λβijn

2pij
m

− 2M jλ
2

qjm2
− γij

)
rpij(x

k)

≤ (1 − ξ)
(
‖xk − PS(xk)‖2 + κk

)
−

m∑

j=1

n∑

i=1

pij

(
γij

(
1 − ξ

ρpTij

)
− 2M jλ

2

qjm2

)
rdij(y

k
i )

≤ (1 − ξ)
(
d2S(xk) + κk

)
(7.4)

(Apply the law of iterated expectations to get the linear convergence rate (with C(z0, φ0) := κ0).)
The only loose end, which we now tie up, is the proof of Lemma 7.5.

Proof (of Lemma 7.5 (choosing γij)) We have assumed that

λ ≤ min
i,j

{
η(1 − α)βijn

2pijqjm

2M jη + 2µα(1 − α)βijn2pijqj

}
,

and consequently, if

wij :=

(1−α)βijn
2pijqjm

2Mj

mη
2αµ +

(1−α)βijn2pijqjm

2Mj

< 1,
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then

λ ≤ wijmη

2αµ
=

(1 − α)βijn
2pijqjm(1 − wij)

2M j

≤ (1 − α)βijn
2pijqjm(1 − wij)

(2 − wij)M j

.

In particular, ξ ≤ wijη < 1. Now rearrange the above inequality to get

M jλ
2

qjm2 (1 − wij)
+
M jλ

2

qjm2
=
M jλ

2(2 − wij)

qjm2 (1 − wij)
≤ 2M jλ

2

qjm2 (1 − wij)
≤ (1 − α)λβijn

2pij
m

.

The last bound proves the claimed bound because
(

1 − ξ
ρpT

ij

)−1

≤
(

1 − wijη

ρpT
ij

)−1

≤ (1 − wij)
−1

. ⊓⊔
⊓⊔

8 Future Work

The SMART algorithm calls for five avenues of future work: numerical experiments, especially in the asy-
chronous setting; the creation of new operators S; the characterization of the error bound condition which
we call essential strong quasi-monotonicity; the convergence rate analysis of the SMART algorithm with-
out assuming essential strong quasi-monotonicity; and nonconvex extensions. All of these avenues present
challenges.

The SAGA, SVRG, Finito, SDCA, and randomized projection algorithms presented in Section 4 perform
well in the synchronous setting. Asynchronous algorithms often obtain a linear speedup (in the number of
computing cores) over their synchronous implementations, so we expect these algorithms to perform even
better in the asynchronous setting. However, implementing asynchronous algorithms still requires a bit of
programming expertise, so we expect that good experimental results will take some time to acquire.

Any operator that satisfies the coherence condition (1.5) can be plugged into the SMART algorithm; as
such, the power of SMART increases with each new operator discovered. We presented many examples of
operators in this paper, and we expect there to be more in the future.

The essential strong quasi-monotonicity property (2.1) appears to be the weakest possible condition under
which a first-order algorithm will converge linearly. This deep, difficult to characterize property is related
to the Hoffman bound [18], the linear regularity assumption, and the Kurdyka- Lojasiewicz property [7]. We
look forward to a calculus of operations that preserve this property.

Even if S is not essentially strongly quasi-monotone, we suspect that SMART converges sublinearly;
to show these rates, the techniques in [11,14,12,13] should be adapted to the stochastic and asynchronous
settings.

We showed that SMART converges when the coherence condition is satisfied, and this tethers our results
to convex optimization problems. But SMART can and should be applied to nonconvex problems. In the
nonconvex case, convergence guarantees will certainly be weaker than those presented here, but SMART will
likely perform well on these problems.

Acknowledgements: We thank Prof. Wotao Yin for helpful comments.
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Appendix

A Proof in the Asynchronous Case

Proof (Convergence of SMART)
Notation. Let x∗ ∈ S. Some of our notation, in particular, the definitions of tk , Q

p
i , Q

d
i , r

p
ij , and r

d
ij , remains the same as

in the proof of the nonasynchronous case (Theorem 7.1). Below, we adapt the rest of the notation to the present asynchronous
case:

1. Integer indexed sequences. We extend every sequence indexed by natural numbers, say {zk}k∈N, to all of Z by setting
zk := z0 for all k ≤ 0.

2. The Qk random vector. If

Qk = tk ⊙
(

Qp
ik
(xk−dk )−Qd

ik
(y

k−eik
i ) +

1

n

n∑

i=1

y
k−eik
i

)

,

then xk+1 = xk − λQk and E
[
Qk | Fk

]
= m−1S(xk−dk ).

3. The γij constants. For all i and j, choose any constants that satisfy27

2Mj(τd + 1)

qjm2

(

1 +
τp

mC

)

λ2k ≤ 2Mj(τd + 1)

qm2

(

1 +
τp

mC

)

λ
2

< γij

<
2λn2pijβij

m
−Mj

(

2

qm2
+ τp

(

2

qm3C
+
C

m

))

λ
2

≤ 2λkn
2pijβij

m
−Mj

(
2

qjm2
+ τp

(
2

qjm3C
+
C

m

))

λ2k . (A.1)

4. The C constant. Define the positive constant

C :=

√
2(τd + 2)

m
√
q

.

27 The constraint (A.1) has a solution by the assumptions of the theorem.
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5. The Rk
l,ij constants. For all i, j, and k, we define two positive constants28

Rk
1,ij :=

γij

τd + 1
− 2Mj

qjm2

(

1 +
τp

mC

)

λ2k ; and

Rk
2,ij :=

2λkn
2pijβij

m
−Mj

(
2

qjm2
+ τp

(
2

qjm3C
+
C

m

))

λ2k − γij .

Assumption 2 We only address the case in which S∗ is not necessarily the zero matrix. From this case, and with the help of

the identity rdij(y
k−eik
i ) ≡ 0, it is straightforward to retrieve the case in which S∗ = 0.

Parts 1 and 2: In the synchronous case, the supermartingale convergence theorem and a supermartingale inequality
featured; the same is true in the present asynchronous case, but the supermartingale inequality now accounts for the use of
delayed iterates and operator values: with

κk :=
m∑

j=1

n∑

i=1

γijpij

ρpTij
rdij(y

k
i ) +

τd−1
∑

h=0

m∑

j=1

n∑

i=1

(h+ 1)pijγij

τd + 1
rdij(y

k−τd+h
i )

︸ ︷︷ ︸
:=κ1,k

+
k∑

t=k−τp+1

m∑

j=1

Mj(t − k + τp)

mC
‖xtj − xt−1

j ‖2j
︸ ︷︷ ︸

:=κ2,k

;

Yk := λ2k

m∑

j=1

Mj

m2

(

1 +
τp

mC

)

‖(S(xk−dk ))j‖2j + 2λ2k

m∑

j=1

Mj

qjm2

(

1 +
τp

mC

)
∥
∥
∥
∥
∥

1

n

n∑

i=1

y
k−eik
i,j

∥
∥
∥
∥
∥

2

j

m∑

j=1

n∑

i=1

pijR
k
1,ijr

d
ij(y

k−eik
i ) +

m∑

j=1

n∑

i=1

pijR
k
2,ijr

p
ij(x

k−dk ) +
m∑

j=1

n∑

i=1

τd∑

h=0
h6=τd−eik,j

pijγij

τd + 1
rdij(y

k−τd+h
i ),

the supermartingale inequality holds

(∀k ∈ N) (∀x∗ ∈ S) E

[

‖xk+1 − x∗‖2 + κk+1 | Fk

]

+ Yk ≤ ‖xk − x∗‖2 + κk. (A.2)

So, by the supermartingale convergence theorem, the sequence Yk is a. s. summable and Xk := ‖xk − x∗‖2 + κk a. s. converges
to a [0,∞)-valued random variable, and these conclusions hold for any element x∗ ∈ S.

At this point, as in the synchronous case, Part 1 of the theorem follows because
∑∞

k=0

∑m
j=1

∑n
i=1 pijR

k
2,ijr

p
ij(x

k−dk ) ≤
∑∞

k=0 Yk <∞ a. s., and hence, ‖Si(x
k−dk )− Si(x

∗)‖ = (npij)
2rpij(x

k−dk ) a. s. converges to 0.

The road to almost sure weak convergence of xk, now 5 steps long, is slightly more complicated than in the synchronous
case:

1. Because
∑∞

k=0 Yk < ∞ a. s., we conclude that each term29

‖S(xk−dk )‖;

∥
∥
∥
∥
∥
∥

(

1

n

n∑

i=1

y
k−eik
i,j

)m

j=1

∥
∥
∥
∥
∥
∥

; rdij(y
k−eik
i );

rpij(x
k−dk );

τd∑

h=0
h6=τd−eik,j

pijγij

τd + 1
rdij(y

k−τd+h
i ),

a. s. converges to 0.

2. Because rdij(y
k−eik
i ) and

∑τd

h=0;h6=τd−e
ij
k

pijγij
τd+1

rdij(y
k−τd+h
i ) a. s. converge to 0, we conclude that κ1,k a. s. converges to 0.

28 By the choice of γij , there is a constant b > 0 such that for all i, j and k, we have Rk
1,ij > b and Rk

2,ij > b.

29 Here we invoke the assumed equivalence of the two norms ‖x‖ and ‖x‖prod =
√∑m

j=1 ‖xj‖2j .
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3. Because rdij(y
k−eik
i ), ‖n−1

∑n
i=1(y

k−eik
i )j‖, and rpij(xk−dk ) a. s. converge to 0 and because for all t ∈ {0, . . . , τ}, we have

xk−t+1
j − xk−t

j = −λk−ttk−t,j

(

(Qp
ik−t

(xk−t−dk−t ))j − (Qd
ik−t

(y
k−t−e

ik−t
k−t

ik
))j +

1

n

n∑

i=1

y
k−t−eik−t

i,j

)

= −λk−ttk−t,j

(

((Qp
ik−t

(xk−t−dk−t ))j − (Q∗
ik−t

)j)

+ ((Q∗
ik−t

)j − (Qd
ik−t

(y
k−t−e

ik−t
k−t

ik
))j ) +

1

n

n∑

i=1

y
k−t−eik−t

i,j

)
k→∞→ 0 a. s.,

we conclude κ2,k and ‖xk−dk − xk‖2 a. s. converge to 0:

4. Because κk a. s. converges to 0 and ‖xk − x∗‖2 + κk a. s. converges to a [0,∞)-valued random variable, we conclude that
‖xk − x∗‖2 a. s. converges to a [0,∞)-valued random variable.

5. Because ‖xk−x∗‖2 a. s. converges to a [0,∞)-valued random variable, because ‖xk−xk−dk‖ a. s. converges to 0, and because

‖xk−dk − x∗‖2 − ‖xk − x∗‖2 = ‖xk − xk−dk‖2 + 2〈xk−dk − xk, xk − x∗〉 k→∞→ 0 a. s.,

we conclude that ‖xk−dk − x∗‖2 a. s. converges to a [0,∞)-valued random variable.

With the facts listed here, Proposition 7.1 immediately renders the sequence xk−dk a. s. weakly convergent to an S-valued
random variable. And at last, due to the limit ‖xk − xk−dk‖ → 0 a. s., the sequence xk a. s. weakly converges to an S-valued
random variable.

Our task is now clear: we must prove (A.2). But to do so, we must first bound several random variables. We present the
two bounds we need now and defer their proofs until later.

Lemma A.1 (Variance bound) For j ∈ {1, . . . ,m}, let ηj > 0 be a positive real number. Then for all s ∈ N, we have

m∑

j=1

ηjE
[
‖Qs

j‖2j | Fs
]
≤ 2

m∑

j=1

n∑
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∥
∥
∥
∥
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1

n
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∥
∥
∥
∥
∥

2

j

−
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j=1

ηj

m2
‖S(xs−ds)‖2j . (A.3)

Lemma A.2 (Recursive κk bound) For all s ∈ N and α ∈ [0, 1], we have

E [κs+1 | Fs]

≤ κs +
2λs

m
〈S(xs−ds), xs − x∗〉 − 2αλs

m
〈S(xs−ds), xs−ds − x∗〉+

m∑
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n∑
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2αλsn2p2ijβij

m
rpij(x

s−ds)

+ λ2s
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τpMj

mC
E
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−
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2(1 − α)λsβijn2pij

m
− τpMjCjλ2s

m
− γij

)

rpij(x
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−
m∑
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n∑
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pijγij

τd + 1
rdij(y

s−eis
i ) −
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j=1

n∑

i=1

τd∑

h=0
h6=τd−eis,j

pijγij

τd + 1
rdij(y

s−τd+h
i ).

Lemmas in hand, we can now prove (A.2). Compared to the synchronous case, we prove a refined bound, depending on the
parameter α, which will figure into our proof of linear convergence.

Lemma A.3 (Proof of (A.2)) Equation (A.2) holds for all s ∈ N. Moreover, for every s ∈ N, α ∈ [0, 1] and x∗ ∈ S, we have

E
[
‖xs+1 − x∗‖2 + κs+1 | Fk

]
+ Ys ≤ ‖xs − x∗‖2 + κs

− 2αλs

m
〈S(xs−ds), xs−ds − x∗〉+

m∑

j=1

n∑

i=1

2αλsn2p2ijβij

m
rpij(x

s−ds ). (A.4)
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Proof Fix s ∈ N. Then

E
[
‖xs+1 − x∗‖2 + κs+1 | Fs

]
= ‖xs − x∗‖2 − 2λsE [〈Qs, xs − x∗〉 | Fs] + λ2sE

[
‖Qs‖2 | Fs

]
+ E [κs+1 | Fs]

= ‖xs − x∗‖2 − 2λs

m
〈S(xs−ds), xs − x∗〉+ λ2sE

[
‖Qs‖2 | Fs

]
+ E [κs+1 | Fs] ,

where the second equality follows from the linearity of expectation. Next apply Lemma A.2 to the above equality:

≤ ‖xs − x∗‖2 + κs − 2αλs

m
〈S(xs−ds), xs−ds − x∗〉+ λ2sE
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Finally, apply Lemma A.1 and combine terms:

≤ ‖xs − x∗‖2 + κs − 2αλs
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Mj

qjm2

(

1 +
τp

mC

)
∥
∥
∥
∥
∥

1

n

n∑

i=1

y
s−eis
i,j

∥
∥
∥
∥
∥

2

j

−
m∑

j=1

n∑

i=1

pij

(

γij

τd + 1
− 2Mj

qjm2

(

1 +
τp

mC

)

λ2s

)

rdij(y
s−eijs
i )

−
m∑

j=1

n∑

i=1

pij

(

2(1 − α)λsβijn
2pij

m
− τpMjCλ

2
s

m
− 2Mj

qjm2

(

1 +
τp

mC

)

λ2s − γij

)

rpij(x
s−ds)

−
m∑

j=1

n∑

i=1

τd∑

h=0
h6=τd−eis,j

pijγij

τd + 1
rdij(y

s−τd+h
i )

≤ ‖xs − x∗‖2 + κs − 2αλs

m
〈S(xs−ds), xs−ds − x∗〉

− λ2s

m∑

j=1

Mj

m2

(

1 +
τp

mC

)

‖(S(xs−ds ))j‖2j − 2λ2s

m∑

j=1

Mj

qjm2

(

1 +
τp

C

)
∥
∥
∥
∥
∥

1

n

n∑

i=1

y
s−eis
i,j

∥
∥
∥
∥
∥

2

j

−
m∑

j=1

n∑

i=1

pij

(

γij

τd + 1
− 2Mj

qjm2

(

1 +
τp

mC

)

λ2s

)

rdij(y
s−eis
i )

−
m∑

j=1

n∑

i=1

pij

(
2(1 − α)λsn2pijβij

m
−Mj

(
2

qjm2
+ τp

(
2

qjm3C
+
C

m

))

λ2s − γij

)

rpij(x
s−ds)

−
m∑

j=1

n∑

i=1

τd∑

h=0
h6=τd−eis,j

pijγij

τd + 1
rdij(y

s−τd+h
i )

= ‖xs − x∗‖2 + κs − Ys − 2αλs

m
〈S(xs−ds), xs−ds − x∗〉+

m∑

j=1

n∑

i=1

2αλsn2p2ijβij

m
rpij(x

s−ds ).⊓⊔
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Inequality (A.2) is simply the above inequality with α = 0.

We finish the proof of Parts 1 and 2 by proving Lemmas A.1 and A.2.

Proof (of Lemma A.1 (variance bound)) Up to a change of indices, the proof of Lemma A.1 follows the proof Lemma 7.1
exactly; we omit the proof and avoid repeating ourselves. ⊓⊔

Proof (Lemma A.2 (recursive κk bound))

The bound is the addition of two further bounds: for all s ∈ N and α ∈ [0, 1], we have

1. Recursive κ1,k bound.

E [κ1,s+1 | Fs] ≤ κ1,s −
m∑

j=1

n∑

i=1

pijγij

τd + 1
rdij(y

s−eis
i ) +

m∑

j=1

n∑

i=1

pijγijr
p
ij(x

s−ds )

−
m∑

j=1

n∑

i=1

τd∑

h=0
h6=τd−eis,j

pijγij

τd + 1
rdij(y

s−τd+h
i ); and

2. Recursive κ2,k bound.

κ2,s+1 ≤ κ2,s +
2λ

m
〈S(xs−ds), xs − x∗〉 − 2αλs

m
〈S(xs−ds), xs−ds − x∗〉+

m∑

j=1

n∑

i=1

2αλsn2p2ijβij

m
rpij(x

s−ds)

−
m∑

j=1

n∑

i=1

pij

(

2βijλsn2pij

m
− τpMjC

m
λ2s

)

rpij(x
s−ds) +

m∑

j=1

τpMj

mC
‖Qs

j‖2j .

The proofs of the above bounds are orthogonal; the κ1,k bound is a consequence of how we sample variables in SMART,
while the κ2,k bound is a consequence of (1.5). Thus, we separately prove each bound.

Proof of recursive κ1,k bound. For any i and j with S∗
ij 6= 0, we have

E

[

rdij(y
s+1
i ) | Fs

]

=
(

1− ρpTij

)

rdij(y
s
i ) + ρpTijr

p
ij(x

s−ds).

because rdij(y
s+1
i ) depends only on ys+1

i,j , not on its other components, and the probability of update for (yki )j is P ((ik , i) ∈
E, tk,j 6= 0, ǫk = 1) = ρpTij . We can also break up the sum:

τd−1
∑

h=0

m∑

j=1

n∑

i=1

(h+ 1)pijγij

τd + 1
rdij(y

s+1−τd+h
i )

=

τd−1
∑

h=0

m∑

j=1

n∑

i=1

(h+ 1)pijγij

τd + 1
rdij(y

s−τd+h
i ) +

m∑

j=1

n∑

i=1

τdpijγij

τd + 1
rdij(y

s
i )

−
m∑

j=1

n∑

i=1

pijγij

τd + 1
rdij(y

s−eis
i ) −

m∑

j=1

n∑

i=1

τd−1
∑

h=0
h6=τd−eis,j

pijγij

τd + 1
rdij(y

s−τd+h
i ).
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Therefore,

E [κ1,s+1 | Fs]

=
m∑

j=1

n∑

i=1

γijpij

ρpTij
E

[

rdij(y
s+1
i ) | Fk

]

+

τd−1
∑

h=0

m∑

j=1

n∑

i=1

(h+ 1)pijγij

τd + 1
rdij(y

s+1−τd+h
i )

≤
m∑

j=1

n∑

i=1

(

γijpij

ρpTij
− pijγij

)

rdij(y
s
i ) +

m∑

j=1

n∑

i=1

pijγijr
p
ij(x

s−ds)

+

τd−1
∑

h=0

m∑

j=1

n∑

i=1

(h+ 1)pijγij

τd + 1
rdij(y

s−τd+h
d ) +

m∑

j=1

n∑

i=1

τdpijγij

τd + 1
rdij(y

s
i )

−
m∑

j=1

n∑

i=1

pijγij

τd + 1
rdij(y

s−eis
i )−

m∑

j=1

n∑

i=1

τd−1
∑

h=0
h6=τd−eis,j

pijγij

τd + 1
rdij(y

s−τd+h
i ),

where the first inequality uses the previous two blocks of equalities, and the trivial bound: rpij(x
s−ds ) ≥ 0 for all i and j with

S∗
ij = 0. The claimed inequality now follows because

((

γijpij

ρpTij
− pijγij

)

+
τdpijγij

τd + 1

)

rdij(y
s
i ) ≤

(

γijpij

ρpTij
− pijγij

τd + 1

)

rdij(y
s
i ),

and hence, we can add − pijγij
τd+1

rdij(y
s
i ) back to the last term in the previous sum. This completes the proof of the κ1,k bound.

Proof of the recursive κ2,k bound. By Jensen’s inequality, (
∑n

i=1 pij = 1)

m∑

j=1

τpC‖(S(xs−ds ))j‖2j =
m∑

j=1

τpC

∥
∥
∥
∥
∥

1

n

n∑

i=1

[

(Si(x
s−ds))j − (Si(x

∗))j
]
∥
∥
∥
∥
∥

2

j

=
m∑

j=1

τpC

∥
∥
∥
∥
∥

n∑

i=1

pij

[

(Qp
i (x

s−ds))j − (Q∗
i )j

]
∥
∥
∥
∥
∥

2

j

≤
m∑

j=1

n∑

i=1

pijτpCr
p
ij(x

s−ds ).

From (1.5),

〈S(xs−ds), xs−ds − x∗〉 ≥
m∑

j=1

n∑

i=1

βij‖(Si(x
s−ds ))j − (Si(x

∗))j‖2j ≥
m∑

j=1

n∑

i=1

βijn
2p2ijr

p
ij(x

s−ds).

Because xtj − xt+1
j = λsQt

j for all t ∈ N,

m∑

j=1

s∑

t=s−τp+1

Mj

C
‖xtj − xt−1

j ‖2j =
m∑

j=1

s∑

t=s−τp+1

Mj(t − s+ τp)

C
‖xtj − xt−1

j ‖2j

−
m∑

j=1

s+1∑

t=s−τp+2

Mj(t − (s+ 1) + τp)

C
‖xtj − xt−1

j ‖2j + λ2s

m∑

j=1

Mjτp

C
‖Qs

j‖2j .

= mκ2,s −mκ2,s+1 + λ2s

m∑

j=1

Mjτp

C
‖Qs

j‖2j .
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To get the next bound, we apply the Cauchy-Schwarz inequality, Young’s inequality, the equivalence of ‖ · ‖ and ‖ · ‖prod, and
the convexity of ‖ · ‖2—in that order:

2λs〈S(xs−ds),
s∑

t=s−dk,j+1

(xt − xt−1)〉 ≥ −‖S(xs−ds)‖

∥
∥
∥
∥
∥
∥

s∑

t=s−dk,j+1

(xt − xt−1)

∥
∥
∥
∥
∥
∥

≥ −Cτpλ2‖S(xs−ds))‖2 − 1

Cτp

∥
∥
∥
∥
∥
∥

s∑

t=s−dk,j+1

(xt − xt−1)

∥
∥
∥
∥
∥
∥

2

≥ −Cτpλ2
n∑

j=1

Mj‖S(xs−ds))j‖2j − 1

Cτp

m∑

j=1

Mj

∥
∥
∥
∥
∥
∥

s∑

t=s−dk,j+1

(xtj − xt−1
j )

∥
∥
∥
∥
∥
∥

2

j

≥ −λ2s
m∑

j=1

τpCMj‖(S(xs−ds ))j‖2j −
m∑

j=1

s∑

h=s−τp+1

Mj

C
‖xtj − xt−1

j ‖2j .

Therefore,

2λs〈S(xs−ds), xs − x∗〉 = 2λs〈S(xs−ds), xs−ds − x∗〉

+ 2λs

m∑

j=1

〈(S(xs−ds))j ,
s∑

t=s−dk,j+1

(xtj − xt−1
j )〉j

≥ 2αλs〈S(xs−ds), xs−ds − x∗〉+ 2(1 − α)λs〈S(xs−ds), xs−ds − x∗〉

− λ2s

m∑

j=1

τpCMj‖(S(xs−ds ))j‖2j −
m∑

j=1

s∑

h=s−τp+1

Mj

C
‖xtj − xt−1

j ‖2j

≥ 2αλs〈S(xs−ds), xs−ds − x∗〉 −
m∑

j=1

n∑

i=1

2αλsn2p2ijβij

m
rpij(x

s−ds)

+
m∑

j=1

n∑

i=1

pij
(
2λsβijn

2pij − τpCλ
2
s

)
rpij(x

s−ds)

−



mκ2,s −mκ2,s+1 + λ2s

m∑

j=1

τp

C
‖Qs

j‖2j



 .

After a simple rearrangement of terms, this last bound completes the proof of the κ2,k bound, and consequently, the proof of
the lemma is complete. ⊓⊔

Part 3: In this part, we introduce two constants, called T1,ij and T2,ij , which play the same role as Rk
1,ij and Rk

2,ij play

in Parts 1 and 2 (in fact, T1,ij = Rk
1,ij)

T1,ij :=
γij

τd + 1
− 2M j

qjm2

(

1 +
τp

mC

)

λ2; and

T2,ij :=
2(1 − α)λn2pijβij

m
−Mj

(
2

qjm2
+ τp

(
2

qjm3C
+
C

m

))

λ2 − γij .

Not only do we require that γij be chosen so that T1,ij and T2,ij are positive, but γij must be further constrained so that
several other inequalities hold. (We defer the proof of the lemma for a moment.)
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Lemma A.4 (Choosing γij) Let λ satisfy (3.3). Set ξ := 2m−1αµλ and ζ := (2.5α)−1µM

(

1 +
τ
√

q√
2(τd+2)

)

. Then for all i

and j, there exists γij > 0 such that

T1,ij − ξγij

ρpTij
− 4αµδM j

qjm3

(
1

ζ
+ λ

)

λ2 ≥ 0; T2,ij − 4αµδM j

qjm3

(
1

ζ
+ λ

)

λ2 ≥ 0;

T1,ij − 2Mjτpλ
2ξ

Cqjm3(1− ξ)
≥ 0; T2,ij − 2Mjτpλ

2ξ

Cqjm3(1 − ξ)
≥ 0. (A.5)

Moreover, 1− ξ(τd + 1) ≥ 0.

As in the synchronous case, a bound like (7.4) holds. But unlike (7.4), in the present asynchronous case, the expectation
E
[
‖xk − x∗‖+ κk

]
contracts, not every iteration, but over each series of τp iterations, and for this reason we will apply (A.4)

multiple times, saving nonnegative summands from later iterations to absorb positive summands from earlier iterations which
would otherwise, if not absorbed, prevent the expectation from contracting at all.

We split our descent into three stages: initial descent, in which we descend one iteration, from iteration k + 1 to iteration
k; intermediate descent, in which we descend at most τp iterations, from iteration k to iteration k− h for some h ∈ {0, . . . , τp};
and final descent, in which we descend one final iteration, from iteration k − h to iteration k − h− 1. In each stage of descent,
we apply (A.4), between 1 and τp times—with the law of iterated expectations being never mentioned, but always applied to
turn all conditional expectation inequalities into unconditional expectation inequalities.

As in the synchronous case, we no longer work with arbitrary zeros x∗ ∈ S. Instead we work with the sequence of zeros
PS(xk), which, by definition, satisfy

d2S(x
k+1) = ‖xk+1 − PS(x

k+1)‖2 ≤ ‖xk+1 − PS(x
k−h)‖2; and

d2S(x
k−h) = ‖xk−h − PS(x

k−h)‖2 ≤ ‖xk−h − PS(x
k−h−1)‖2.

for any h ∈ N. Below, our choice of h is precisely the maximal delay of any coordinate of xk−dk : let the integers j1, . . . , jm ∈
{1, . . . ,m} order the delays from smallest to largest: dk,j1 ≤ . . . ≤ dk,jm . With this notation, δ ≥ dk,jl −dk,jm for l = 1, . . . ,m,
and we set h = dk,jm .

Initial descent (from iteration k + 1 to iteration k). Apply (A.4) to descend to the kth iteration:

E

[

d2S(x
k+1) + κk+1

]

≤ E

[

‖xk+1 − PS(x
k−dk,jm )‖2 + κk+1

]

(by definition of PS)

≤ E

[

‖xk − PS(x
k−dk,jm )‖2 + κs − 2αλ

m
〈S(xk−dk ), xk−dk − PS(x

k−dk,jm )〉
]

− λ2
m∑

j=1

Mj

m2

(

1 +
τp

mC

)

E

[

‖(S(xk−dk ))j‖2j
]

−
m∑

j=1

n∑

i=1

pijT1,ijE

[

rdij(y
k−eik
i )

]

−
m∑

j=1

n∑

i=1

pijT2,ijE
[

rpij(x
k−dk )

]

−
m∑

j=1

n∑

i=1

τd∑

h=0
h6=τd−eik,j

pijγij

τd + 1
E

[

rdij(y
k−τd+h
i )

]

. (A.6)

Intermediate descent (from iteration k to iteration k − dk,jm). To bound our initial descent (A.6), apply (A.4) a
total of dk,jm times:

(A.6) ≤ E

[

‖xk−dk,jm − PS(x
k−dk,jm )‖2 + κk−dk,jm

− 2αλ

m
〈S(xk−dk ), xk−dk − PS(x

k−dk,jm )〉
]

− λ2
m∑

j=1

Mj

m2

(

1 +
τp

mC

)

E

[

‖(S(xk−dk ))j‖2j
]

−
k∑

t=k−dk,jm

m∑

j=1

n∑

i=1

pijT1,ijE

[

rdij(y
t−eit
i )

]

−
k∑

t=k−dk,jm

m∑

j=1

n∑

i=1

pijT2,ijE
[

rpij(x
t−dt)

]

−
m∑

j=1

n∑

i=1

τd∑

h=0
h6=τd−e

j
k−dk,jm

,j

pijγij

τd + 1
E

[

rdij(y
k−dk,jm

−τd+h

i )
]

. (A.7)
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As we descended to the (k−dk,jm )th iteration, we dropped a lot of negative terms including 2αλ〈S(xs−ds), xs−ds−PS(x
k−dk,jm )〉

for all s ∈ {k − 1, . . . , k − dk,jm}. To show that the expectation contracts, we do not need these terms, so we omit them.
We need to rearrange the terms in (A.7) in order to derive a contraction. First we squeeze a norm term out of the inner

product term—this being the only time we use the essential strong quasi-monotonicity of S:

〈S(xk−dk ), xk−dk − PS(x
k−dk,jm )〉 = 〈S(xk−dk ), xk−dk − PS(x

k−dk )〉 + 〈S(xk−dk ), PS(x
k−dk )− PS(x

k−dk,jm )〉
≥ µ‖xk−dk − PS(x

k−dk )‖2 + 〈S(xk−dk ), PS(x
k−dk ) − PS(x

k−dk,jm )〉.
Then we simply split up the term

‖xk−dk,jm − PS(x
k−dk,jm )‖2 =

(

1− 2αµλ

m

)

‖xk−dk,jm − PS(x
k−dk,jm )‖2 +

2αµλ

m
‖xk−dk,jm − PS(x

k−dk,jm )‖2

and couple it with µ‖xk−dk − PS(xk−dk )‖2:

(A.7) ≤ E

[(

1− 2µαλ

m

)

‖xk−dk,jm − PS(x
k−dk,jm )‖2 + κk−dk,jm

]

− λ2
m∑

j=1

Mj

m2

(

1 +
τp

mC

)

E

[

‖(S(xk−dk ))j‖2j
]

−
k∑

t=k−dk,jm

m∑

j=1

n∑

i=1

pijT1,ijE

[

rdij(y
t−eit
i )

]

−
k∑

t=k−dk,jm

m∑

j=1

n∑

i=1

pijT2,ijE
[

rpij(x
t−dt)

]

−
m∑

j=1

n∑

i=1

τd∑

h=0
h6=τd−eik−dk,jm

,j

pijγij

τd + 1
E

[

rdij(y
k−dk,jm

−τd+h

i )
]

+
2αµλ

m
E

[

‖xk−dk,jm − PS(x
k−dk,jm )‖2 − ‖xk−dk − PS(x

k−dk )‖2
]

− 2αλ

m
E

[

〈S(xk−dk ), PS(x
k−dk )− PS(x

k−dk,jm )〉
]

. (A.8)

The final two lines of the above equations are preventing the expectation from contracting, so we absorb them into the other
terms; if δ is 0, these terms are 0, as xk−dk,jm = xk−dk , and there is no need for the next lemma. (We defer the proof of the
lemma for a moment.)

Lemma A.5 (Swapping zeros in the inconsistent case) The following bound holds:

2αµλ

m
E

[

‖xk−dk,jm − PS(x
k−dk,jm )‖2 − ‖xk−dk − PS(x

k−dk )‖2
]

− 2αλ

m
E

[

〈S(xk−dk ), PS(x
k−dk )− PS(x

k−dk,jm )〉
]

≤ 4αµλ3
k∑

t=k−dk,jm

m∑

j=1

n∑

i=1

δpijMj

qjm3

(
1

ζλ
+ 1

)

E

[

rpij(x
t−dt )

]

+ 4αµλ3
k∑

t=k−dk,jm

m∑

j=1

n∑

i=1

δpijMj

qjm3

(
1

ζλ
+ 1

)

E

[

rdij(y
s−eis
i )

]

+ λ2
m∑

j=1

Mj

m2

(

1 +
τp

mC

)

E

[

‖(S(xk−dk ))j‖2j
]

.

Lemma A.5 takes care of the offending terms in (A.8):

(A.8) ≤ E

[(

1− 2µαλ

m

)

‖xk−dk,jm − PS(x
k−dk,jm )‖2 + κk−dk,jm

]

−
k∑

t=k−dk,jm

m∑

j=1

n∑

i=1

pij

(

T1,ij − 4αµδM j

qjm3

(
1

ζ
+ λ

)

λ2

)

E

[

rdij(y
t−eit
i )

]

−
k∑

t=k−dk,jm

m∑

j=1

n∑

i=1

pij

(

T2,ij − 4αµδM j

qjm3

(
1

ζ
+ λ

)

λ2

)

E

[

rpij(x
t−dt)

]

−
m∑

j=1

n∑

i=1

τd∑

h=0
h6=τd−eik−dk,jm

,j

pijγij

τd + 1
E

[

rdij(y
k−dk,jm

−τd+h

i )
]

. (A.9)
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Our intermediate descent is completed simply by writing κk−dk = (1 − ξ)κk−dk + ξκk−dk and absorbing the ξκ1,k−dk terms

in the second and fourth lines of the above inequality (we add ξγij(ρpTij)
−1 to all terms on the second line even though it only

appears in the t = k − dk,jm term in ξκ1,k−dk,jm
):

(A.9) ≤ E

[

(1− ξ)
(

‖xk−dk,jm − PS(x
k−dk,jm )‖2 + κk−dk,jm

)

+ ξκ2,k−dk,jm

]

−
k∑

t=k−dk,jm

m∑

j=1

n∑

i=1

pij

(

T1,ij − ξγij

ρpTij
− 4αµδM j

qjm3

(
1

ζ
+ λ

)

λ2

)

E

[

rdij(y
t−eit
i )

]

−
k∑

t=k−dk,jm

m∑

j=1

n∑

i=1

pij

(

T2,ij − 4αµδM j

qjm3

(
1

ζ
+ λ

)

λ2

)

E

[

rpij(x
t−dt)

]

−
m∑

j=1

n∑

i=1

τd∑

h=0
h6=τd−eik−dk,jm

,j

pijγij

τd + 1
(1− ξ(h+ 1))E

[

rdij(y
k−dk,jm

−τd+h

i )
]

. (A.10)

Final descent (from iteration k− dk,jm to iteration k− dk,jm − 1). The expectation is nearly contracting by a factor
of (1− ξ). The term ξκ2,k−dk,jm

is all that stands in our way, but it can, by descending one more iteration, be absorbed. (We

defer the proof of the lemma for a moment.)

Lemma A.6 (Recursive κ2,k bound) For all s ∈ N,

E [κ2,s] ≤ λ2
m∑

j=1

n∑

i=1

2Mjτppij

Cqjm3
E

[

rpij(x
s−1−ds−1 )

]

+ λ2
m∑

j=1

n∑

i=1

2Mjτppij

Cqjm3
E

[

rdij(y
s−1−eis−1

i )

]

+
τp

τp + 1
E [κ2,s−1]

By Equation (A.5), the last three lines in (A.10) are nonnegative; drop these nonnegative terms, use the bound ‖xk−dk,jm −
PS(x

k−dk,jm )‖2 ≤ ‖xk−dk,jm −PS(x
k−dk,jm

−1)‖2, descend one more step with the aid of (A.4), and use Lemma A.6 to bound
E
[
ξκ2,k−dk−1

]
—in that order: if h = k − dk,jm − 1, then

(A.10) ≤ E

[

(1− ξ)
(

‖xh − PS(x
h)‖2 + κh

)

+
τp

τp + 1
ξκ2,h

]

− (1− ξ)
m∑

j=1

n∑

i=1

pijT1,ijE

[

rdij(y
h−eih
i )

]

+ ξ
m∑

j=1

n∑

i=1

2Mjτppijλ
2

Cqjm3
E

[

rdij(y
h−eih
i )

]

− (1− ξ)
m∑

j=1

n∑

i=1

pijT2,ijE
[

rpij(x
h−dh )

]

+ ξ
m∑

j=1

n∑

i=1

2Mjτppijλ2

Cqjm3
E

[

rpij(x
h−dh )

]

≤ E

[(

1− ξ

τp + 1

)(

‖xh − PS(x
h)‖2 + κh

)]

− (1− ξ)
m∑

j=1

n∑

i=1

pij

(

T1,ij − 2Mjτpλ2ξ

Cqjm3(1 − ξ)

)

E

[

rdij(y
h−eih
i )

]

− (1− ξ)
m∑

j=1

n∑

i=1

pij

(

T2,ij − 2Mjτpλ2ξ

Cqjm3(1 − ξ)

)

E

[

rpij(x
h−dh )

]

.

Equation (A.5) implies that the last two lines of the equation are negative, so

E

[

dS(x
k+1)2 + κk+1

]

≤
(

1− ξ

τp + 1

)

E

[

d2S(x
k−dk,jm

−1) + κk+1

]

≤
(

1− ξ

τp + 1

)

max
h∈{k−τp−1,...,k−1}

{

E

[

d2S(x
h) + κh

]}

.

holds for all k. Set C(z0, φ0) := κ0 and unfold these recursive bounds with the next lemma to get the rate.
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Lemma A.7 (Linear convergence rate of sequences that contract within a fixed number of steps) [29, Lemma 6]]
Let {ak}k∈N be a nonnegative sequence of real numbers. Suppose that there exists ρ ∈ [0, 1) and κ ∈ N such that for all k ∈ N,
we have

ak+1 ≤ ρ max
k−κ≤h≤k

ak.

Then for all s ∈ N, we have
ak ≤ ρk/(κ+1)a0.

We finish the proof of Part 3 by proving Lemmas A.4, A.5, and A.6.

Proof (of Lemma A.4 (choosing γij)) We have assumed that

λ ≤ min
i,j






2η(1 − α)n2pijβij

2Mjη(τd+2)

qjm

(

1 + δη
τd+1

+
5
√

2(τd+2)α2δ

mM
(√

2(τd+2)+τp
√

q
)

)

+
Mjητp

√
2(τd+2)

m
√

q

(

2 + η
1−η

)

+ 4µ(τd + 1)α(1 − α)n2pijβij






,

and consequently30 , if

wij :=

2(1−α)n2pijβij

2Mj(τd+2)

qjm

(

1+ δη
τd+1

+ 2µαδ
mζ

)

+MjτpC
(

2+ η
1−η

)

mη
2αµ(τd+1)

+
2(1−α)n2pijβij

2Mj(τd+2)

qjm

(

1+ δη
τd+1

+ 2µαδ
mζ

)

+MjτpC
(

2+ η
1−η

)

≤ 1,

then

λ ≤ wijmη

2αµ(τd + 1)
=

2(1 − α)n2pijβij(1− wij)

2Mj(τd+2)

qjm

(

1 + δη
τd+1

+ 2µαδ
mζ

)

+MjτpC
(

2 + η
1−η

) ,

which immediately implies the last claimed bound in the statement of this lemma: ξ(τd + 1) ≤ wijη ≤ 1.
The four inequalities that remain hold when the bound

(τd + 1)
(

1− (τd+1)ξ

ρpT
ij

)

(

−T1,ij +
γij

τd + 1
+

2M jτpξλ2

Cqjm3(1 − ξ)
+

4αµδM jλ2

qjm3

(
1

ζ
+ λ

))

=
(τd + 1)λ2

(

1− (τd+1)ξ

ρpT
ij

)

[(

2Mj

qjm2

(

1 +
τp

mC

)

+
2Mjτpξ

Cqjm3(1 − ξ)
+

4αµδM j

qjm3

(
1

ζ
+ λ

))]

≤ 2(1 − α)n2λpijβij

m
−Mj

(
2

qjm2
+ τp

(
2

qjm3C
+ C

))

λ2 − 2Mjτpλ
2ξ

Cqjm3(1− ξ)
− 4αµδM j

qjm3

(
1

ζ
+ λ

)

= T2,ij − 2Mjτpλ
2ξ

Cqjm3(1− ξ)
− 4αµδM j

qjm3

(
1

ζ
+ λ

)

+ γij (A.11)

is satisfied because in this case γij , which will necessarily be positive, can be taken as the upper or lower bound in (A.11),
yielding

(τd + 1)
(

1− (τd+1)ξ

ρpT
ij

)

(

−T1,ij +
γij

τd + 1
+

2Mjτpξλ
2

Cqjm3(1 − ξ)
+

4αµδM jλ
2

qjm3

(
1

ζ
+ λ

))

≤ γij ; and

T2,ij − 2Mjτpλ2ξ

Cqjm3(1− ξ)
− 4αµδM j

qjm3

(
1

ζ
+ λ

)

+ γij ≥ γij .

30 Use the identity 2µαδ(ζm)−1 = 5α2δ

(

mM

(

1 +
τ
√

q√
2(τd+2)

))−1

=
5
√

2(τd+2)α2δ

mM
(√

2(τd+2)+τ
√
q
) .
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After rearranging, these conservative inequalities imply all four bounds in (A.5).

Thus, we finish the proof with (A.11): Because ξ ≤ wijη < 1, ξ/(1 − ξ) ≤ wijη/(1 − wijη) ≤ η/(1 − η), and 2(τd +
2)(m2qC)−1 = C, we have

λ2
[

(τd + 1)

(

2Mj

qjm2

(

1 +
τp

mC

)

+
2Mjτpξ

Cqjm3(1− ξ)
+

4αµδM j

qjm3

(
1

ζ
+ λ

))

+ (1 −wij)

(

Mj

(
2

qjm2
+ τp

(
2

qjm3C
+
C

m

))

+
2Mjτpλ2ξ

Cqjm3(1− ξ)
+

4αµδM j

qjm3

(
1

ζ
+ λ

))]

≤ λ2
[

(τd + 1)

(

2Mj

qm2

(

1 +
τp

mC

)

+
2M jτpξ

Cqm3(1 − ξ)
+

4αµδM j

qm3

(
1

ζ
+ λ

))

+ (1 −wij)

(

Mj

(

2

qm2
+ τp

(

2

qm3C
+
C

m

))

+
2Mjτpλ2ξ

Cqm3(1 − ξ)
+

4αµδM j

qm3

(
1

ζ
+ λ

))]

≤Mjλ
2

[

(τd + 2)

(

2

qm2

(

1 +
τp

mC

)

+
2τpξ

Cqm3(1− ξ)
+

4αµδ

qm3

(
1

ζ
+ λ

))]

≤Mjλ
2

[

(τd + 2)

(

2

qm2
+

4αµδ

qm3

(
1

ζ
+ λ

))

+
τp

m
C

(

2 +
η

1− η

)]

(A.3)

≤ Mjλ
2

[

2(τd + 2)

qm2

(

1 +
δη

τd + 1
+

2µαδ

mζ

)

+
τp

m
C

(

2 +
η

1− η

)]

≤ 2(1 − α)n2λpijβij(1 −wij)

m
.

(We bound (qj)−1 ≤ q−1 in the first inequality, and we bound 1−wij ≤ 1 in the second.) Divide both sides of this inequality

by 1− wij , rearrange, and use the bound

(

1− (τd+1)ξ

ρpT
ij

)−1

≤
(

1− wijη

ρpT
ij

)−1

≤ (1− wij)
−1 to get (A.11). ⊓⊔

Proof (of Lemma A.5 (swapping zeros in the inconsistent case)) We split the proof according to the bounds we apply:

1. Firm nonexpansiveness. The map PS is firmly nonexpansive in ‖·‖, so for all x, y ∈ H, ‖PS(x)−PS (y)‖2+‖x−PS(x)−
(y − PS(y))‖2 ≤ ‖x− y‖2. Therefore,

‖
(

xk−dk,jm − PS(x
k−dk,jm )

)

−
(

xk−dk − PS(x
k−dk )

)

‖2 ≤ ‖xk−dk,jm − xk−dk‖2 − ‖PS(x
k−dk,jm )− PS(x

k−dk )‖2.
(A.12)

2. Young’s inequality. Apply the bound ‖a+ b‖2 ≤ (1 + ε)‖a‖2 + (1 + ε−1)‖b‖2 to get

‖xk−dk,jm − PS(x
k−dk,jm )‖2 − ‖xk−dk − PS(x

k−dk )‖2

≤
(

1

ζλ
+ 1

)

‖
(

xk−dk,jm − PS(x
k−dk,jm )

)

−
(

xk−dk − PS(x
k−dk )

)

‖2 + ζλ‖xk−dk − PS(x
k−dk )‖2

(A.12)

≤
(

1

ζλ
+ 1

)[

‖xk−dk,jm − xk−dk‖2 − ‖PS(x
k−dk,jm )− PS(x

k−dk )‖2
]

+ ζλ‖xk−dk − PS(x
k−dk )‖2.
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3. Equivalence of norms, convexity of ‖ · ‖2, and the variance bound.

E

[

‖xk−dk,jm − xk−dk‖2
]

≤
m∑

j=1

E

[

Mj‖x
k−dk,jm
j − x

k−dk
j ‖2j

]

≤
m∑

j=1

E



Mjδ

k−dk,j∑

t=k−dk,jm
+1

‖xtj − xt−1
j ‖2j





≤
m∑

j=1

E



Mjδ

k+1∑

t=k−dk,jm
+1

‖xtj − xt−1
j ‖2j





(A.3)

≤ 2λ2
k∑

t=k−dk,jm

m∑

j=1

n∑

i=1

δpijMj

qjm2
E

[

rpij(x
t−dt)

]

+ 2λ2
k∑

t=k−dk,jm

m∑

j=1

n∑

i=1

δpijMj

qjm2

[

rdij(y
s−eis
i )

]

.

4. Essential strong quasi-monotonicity. The next two bounds hold

〈S(xk−dk ), xk−dk − PS(x
k−dk )〉 ≥ µ‖xk−dk − PS(x

k−dk )‖2;
1

µ2
‖S(xk−dk )‖2 ≥ ‖xk−dk − PS(x

k−dk )‖2.

(After an application of the Cauchy-Schwarz inequality, the second bound follows from the first.) Thus,

2αµζλ2

m
‖xk−dk − PS(x

k−dk )‖2 ≤ 2αζλ2

mµ
‖S(xk−dk )‖2.

5. Cauchy-Schwarz and Young’s Inequality.

2αλ

m
|〈S(xk−dk ), PS(x

k−dk )− PS(x
k−dk,jm )〉| ≤ αζλ2

2mµ
‖S(xk−dk )‖2 +

2αµ

mζ
‖PS(x

k−dk )− PS(x
k−dk,jm )‖2.

6. The ζ bound.

2αµζλ2

m
E

[

‖xk−dk − PS(x
k−dk )‖2

]

− 2αµλ

m

(
1

ζλ
+ 1

)

E

[

‖PS(x
k−dk,jm )− PS(x

k−dk )‖2
]

− 2αλ

m
E

[

〈S(xk−dk ), PS(x
k−dk )− PS(x

k−dk,jm )〉
]

≤ 2.5αζλ2

mµ
E

[

‖S(xk−dk )‖2
]

−
(
2αµ

mζ
+

2αµλ

m
− 2αµ

mζ

)

E

[

‖PS(x
k−dk,jm )− PS(x

k−dk )‖2
]

≤ λ2
m∑

j=1

Mj

m2

(

1 +
τp

mC

)

E

[

‖(S(xk−dk ))j‖2j
]

.

(The last line follows from the third because (i) 2.5αζ(mµ)−1 ≤Mj

(
1 + τ(mC)−1

)
and (ii) the second term on line three

is negative.)
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We conclude by putting all the bounds together:

2αµλ

m
E

[

‖xk−dk,jm − PS(x
k−dk,jm )‖2 − ‖xk−dk − PS(x

k−dk )‖2
]

− 2αλ

m
E

[

〈S(xk−dk ), PS(x
k−dk )− PS(x

k−dk,jm )〉
]

≤ 2αµλ

m

(
1

ζλ
+ 1

)

E

[

‖xk−dk,jm − xk−dk‖2
]

− 2αλ

m
E

[

〈S(xk−dk ), PS(x
k−dk ) − PS(x

k−dk,jm )〉
]

+
2αµζλ2

m
E

[

‖xk−dk − PS(x
k−dk )‖2

]

− 2αµλ

m

(
1

ζλ
+ 1

)

E

[

‖PS(x
k−dk,jm )− PS(x

k−dk )‖2
]

≤ 4αµλ3
k∑

t=k−dk,jm

m∑

j=1

n∑

i=1

δpijMj

qjm3

(
1

ζλ
+ 1

)

E

[

rpij(x
t−dt )

]

+ 4αµλ3
k∑

t=k−dk,jm

m∑

j=1

n∑

i=1

δpijMj

qjm3

(
1

ζλ
+ 1

)

E

[

rdij(y
s−eis
i )

]

+ λ2
m∑

j=1

Mj

m2

(

1 +
τp

mC

)

E

[

‖(S(xk−dk ))j‖2j
]

. ⊓⊔

Proof (of Lemma A.6 (recursive κ2,k bound)) For any s ∈ N, we have

E [κ2,s] =
s∑

t=s−τp+1

m∑

j=1

Mj(t− s+ τp)

mC
E

[

‖xtj − xt−1
j ‖2j

]

=
m∑

j=1

Mjτp

mC
E

[

‖xsj − xs−1
j ‖2j

]

+

s−1∑

t=s−τp+1

m∑

j=1

Mj(t− s+ τp)

mC
E

[

‖xtj − xt−1
j ‖2j

]

≤ λ2
m∑

j=1

Mjτp

mC
E

[

‖Qs−1
j ‖2j

]

+
τp

τp + 1
E [κ2,s−1]

(A.3)

≤ λ2
m∑

j=1

n∑

i=1

2M jτppij

Cqjm3
E

[

rpij(x
s−1−ds−1 )

]

+ λ2
m∑

j=1

n∑

i=1

2Mjτppij

Cqjm3
E

[

rdij(y
s−1−eis−1

i )

]

+
τp

τp + 1
E [κ2,s−1] .⊓⊔

⊓⊔
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B Auxiliary Results

B.1 Properties of Operators

Definition B.1 (Cocoercive Operators) An operator S : H → H is called β-cocoercive if

(∀x, y ∈ H) 〈Sx− Sy, x− y〉 ≥ β‖Sx− Sy‖2.

Definition B.2 (Averaged Operators) Let α ∈ [0, 1]. An operator T : H → H is called α-averaged if there is a nonexpansive
map N : H → H such that

T = (1 − α)IH + αN.

The map T is is called firmly nonexpansive if it is (1/2)-averaged.

Proposition B.1 (Cocoercivness from Averagedness) Let α ∈ [0, 1], and let T : H → H be an α-averaged operator.
Then for all β > 0, β(I − T ) is (1/(2αβ))-cocoercive.

Proof There is a nonexpansive map N : H → H such that T = (1−α)I+αN , and by definition, T ′ := (1/2)I+(1/2)N is firmly
nonexpansive. Thus, I −T ′ = (1/2)(I −N) is firmly nonexpansive, and hence, 1-cocoercive [2, Remark 4.24(iii)]. Therefore, for
all x, y ∈ H, the next bound holds and proves that β(I − T ) is (1/αβ)-cocoercive:

〈αβ(I −N)x− αβ(I −N)y, x− y〉 = 2αβ〈1
2
(I −N)x− 1

2
(I −N)y, x− y〉 ≥ 2αβ

∥
∥
∥
∥

1

2
(I −N)x− 1

2
(I −N)y

∥
∥
∥
∥

2

=
1

2αβ
‖αβ(I −N)x− αβ(I −N)y‖2 . ⊓⊔

Proposition B.2 (The Composition of Averaged Operators is Averaged [10]) Let α1, α2 ∈ [0, 1], and let T1, T2 :
H → H be α1- and α2-averaged maps, respectively. Then T1 ◦ T2 is α1,2 averaged where

α1,2 :=
α1 + α2 − 2α1α2

1− α1α2
.

Proposition B.3 (Strongly monotone operators from Lipschitz operators) Let L ∈ (0, 1) and suppose that T : H → H
be L-Lipschitz continuous. Then I − T is (1− L)-strongly monotone.

Proposition B.4 (Coordinate Lipschitz Constants and Coordinate Cocoercivity.) Let f : H → (−∞,∞] be a Fréchet
differentiable convex function. If j ∈ {1, . . . ,m} and

(∀x ∈ H) , (∀yj ∈ Hj) f(x+ ŷj) ≤ f(x) + 〈∇f(x), ŷj〉+
Lj

2
‖ŷj‖2; ŷj = (0, . . . , 0, yj , 0, . . . , 0), (B.1)

then

(∀x ∈ H) , (∀y ∈ H)
1

Lj
‖∇f(x) −∇f(y)‖2j ≤ 〈∇f(x)−∇f(y), x− y〉.

Proof Fix y ∈ H, and let define a function g, which continues to satisfy (B.1),

g(x) = f(x)− f(y) − 〈∇f(y), x− y〉.

Then g ≥ 0, and g(y) = 0, so g is minimized at y. In addition,

(∀x ∈ H) , (∀yj ∈ Hj) g(y) ≤ g(x+ ŷj) ≤ g(x) + 〈∇f(x), ŷj〉+
Lj

2
‖ŷj‖2; ŷj = (0, . . . , 0, yj , 0, . . . , 0).

Thus, we minimize the right hand side of this inequality, over all ŷj ∈ H, and get the next bound:

f(x) − f(y) − 〈∇f(y), x− y〉 = g(x)− g(y) ≥ 1

2Lj
‖∇jf(x) −∇jf(y)‖2j .

We likewise get the opposite inequality in which the points x and y are exchanged; add both inequalities, and get the result.
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Proposition B.5 (Contractive Forward-Gradient Operator) Suppose that the function f : H → (−∞,∞) is µf -strongly
convex, differentiable, and that the gradient ∇f is L-Lipschitz continuous. Then I − γ∇f is

√

1− 2γµf + γ2Lµf

Lipschitz continuous whenever γ ≤ 2L−1.

Proof In the next sequence of inequalities, we use the bound 〈∇f(x)−∇f(y), x− y〉 ≥ L−1‖∇f(x) −∇f(y)‖2 once:

(∀x, y ∈ H) ‖(I − γ∇f)x− (I − γ∇f)y‖2 ≤ ‖x− y‖2 − 2γ〈∇f(x) −∇f(y), x− y〉+ γ2‖∇f(x)−∇f(y)‖2

≤ ‖x− y‖2 + γ2‖∇f(x) −∇f(y)‖2

− 2γ

(

1− γL

2

)

〈∇f(x)−∇f(y), x− y〉 − γ2L〈∇f(x)−∇f(y), x− y〉

≤
(

1− 2γµf

(

1− γL

2

))

‖x− y‖2. ⊓⊔
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C Examples of S

C.1 Old Operators

Proposition C.1 (SAGA/SVRG/S2GD Operator Properties) Assume the setting of Section 4.1, and in particular,
that

Si = ∇fi
Then

1. Coherence: S satisfies the coherence condition

(∀x ∈ H) , (∀x∗ ∈ zer(S)) 〈S(x), x− x∗〉 ≥
N∑

i=1

βi1‖Si(x) − Si(x
∗)‖2.

with βi1 ≡ nL−1.
2. Essential strong quasi-monotonicity: S is µ-essentially strongly monotone whenever N−1

∑N
i=1 fi is µ-strongly convex.

3. Roots: zer(S) is precisely the set of minimizers of the dual problem to (4.6).
4. Demiclosedness: I − S is demiclosed at 0.

Proof Part 1 (coherence): The Baillon-Haddad Theorem [1] guarantees that for all i ∈ {1, . . . , N} and x ∈ H,

1

L
‖∇fi(x) −∇fi(x∗)‖2 ≤ 〈∇fi(x) −∇fi(x∗), x− x∗〉,

which implies that

1

N

N∑

i=1

1

L
‖Si(x)− Si(x

∗)‖2 =
1

N

N∑

i=1

1

L
‖∇fi(x) −∇fi(x∗)‖2 ≤ 1

N

N∑

i=1

〈∇fi(x)−∇fi(x∗), xi − x∗〉 = 〈S(x), x− x∗〉.

Parts 2 (essential strong quasi-monotonicity) and 3 (roots) are simple, so we omit the proofs.
Part 4 (demiclosedness): The operator I − S is nonexpansive by [2, Proposition 4.33]; thus it is demiclosed at 0. ⊓⊔

Proposition C.2 (Finito Operator Properties) Assume the setting of Section 4.2, and in particular, that

(

∀x ∈ HN
0

)

S(x) = x− PD (x1 − γ∇f1(x1), . . . , xN − γ∇fN (xN )) . (C.1)

In addition, let γ ≤ 2L−1. Then

1. Coherence: S satisfies the coherence condition

(∀x ∈ H) , (∀x∗ ∈ zer(S)) 〈S(x), x− x∗〉 ≥
N∑

j=1

β1j‖(S(x))j‖2j .

with β1j ≡ 4−1γL.
2. Essential strong quasi-monotonicity: S is

µ := 1−
√

1− 2γµ̂ + γ2µ̂L

essentially strong quasi-monotone whenever each fi is µ̂-strongly convex.
3. Roots: zer(S) = {(x∗0 , . . . , x∗0) ∈ HN

0 | minimizes (4.1)}
4. Demiclosedness: I − S is demiclosed at 0.
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Proof Part 1 (coherence): Let f : H → H be the function f(x1, . . . , xN ) =
∑N

j=1 fj(xj). The operator∇f : x 7→ (∇f1(x1), . . . ,∇fN (xN ))

is L−1-cocoercive [1] and L-Lipschitz, and thus, IH−γ∇f is (2−1γL)-averaged. In addition, PD is 2−1-averaged [2, Proposition
4.8], so by Proposition B.2, the composition PD ◦ (IH − γ∇f) is 2/(4− γL)-averaged. Therefore, S = (IH − PD ◦ (IH − γ∇f))
is (4−1γL)-cocoercive, and so β1j = 4−1γL.

Part 2 (essential strong quasi-monotonicity): by B.5, if γ ≤ 2L−1, then the map IH − γ∇f is (1 − µ)-Lipschitz, so the
composition PD(IH − γ∇f) is (1− µ)-Lipschitz. Therefore, by Proposition B.3, the operator S is µ-strongly quasi-monotone.

Part 3 (roots) is simple so we omit the proof.
Part 4 (demiclosedness): By [2, Proposition 4.33 and Proposition 4.8], the operator I − S is nonexpansive because it is the

composition of two nonexpansive maps. Thus, I − S is demiclosed at 0. ⊓⊔

Proposition C.3 (SDCA Operator Properties) Assume the setting of section 4.3, and in particular, that

S = I − proxµ0Nf∗(−·) ◦ (I − µ0N∇g).

1. Coherence: S satisfies the coherence condition

(∀x ∈ H) , (∀x∗ ∈ zer(S)) 〈S(x), x− x∗〉 ≥
N∑

j=1

β1j‖(S(x))j‖2j .

with β1j ≡ 3/4
2. Essential strong quasi-monotonicity: S is

µ =
µ0N

(µ0N + L)

essentially strongly quasi-monotone—whether or not any fj is strongly convex.
3. Roots: zer(S) is precisely the set of dual solutions to (4.7).
4. Demiclosedness: I − S is demiclosed at 0.

Proof Part 1 (coherence): The gradient ∇g is (µ0N)−1-Lipschitz, so IH−µ0N∇g is (1/2)-averaged [2, Proposition 4.33]. Thus,
by Proposition B.2, the composition of the operators proxµ0Nf∗(−·) ◦ (IH − µ0N∇g), both of which are 2−1-averaged, is

(2/3)-averaged. Thus, by Lemma B.1, S = IH − proxµ0Nf∗(−·) ◦ (IH − µ0N∇g) is (3/4)-cocoercive.

Part 2 (essential strong quasi-monotonicity): All the strong monotonicity comes from the proxµ0Nf∗(−·) operator: The

gradient of f(x1, . . . , xN ) =
∑N

i=1 fi(xi) is L-Lipschitz continuous on H, so the conjugate function f∗ is L−1-strongly convex [2,
Theorem 18.15], and this, in turn, implies that proxµ0Nf∗(−·) is L(µ0N +L)−1-Lipschitz continuous. Thus, proxµ0Nf∗(−·) ◦
(IH − µ0N∇g) is L(µ0N + L)−1-Lipschitz continuous [2, Proposition 23.11], so by Proposition B.3, S is µ0N(µ0N + L)−1-
essentially strongly quasi-monotone (indeed, strongly monotone).

Part 3 (roots) follows from [2, Proposition 25.1(iv)].
Part 4 (demiclosedness): In part 1, we showed that I − S is averaged, and hence nonexpansive. Thus, I − S is demiclosed

at 0. ⊓⊔

Proposition C.4 (Randomized Projection Operator Properties) Assume the setting of Section 4.4, and in particular,
that

Si =

{

I − PCi
if i = 1, . . . , s1;

I −Gfi−s1
if i = s1 + 1, . . . , s1 + s2.

Then
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1. Coherence: S satisfies the coherence condition

(∀x ∈ H) , (∀x∗ ∈ zer(S)) 〈S(x), x− x∗〉 ≥
N∑

i=1

βi1‖Si(x) − Si(x
∗)‖2.

with βi1 ≡ 1.
2. Essential strong quasi-monotonicity: S is

µ =
max{1, ε2L−2}

Nµ̂2

essentially strongly quasi-monotone whenever
(a) {Ci | i = 1, . . . , s1} ∪ {{x | fi(x) ≤ 0} | i = 1, . . . , s2} are µ̂-linearly regular,31

(b) there is an ε > 0 such that fi(x) ≥ εd{fi(x)≤0}(x) for all x ∈ H,
(c) and there is an L > 0 such that ‖gi(x)‖ ≤ L for all x ∈ H.

3. Roots: zer(S) is precisely the set of solutions to the feasibility problem (4.9).
4. Demiclosedness: I − S is demiclosed at 0.

Proof Parts 1 (coherence) and 3 (roots): Each projection operator PCi
is 2−1-averaged by [2, Proposition 4.8], and so I − PCi

is 1-cocoercive by Proposition B.1. Similarly, by [3, Fact 2.1(v)], each subgradient projector 2−1 quasi-averaged, i.e.,

(∀x ∈ H) , (∀x∗ ∈ {z | f(z) ≤ 0}) ‖Gfi(x) − x∗‖2 ≤ ‖x− x∗‖2 − ‖x−Gfi (x)‖2.

Thus, by rearranging this inequality, we have

(∀x ∈ H) , (∀x∗ ∈ {z | f(z) ≤ 0}) 〈x−Gfi (x), x− x∗〉 ≥ ‖x−Gfi(x)‖2.

Altogether, with C equal to the set of points in the intersection (4.9), we have

(∀x ∈ H) , (∀x∗ ∈ C) 〈S(x), x− x∗〉 ≥ 1

N

N∑

i=1

‖Si(x)‖2.

To complete Parts 1 and 3, we need only show that C = zer(S). But the operator (I−S) = 1
N

∑N
i=1(I−Si) is the average of

quasi-nonexpansive operators, and all of the fixed-point sets of these operators overlap (because Fix(Gfi) = {x | fi(x) ≤ 0} [3,
Fact 2.1(ii)] and there is a point in the intersection (4.9)). Thus, by [2, Proposition 4.34], the set of fixed points of I−S is equal
to the set of all points in the intersection; in other words, C = zer(S).

Part 2 (essential strong quasi-monotonicity): Let x∗ ∈ zer(S). Then for all x ∈ H, with f(x) > 0, we have

〈x−Gfi(x), x− x∗〉 = fi(x)

‖gi(x)‖2
〈gi(x), x− x∗〉 ≥ fi(x)

‖gi(x)‖2
(fi(x)− fi(x

∗)) ≥ fi(x)
2

‖gi(x)‖2
≥ ǫ2

L2
d2{fi(z)≤0}(x).

Similarly, because I − PCi
is 1-cocoercive, for all x ∈ H, we have

〈x− PCi
(x), x− x∗〉 ≥ ‖x− PCi

(x)‖2 = d2Ci
(x).

By adding these bounds all together, we have

(∀x ∈ H) 〈S(x), x− x∗〉 ≥ 1

N
min

{

1,
ǫ2

L2

}




s1∑

i=1

d2Ci
(x) +

s1+s2∑

i=s1+1

d2{fi−s1
(z)<0}(x)





≥ 1

N
min

{

1,
ǫ2

L2

}

max
({

d2Ci
(x) | i = 1, . . . , s1

}

∪
{

d2{fi(z)≤0}(x) | i = 1, . . . , s2
})

≥
d2
zer(S)

(x)

Nµ̂2
min

{

1,
ǫ2

L2

}

,

which proves that S is µ essentially strongly quasi-monotone.

31 A set family {D1, . . . ,DN} is µ̂-linearly regular if ∀x ∈ H, dD1∩···∩DN
(x) ≤ µ̂max{dD1

(x), . . . , dDN
(x)}.
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Part 4 (demiclosedness): Let {xk}k∈N ⊆ H be a sequence of points, let x ∈ H, and suppose that two limits hold: xk ⇀ x
and S(xk) → 0. To show that I − S is demiclosed at 0, we need to show that S(x) = 0. We prove this in two parts: first we
show that for all i, Si(x

k) → 0; and second we show that these limits imply that x ∈ zer(S).
“Si(x

k) → 0:” For all i, let Ti = I − Si. These operators Ti are quasinonexpansive (as noted in Part 1). Thus, for any
y ∈ zer(S), we have

2〈Tixk − xk, xk − y〉 = ‖Tixk − y‖2 − ‖Tixk − xk‖2 − ‖xk − y‖2 ≤ −‖Tixk − xk‖2.

Thus,

1

N

N∑

i=1

−‖Tixk − xk‖2 ≥ 1

N

N∑

i=1

2〈Tixk − xk, xk − y〉 = 〈S(xk), xk − y〉 → 0,

and so Si(x
k) = Tix

k − xk → 0,
“x ∈ zer(S):” All the projection operators PCi

are nonexpansive, and moreover, PCi
xk − xk → 0. Therefore, because all

nonexpansive operators are demiclosed at 0, we have PCi
x = x and x ∈ Ci.

The subgradient projectors are not nonexpansive, but we can still show that Gfix = x, and hence, fi(x) ≤ 0. Indeed,

‖Gfi (x
k) − xk‖ = fi(x

k)‖gi(xk)‖−1 → 0. And because subdifferential operators of continuous convex functions are locally

bounded, because the sequence {xk}k∈N is bounded, and because the subgradients {gi(xk)}k∈N are bounded, it follows that
fi(xk) → 0. Then because convex functions are weakly lower semicontinuous, we have fi(x) ≤ lim infk fi(x

k) ≤ 0. Altogether,
x ∈ zer(S), and consequently, S is demiclosed at 0. ⊓⊔

Corollary C.1 (Kaczmarz Operator Properties) Assume the setting of Section 4.4, and in particular, that

(∀i) Si = (I − PCi
) = (〈ai, ·〉 − bi)ai.

Then

1. Coherence: S satisfies the coherence condition

(∀x ∈ H) , (∀x∗ ∈ zer(S)) 〈S(x), x− x∗〉 ≥
N∑

i=1

βi1‖Si(x) − Si(x
∗)‖2.

with βi1 ≡ 1.
2. Essential strong quasi-monotonicity: S is

µ =
1

N‖A−1‖22
.

essentially strong quasi-monotone, where

‖A−1‖2 := inf{M | (∀x ∈ H) M‖Ax‖2 ≥ ‖x‖2}.

3. Roots: zer(S) is precisely the set of solutions to the linear equation Ax = b.
4. Demiclosedness: I − S is demiclosed at 0.

Proof Parts 1 (coherence), 3 (roots), and 4 (demiclosedness) follow from Proposition C.4.
Part 2: Observe that

〈S(x), x− x∗〉 = 1

N

N∑

i=1

〈(〈ai, x〉 − bi)ai, x− x∗〉 = 1

N

N∑

i=1

〈(〈ai, x〉 − 〈ai, x∗〉)ai, x− x∗〉 = 1

N

N∑

i=1

〈ai, x− x∗〉2

=
1

N
‖A(x− x∗)‖22

≥ 1

N‖A−1‖22
‖x− x∗‖2. ⊓⊔
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C.2 New Operators

Proposition C.5 (Proximal SAGA/SVRG Operator Properties) Assume the setting of Section 5.2, and in particular,
that

(∀i < N + 1) Si =
γ

N
∇fi ◦ proxγg ;

SN+1 = (I − proxγg),

Then

1. Coherence: S satisfies the coherence condition

(∀x ∈ H) , (∀x∗ ∈ zer(S)) 〈S(x), x− x∗〉 ≥
N∑

i=1

βi1‖Si(x) − Si(x
∗)‖2.

with

βi1 :=
N

2γL(N + 1)
i = 1, . . . , N and β(N+1)1 :=

1

(N + 1)

(

1− γL

2

)

2. Essential strong quasi-monotonicity: S is

µ =
1 + γµg −

√
1− 2γµf + γ2Lµf

(N + 1)(1 + γµg)

essentially strongly quasi-monotone, where N−1
∑N

i=1 fi is µf -strongly convex and g is µg-strongly convex.
3. Roots: with any choice of γ, we have

x ∈ zer(S) =⇒ proxγg(x) solves (5.1),

and zer(S) 6= ∅ if, and only if, g +N−1
∑N

j=1 fj has a minimizer.
4. Demiclosedness: I − S is demiclosed at 0.

Proof Part 1 (coherence): The operator SN+1 = (I − proxγg) is 1-cocoercive and ∇fi is N(γL)−1-cocoercive. Thus, for all
x ∈ S, we have

〈S(x), x− x∗〉 = 1

N + 1

N+1∑

i=1

〈Si(x) − Si(x
∗), x− x∗〉

=
1

N + 1

N∑

i=1

〈Si(x)− Si(x
∗),proxγg(x)− proxγg(x

∗)〉 + 1

N + 1
〈SN+1(x)− SN+1(x

∗), x− x∗〉

+
1

(N + 1)

N∑

i=1

〈Si(x)− Si(x
∗), SN+1(x)− SN+1(x

∗)〉

≥ N

γL(N + 1)

N∑

i=1

‖Si(x)− Si(x
∗)‖2 +

1

(N + 1)
‖SN+1(x)− SN+1(x

∗)‖2

− N

2γL(N + 1)

N∑

i=1

‖Si(x)− Si(x
∗)‖2 − γL

2(N + 1)
‖SN+1(x)− SN+1(x

∗)‖2

≥ N

2γL(N + 1)

N∑

i=1

‖Si(x)− Si(x
∗)‖2 +

1

(N + 1)

(

1− γL

2

)

‖SN+1(x)− SN+1(x
∗)‖2.

Part 2 (essential strong quasi-monotonicity): Let

T =

(

I − γ

N

N∑

i=1

∇fi
)

◦ proxγg .
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The operator proxγg is (1+γµg)−1-Lipschitz continuous [2, Proposition 23.11]. In addition, by Proposition B.5,
(

I − γN−1
∑N

i=1 ∇fi
)

is
√

1− 2γµf + γ2Lµf -Lipschitz continuous, whenever γ ≤ 2L−1. Thus, T , the composition of the two Lipschitz operators, is

(1 + γµg)−1
√

1− 2γµf + γ2Lµf Lipschitz continuous. Therefore, S = (N + 1)−1(I − T ) is

µ =
1

N + 1

(

1−
√

1− 2γµf + γ2Lµf

1 + γµg

)

=
1 + γµg −

√
1− 2γµf + γ2Lµ

(N + 1)(1 + γµg)

essentially strongly quasi-monotone.
Part 3 (roots):

x ∈ zer(S) ⇔ 0 = (I − proxγg) +
γ

N

N∑

i=1

∇fi(proxγg(x)) ∈ γ∂g(proxγg(x)) +
γ

N

N∑

i=1

∇fi(proxγg(x))

⇔ proxγg(x) minimizes g +
1

N

N∑

j=1

fj . ⊓⊔

Part 4 (demiclosedness): The operator T = I − S in (displayed in Part 2) is the composition of two nonexpansive maps,
and thus, it is nonexpansive. Therefore, T is demiclosed at 0.

Proposition C.6 (LinSAGA/LinSVRG/SuperSAGA/SuperSVRG Operator Properties) Assume the setting of Sec-
tion 6.1, and in particular, that

(∀i < N + 1) Si =
γ

N
PV ◦ ∇fi ◦ PV ◦ proxγg ;

SN+1 = (I − 2PV ) ◦ proxγg + PV .

Then

1. Coherence: S satisfies the coherence condition

(∀x ∈ H) , (∀x∗ ∈ zer(S)) 〈S(x), x− x∗〉 ≥
N∑

i=1

βi1‖Si(x) − Si(x
∗)‖2.

with

βi1 :=
N

2γL̂i(N + 1)
i = 1, . . . , N and β(N+1)1 :=

1

N + 1

(

1− 1

2N

N∑

i=1

γL̂i

)

.

2. Essential strong quasi-monotonicity: S is

µ =
1

N + 1

(

1−
(

1

(1 + (γLg)−1)
+

√
1− 2γµf + γ2Lµf

(1 + γµg)

))

essentially strongly quasi-monotone (when γ ≤ 2L−1 and µ > 0), where L = N−1
∑N

i=1 L̂i, the function N−1
∑N

i=1 fi is
µf -strongly convex, the function g is differentiable and µg-strongly convex, and the gradient ∇g is Lg-Lipschitz continuous.

3. Roots: with any choice of γ, we have

x∗ ∈ zer(S) =⇒ proxγg(x
∗) solves (6.2),

and zer(S) 6= ∅ if, and only if, zer
(

∂g +N−1
∑N

i=1 ∇fi +NV

)

6= ∅.
4. Demiclosedness: I − S is demiclosed at 0.
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Proof Part 1 (coherence): The operator SN+1 = (I − 2PV ) ◦ proxγg + PV is 1-cocoercive because

SN+1 = I −
[
PV (2proxγg − I) + I − proxγg

]

and by [2, Proposition 4.21], PV (2proxγg − I) + I − proxγg is 2−1 averaged. Not only is the operator 1-cocoercive, it also

nicely partitions into V and V ⊥ components:

SN+1 = PV ⊥proxγg + PV (I − proxγg)

Therefore, 〈Si(x), SN+1(y)〉 = 〈Si(x), PV (y − proxγg(y))〉 for all i < N + 1 and any x, y ∈ H. In addition, γ
N
PV ◦ ∇fi ◦ PV is

N(γLi)−1-cocoercive. Thus, for all x ∈ S, we have

〈S(x), x− x∗〉 = 1

N + 1

N+1∑

i=1

〈Si(x) − Si(x
∗), x− x∗〉

=
1

N + 1

N∑

i=1

〈Si(x)− Si(x
∗), PV proxγg(x)− PV proxγg(x

∗)〉 + 1

N + 1
〈SN+1(x)− SN+1(x

∗), x− x∗〉

+
1

N + 1

N∑

i=1

〈Si(x)− Si(x
∗), SN+1(x)− SN+1(x

∗)〉

≥ N

N + 1

N∑

i=1

1

γL̂i

‖Si(x)− Si(x
∗)‖2 +

1

N + 1
‖SN+1(x)− SN+1(x

∗)‖2

− N

N + 1

N∑

i=1

1

2γL̂i

‖Si(x) − Si(x
∗)‖2 −

1
N

∑N
i=1 γL̂i

2(N + 1)
‖SN+1(x) − SN+1(x

∗)‖2

≥ N

2(N + 1)

N∑

i=1

1

γL̂i

‖Si(x)− Si(x
∗)‖2 +

1

N + 1

(

1− 1

2N

N∑

i=1

γL̂i

)

‖SN+1(x) − SN+1(x
∗)‖2.

Part 2 (essential strong quasi-monotonicity): Let

T := PV ⊥ ◦ (I − proxγg) + PV ◦
(

I − γ

N

N∑

i=1

∇fi
)

◦ PV ◦ proxγg

The operator T is Lipschitz continuous because it is built from Lipschitz continuous pieces. For example, by Proposition B.5,

the operator PV ◦
(

I − γN−1
∑N

i=1 ∇fi
)

◦ PV is
√

1− 2γµf + γ2Lµf -Lipschitz continuous; by B.5 the operator proxγg is

(1 + µgγ)−1-Lipschitz continuous; by [2, Remark 23.19], we have I − proxγg = prox(γg)∗ , and by [2, Theorem 18.15], the

function (γg)∗ is (γLg)−1-strongly convex; thus, by [2, Proposition 23.11], I−proxγg is (1+(γLg )−1)−1-Lipschitz continuous.
When taken together, these properties yield

(∀x, y ∈ H) ‖T (x)− T (y)‖ ≤ ‖PV ⊥ (I − proxγg)(x) − PV ⊥(I − proxγg)(y)‖

+

∥
∥
∥
∥
∥
PV ◦

(

I − γ

N

N∑

i=1

∇fi
)

◦ PV ◦ proxγg(x)− PV ◦
(

I − γ

N

N∑

i=1

∇fi
)

◦ PV ◦ proxγg(y)

∥
∥
∥
∥
∥

≤
(

1

(1 + (γLg)−1)
+

√
1− 2γµf + γ2Lµf

(1 + γµg)

)

‖x− y‖.

Thus, by Proposition B.3, S = (N + 1)−1(I − T ) is

1

N + 1

(

1−
(

1

(1 + (γLg)−1)
+

√
1− 2γµf + γ2Lµf

(1 + γµg)

))

strongly monotone.
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Part 3 (roots):

x ∈ zer(S) ⇔ 0 = PV ⊥proxγg(x); and

0 = PV (x− proxγg(x)) +
γ

N

N∑

i=1

PV ∇fi(PV proxγg(x))

∈ PV ∂g(proxγg(x)) +
γ

N

N∑

i=1

PV ∇fi(PV proxγg(x))

⇔ 0 ∈ ∂g(proxγ(x)) +
γ

N

N∑

i=1

∇fi(PV proxγg(x)) +NV (proxγg(x)),

where the last line follows because proxγg(x) ∈ V , and so NV (proxγg(x)) = V ⊥ absorbs the nonzero V ⊥ component of

(x− proxγg(x)) + γN−1
∑N

i=1 ∇fi(proxγg(x)).
Part 4 (demiclosedness): The operator T = I − S in (displayed in Part 2) is nonexpansive:

(∀x, y ∈ H) ‖T (x)− T (y)‖2 = ‖PV ⊥ (I − proxγg)(x) − PV ⊥(I − proxγg)(y)‖2

+

∥
∥
∥
∥
∥
PV ◦

(

I − γ

N

N∑

i=1

∇fi
)

◦ PV ◦ proxγg(x)− PV ◦
(

I − γ

N

N∑

i=1

∇fi
)

◦ PV ◦ proxγg(y)

∥
∥
∥
∥
∥

2

≤ ‖(I − proxγg)(x) − (I − proxγg)(y)‖2 + ‖proxγg(x)− proxγg(y)‖2

≤ ‖x− y‖2,

where the first “=” follows because V ⊥ V ⊥ and the last line follows because proxγg is 2−1-averaged. Therefore T is nonex-
pansive and demiclosed at 0. ⊓⊔

Proposition C.7 (TropicSMART Operator Properties) Assume the setting of Section 6.3, and in particular, that for
all x ∈ H, we have

(S(x))j =







xj − proxγjgj

(

xj − γjA∗
j

(

xM+1 + 2γM+1

(∑M
l=1Alxl − b

))

− γj∇jf(x)
)

if j < M + 1;

−γM+1

(
∑M

l=1Alxl − b
)

if j = M + 1.

Then

1. Coherence: there is a strongly positive self-adjoint linear operator P : H → H such that if δ ∈ (0, 1);

γM+1





M∑

j=1

γj‖Aj‖2


 ≤ δ; and max
j

{γj} ≤ 2(1−
√
δ)

L
,

then the linear map P satisfies
∑M+1

j=1 Mj‖xj‖2j ≤ ‖x‖2P ≤∑M+1
j=1 Mj‖xj‖2j , where for all j, we have

Mj :=
1−

√
δ

γj
and Mj :=

1 +
√
δ

γj
.

With these parameters, S also satisfies the coherence condition (1.5)

(∀x ∈ H) , (∀x∗ ∈ zer(S)) 〈S(x), x− x∗〉P ≥
M+1∑

j=1

β1j‖(S(x))j‖2j with β1j :=
Lmaxj{γj}

4γj
.
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2. Roots: with any choice of γj , we have

x∗ ∈ zer(S) =⇒ (x∗1, . . . , x
∗
M ) solves (6.2),

and zer(S) 6= ∅ if, and only if, zer

(

∂g +∇f +N{x∈H|∑M
j=1 Ajxj=b}

)

6= ∅.
3. Demiclosedness: I − S is demiclosed at 0.

Proof Part 1 (coherence): Here is the linear map P in block matrix form

P =












1
γ1
IH1

0 · · · 0 A∗
1

0 1
γ2
IH2

· · · 0 A∗
2

...
. . .

...
0 0 · · · 1

γM
IHM

A∗
M

A1 A2 · · · AM
1

γM+1
IHM+1












.

The lower bound is below

〈x, x〉P =

M+1∑

j=1

1

γj
‖xj‖2j +

M∑

j=1

2〈Ajxj , xM+1〉M+1

≥
M+1∑

j=1

1

γj
‖xj‖2j −

M∑

j=1

2‖Aj‖‖xj‖j‖xM+1‖M+1

≥
M+1∑

j=1

1

γj
‖xj‖2j −

M∑

j=1

(√
δ‖xj‖2j
γj

+
‖Aj‖2‖xM+1‖2M+1√

δ

)

≥
M∑

j=1

1−
√
δ

γj
‖xj‖2j +

1

γM+1



1− γM+1

M∑

j=1

‖Aj‖2√
δ



 ‖xM+1‖2M+1

≥
M+1∑

j=1

1−
√
δ

γj
‖xj‖2j .

The upper bound follows the exact same argument but all “−” signs are changed to “+” signs.
To get the βij , we find an α-averaged operator T in the norm ‖ · ‖P such that S = (I − T ); then we apply Proposition B.1

together with the lower on ‖ · ‖2P that we just derived.

Let A : H → 2H be the monotone operator32

(∀x ∈ H) A(x1, . . . , xM+1) :=








∂g1(x1)
...

∂gM (xM )
0







;

let B : H → H be the skew symmetric linear map:

B :=








0 · · · 0 A1

.

..
.
..

.

..
0 · · · 0 AM+1

−A∗
1 · · · −A∗

M 0







;

32 This matrix notation is an intuitive visual form for the product of the subdifferentials.
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and let C : H → H be the cocoercive operator

(∀x ∈ H) C(x1, . . . , xM+1) :=

[
∇f(x1, . . . , xM )

0

]

.

Then define T to be the forward-backward operator

T := JP−1(A+B) ◦ (I − P−1C).

Given x, we compute Tx:

x+ = Tx⇔ P (x− x+) ∈ (A+ B)x+ + Cx

⇔










1
γ1

(x1 − x+1 ) +A∗
1(xM+1 − x+M+1)

...
1

γM
(xM − x+M ) +A∗

M (xM+1 − x+M+1)
1

γM+1
(xM+1 − x+M+1) +

∑M
j=1 Aj(xj − x+j )










∈









∂g1(x
+
1 ) + A∗

1x
+
M+1 +∇1f(x1, . . . , xM )

...

∂gM (x+M ) + A∗
Mx+M+1 +∇Mf(x1, . . . , xM )

−∑M
j=1Ajx

+
j









⇔ (∀j < M + 1) x+j = proxγjgj

(

xj − γjA
∗
j

(

xM+1 + 2γM+1

(
M∑

l=1

Alxl − b

))

− γj∇jf(x1, . . . , xm)

)

;

x+M+1 = xM+1 + γM+1

(
M∑

l=1

Alxl − b

)

. (C.2)

Thus, S = I − T .
The operator T is a forward-backward operator, and such operators are always α-averaged. But computing α requires the

averagedness coefficient of I − P−1C; this constant can be computed from existing work:

Lemma C.1 ([11, Proposition 1.5]) Let (G, 〈, 〉) be a Hilbert space, and let U : G → G be a strongly positive linear map such
that for all x ∈ G, we have ‖x‖2U = 〈Ux, x〉 ≥ ξ‖x‖2. Then if C : H → C is β-cocoercive in the norm ‖ · ‖, it is βξ cocoercive
in the norm ‖ · ‖U .

Thus, from the already computed lower bound ‖ · ‖2P ≥ (1−
√
δ)(maxj{γj})−1‖ · ‖2prod, and from the knowledge that C is

L−1-cocoercive in ‖ · ‖prod, the composition P−1C is (1−
√
δ)(Lmaxj{γj})−1-cocoercive in ‖ · ‖P . Then the standard result [2,

Proposition 4.33] shows that I − P−1C is α1 := 2−1(1−
√
δ)−1Lmaxj{γj} averaged as long as

max
j

{γj} ≤ 2(1−
√
δ)

L
,

which we assume to be true. Therefore, because JP−1(A+B) is α2 := 2−1 averaged in ‖ · ‖2P , Proposition B.2 shows that T is

α :=
α1 + α2 − 2α1α2

1− α1α2
=

1
2

1− Lmaxj{γj}
4(1−

√
δ)

=
2

4− Lmaxj{γj}
1−

√
δ

averaged in the norm ‖ · ‖P . Thus, from Proposition B.1, the operator S = I − T is

β := 1− 1

2α
=
Lmaxj{γj}
4(1 −

√
δ)

cocoercive in the norm ‖ · ‖P ; with this property, we obtain βij

(∀x ∈ H) 〈S(x), x− x∗〉P ≥ β‖S(x)‖2P ≥
M+1∑

j=1

β(1−
√
δ)

γj
‖(S(x))j‖2j =

M+1∑

j=1

Lmaxj{γj}
4γj

‖(S(x))j‖2j .
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Part 2 (roots): From the first line of (C.2), the roots of S are precisely the zeros of A+ B + C. Then it is straightforward
to check that x∗ ∈ zer(A + B + C), implies that (x∗1, . . . , x

∗
m) ∈ zer(∂g + ∇f + N{x∈H|

∑

M
j=1 Ajxj=b}), and if (x∗1, . . . , x

∗
m) ∈

zer(∂g+∇f +N{x∈H|
∑

M
j=1 Ajxj=b}), then there exists x∗M+1 ∈ HM+1 such that x∗ = (x∗1, . . . , x

∗
M+1) ∈ zer(A+B+C). Both

inclusions imply that (x∗1, . . . , x
∗
M ) minimizes (6.4).

Part 3 (demiclosedness): The operator T = I − S in (displayed in Part 1) is the composition of two nonexpansive maps (in
the norm ‖ · ‖P ), and thus, it is nonexpansive. Therefore, T is demiclosed at 0. ⊓⊔

Proposition C.8 (ProxSMART Operator Properties) Assume the setting of Section 6.4, and in particular, that for all
x ∈ H, we have

(S(x))j =







x1 − proxγ1g1

(

x1 − γ1
∑M

j=2A
∗
jxj

)

if j = 1;

xj − proxγjg
∗
j
(xj + γjAj (2x1 − x1)) otherwise;

where x1 = proxγ1g1

(

x1 − γ1
∑M

j=2 A
∗
jxj
)

. Then

1. Coherence: there is a strongly positive self-adjoint linear operator P : H → H such that if δ ∈ (0, 1);

γ1





M∑

j=2

γj‖Aj‖2


 ≤ δ.

Then the linear map P satisfies
∑M

j=1Mj‖xj‖2j ≤ ‖x‖2P ≤∑M
j=1Mj‖xj‖2j , where for all j, we have

Mj :=
1−

√
δ

γj
and Mj :=

1 +
√
δ

γj
.

With these parameters, S also satisfies the coherence condition (1.5):

(∀x ∈ H) , (∀x∗ ∈ zer(S)) 〈S(x), x− x∗〉P ≥
M∑

j=1

β1j‖(S(x))j‖2j with β1j :=
1−

√
δ

γj
.

2. Roots: with any choice of γj , we have

x∗ ∈ zer(S) =⇒ x1 solves (6.5),

and zer(S) 6= 0 if, and only if, zer(∂g1(x) +
∑M

j=2 A
∗
j∂gj ◦Aj) 6= ∅.

3. Demiclosedness: I − S is demiclosed at 0.

Proof Part 1 (coherence): Here is the linear map P in block matrix form

P =









1
γ1
IH1

−A∗
2 · · · · · · −A∗

M

−A2
1
γ2
IH2

0 · · · 0

.

..
. . .

.

..
−AM 0 · · · 0 1

γM
IHM









. (C.3)
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The lower bound is below

〈x, x〉P =
M∑

j=1

1

γj
‖xj‖2j −

M∑

j=1

2〈Ajxj , x1〉1

≥
M∑

j=1

1

γj
‖xj‖2j −

M∑

j=1

2‖Aj‖‖xj‖j‖x1‖1

≥
M∑

j=1

1

γj
‖xj‖2j −

M∑

j=1

(√
δ‖xj‖2j
γj

+
‖Aj‖2‖x1‖21√

δ

)

≥
M∑

j=2

1−
√
δ

γj
‖xj‖2j +

1

γ1



1− γ1

M∑

j=1

‖Aj‖2√
δ



 ‖x1‖21

≥
M∑

j=1

1−
√
δ

γj
‖xj‖2j .

The upper bound follows the exact same argument but all “−” signs (except for the one on the first line) are changed to “+”
signs.

To get the βij , we find an α-averaged operator T in the norm ‖ · ‖P such that S = (I − T ); then we apply Proposition B.1
together with the lower on ‖ · ‖2P that we just derived.

Let A : H → 2H be the monotone operator

A(x1, . . . , xM ) :=








∂g1(x1)
∂g∗2(x2)

...
∂g∗M (xM )







;

and let B : H → H be the skew symmetric linear map:

B :=







0 · · · 0 A1

0 · · · 0 AM

−A∗
1 · · · −A∗

M 0






.

Then define T to be the resolvent operator
T := JP−1(A+B)

Given x, we compute Tx:

x+ = Tx ⇔ P (x− x+) ∈ (A+B)x+

⇔










1
γ1

(x1 − x+1 )−∑m
j=2 A

∗
j (xj − x+j )

1
γ2

(x2 − x+2 )−A2(x1 − x+1 )

...
1

γM
(xM − x+M )− A2(x1 − x+1 )










∈









∑m
j=2 A

∗
jx

+
j

∂g∗2(x
+
2 )− A∗

2x
+
1

.

..

∂g∗M (x+M )− A∗
2x

+
1









⇔ x+1 = proxγ1g1



x1 − γ1

M∑

j=2

A∗
jxj



 ;

(∀j > 1) x+j = proxγjg
∗
j

(

xj + γjAj

(

2x+1 − x1
))

. (C.4)

Thus, S = I − T .
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The operator T is a resolvent, and such operators are always 2−1-averaged. Thus, from Proposition B.1, the operator
S = I − T is 1-cocoercive in the norm ‖ · ‖P ; with this property, we obtain βij

(∀x ∈ H) 〈S(x), x− x∗〉P ≥ ‖S(x)‖2P ≥
M∑

j=1

1−
√
δ

γj
‖(S(x))j‖2j . ⊓⊔

Part 2 (roots): From the first line of (C.4), the roots of S are precisely the zeros of A + B. Then it is straightforward to

check that x∗ ∈ zer(A + B), implies that x∗1 ∈ zer(∂g1(x) +
∑M

j=2 A
∗
j∂gj ◦ Aj), and if x∗1 ∈ zer(∂g1(x) +

∑M
j=2A

∗
j∂gj ◦ Aj),

then there exists (x∗2 , . . . , x
∗
M ) ∈ H2 × · · · × HM such that x∗ = (x∗1, . . . , x

∗
M ) ∈ zer(A + B). Both inclusions imply that x∗1

minimizes (6.5).
Part 3 (demiclosedness): The operator T = I − S in (displayed in Part 1) is a nonexpansive map (in the norm ‖ · ‖P ).

Therefore, T is demiclosed at 0. ⊓⊔

Proposition C.9 (ProxSMART+ Operator Properties) Assume the setting of Section 6.5, and in particular, that for
all x ∈ H, we have

(∀i < N + 1) (Si(x))j =

{
γ1
N

∇fi
(

x1 − 2γ1
∑M

j=2A
∗
jxj

)

if j = 1;

0 otherwise.

(SN+1(x))j =

{
γ1
∑M

j=2A
∗
jxj if j = 1;

xj − proxγjg
∗
j

(

xj + γjAj

(

x1 − 2γ1
∑M

j=2A
∗
jxj

))

otherwise,

Then

1. Coherence: there is a strongly positive self-adjoint linear operator P : H → H such that if δ ∈ (0, 1);

γ1





M∑

j=2

γj‖Aj‖2 +
1

2N

N∑

i=1

Li



 ≤ δ.

Then the linear map P satisfies
∑M

j=1Mj‖xj‖2j ≤ ‖x‖2P ≤∑M
j=1Mj‖xj‖2j , where for all j > 0, we have

Mj :=

(

1−
√
δ +

1

2
√
δN

N∑

i=1

Li

)

and Mj :=

(

1 +
√
δ − 1

2
√
δN

N∑

i=1

Li

)

.

With these parameters, S also satisfies the coherence condition (1.5):

(∀x ∈ H) , (∀x∗ ∈ zer(S)) 〈S(x), x− x∗〉P ≥
N+1∑

i=1

M∑

j=1

βij‖(Si(x))j − (Si(x
∗))j‖2j

with

(∀1 ≤ i < N + 1) βi1 :=
N(1 −

√
δ)

2(N + 1)γ21Li
; (∀i < N + 1) , (∀j > 1) βij ≡ 0; (∀j) β(N+1)j :=

1−
√
δ

γj
.

2. Roots: with any choice of γj , we have

x∗ ∈ zer(S) =⇒ x∗1 − 2γ1

M∑

j=2

A∗
jx

∗
j solves (6.6),

and zer(S) 6= ∅ if, and only if, zer(
∑M

j=2 A
∗
j∂gj ◦Aj +N−1

∑N
i=1 ∇fi) 6= ∅.
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3. Demiclosedness: I − S is demiclosed at 0.

Proof Part 1 (coherence): The linear map P is given in (C.3). The lower bound is below

〈x, x〉P =
M∑

j=1

1

γj
‖xj‖2j −

M∑

j=1

2〈Ajxj , x1〉1

≥
M∑

j=1

1

γj
‖xj‖2j −

M∑

j=1

2‖Aj‖‖xj‖j‖x1‖1

≥
M∑

j=1

1

γj
‖xj‖2j −

M∑

j=1

(√
δ‖xj‖2j
γj

+
‖Aj‖2‖x1‖21√

δ

)

≥
M∑

j=2

1−
√
δ

γj
‖xj‖2j +

1

γ1



1− γ1

M∑

j=1

‖Aj‖2√
δ



 ‖x1‖21

≥
M∑

j=2

1−
√
δ

γj
‖xj‖2j +

1

γ1

(

1−
√
δ +

1

2
√
δN

N∑

i=1

Li

)

‖x1‖21.

The upper bound follows the exact same argument but all “−” signs are changed to “+” signs; the exception to this rule is the
last line, in which the − 1

2
√

δN

∑N
i=1 Li must be changed to 1

2
√

δN

∑N
i=1 Li.

Let A : H → 2H be the monotone operator

(∀x ∈ H) A(x1, . . . , xM ) :=








0
∂g∗2(x2)

.

..
∂g∗M (xM )







;

let B : H → H be the skew symmetric linear map:

B :=







0 · · · 0 A1

0 · · · 0 AM

−A∗
1 · · · −A∗

M 0






.

Then from the proof of Theorem C.8 (with g1 ≡ 0), we find that SN+1 = I − JP−1(A+B) is 1-cocoercive in ‖ · ‖P . Thus,

〈SN+1(x) − SN+1(x
∗), x− x∗〉P ≥ ‖SN+1(x)− SN+1(x

∗)‖2P

≥
M∑

j=2

1−
√
δ

γj
‖(SN+1(x))j − (SN+1(x

∗))j‖2j

+

(

1−
√
δ +

1

2
√
δN

N∑

i=1

Li

)

‖(SN+1(x))1 − (SN+1(x
∗))1‖21 (C.5)
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Now we take care of the Si operators for i < N + 1: set x̂1 = x1 − 2γ1
∑M

j=2 A
∗
jxj and x̂∗1 = x∗1 − 2γ1

∑M
j=2A

∗
jx

∗
j .

〈Si(x) − Si(x
∗), x− x∗〉P = 〈 1

N
(∇fi(x̂1) −∇fi(x̂∗1)), x1 − x∗1〉1

− γ1〈
1

N
((∇fi(x̂1)−∇fi(x̂∗1)),

M∑

j=2

A∗
j (xj − x∗j )〉1

≥ 〈 1

N
(∇fi(x̂1) −∇fi(x̂∗1)), x̂1 − x̂∗1〉1

+ γ1〈
1

N
((∇fi(x̂1)−∇fi(x̂∗1)),

M∑

j=2

A∗
j (xj − x∗j )〉1

≥ N

γ21Li

∥
∥
∥
γ1

N
((∇fi(x̂1) −∇fi(x̂∗1))

∥
∥
∥
2

1

− N
√
δ

Liγ21

∥
∥
∥
γ1

N
((∇fi(x̂1)−∇fi(x̂∗1))

∥
∥
∥
2

1
− Li

4N
√
δ

∥
∥
∥
∥
∥
∥

γ1

M∑

j=2

A∗
j (xj − x∗j )

∥
∥
∥
∥
∥
∥

2

1

=
N(1−

√
δ)

γ21Li
‖(Si(x))1 − (Si(x

∗))1‖21 − Li

4N
√
δ
‖(SN+1(x))1 − (SN+1(x

∗))1‖21 (C.6)

Therefore, to show prove the coherence condition, we average (C.5) and (C.6):

〈S(x), x− x∗〉P =
1

N + 1

N+1∑

i=1

〈Si(x) − Si(x
∗), x− x∗〉P

≥
N∑

i=1

N(1 −
√
δ)

γ21Li
‖(Si(x))1 − (Si(x

∗))1‖21 +

M∑

j=1

1−
√
δ

γ1
‖(SN+1(x))j − (SN+1(x

∗))j‖2j .

Part 2 (roots): First suppose that x∗ ∈ zer(S). Then N−1
∑N

i=1 ∇fi(x1−2γ1
∑M

j=2A
∗
jxj)+

∑M
j=2 A

∗
jx

∗
j = 0, and moreover,

the points x∗j for j > 2 satisfy:

x∗j = proxγjg
∗
j



x∗j + γjAj



x∗1 − 2γ1

M∑

j=2

A∗
jx

∗
j







⇔ Aj



x∗1 − 2γ1

M∑

j=2

A∗
jx

∗
j



 ∈ ∂g∗j (x
∗
j )

⇔ x∗j ∈ ∂gj



Aj



x∗1 − 2γ1

M∑

j=2

A∗
jx

∗
j









Therefore,

0 =
1

N

N∑

i=1

∇fi



x∗1 − 2γ1

M∑

j=2

A∗
jx

∗
j



+
M∑

j=2

A∗
jx

∗
j ∈ 1

N

N∑

i=1

∇fi



x∗1 − 2γ1

M∑

j=2

A∗
jx

∗
j



+
M∑

j=2

A∗
j∂gj



Aj



x∗1 − 2γ1

M∑

j=2

A∗
jx

∗
j







 ;

in particular, x∗1 − 2γ1
∑M

j=2A
∗
jx

∗
j minimizes (6.6).

To show that zer(
∑M

j=1A
∗
j∂gj ◦ Aj + N−1

∑N
i=1 ∇fi) 6= ∅ implies that zer(S) 6= ∅, reverse the above argument: choose

x̂∗1 ∈ zer(
∑M

j=1A
∗
j∂gj ◦ Aj + N−1

∑N
i=1 ∇fi) and write 0 = N−1

∑N
i=1 ∇fi +

∑M
j=1A

∗
jx

∗
j , where x∗j ∈ ∂gj(Aj x̂

∗
1). Then

Ajx
∗
1 ∈ ∂g∗1(x

∗
j ), and consequently, we have x∗j = proxγjg

∗
j
(x∗j + Aj x̂

∗
1). Thus, if x∗1 = x̂∗1 + 2γ1

∑M
j=2 Ajx

∗
j , then we have

x∗ = (x∗1, . . . , x
∗
M ) ∈ zer(S).

Part 3 (demiclosedness): In Part 1, our assumption that x∗ ∈ zer(S) was not necessary, and if we instead assume that
x∗ = y, where y is an arbitrary point in H, the exact same argument yields that

〈S(x)− S(y), x− y〉P ≥
N+1∑

i=1

M∑

j=1

βij‖(Si(x))j − (Si(y))j‖2j ≥ C

N+1∑

i=1

‖Si(x)− Si(y)‖2P ≥ C(N + 1)‖S(x) − S(y)‖2P ,
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where C > 0 is a constant; in other words, the operator S is C(N + 1)-cocoercive. Thus, by [2, Proposition 4.33],

T = I − 1

C(N + 1)
S =

(

1− 1

C(N + 1)

)

I +
1

C(N + 1)
(I − S)

is nonexpansive. Therefore, because T is demiclosed at 0, it is easy to see that C(N + 1)(T − (1− (C(N + 1))−1)I) = I − S is
demiclosed at 0. ⊓⊔
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Table C.1: Symbols

Indices
n ∈ N; number of functions/operators
m ∈ N; number of coordinates
i ∈ {1, . . . , n}; index value for operators
j ∈ {1, . . . ,m}; index value for coordinates
k ∈ N; index value for sequences

Spaces
Hj A separable Hilbert space
H := H1 × · · · × Hm

Variables
x, xj Primal variables: x ∈ H and xj is the jth coordinate of x

yi, yi,j Dual variables: yi ∈ H and yi,j is the jth coordinate of yi

Norms and inner products
‖ · ‖j , 〈·, ·〉j A norm and an inner product on Hj

‖ · ‖, 〈·, ·〉 A norm and an inner product on H
‖ · ‖prod (∀x ∈ H) ‖x‖2prod :=

∑m
j=1 ‖xj‖2j .

Mj ,Mj (∀x ∈ H)
∑m

i=1Mj‖xj‖2j ≤ ‖x‖2 ≤∑m
i=1Mj‖xj‖2j

Operators/Functions
fi A convex function with a Lipschitz continuous gradient
gj A nonsmooth/proximable function
Si A map from H to H
S := n−1

∑n
i=1 Si

S := zer(S)
S∗ := ((Si(x

∗))j)ij , (x∗ ∈ S)

Operators properties
βij Coherence constants:

(∀x ∈ H), (∀x∗ ∈ S)
m∑

j=1

n∑

i=1

βij‖(Si(x))j−(Si(x
∗))j‖2j ≤ n−1

n∑

i=1

〈Si(x), x−x∗〉

µ Essential strong quasi-monotonicity constant:

(∀x ∈ H) µ‖x− PS(x)‖2 ≤ 〈S(x), x− PS(x)〉

Random Variables
ik ∈ {1, . . . , n}; an IID sequence of random operator indices
Sk ⊆ {1, . . . ,m}; an IID sequence of random sets of coordinates
ǫk ∈ {0, 1}; an IID sequence of random binary decisions, which indicate whether

to update the current dual variable (ǫk = 1) or to leave it fixed (ǫk = 0)

Graphs
G = (V, E) Trigger graph: vertices V = {1, . . . , n} and edges E ⊆ {1, . . . , n}2;

(i, i′) ∈ E if, and only if, ik = i triggers update of dual variable yk
i′ .

Probabilities
qj := P (j ∈ Sk)
pij := P (ik = i | j ∈ Sk)
ρ := P (ǫk = 1)

pTij := The probability that the ith dual variable is updated and j ∈ Sk:

P ((ik , i) ∈ E, j ∈ Sk) = P ((ik , i) ∈ E | j ∈ Sk)qj =
∑

(i′,i)∈E pi′jqj

Delays
τp ∈ N; maximum primal variable delay
τd ∈ N; maximum dual variable delay
dk ∈ {0, 1, . . . , τp}m; the vector of primal variable delays at the kth iteration
δ := sup{|dk,j − dk,j′ | | k ∈ N and j, j′ ∈ {1, . . . , m}}
eik ∈ {0, 1, . . . , τd}m; the vector of dual variable delays for the ith dual variable at

the kth iteration
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