
ar
X

iv
:1

60
1.

00
71

1v
1 

 [
ph

ys
ic

s.
bi

o-
ph

] 
 5

 J
an

 2
01

6

Open Markov processes: A compositional perspective on

non-equilibrium steady states in biology

Blake S. Pollard ∗

Department of Physics and Astronomy
University of California
Riverside, CA 92521

January 6, 2016

Abstract

In recent work, Baez, Fong and the author introduced a framework for describing Markov pro-

cesses equipped with a detailed balanced equilibrium as open systems of a certain type. These

‘open Markov processes’ serve as the building blocks for more complicated processes. In this

paper, we describe the potential application of this framework in the modeling of biological sys-

tems as open systems maintained away from equilibrium. We show that non-equilibrium steady

states emerge in open systems of this type, even when the rates of the underlying process are

such that a detailed balanced equilibrium is permitted. It is shown that these non-equilibrium

steady states minimize a quadratic form which we call ‘dissipation.’ In some circumstances,

the dissipation is approximately equal to the rate of change of relative entropy plus a correction

term. On the other hand, Prigogine’s principle of minimum entropy production generally fails

for non-equilibrium steady states. We use a simple model of membrane transport to illustrate

these concepts.

1 Introduction

Life exists away from equilibrium. Left isolated, systems will tend toward thermodynamic equi-
librium. Open systems can be maintained away from equilibrium via the exchange of energy and
matter with the environment. In addition, biological systems typically consist of a large num-
ber of interacting parts. This paper presents a way of describing these ‘parts’ as morphisms in a
category. A category consists of a collection of objects along with morphisms or arrows between
objects, obeying certain conditions. We consider time-homogeneous Markov processes as a general
framework for modeling various biological and biochemical systems whose dynamical equations are
linear. Viewed as morphisms in a category, the ‘open Markov processes’ discussed in this paper
provide a framework for describing open systems which can be combined to build larger systems.

Intuitively, one can think of a Markov process as specifying the dynamics of a probability or
‘population’ distribution that is spread across a finite set of states. A population distribution is
a non-normalized probability distribution, see for example [15]. The population of a particular
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state can be any non-negative real number. The total population in an open Markov process is not
constant in time as population can flow in and out through certain boundary states. Part of the
utility of Markov processes as models of physical or biological systems stems from the flexibility in
choosing the correspondence between the states of the Markov process and the actual system it is
to model. For instance, the states of a Markov process could correspond to different internal states
of a particular molecule or chemical species. In this case, the transition rates describe the rates
at which the molecule transitions among these states. Or, the states of a Markov process could
correspond to a molecule’s physical location. In this case, the transition rates encode the rates at
which that molecule moves from place to place.

This paper is structured as follows. In Section 2 we give some preliminary definitions from
the theory of Markov processes and explain the concept of an open Markov process. In Section
3 we introduce a model of membrane transport as a simple example of an open Markov process.
In Section 4, we introduce the category DetBalMark. The objects in DetBalMark are finite sets
of ‘states’ whose elements are labeled by non-negative real numbers which we call ‘populations’.
The morphisms in DetBalMark are Markov processes equipped with a detailed balanced equilibrium
distribution as well as maps specifying input and output states. If the outputs of one process match
the inputs of another process the two can be composed, yielding a new open Markov process. We
refer to the union of the input and output states as the boundary of an open Markov process.

In Section 5, we show that if the populations at the boundary of an open detailed balanced
Markov process are held fixed, then the non-equilibrium steady states which emerge minimize a
quadratic form, which we call the ‘dissipation,’ subject to the constraint on the boundary popula-
tions. Depending on the values of the boundary populations these non-equilibrium steady states
can exist arbitrarily far from the detailed balanced equilibrium of the underlying Markov process.
In recent work [4], Baez, Fong and the author construct a functor � : DetBalMark → LinRel

from the category of open detailed balanced Markov process to the category of linear relations.
Applied to an open detailed balanced Markov process, this functor yields the subset of allowed
steady state boundary population-flow pairs, providing an effective ‘black-boxing’ of open detailed
balanced Markov processes. In Section 6 we show that, for fixed boundary populations, this princi-
ple of minimum dissipation approximates Prigogine’s principle of minimum entropy production in
the neighborhood of equilibrium plus a correction term involving only the flow of relative entropy
through the boundary of the open Markov process.

2 Open Markov processes

In this section we define open Markov processes, describe the detailed balanced condition for equi-
libria and define non-equilibrium steady states for Markov processes.

An open Markov process, or open continuous time, discrete state Markov chain, is a triple
(V,B,H) where V is a finite set of states, B ⊆ V is the subset of boundary states and H : RV →
R

V is an infinitesimal stochastic Hamiltonian

Hij ≥ 0, i 6= j

∑

i

Hij = 0.

For each i ∈ V the dynamical variable pi ∈ [0,∞), i ∈ V, is the population at the ith state. We
call the resulting function p : V → [0,∞) the population distribution. Populations evolve in
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time according to the open master equation

dpi

dt
=

∑

j

Hijpj , i ∈ V −B

pi(t) = bi(t), i ∈ B.

The off-diagonal entries Hij , i 6= j are the rates at which population transitions from the jth to
the ith state. A steady state distribution is a population distribution which is constant in time:

dpi

dt
= 0 for all i ∈ V.

A closed Markov process, or continuous time, discrete state Markov chain, is an open Markov
process whose boundary is empty. For a closed Markov process, the open master equation becomes
the usual master equation

dp

dt
= Hp.

In a closed Markov process the total population is conserved:

∑

i

dpi

dt
=

∑

i,j

Hijpj = 0,

enabling one to talk about the relative probabilities of being in particular states. A steady-state
distribution in a closed Markov process is typically called an equilibrium. We say an equilibrium
q ∈ [0,∞)V of a Markov process is detailed balanced if

Hijqj = Hjiqi for all i, j ∈ V.

An open detailed balanced Markov process is an open Markov process (V,B,H) together
with a detailed balanced equilibrium q : V → (0,∞) on V . Notice that the populations of all states
in a detailed balanced equilibrium are non-zero.

For a pair of distinct states i, j ∈ V , the term Hijpj is the flow of population from j to i. The
net flow of population from the jth state to the ith is

Jij(p) = Hijpj −Hjipi.

Summing the net flows into a particular state we can define the net inflow Ji(p) ∈ R of a particular
state to be

Ji(p) =
∑

j

Jij(p) =
∑

j

Hijpj −Hjipi.

Since
∑

j Hjipi = 0, the right side of this equation is the time derivative of the population at the

ith state. Writing the master equation in terms of Jij(p) or Ji(p) we have

dpi

dt
=

∑

j

Jij(p) = Ji(p).

The net flow between each pair of states vanishes identically in a detailed balanced equilibrium q:

Jij(q) = 0.
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The existence of a detailed balanced equilibrium is equivalent to a condition on the rates of a
Markov process due known as Kolmogorov’s criterion [14], namely that

Hi1i2Hi2i3 · · ·Hin−1inHini1 = Hi1inHinin−1
· · ·Hi3i2Hi2i1

for any finite sequence of states i1, i2, . . . , in of any length. This condition says that the product of
the rates along any cycle is equal to the product of the rates along the same cycle in the reverse
direction.

A non-equilibrium steady state is a steady state in which the net flow between at least
one pair of states is non-zero. Thus there could be population flowing between pairs of states, but
in such a way that these flows still yield constant populations at all states. In a closed Markov
process the existence of non-equilibrium steady states requires that the rates of the Markov pro-
cess violate Kolmogorov’s criterion. We show that open Markov processes with constant boundary
populations admit non-equilibrium steady states even when the rates of the process satisfy Kol-
mogorov’s criterion. Throughout this paper we use the term equilibrium to mean detailed balanced
equilibrium.

3 Membrane diffusion as an open Markov process

To illustrate these ideas, we consider a simple model of the diffusion of neutral particles across a
membrane as an open detailed balanced Markov process with three states V = {A,B,C}, input
A and output C. The states A and C correspond to the each side of the membrane, while B

corresponds within the membrane itself, see Figure 1.

A

B

C

Figure 1: A simple model for passive diffusion across a membrane.

In this model, pA is the number of particles on one side of the membrane, pB the number of
particles within the membrane and pC the number of particles on the other side of the membrane.
The off-diagonal entires in the Hamiltonian Hij , i 6= j are the rates at which population hops from
j to i. For example HAB is the rate at which population moves from B to A, or from inside the
membrane to the top of the membrane. Let us assume that the membrane is symmetric in the sense
that the rate at which particles hop from outside of the membrane to the interior is the same on
either side, i.e. HBA = HBC = Hin and HAB = HCB = Hout. We can draw such an open Markov
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process as a labeled graph:

qA qB qCqA qC

Hin

Hout

Hout

Hin

The labels on the edges are the corresponding transition rates. The states are labeled by their
detailed balanced equilibrium populations, which, up to an overall scaling, are given by qA =
qC = HinHout and qB = H2

in. Suppose the populations pA and pC are externally maintained
at constant values, i.e. whenever a particle diffuses from outside the cell into the membrane, the
environment around the cell provides another particle and similarly when particles move from inside
the membrane to the outside. We call (pA, pC) the boundary populations. Given the values of
pA and pC , the steady state population pB compatible with these values is

pB =
HinpA +HinpC

−HBB

=
Hin

Hout

pA + pC

2
.

In Section 5 we show that this steady state population minimizes the dissipation, subject to the
constraints on pA and pC .

We thus have a non-equilibrium steady state p = (pA, pB, pC) with pB given in terms of the
boundary populations above. From these values we can compute the boundary flows, JA, JC as

JA =
∑

j

JAj(p) = HoutpB −HinpA

and
JC =

∑

j

JCj(p) = HoutpB −HinpC .

Written in terms of the boundary populations this gives

JA =
Hin(pC − pA)

2

and

JC =
Hin(pA − pC)

2
.

Note that JA = −JC implying that there is a constant net flow through the open Markov process.
As one would expect, if pA > pC there is a positive flow from A to C and vice-versa. Of course, in
actual membranes there exist much more complex transport mechanisms than the simple diffusion
model presented here. A number of authors have modeled more complicated transport phenomena
using the framework of networked master equation systems [20, 30].

In our framework, we call the collection of all boundary population-flows pairs the steady state
‘behavior’ of the open Markov process. The main theorem of [4] constructs a functor from the
category of open detailed balanced Markov process to the category of linear relations. Applied
to an open detailed balanced Markov process, this functor yields the set of allowed steady state
boundary population-flow pairs. One can imagine a situation in which only the populations and
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flows of boundary states are observable, thus characterizing a process in terms of its behavior. This
provides an effective ‘black-boxing’ of open detailed balanced Markov processes.

As morphisms in a category, open detailed balanced Markov processes can be composed, thereby
building up more complex processes from these open building blocks. The fact that ‘black-boxing’
is accomplished via a functor means that the behavior of a composite Markov process can be built
up from the composite behaviors of the open Markov processes from which it is built. In this paper
we illustrate how this framework can be utilized to study linear master equation systems far from
equilibrium with a particular emphasis on the modeling of biological phenomena.

Markovian or master equation systems have a long history of being used to model and under-
stand biological systems. We make no attempt to provide a complete review of this line of work.
Schnakenberg, in his paper on networked master equation systems, defines the entropy production
in a Markov process and shows that a quantity related to entropy serves as a Lyapunov function
for master equation systems [29]. His book [30] provides a number of biochemical applications of
networked master equation systems. Oster, Perelson and Katchalsky developed a theory of ‘net-
worked thermodynamics’ [19], which they went on to apply to the study of biological systems [20].
Following the untimely passing of Katchalsky, Perelson and Oster went on to extend this work into
the realm of chemical reactions [21].

Starting in the 1970’s, T. L. Hill spearheaded a line of research focused on what he called ‘free
energy transduction’ in biology. A shortened and updated form of his 1977 text on the subject [10]
was republished in 2005 [11]. Hill applied various techniques, such as the use of the cycle basis, in
the analysis of biological systems. His model of muscle contraction provides one example [12].

One quantity central to the study of non-equilibrium systems is the rate of entropy production
[9, 24, 18, 8]. Prigogine’s principle of minimum entropy production [25] asserts that for non-
equilibrium steady states that are near equilibrium, entropy production is minimized. This is an
approximate principle that is obtained by linearizing the relevant equations about an equilibrium
state. In fact, for open Markov processes, non-equilibrium steady states are governed by a different
minimum principle that holds exactly, arbitrarily far from equilibrium. We show that for fixed
boundary conditions, non-equilibrium steady states minimize a quantity we call ‘dissipation’. If
the populations of the non-equilibrium steady state are close to the population of the underlying
detailed balanced equilibrium, one can show that dissipation is close to the rate of change of relative
entropy plus a boundary term. Dissipation is in fact related to the Glansdorff-Prigogine criterion
which states that a non-equilibrium steady state is stable if the second order variation of the entropy
production is non-negative [8, 29].

Starting in the 1990’s, the Qians and their collaborators developed a school studying non-
equilibrium steady states, publishing a number of articles and books on the topic [13]. More
recently, results concerning fluctuations have been extended to master equation systems [1]. In the
past two decades, Hong Qian of the University of Washington and collaborators have published
numerous results on non-equilibrium thermodynamics, biology and related topics [26, 27, 28].

This paper is part of a larger project which uses category theory to unify a variety of diagram-
matic approaches found across the sciences including, but not limited to, electrical circuits, control
theory and bond graphs [3, 2]. We hope that the categorical approach will shed new light on each
of these subjects as well as their interrelation, particularly as we generalize the results presented in
this and recent papers to the more general, non-linear, setting of open chemical reaction networks.
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4 The category of open detailed balanced Markov processes

In this section we describe how open detailed balanced Markov processes are the morphisms in a
certain type of symmetric, monoidal, dagger-compact category. In previous work, Baez, Fong and
the author [4] used the framework of decorated cospans [7] to construct the category DetBalMark.
Here we give an intuitive description of this category and refer to those papers for the mathematical
details.

An object in DetBalMark is a finite set with populations, i.e. a finite set X together with
a map pX : X → [0,∞) assigning a population pi ∈ [0,∞) to each element i ∈ X . A morphism
M : (X, pX) → (Y, pY ) consists of an open detailed balanced Markov process together with input

and output maps i : (X, pX) → (V, q) and o : (Y, pY ) → (V, q) which preserve population so that
pX = iq and pY = oq. The boundary B ⊆ V of an open Markov process is the union of the images
of the input and output maps B = i(X) ∪ o(Y ).

One can draw an open detailed balanced Markov process as a labeled directed graph whose
vertices are labeled by their equilibrium populations and with specified subsets of the vertices as
the input and the output states. Recall our simple model of membrane diffusion as an open detailed
balanced Markov process, which we now think of as a morphism from the input X = {A} to the
output Y = {C}:

qA qB qCX YqA qC

HBA

HAB

HCB

HBC

i o

This is a morphism in DetBalMark from X to Y where X and Y are finite sets with populations. In
this simple example, X and Y both contain a single element, namely A and C respectively. Suppose
we had another such membrane as depicted in Figure 2. This is a morphism in DetBalMark from

C′

D

E

Figure 2: Another layer of membrane whose interior population is labeled by D and whose exterior
populations are labeled by C′ and E.

with input Y = {C′} and output Z = {E}. Two open detailed balanced Markov processes can
be composed if the detailed balanced equilibrium populations at the outputs of one match the
detailed balanced equilibrium populations at the inputs of the other. This requirement guarantees
that the composite of two open detailed balanced Markov process still admits a detailed balanced

7



equilibrium.

qA qB qCX YqA qC

HBA

HAB

HCB

HBC

qC′ qD qEY ZqC′ qE

HDE

HED

HC′D

HDC′

If qC = qC′ in our two membrane models we can compose them by identifying C with C′ to
yield an open detailed balanced Markov process modeling the diffusion of neutral particles across
membranes arranged in series:

qA qB qCX qA

HBA

HAB

HCB

HBC

qD qE ZqE

HDC

HCD

HED

HDE

Notice that the states corresponding to C and C′ in each process have been identified and
become internal states in the composite which is a morphism from X = {A} to Z = {E}. This
open Markov process can be thought of as modeling the diffusion across two membranes in series,
see Figure 3.

A

B

C

D

E

Figure 3: A depiction of two membranes arranged in series.

One can ‘black-box’ an open detailed balanced Markov process by converting it into an electrical
circuit, applying the already known black-boxing functor for electrical circuits [3] and translating
the result back into the language of open Markov processes [4]. The key step in this process is
the construction of a quadratic form which we call ‘dissipation’, analogous to power in electrical
circuits, which is minimized when the populations of an open Markov process are in a steady state.
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5 Principle of minimum dissipation

Here we show that by externally fixing the populations at boundary states, one induces steady
states which minimize a quadratic form which we call ‘dissipation.’

Definition 1. Given an open detailed balanced Markov process we define the dissipation func-

tional of a population distribution p to be

D(p) =
1

2

∑

i,j

Hijqj

(
pj

qj
−

pi

qi

)2

.

Given boundary populations b ∈ RB, we can minimize this functional over all p which agree on
the boundary. Differentiating the dissipation functional with respect to an internal population, we
get

∂D(p)

∂pn
= −2

∑

j

Hnj

pj

qn
.

Multiplying by qn
2 yields

qn

2

∂D(p)

∂pn
= −

∑

j

Hnjpj ,

where we recognize the right-hand side from the open master equation for internal states. We see
that for fixed boundary populations, the conditions for p to be a steady state, namely that

dpi

dt
= 0 for all i ∈ V,

is equivalent to the condition that

∂D(p)

∂pn
= 0 for all n ∈ V −B.

Definition 2. We say a population distribution obeys the principle of minimum dissipation

with boundary population b if p minimizes D(p) subject to the constraint that p|b = b.

With this we can state the following theorem:

Theorem 3. A population distribution p ∈ R
V is a steady state with boundary population b ∈ R

B

if and only if p obeys the principle of minimum dissipation with boundary population b.

Proof. This follows from Theorem 28 in [4].

Given specified boundary populations, one can compute the steady state boundary flows by
minimizing the dissipation subject to the boundary conditions.

Definition 4. We call a population-flow pair a steady state population-flow pair if the flows
arise from a population distribution which obeys the principle of minimum dissipation.

Definition 5. The behavior of an open detailed balanced Markov process with boundary B is the
set of all steady state population-flow pairs (pB, JB) along the boundary.

Indeed, there is a functor � : DetBalMark→ LinRel which maps open detailed balanced Markov
processes to their steady state behaviors. This is the main result of our previous paper [4]. The
fact that this is a functor means that the behavior of a composite open detailed balanced Markov
process can be computed as the composite of the behaviors.
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6 Dissipation and Entropy Production

In the last section, we saw that non-equilibrium steady states with fixed boundary populations
minimize the dissipation. In this section we relate the dissipation to a divergence between population
distributions known in various circles as the relative entropy, relative information or the Kullback-
Leibler divergence. The relative entropy is not symmetric and violates the triangle inequality,
which is why it is called a ‘divergence’ rather than a metric, or distance function. We show that
for population distributions near a detailed balanced equilibrium, the rate of change of the relative
entropy is approximately equal to the dissipation plus a ‘boundary term’.

The relative entropy of two distributions p, q is given by

I(p, q) =
∑

i

pi ln

(
pi

qi

)

.

It is well known that for a closed Markov process admitting a detailed balanced equilibrium, the
relative entropy with respect to this detailed balanced equilibrium distribution is monotonically
decreasing with time, see for instance [14]. There is an unfortunate sign convention in the definition
of relative entropy: while entropy is typically increasing, relative entropy typically decreases. More
generally, the relative entropy between any two population distributions is non-increasing in a closed
Markov process.

In an open Markov process, the sign of the rate of change of relative entropy is indeterminate.
Consider an open Markov process (V,B,H). For any two population distributions p(t) and q(t)
which obey the open master equation let us introduce the quantities

Dpi

Dt
=

dpi

dt
−

∑

j∈V

Hijpj

and
Dqi

Dt
=

dqi

dt
−

∑

j∈V

Hijqj ,

which measure how much the time derivatives of p(t) and q(t) fail to obey the master equation.
Notice that Dpi

Dt
= 0 for i ∈ V − B, as the populations of internal states evolve according to the

master equation. In terms of these quantities, the rate of change of relative entropy for an open
Markov process can be written as

d

dt
I(p(t), q(t)) =

∑

i,j∈V

Hijpj

(

ln

(
pi

qi

)

−
piqj

qipj

)

+
∑

i∈B

Dpi

Dt

∂I

∂pi
+

Dqi

Dt

∂I

∂qi
.

The first term is the rate of change of relative entropy for a closed Markov process. This is less than
or equal to zero [5, 23]. Thus, the rate of change of relative entropy in an open Markov process
satisfies

d

dt
I(p(t), q(t)) ≤

∑

i∈B

Dpi

Dt

∂I

∂pi
+

Dqi

Dt

∂I

∂qi
.

This inequality tells us that the rate of change of relative entropy in an open Markov processes is
bounded by the rate at which relative entropy flows through its boundary. If q is an equilibrium
solution of the master equation

dq

dt
= Hq = 0,
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then the rate of change of relative entropy can be written as

d

dt
I(p(t), q) =

∑

i,j∈V

(Hijpj −Hjipi) ln

(
piqj

qipj

)

+
∑

i∈B

Dpi

Dt

∂I

∂pi

Furthermore, if q satisfies detailed balance we can write this as

d

dt
I(p(t), q) = −

1

2

∑

i,j∈V

JijAij +
∑

i∈B

Dpi

Dt

∂I

∂pi
.,

where
Jij(p) = Hijpj −Hjipi

is the thermodynamic flux from j to i and

Aij(p) = ln

(
Hijpj

Hjipi

)

is the conjugate thermodynamic force. This quantity:

1

2

∑

i,j∈V

JijAij

is what Schnakenberg calls “the rate of entropy production” [29]. This is always non-negative. Note
that due to the sign convention in the definition of relative entropy, in the absence of the boundary
term, a positive rate of entropy production corresponds to a decreasing relative entropy.

We shall shortly relate the rate of change of relative entropy to the dissipation for open detailed
balanced Markov processes, but first let us consider the quantity Aij(p). It is the entropy production
per unit flow from j to i. If Jij(p) > 0, i.e. if there is a positive net flow of population from j to
i, then Aij(p) > 0. In addition, Jij(p) = 0 implies that Aij(p) = 0. Thus we see that this form of
entropy production is, by definition, non-negative.

In the realm of population dynamics, we can understand Aij(p) as the force resulting from
a difference in chemical potential. Let us elaborate on this point to clarify the relation of our
framework to the language of chemical potentials used in non-equilibrium thermodynamics. Suppose
that we are dealing with only a single type of molecule or chemical species. The states could
correspond to different locations of the molecule, as in our example of membrane transport. Another
possibility is that each state correspond to a different internal configuration of the molecule. In
this setting the chemical potential µi is related to the concentration of that chemical species in the
following way:

µi = µo
i + T ln(ci),

where T is the temperature of the system in units where Boltzmann’s constant is equal to one and
µo
i is the standard chemical potential. The difference in chemical potential between two states gives

the force associated with the flow of population which seeks to reduce this difference in chemical
potential

µj − µi = µo
j − µo

i + T ln

(
cj

ci

)

.

In general the concentration of the ith state is proportional to the population of that chemical
species divided by the volume of the system ci = pi

V
. In this case, the volumes cancel out in
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the ratio of concentrations and we have this relation between chemical potential differences and
population differences:

µj − µi = µo
j − µo

i + T ln

(
pj

pi

)

.

This potential difference vanishes when pi and pj are in equilibrium and we have

0 = µo
j − µo

i + T ln

(
qj

qi

)

,

or that
qj

qi
= e−

µo
j−µo

i
T .

If q satisfies detailed balance, then this also gives an expression for the ratio of the transition rates
Hji

Hij
in terms of the standard chemical potentials. Thus we can translate between differences in

chemical potential and ratios of populations via the relation

µj − µi = T ln

(
pjqi

qjpi

)

,

which if q satisfies detailed balance gives

µj − µi = T ln

(
Hijpj

Hjipi

)

.

We recognize the right hand side as the force Aij(p) times the temperature of the system T :

µj − µi

T
= Aij(p).

Let us return to our expression for d
dt
I(p(t), q) where q is an equilibrium distribution:

d

dt
I(p(t), q) = −

1

2

∑

i,j∈V

(Hijpj −Hjipi) ln

(
qipj

qjpi

)

+
∑

i∈B

Dpi

Dt

∂I

∂pi
.

Consider the situation in which p is near to the equilibrium distribution q in the sense that

pi

qi
= 1 + ǫi

where ǫi ∈ R is the deviation in the ratio pi

qi
from unity. We collect these deviations in a vector

denoted by ǫ. Expanding the logarithm to first order in ǫ we have that

d

dt
I(p(t), q) = −

1

2

∑

i,j∈V

(Hijpj −Hjipi) (ǫj − ǫi) +
∑

i∈B

Dpi

Dt

∂I

∂pi
+O(ǫ2),

which gives

d

dt
I(p(t), q) = −

1

2

∑

i,j∈V

(Hijpj −Hjipi)

(
pj

qj
−

pi

qi

)

+
∑

i∈B

Dpi

Dt

∂I

∂pi
+O(ǫ2).
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By O(ǫ2) we mean a sum of terms of order ǫ2i . When q is a detailed balanced equilibrium we can
rewrite this quantity as

d

dt
I(p(t), q) = −

1

2

∑

i,j

Hijqj

(
pj

qj
−

pi

qi

)2

+
∑

i∈B

Dpi

Dt

∂I

∂pi
+O(ǫ2).

We recognize the first term as the negative of the dissipation D(p) which yields

d

dt
I(p(t), q) = −D(p) +

∑

i∈B

Dpi

Dt

∂I

∂pi
+O(ǫ2).

We see that for open Markov processes, minimizing the dissipation approximately minimizes
the rate of decrease of relative entropy plus a term which depends on the boundary populations.
In the case that boundary populations are held fixed so that dpi

dt
= 0, i ∈ B, we have that

Dpi

Dt
= −

∑

j∈V

Hijpj , i ∈ B.

In this case, the rate of change of relative entropy can be written as

d

dt
I(p(t), q) =

∑

i∈V −B

pi

qi

dpi

dt
+ 2

∑

i∈B

Dpi

Dt
+O(ǫ2).

Summarizing the results of this section, we have that for p arbitrarily far from the detailed
balanced equilibrium equilibrium q, the rate of relative entropy reduction can be written as

dI(p(t), q)

dt
= −

1

2

∑

i,j

Jij(p)Aij(p) +
∑

i∈B

Dpi

Dt

∂I

∂pi
.

For p in the vicinity of a detailed balanced equilibrium we have that

dI(p(t), q)

dt
= −D(p) +

∑

i∈B

Dpi

Dt

∂I

∂pi
+O(ǫ2)

where D(p) is the dissipation and ǫi =
pi

qi
− 1 measures the deviations of the populations pi from

their equilibrium values. We have seen that in a non-equilibrium steady state with fixed boundary
populations, dissipation is minimized. We showed that for steady states near equilibirum, the rate
of change of relative entropy is approximately equal to minus the dissipation plus a boundary term.
Minimum dissipation coincides with minimum entropy production only in the limit ǫ → 0.

7 Minimum Dissipation versus Minimum Entropy Produc-

tion

We return to our simple three-state example of membrane transport to illustrate the difference
between populations which minimize dissipation and those which minimize entropy production:

qA qB qCX YqA qC

1

1

1

1
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For simplicity, we have set all transition rates equal to one. In this case, the detailed balance
equilibrium distribution is uniform. We take qA = qB = qC = 1. If the populations pA and pC are
externally fixed, then the population pB which minimizes the dissipation is simply the arithmetic
mean of the boundary populations

pB =
pA + pC

2
.

The rate of change of the relative entropy I(p(t), q) where q is the uniform detailed balanced
equilibrium is given by

d

dt
I(p(t), q) =

−(pA − pB) ln(
pA

pB
)− (pB − pC) ln(

pB

pC
)

︸ ︷︷ ︸

−
1

2

∑
i,j∈V JijAij

+(pA − pB)(ln(pA) + 1) + (pC − pB)(ln(pC) + 1)
︸ ︷︷ ︸

∑
i∈B

Dpi
Dt

∂I
∂pi

.

Differentiating this quantity with respect to pB for fixed pA and pC yields the condition

pA + pC

2pB
− ln(pB)− 2 = 0.

The solution of this equation gives the population pB which extremizes the rate of change of relative
entropy, namely

pB =
pA + pC

2W
(

(pA+pC)
2 e2

) ,

where W (x) is the Lambert W -function or the omega function which satisfies the following relation

x = W (x)eW (x).

The Lambert W -function is defined for x ≥ −1
e

and double valued for x ∈ [−1
e
, 0). This sim-

ple example illustrates the difference between distributions which minimize dissipation subject to
boundary constraints and those which extremize the rate of change of relative entropy. For fixed
boundary populations, dissipation is minimized in steady states arbitrarily far from equilibrium.
For steady states in the neighborhood of the detailed balanced equilibrium, the rate of change of
relative entropy is approximately equal to minus the dissipation plus a boundary term.

8 Discussion

Treating Markov processes as morphisms in a category leads naturally to open systems which
admit non-equilibrium steady states, even when the transition rates of the underlying process
satisfy Kolmogorov’s criterion. Microscopically, all reactions should be reversible with perhaps
a large disparity between the forward and reverse rates. Nonetheless, it is clear that biological
organisms are capable, at least locally, of storing free energy. This is typically accomplished via
the interaction with other systems or the environment. In this paper, the environment served as a
reservoir maintaining boundary populations at constant values. Since open Markov processes are
morphisms in the category DetBalMark, one can compose these open systems, thereby building up
complicated systems in a systematic way. We saw that the non-equilibrium steady states which
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emerge minimize a quadratic form which depends on the deviation of the steady state populations
from the populations of the underlying detailed balanced equilibrium. For steady states in the
neighborhood of equilibrium, we saw that the dissipation is in fact the linear approximation of the
rate of change of relative entropy with respect to a detailed balanced equilibrium plus a boundary
term. In our framework, dissipation appears to be the fundamental quantity as it is minimized
for non-equilibrium steady states arbitrarily far from equilibrium. There has been much work
examining the regime of validity of Prigogine’s principle of minimum entropy production [16, 17, 6].
In future work, we aim to generalize our framework for composing Markov processes to the non-
linear regime of chemical reaction networks with an eye towards incorporating recent interesting
results in the area [22]. We anticipate that the perspective achieved by viewing interacting systems
as morphisms in a category will bring new insight to the study of living systems far from equilibrium.
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