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Abstract

We prove a general duality result for multi-stage portfolio optimization problems
in markets with proportional transaction costs. The financial market is described
by Kabanov’s model of foreign exchange markets over a finite probability space and
finite-horizon discrete time steps. This framework allows us to compare vector-valued
portfolios under a partial ordering, so that our model does not require liquidation into
some numeraire at terminal time.

We embed the vector-valued portfolio problem into the set-optimization framework,
and generate a problem dual to portfolio optimization. Using recent results in the
development of set optimization, we then show that a strong duality relationship holds
between the problems.

1 Introduction

Portfolio optimization problems have a long and rich history. Traditionally, portfolio opti-
mization took place in models without transaction costs, as in [11]. Portfolio optimization
problems in financial market models which include proportional transaction costs first ap-
peared in the work of Magill and Constantinides [10]. The two asset model was solved
rigorously and improved upon shortly thereafter [1] [15]. Since then, much more focus has
been placed on deriving results in markets with transaction costs, as researchers tried to
develop results analogous to the classical case.

In this paper, we consider the conic market model initially developed by Kabanov [7] for
modeling foreign transaction market. The conic market model expresses portfolios in terms
of the number of physical assets they contain, as opposed to their values. This allows the
formulation of wealth processes without the explicit use of stochastic integration. Though
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this quality may be seem surprising to portfolio optimization veterans, it is attractive in
terms of its simplicity and intuitive nature. In order to compare portfolios, we consider
them as assets of vectors under a partial ordering, and invoke the theory of set optimization
to formulate the portfolio problem.

Set optimization is primarily motivated by the desire to optimize with respect to a non-total
order relation. Vector-valued optimization fits directly into this framework, with component-
wise comparison. However, we prefer to work in a set-optimization framework as opposed
to the less general vector-optimization because of its succinct theory [3]. Following the work
of [4], we introduce an ordering of sets which generates a complete lattice. This allows us to
define corresponding notion of infimums and supremums of sets–a fundamental step in the
formulation of the portfolio optimization problem. We then use the tools in [5] to formulate
a set-valued dual to the portfolio optimization problem. Because we consider the multistage
problem, our results are generalize those in [16].

Constructing a primal-dual pair of problems for set-valued portfolio optimization provides
insight into the relationship between traditional portfolio optimization theory and the pro-
portional transaction cost case. But it is also our hope that the results contained here
would be of more than just theoretical interest. Recent work [9] [6] has been investigating
computational techniques for solving set-valued optimization problems. In particular, [9]
uses both the primal and dual formulation of a set optimization problem to work towards
computing a solution. In this sense, the results in this paper provide a valuable relationship
which will help bring the portfolio optimization problem considered closer practioners, as
computational techniques progress.

The rest of this paper is organized as follows. In the first section, we introduce the material
which we use to formulate the set-valued portfolio optimization problem. This includes a
review of the conic market model in addition to a summary of the set-optimization tools
and techniques the we will use in our problem formulation. The next section explicitly
formulates the multi-period utility maximization problem. In the third section, we discuss
duality in the set optimization framework. The fourth section is devoted to our main results,
the formulation of a dual problem and a proof that a strong duality relationship holds. The
last section applies the main results to an example utility maximization problem.

Acknowledgment: The paper was initiated while the authors attended the workshop Math-
ematics Research Communities 2015 at Snowbird. The authors thank Birgit Rudloff and
Zach Feinstein for their encouragement and guidance into the subject. Part of the paper was
completed when the second author was in residence at the Mathematical Sciences Research
Institute in Berkeley, during which he was supported by the National Science Foundation
under Grant No. DMS-1440140.
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2 Preliminaries

2.1 Conical Market Model

In this section, we recall the framework of the conic market model with transaction costs
introduced in [7], though we primarily follow the development in [14].

Consider a financial market which consists of d traded assets. In classical models, we assume
that at some terminal time T all assets are liquidated, i.e. converted to some numeraire. In
certain applications, this is unrealistic. For example, an agent with a portfolio consisting of
assets in both US and European markets should not need to choose between liquidation into
Euro or USD to establish its relative value. For this reason, we use a numeraire-free approach
by considering vector-valued portfolios. In particular, we express portfolios in terms of the
number of physical units of each asset, instead of the value of those assets with respect to a
numeraire. This approach is especially interesting when liquidation into some numeraire has
an associated transaction cost. In this case conversion to a unified currency is irreversible,
and different choices of numeraire could result in different relative values of portfolios.

We consider a market in which transaction costs are proportional to the number of units
exhanged. To model these costs, we introduce the notion of a bid-ask matrix.
Definition 2.1. A bid-ask matrix is a dˆ d matrix Π such that its entries πij satisfy

1. πij ą 0, for 1 ď i, j ď d

2. πii “ 1, for 1 ď i ď d.

3. πij ď πikπkj, for i ď i, j, k ď d.

The terms of trade in the market are given by the bid-ask matrix, in the sense that the
entry πij gives the number of units of asset i which can be exchanged to one unit of asset
j. Thus the pair t 1

πji , π
iju denotes the bid and ask prices of the asset j in terms of the

asset i. A financial interpretation of the first and second properties of a bid-ask matrix is
straightforward, with the third condition ensuring that an agent cannot achieve a better
exchange rate through a series of exchanges than exchanging directly.

Next, we consider the notions of solvency and available portfolios. Recall that, given a set
C Ď Rd, the convex cone generated by C is the set

conepCq “ t
n
ÿ

i“1

λiyi : yi P C, λi ě 0, 1 ď i ď n, n P Nu.

Definition 2.2. For a given bid-ask matrix Π, the solvency cone KpΠq is the convex cone in
Rd generated by the unit vectors ei and πijei ´ ej, 1 ď i, j ď d.

Solvent positions in vector valued portfolios are those which can be traded to the zero
portfolio. The vector πijei ´ ej, which consists of πij long position in asset i and one short
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in asset j, is solvent because the terms of trade given by Π allow exchanging πijei to ej. It
follows that any non-negative linear combination of πijei ´ ej is also solvent. We also allow
an agent to discard non-negative quantities of an asset in order to trade to the zero portfolio,
which justifies including the ei vectors in the solvency cone definition.

What is that set of portfolios that can be obtained from the zero portfolio, according to the
terms of trade governed by Π? Similar to the definition of the solvency cone, it consists
of vectors ej ´ πijei, which correspond to trades at the exchange rate given by Π. Again
permitting trades where agents discard resources, we see that the set of portfolios available
at price zero is the cone ´KpΠq.

Given a cone K Ď Rd, we denote by K` the positive polar cone of K, i.e.,

K`
“ tw P Rd : xv, wy ě 0 for v P KpΠqu.

Recall that the interior of K˚ is the set

intK˚
“ tw : xw, xy ą 0, @x P K, x ‰ 0u.

Definition 2.3. A nonzero element w P Rd is a consistent price system for the bid-ask matrix
Π if w is in the positive polar cone of KpΠq, so that

w P K`
pΠq “ tw P Rd : xv, wy ě 0 for v P KpΠqu.

The set of all consistent price systems for a bid-ask matrix is then simply K`pΠqzt0u.

The notion of a consistent price system has an important financial interpretation. A price
system w gives a non-negative price wi for each asset i. One interpretation of the definition
of a consistent pricing system is that, if we fix some numeraire asset i, then w satisfies the
condition that the frictionless exchange rate wj

wi for asset j is less than πij. Allowing for
arbitrary choice of numeraire i and asset j, this is equivalent to

tw P Rd
`zt0u :

wj

wj
ě πij for 1 ď i, j ď du.

One can easily show that this set is in fact equal to K`pΠqzt0u, the set of all price systems
consistent with Π.

Fixing a filtered probability space pΩ, pFqTt“0,Pq, we model a financial market by pΠtq
T
t“0, an

F adapted process taking values in the set of bid-ask matrices. Such a process will be called
a bid-ask process. We make the following simplifying assumptions.
Assumption 2.4. pΩ, pFqTt“0,Pq satisfies

• F0 “ tH,Ωu is trivial.

• The model is in discrete time with t “ 0, ..., T

• The probability space Ω is finite, with |Ω| “ N
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• Each element in Ω has nonzero probability, i.e. Prωns “ pn ą 0, where Ω “ tω1, ω2, ..., ωNu
and n “ 1, .., N .

The assumption that Ω is finite means that the different topologies L8pΩ,F ,Pq, L1pΩ,F ,Pq,
L0pΩ,F ,Pq, etc. on the set of all Rd-valued random variables X : Ω Ñ Rd are isomorphic.
We will refer to this topology simply as LppΩ,F ,Pq for some p P p1,8q, in order to make clear
when we are referring to the dual space LqpΩ,F ,Pq where 1

p
` 1

q
“ 1. For ease of notation,

we will denote these spaces LppF ;Rdq and LqpF ;Rdq. Note that we can identify the space of
all d-dimensional random variables with RdˆN and inner product Exx, yy. In the same way,
any cone in LppFt,Rdq generated by a finite set of random vectors txiu

m
i“1 is generated by

txi1Γj
u in RdˆN , where tΓjujPJ is the set of atoms of Ft. Lastly, for sake of notation, we’ll

denote the components of a vector x P RdˆN by xipωq for ω P Ω, 1 ď i ď N.

Let pΠtq
T
t“0 be a bid-ask process. This generates a cone-valued process pKtq

T
t“0 where each

Kt is an associated solvency cone. We denote by LppFt, Ktq the set

tX P LppFt;Rd
q : Xtpωq P Ktpωqu.

for each ω P Ω.

We can now define the notion of a self-financing portfolio.
Definition 2.5. An Rd-valued adapted process ϑ “ pϑtq

T
t“0 is called a self-financing portfolio

process if the increments
ξtpωq :“ ϑtpωq ´ ϑt´1pωq

belong to the cone ´Ktpωq of portfolios available at price zero, for all time t “ 0, . . . , T . We
also put ϑ´1 “ 0 by convention.

For each t “ 0, . . . , T , we denote by At the convex cone in LppFt;Rdq formed by the random
variables ϑt, where ϑ “ pϑiq

T
i“0 runs through the self-financing portfolio processes. We always

assume that the initial portfolio ϑ0 is deterministic. AT may be then interpreted as the set
of positions available at time T from an initial endowment 0 P Rd. More precisely, if we
denote by 1 P LppF0,Rdq the constant random variable that assumes the value 1, we have
the following result:
Proposition 2.6. For each t “ 1, ..., T ,

At “ ´K01´ L
p
pF1;K1q ´ ¨ ¨ ¨ ´ L

p
pFt;Ktq .

Proof. Assume x P At. Then x is a convex combination of random variables

x “
n
ÿ

j“1

λjϑjt

where for each j, pϑji q
T
i“0 is a self-financing portfolio and λj ě 0. We rewrite x as

x “
n
ÿ

j“1

λj
`

ϑjt ´ ϑ
j
t´1 ` ϑ

j
t´1 ´ ...´ ϑ

j
0 ` ϑ

j
0

˘

.
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Expanding this sum, each
řn
j“1 λ

jpϑji´ϑ
j
i´iq P ´KpΠiq since ´KpΠiq is a cone and ϑji´ϑ

j
i´1 P

´KpΠiq for every j. We have established that

At Ď ´K01´ L
p
pF1;K1q ´ ¨ ¨ ¨ ´ L

p
pFt;Ktq .

The reverse containment follows by a symmetric argument and is omitted.

Similarly, if one starts with an initial endowment x0 P Rd, then the collection of all random
portfolios available at time T is given by AT px0q “ x01` AT . Explicitly, we have

AT px0q “ x01´K01´ L
p
pF1;K1q ´ ¨ ¨ ¨ ´ L

p
pFT ;KT q , (1)

with convention AT p0q “ AT .

Another important concept in a financial market model is the concept of arbitrage. In the
conic market model framework, the bid-ask process pΠtq

T
t“0 is said to satisfy the no arbitrage

property if
AT X L

p
pFT ;Rd

`q “ t0u . (2)

We will assume that our market model satisfies the no arbitrage property.

In classical financial market models, no arbitrage is intimately connected to the existence of
an equivalent martingale measure. The corresponding notion in the conic market model is
a consistent pricing process.
Definition 2.7. An adapted Rd

`-valued process pZtq
T
t“0 is called a consistent pricing process

for the bid-ask process pΠtq
T
t“0 if Z is martingale and Ztpωq lies in Ktpωq

`zt0u for each
t “ 0, . . . , T .

The following extension of the Fundamental Theorem on Asset Pricing, due to Kabanov
and Stricker, [8], establishes the connection between no arbitrage and consistent pricing
processes.
Theorem 2.8. Let Ω be finite. The bid-ask process pΠtq

T
t“0 satisfies the no arbitrage condi-

tion if and only if there is a consistent pricing system Z “ pZtq
T
t“0 for pΠtq

T
t“0.

This theorem is a fundamental component in the proof of our main duality result, Theorem
5.2.

We will make use of this result in the form of the following lemma
Lemma 2.9. A bid-ask process satisfies the no arbitrage condition if and only if

p´A`T q X int pLqpFT ,Rd
`qq ‰ H.

Proof. For the forward direction, assume a bid-ask process satisfies the no arbitrage condi-
tion. Then

AT X L
p
pFT ,Rd

`q “ t0u.

Since Ω is finite, AT is the sum of finitely generated closed convex cones, so it is a finitely
generated convex cone, and hence closed. Let C :“ conv ptepωqi, 1 ď i ď d, ω P Ωuq, where
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each tepωqi is a unit vector in RdˆN . Since C is the convex hull of a finite set of points in
LppFT ,Rd

`q, it is compact. Obviously 0 R C. By the separation theorem (in the case that
one set is closed and the other compact) there is a nonzero z P Rn that strictly separates C
and AT . That is,

sup
xPAT

xz, xy ă inf
yPC
xz, yy.

C is compact, so the expression on the right-hand side of the inequality is finite. Since AT
is a cone, the left-hand side of the inequality must then be zero, so z P ´A`T . Furthermore,
xz, yy ą 0 for each y P C, so that xz, λyy ą 0 for all y P C and λ ‰ 0. Since C generates
LppFT q, we have that xz, λyy ą 0 for all y P LppFT ,Rd

`q with y ‰ 0. It follows that

z P int
`

pLppFT ,Rd
`qq

`
˘

“ int
`

LqpFT ,Rd
`q
˘

.

For the reverse direction, assume that

p´A˚T q X int pLqpFT ,Rd
`qq ‰ H.

Then there is a z such that

xz, xy ď 0 for x P AT and xz, yy ą 0 for y P Kzt0u.

This obviously implies that AT and Kzt0u are disjoint.

2.2 Set Optimization

In this section, we review the components of set-valued optimization that will be necessary
to introduce the portfolio optimization problem. For a more detailed exposition of the set-
valued optimization framework and the corresponding duality theory, see [3, 4, 5].

We begin by constructing a suitable notion of “order” for sets. Let Z be a non-trivial real
linear space. Given a convex cone C Ĺ Z with 0 P C, we have a preordering of Z, denoted
by ďC , which is defined as

z1 ďC z2 ðñ z2 ´ z1 P C

for any z1, z2 P Z. The following are equivalent to z1 ďC z2,

z1 ďC z2 ðñ z2 ´ z1 P C ðñ z2 P z1 ` C ðñ z1 P z2 ´ C.

These last two expressions can be used to extend ďC from Z to PpZq, the power set of Z.
Given A,B P PpZq, we define two possible extensions.

A ďC B ðñ B Ď A` C

A űC B ðñ A Ď B ´ C.
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We use ` to denote Minkowski addition of sets, with set convention that A`H “ H`A “ H
for all A P PpZq.

In what follows we will exclusively discuss the relation ďC , which is appropriate for set-
valued minimization. Each of the results we include has a corresponding result for űC in
the maximization context, which we omit. For further details see [3].

In addition, we assume that Z is equipped with a Hausdorff, locally convex topology. We
consider the space

GpZ,Cq “ tA Ď Z : A “ cl conv pA` Cqu

where cl conv is the closure of the convex hull. We abbreviate GpZ,Cq to GpCq, when
Z is clear from the context. We define an associative and commutive binary operation
‘ : GpCq ˆ GpCq Ñ GpCq by

A‘B “ cl pA`Bq

Observe that in GpCq, the relation ďC reduces to containment. For any A,B P GpCq,

A ďC B ðñ A Ď B.

As shown in [4], the pair pGpCq,Ěq is a complete lattice, meaning that Ě yields a partial
order on GpCq, and that each subset of GpCq has an infimum and supremmum with respect
to Ě in GpCq. Given H ‰ A Ď GpCq, the infimal and supremal elements in GpCq are

inf
pGpCq,Ěq

A “ cl conv
ď

APA
A, sup

pGpCq,Ěq
A “

č

APA
A. (3)

In order to preserve intuition, it is useful to recall how this framework relates to the familiar
complete lattice of the extended real numbers R Y t˘8u with the ď order. The extended
real-numbers translate into the set-valued framework described above by using the ordering
cone C “ R` and identifying each point z P R with the set tzu ` R` in pGpR,R`q,Ěq.
Moreover, `8 and ´8 in the usual framework are replaced by H and R, repectively, in the
set-valued case.

Next, assume that X, Y are two locally convex spaces, and that D Ď Y is a convex cone
with 0 P D. Let f : X Ñ GpCq and g : X Ñ GpDq be two set-valued functions. We consider
optimization problems of the form

min
xPX

fpxq subject to 0 P gpxq.

Where the minimum refers to the set-valued ordering previously discussed. In other words,
we want to find the set

inf
pGpCq,Ěq

tfpxq|x P X, 0 P gpxqu “ cl conv
ď

tfpxq|x P X, 0 P gpxqu.

This is the minimum of our optimization problem.
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Extending the notion of a minimizer to the set-valued case is slightly more subtle. Given
f : X Ñ GpCq and M Ď X, we denote the set of all values of f on M by

f rM s “ tfpxq|x PMu.

The minimal elements of f rM s are defined by

Min f rM s :“ tfpxq|fpyq P f rM s and fpyq Ě fpxq ñ fpyq “ fpxqu.

Similarly, an element x is a minimizer of f on M if fpxq P Min f rM s.

In addition to a minimality condition, we also expect a solution to attain the infimum of a
problem. We say that the infimum of a problem

min fpxq subject to x P X

is attained at a set X Ď X if
inf
xPX

fpxq “ inf
xPX

fpXq.

As per the definition of infimimum in (3), this means that

cl conv
ď

xPX

fpxq “ cl conv
ď

xPX

fpxq.

Alternatively, we say that the set X is an infimizer of the problem. Combining both of
these requirements, we arrive at an appropriate notion of a solution to a set optimization
problem.
Definition 2.10. Given f : X Ñ GpCq, an infimizer X Ď X is called a solution to the problem

min fpxq subject to x P X

if X Ď Min f rXs. Similarly, we call an infimizer X Ď X a full solution to the problem if
X “ Min f rXs.

In the typical optimization framework of the extended real numbers, the notion of an infimizer
and minimizer coincide because the search for infimizers can be reduced to singleton sets. In
the set-optimization setting, this is not the case, which warrants the above definition. The
infimum of a problem is, in general, the closure of the union of function values, which is not
necessarily a function value itself. Further details and a more in depth review of this issue
can be found in [5].

We next review some important convex-analytic type properties for set-valued functions.
Definition 2.11. A set valued function f : X Ñ pGpCq,Ěq is said to be convex if for every
pair x1, x2 P X and every t P p0, 1q

fptx1 ` p1´ tqx2q Ě tfpx1q ` p1´ tqfpx2q.
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It is straight-forward to show that convexity of f is equivalent to convexity of the graph of
f , where

graph f :“ tpx, zq P X ˆ Z|z P fpxqu Ď X ˆ Z.

We end this section with the following results, found in [5], which use convexity to simplify
the computation of infimums and Minkowski sums.
Proposition 2.12. If f : X Ñ PpZq is convex and

fpxq “ cl pfpxq ` Cq,

then fpxq P GpCq

Proof. We want to show that for each x P X, fpxq “ cl conv pfpxq ` Cq, given that f is
convex and fpxq “ cl pfpxq ` Cq. It suffices to show that fpxq ` C is convex, which will
follow if fpxq is convex because the Minkowksi sum of two convex sets is convex [12]. But
fpxq is convex for every x, since for arbitrary z1, z2 P fpxq, t P p0, 1q, we have

tz1 ` p1´ tqz2 P tfpxq ` p1´ tqfpxq Ď fptx` p1´ tqxq “ fpxq

where the last containment comes from the convexity of f .

Proposition 2.13. If f : X Ñ GpCq and g : X Ñ GpDq are convex, then

inf
pGpCq,Ďq

tfpxq|x P X, 0 P gpxqu “ cl
ď

tfpxq|x P X, 0 P gpxqu,

so that the convex hull can be removed from the definition of infimum.

Proof. We want to show that

ď

tfpxq|x P X, 0 P gpxqu

is convex. We begin by showing that tx P X|0 P gpxqu is convex. If 0 is contained in both
gpx1q and gpx2q, then for any t P p0, 1q,

0 P tgpx1q ` p1´ tqgpx2q Ď gptx1 ` p1´ tqx2q,

so that tx P X|0 P gpxqu is convex.

Next, assume that z1, z2 P
Ť

tfpxq|x P X, 0 P gpxqu. Then there are x1, x2 such that
z1 P fpx1q and z2 P fpx2q, with 0 P gpx1q X gpx2q. Thus for any t P p0, 1q

tz1 ` p1´ tqz2 P tfpx1q ` p1´ tqfpx2q Ď fptx1 ` p1´ tqx2q.

Our initial claim gives that 0 P gptx1 ` p1´ tqx2q, so that
Ť

tfpxq|x P X, 0 P gpxq is convex
and we have our result.
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3 Problem Formulation

In this section, we explicitly formulate the multi-period utility maximization problem.

We consider a function Upxq : Rd Ñ Rd which models the utility of an agent’s assets x at
the terminal time T . We make the following assumptions on U .

1. U is a vector valued component-wise function

Upxq “ pu1px1q, u2px2q, ..., udpxdqq, x “ px1, x2, ..., xdq P Rd

where each ui : RÑ R. Note each ui is real-valued, as opposed to extended real valued.
Thus U is defined even in the case of negative wealth.

2. Each ui is strictly concave, stricly increasing, and differentiable.

3. Marginal utility tends to zero when wealth tends to infinity, so that

lim
xiÑ8

u1ipxiq “ 0.

4. ui satisfies the Inada condition, so that the marginal utility tends to infinity when xi
tends to the infimum of the domain of ui. In other words,

lim
xiÑ´8

u1ipxq “ 8.

These assumptions are standard in the context of utility maximization problems [2].

Let the ordering cone C “ Rd
`. We define the objective function F : LppFT ,Rdq Ñ GpCq to

be the expected utility of a random portfolio at terminal time.

F pxq “

"

Er´Upxqs ` Rd
` Upxq ‰ ´8

H otherwise

The expectation is taken with respect to the probability space pΩ,FT ,Pq.

Note that in the definition of F , we have recast the utility maximization problem into a min-
imization framework. This is to establish more consistency with the set-valued optimization
tools developed in [3], [4], and [5], which cast their results in the traditional minimization
framework of convex analysis. Of course, one could consider the maximization form of the
problem without any loss of generality.

The portfolio optimization problem then takes the form

minimize F pxq

subject to the constraint that the portfolio x is the terminal result of a self-financing portfolio
with initial endowment x0. In other words, we have the problem

minimize F pxq (P)

subject to x P AT px0q
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4 Duality in Set Optimization

In this section we review the results in [5] which we will use in the next section to form a
set-valued dual problem to (P).

Set-valued Lagrange duality follows a similar theme to the real-valued case. Given convex
cones C Ď Z and D Ď Y , and convex functions f : X Ñ GpCq Ď PpZq and g : X Ñ GpDq Ď
PpY q, we are interested in the primal problem

minimize fpxq subject to 0 P gpxq. (Pe)

i.e. we search for a set p̄ Ď Z where

p :“ inf
pGpCq,Ěq

tfpxq|x P X, 0 P gpxqu “ cl conv
ď

tfpxq|x P X, 0 P gpxqu.

The first step is to define a set-valued Lagrangian function which recovers the objective, in
the sense that the function fpxq is the supremum of the Lagrangian over the set of dual
variables.

For y˚ P Y ˚ and z˚ P Z˚, where Y ˚ and Z˚ denote the topological dual spaces of Y and Z,
respectively, define the set-valued function SpY ˚,Z˚q : Y Ñ PpZq by

Spy˚,z˚qpyq “ tz P Z| y
˚
pyq ď z˚pzqu.

We use these functions to formulate a Lagrangian function.
Definition 4.1. We define the Lagrangian l : X ˆ Y ˚ ˆC`zt0u Ñ GpCq of the problem (Pe)
by

lpx, y˚, z˚q “ fpxq ‘
ď

yPgpxq

Spy˚,z˚qpyq “ fpxq ‘ inftSpy˚,z˚qpyq|y P gpxqu.

We can recover the primal objective from the Lagrangian.
Theorem 4.2. [5][Prop 2.1] If fpxq ‰ Z for each x P X, then

sup
py˚,z˚qPY ˚ˆC`zt0u

lpx, y˚, z˚q “
č

py˚,z˚qPY ˚ˆC`zt0u

lpx, y˚, z˚q “

"

fpxq : 0 P gpxq
H : otherwise

Under the condition in Theorem 4.2, we can formulate the problem (Pe) as

inf
xPX

sup
py˚,z˚qPY ˚ˆC`zt0u

lpx, y˚, z˚q.

We define the dual problem

sup
py˚,z˚qPY ˚ˆC`zt0u

inf
xPX

lpx, y˚, z˚q. (De)

12



We denote by h : Y ˚ ˆ C`zt0u Ñ GpCq the dual objective

hpy˚, z˚q :“ inf
xPX

lpx, y˚, z˚q (4)

and define d to be the set
d :“ sup

py˚,z˚qPY ˚ˆC`zt0u

hpy˚, z˚q.

We have the following weak duality results for the problems (Pe) and (De).
Proposition 4.3. [5, Prop 6.2] Weak duality always holds for the problems (Pe) and (De).
That is,

d “ sup
 

hpy˚, z˚q|y˚ P Y ˚, z˚ P C`zt0u
(

Ě inf tfpxq|x P X, 0 P gpxqu “ p.

Strong duality, on the other hand, requires a constraint qualification. The problem (Pe) is
said to satisfy the Slater condition if

Dx P dom f : gpxq X int p´Dq ‰ H.

Slater’s condition is sufficient for strong dualilty between (Pe) and (De).
Theorem 4.4. [5, Theorem 6.1] Assume p ‰ Z. If f : X Ñ GpCq and g : X Ñ GpDq are
convex and the Slater condition for problem (Pe) is satisfied, then strong duality holds for
(Pe). That is,

p “ inf tfpxq|0 P gpxqu “ sup
 

hpy˚, z˚q|y˚ P Y ˚, z˚ P C`zt0u
(

“ d.

Lastly, we introduce the notion of a set-valued Fenchel conjugate.
Definition 4.5. The (negative) Fenchel conjugate of a function f : X Ñ PpZq is the function
´f˚ : X˚ ˆ pC`zt0uq Ñ GpCq defined by

´f˚px˚, z˚q “ cl
ď

xPX

“

fpxq ` Spx˚,z˚qp´xq
‰

.

Motivation for this definition and further details about the nature of the set-valued Fenchel
conjugate can be found in [4].

5 Duality in Portfolio Optimization

In this section we apply the tools introduced in the previous section for dualizing set-valued
optimization problems to the portfolio optimization problem (P).

We begin by showing that (P) is well-defined.

13



Lemma 5.1. The functions F : LP pFT ,Rdq Ñ GpRd,Rd
`q, F pxq “ Er´Upxqs ` Rd

` and
g : LP pFT ,Rdq Ñ GpLppFT ,Rdq, LppFT ,Rd

`qq, gpxq “ x´AT px0q are well-defined and convex.

Proof. We begin with the function F . F clearly maps to GpRd,Rd
`q because

F pxq ` Rd
` “ Er´Upxqs ` Rd

`

is a polyhedral convex cone, and hence is a closed convex cone. We claim that F is also a
convex map. More precisely, let x1, x2 P Rd, and t P p0, 1q. Then

tfpx1q ` p1´ tqfpx2q

“ t
`

Er´Upx1qs ` R`d
˘

` p1´ tq
`

Er´Upx2qs ` R`d
˘

“ E rt p´Upx1qq ` p1´ tq p´Upx2qqs ` R`d .

By the assumptions on our objective function U , for each 1 ď i ď d, ´ui is convex, so that

t p´uipx1pωqqq ` p1´ tq p´uipx2pωqqq ě ´ui ptx1pωq ` p1´ tqx2pωqq

for each ω P Ω. It follows that

E rt p´Upx1qq ` p1´ tq p´Upx2qqs ` R`d Ď E r´Uptx1 ` p1´ tqx2qs ` R`d .

We conclude that F is convex by Definition 2.11.

Next we consider the function gpxq. We need to show that in LppFT ,Rdq,

cl conv px´ AT px0q ` L
p
pFT ,Rd

`qq “ x´ AT px0q .

Observe that ´AT px0q and LppFT ,Rd
`q are convex, so their sum is as well [12, Ch. 3] and

the convex hull on the left side can be dropped. In addition, since KT is a solvency cone, the
cone LppFT ,Rd

`q is contained in LppFT , KT q, thus x ´ AT px0q ` LppFT ,Rd
`q “ x ´ AT px0q.

Hence, it remains to show that x ´ AT px0q is closed in LppFT ,Rdq. By the assumptions
(2.4), Ω is finite, and each element in Ω “ ω1, . . . , ωN has positive probability. The space of
d-dimensional random variables can then be associated with Euclidean space of dimension
dˆN and inner product Exx, yy. Note that if G “ conepξ1, ..., ξmq is a random convex cone
generated by m Ft-measurable random variables, then LppG,Ftq is the polyhedral convex
cone generated by ξiIΓj

where tΓjujPJ are the atoms of Ft. We have established that each
of the LppFt, Ktq is finitely generated, so by the Farkas-Minkowski-Weyl Theorem, each is
polyhedral. Since the finite sum of polyhedral cones is a polyhedral cone, we conclude that
x´ AT px0q is a polyhedral cone, and hence is closed.

Note that, in the notation of the previous section, we have established that X “ LppFT ,Rdq,
Y “ LppFT ,Rdq, Z “ Rd, C “ Rd

`, and D “ LppFT ,Rd
`q.

We are now ready to state our main result, which is a formulation of the dual problem to the
portfolio optimization problem (P). We then examine the relationship between the primal
and dual problems. Namely, we establish that strong duality holds.
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Theorem 5.2. The dual problem to (P) is the problem

sup
py˚,z˚qP´AT px0q`ˆRd

`zt0u

hpy˚, z˚q (D)

where h : LqpFT ,Rdq ˆ Rd
`zt0u Ñ GpRd

`q is defined as

hpy˚, z˚q “

"

tz P Rd| infxPLppFT ,Rdq z
˚pEr´Upxqsq ` y˚pxq ď z˚pzqu if y˚ P p´AT px0qq

`

Rd otherwise.
(5)

When y˚ P ´AT px0q
` and no components of z˚ are zero, we can write the function hpy˚, z˚q

as
#

z P Rd
|E

«

d
ÿ

i“1

z˚i 1u
˚
i

ˆ

y˚i
z˚i 1

˙

ff

ď z˚z

+

(6)

where u˚i denotes the concave conjugate of ui [12].

To prove this result, we require the following lemma
Lemma 5.3. The lagrangian function for the problem (P) is l : LppFT ,Rdq ˆ LqpFT ,Rdq ˆ

pRd
`zt0uq Ñ GpRd,Rd

`q defined by

lpx, y˚, z˚q “

"

tz P Rd | z˚pEr´Upxqsq ` y˚pxq ď z˚pzqu if y˚ P ´AT px0q
`

Rd otherwise.
(7)

Proof. Note that the positive dual cones of LppFT ,Rd
`q and Rd

` are LqpFT ,Rd
`q and Rd

`

respectively. Hence the Lagrangian function l has domain on LppFT ,Rdq ˆ LqpFT ,Rdq ˆ

pRd
`zt0uq, as per Definition 4.1.

Also from Definition 4.1, we see that

lpx, y˚, z˚q “ F pxq ‘
ď

yPx´AT px0q

Sy˚,z˚pyq (8)

The union on the right side can be written explicitly

ď

yPx´AT px0q

tz P Rd
| y˚pyq ď z˚pzqu “ tz P Rd

| inf
yPx´AT px0q

y˚pyq ď z˚pzqu

“ tz P Rd
| inf
yP´AT px0q

y˚pyq ` y˚pxq ď z˚pzqu .

Note that AT px0q “ x0 ´K0 ´ L
ppF1, K1q ´ ¨ ¨ ¨ ´ L

ppFT , KT q is a cone in LppFT , KT q. The
infimum on the right side is the support function on a cone [12], and can be written

inf
yP´AT px0q

y˚pyq “ ´δ´AT px0q`py
˚
q ,
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where δ´AT px0q`py
˚q is the indicator function on ´AT px0q

`, equal 0 if y˚ belongs to ´A`T
and 8 otherwise. Hence, identity (8) becomes

lpx, y˚, z˚q “ Er´Upxqs ` tz P Rd
| ´ δ´AT px0q`py

˚
q ` y˚pxq ď z˚pzqu ‘ Rd

`

“ tz P Rd
| ´ δ´AT px0q`py

˚
q ` z˚pEr´Upxqsq ` y˚pxq ď z˚pzqu ‘ Rd

`

Since z˚ P Rd
`zt0u,

tz P Rd
| a ď z˚pzqu ‘ Rd

` “ tz P Rd
| a ď z˚pzqu

for any constant a in RY t´8u. It follows that

lpx, y˚, z˚q “ tz P Rd
| ´ δp´AT px0qq`py

˚
q ` z˚pEr´Upxqsq ` y˚pxq ď z˚pzqu

which deduces identity (7).

Recall that the coordinate functions uipxq of the utility function Upxq are real-valued for
each x P Rd. Combining this with the fact that Ω is finite (and hence the expectation in the
problem formulation is finite) yields the following proposition.
Proposition 5.4. The objective function of (P) can be recovered from the lagrangian (7).
That is,

sup
py˚,z˚qPLqpFT ,RdqˆRd

`zt0u

lpx, y˚, z˚q “

"

Er´Upxqs ` Rd
` : 0 P x´ AT px0q

H : otherwise

Proof. This follows immediately from the above comments and an application of Theorem
4.2.

Using Lemma 5.3, we complete the proof of Theorem 5.2.

Proof. From the definition of the dual objective (4)

hpy˚, z˚q “ inf
xPLppFT ,Rdq

lpx, y˚, z˚q.

If y˚ R ´AT px0q
`, this is Rd. In the case that y˚ P ´AT px0q

`

inf
xPLppFT ,Rdq

lpx, y˚, z˚q

“ inf
xPLppFT ,Rdq

tz P Rd
| ´ δp´AT px0qq`py

˚
q ` z˚pEr´Upxqsq ` y˚pxq ď z˚pzqu

“ cl
ď

xPLppFT ,Rdq

tz|y˚pxq ` z˚pEr´Upxqsq ď z˚pzqu

“ cl tz| inf
xPLppFT ,Rdq

z˚pEr´Upxqsq ` y˚pxq ď z˚pzqu.
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The infimum in the expression above is the Fenchel conjugate of a sum of convex functions.
Since the Fenchel conjugate of a proper convex function is proper and lower semicontinuous
[13, Theorem 11.1], this infimum is attained, so we can drop the closure from the expression.
Thus,

“ tz| inf
xPLppFT ,Rdq

z˚pEr´Upxqsq ` y˚pxq ď z˚pzqu

and the result is proven.

The final part of the theorem, in which we reformulate the dual objective in terms of concave
conjugates, follows because

inf
xPLppFT ,Rdq

z˚pEr´Upxqsq ` y˚pxq

“ inf
xPLppFT ,Rdq

Erxz˚1,´Upxqys ` y˚pxq

“ inf
xPLppFT ,Rdq

Erxz˚1,´Upxqy ` xy˚, xys

“ inf
xPLppFT ,Rdq

Er
d
ÿ

i“1

´z˚i uipxiq ` y
˚
i xis

“ inf
xPLppFT ,Rdq

ÿ

ωPΩ

Prωs

˜

d
ÿ

i“1

´z˚i uipxipωqq ` y
˚
i pωqxipωq

¸

Exploiting separability over the sum gives

“
ÿ

ωPΩ

Prωs

˜

d
ÿ

i“1

inf
xipωqPR

´z˚i uipxipωqq ` y
˚
i pωqxipωq

¸

“ E

«

d
ÿ

i“1

inf
xiPLppF ,Rq

y˚i pxiq ´ z
˚
i 1uipxiq

ff

from which the result follows immediately. More details can be found in the next section,
where we perform the details of this calculation more slowly with an example problem for
context.

In the language of set-valued Fenchel conjugates, we have the following easy corollary.
Corollary 5.5. The objective function of the dual problem is

hpy˚, z˚q “

"

´F ˚p´y˚, z˚q if y˚ P ´AT px0q
`

Rd otherwise.
(9)

where F ˚ is the Fenchel conjugate of Fx0.
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Proof. We compute the Fenchel conjugate of F . For every y˚ P LqpFT ,Rdq, z˚ P Rd
`zt0u, it

follows from Definition 4.5 that

´F ˚p´y˚, z˚q “ cl
ď

xPX

`

F pxq ` Sp´y˚,z˚qp´xq
˘

“ cl
ď

xPLppFT ,Rdq

`

Er´Upxqs ` Rd
` ` tz| ´ y

˚
p´xq ď z˚pzqu

˘

“ cl
ď

xPLppFT ,Rdq

 

z ` Er´Upxqs ` Rd
`| ´ y

˚
p´xq ď z˚pzq

(

(10)

(11)

Since z˚ P Rd
`zt0u, z

˚prq ě 0 for each r P Rd
`, (10) becomes

“ cl
ď

xPLppFT ,Rdq

tz|y˚pxq ď z˚pz ´ Er´Upxqsu

“ cl

"

z| inf
xPLppFT ,Rdq

y˚pxq ` z˚pEr´Upxqsq ď z˚pzq

*

“

"

z| inf
xPLppFT ,Rdq

y˚pxq ` z˚pEr´Upxqsq ď z˚pzq

*

.

This agrees with (5).

Theorem 5.6. Strong duality holds between the problems (P) and (D). That is,

p “ inf F pxq “ suppy˚, z˚q “ d

subject to x P AT px0q subject to y˚ P ´AT px0q
`

z˚ P Rd
`zt0u.

Proof. By Theorem 4.4 and Lemma 5.1, it suffices to show that p “ infxPAT px0q F pxq ‰ Rd

and that Slater’s condition is satisfied.

For the first part, we use weak duality. By Proposition 4.3, p Ď d, so it suffices to show
that d ‰ Rd. Lemma 2.9 give that ´AT px0q

`X int pLP pFT ,Rd
`q is nonempty, so there exists

ỹ˚ P ´AT px0q
` with ỹ˚pωqi ă 0 for each ω P Ω, 1 ď i ď d. Then

p Ď sup
py˚,z˚qP´AT px0q`ˆz˚PRd

`zt0u

hpy˚, z˚q Ď tz| inf
xPLppFT ,Rdq

1dpEr´Upxqsq ` y˚0 pxq ď 1dpzqu.

The last containment follows by taking y˚ “ ỹ˚ and z˚ “ 1d, the d-dimensional vector
consisting of all ones. So it suffices to show that

inf
xPLP pFT ,Rdq

1dpEr´Upxqsq ´ ỹ˚pxq ą ´8,

which is equivalent to
sup

xPLP pFT ,Rdq

ỹ˚pxq ´ 1dpEr´Upxqsq ă 8.
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Note that the left hand side of this expression is simply the Fenchel-Conjugate of the function
1dpEr´Upxqsq. We have

sup
xPLppFT ,Rdq

ỹ˚pxq ´ 1dpEr´Upxqsq

“ sup
xPLppFT ,Rdq

Erxỹ˚pωq, xpωqys ´ Erx1,´Upxpωqqys

“ sup
xPLppFT ,Rdq

ωn
ÿ

ω“ω1

Prωs

«

d
ÿ

i“1

ỹ˚i pωqxipωq ´ p´uipxipωqqq

ff

“

d
ÿ

i“1

ωn
ÿ

ω“ω1

Prωs

«

sup
xipωq

ỹ˚i pωq ´ p´uipxipωqqq

ff

. (12)

The first equality follows from the definition of the inner product in LppFT ,Rdq. The second
and third come from the finiteness of Ω and the separability of the expression, respectively.

Since each u1i is continuous with range p´8, 0q, and each ỹ˚i pωq ă 0, the intermediate value
theorem gives that, for each ω P Ω, 1 ď i ď d, there exists x̃ipωq such that u1ipx̃ipωqq “ ỹ˚i pωq.
By [12, Theorem 23.5],

sup
xpωqi

ỹ˚i pωq ´ p´uipx̃ipωqqq

achieves its supremal value at x̃ipωq. It follows that (12) is finite, from which we conclude
that p ‰ Rd.

Next we show that Slater’s condition is satisfied. We want to find an x P domF such that
x ´ AT px0q X int p´LppFT ,Rd

`qq ‰ H. Recall from the problem formulation that domF “
LppFT ,Rdq, so the first part of Slater’s condition is not a restriction. Note that since

AT px0q “ x01´K01´ L
p
pF1, K1q ´ ...´ L

p
pFT , KT q

where each Kt is a solvency cone, x01 P AT px0q. Then, choose x such that xipωq ă px0qi for
each component 1 ď i ď d and for all ω P Ω. We have that x ´ x01 P x ´ AT px0q and also
x´ x01 P int p´LppFT ,Rd

`qq, so Slater’s condition is satisfied.

6 An Example

In this final section, we explore an example which we hope will help to illustrate the theo-
retical results from previous sections.

We consider a market with 2 assets and 3 time steps, so that the time step t ranges from 0 to 3.
The probability space Ω “

Ś3
i“1t´1, 0, 1u, with the probability measure P defined uniformly

on this set. In other words, the possible outcomes ω are defined as a tuple ω “ pω1, ω2, ω3q,
ω1, ω2, ω3 P t´1, 0, 1u. From the decision maker’s perspective, we have that at each time
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Figure 1: The solvency cones Ktpωq for various t and ω.

step t the random variable taking values ωt becomes known. Thus the filtration ppFtq
3
t“0q is

defined by Ft “ σpωi|iďtq, the sigma algebra generated by these random variables. We also
take F “ F3 “ σpω1, ω2, ω3q, the sigma-algebra of full information.

The bid-ask process pΠtq
T
t“0 is defined as follows:

Πtpωq “

„

1 1
8 ¨ 2

ř

iďt ωi 1



.

This is obviously pFtq3t“0 adapted, and one can also easily check that the properties of bid-
ask matrix are satisfied for each realization. The solvency cones generated by this process
are

Ktpωq “ conetp1,´1q, p´1, 8 ¨ 2
ř

iďt ωiqu “ tpx, yq|x` y ě 0, 8 ¨ 2
ř

iďt ωix` y ě 0u.

Figure (1) illustrates these cones for various times and realizations of ω.

We define our vector-valued objective function to be

Upxq “ p´e´x1 ,´e´x2qT

where x “ px1, x2q
T is the quantity of physical assets we have at terminal time. Our set-

valued objective function to be minimized is then

F pxq “ E
”

`

e´x1 , e´x2
˘T
ı

` R2
`.

We assume that our initial endowment is p0, 0qT . The set of self-financing portfolios is

A3 “ ´K01´ L
p
pσpω1q;K1q ´ L

p
pσpω1, ω2q, K2q ´ L

p
pσpω1, ω2, ω3q, K3q
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where Ktpωq are given as above.

We can then formulate the primal portfolio optimization problem as

minimize E
”

`

e´x1 , e´x2
˘T
ı

` R2
` (Pex)

subject to x P A3

According to theorem (5.2), the dual problem is then

suptz| inf
xPLP pR2,F3q

z˚pE
”

p´ex1 ,´ex2qT
ı

q ` y˚pxq ď z˚pzqu (Dex)

subject to y˚ P ´A`3
z˚ P R2

`zt0u

First, we investigate the nature of the set ´A`3 . From [12][Cor 16.4.2],

´A`3 “ pK01` L
p
pF1, K1q ` L

p
pF2, K2q ` L

p
pF3, K3qq

`

“

3
č

i“0

pLppFi, Kiqq
`.

In other words, y˚ P LqpF ,R2q is in ´A`3 when ypωq P Ktpωq
` for each t “ 0, ..., 3.

We can explicitly compute the cones Ktpωq
`. We have that

Ktpωq “ cone

ˆ

conv

"ˆ

1
´1

˙

,

ˆ

´1
8 ¨ 2

ř

iďt ωi

˙*˙`

.

Hence the dual cone is

Ktpωq
`
“ cone

ˆ

conv

"ˆ

´1
´1

˙

,

ˆ

´8 ¨ 2
ř

iďt ωi

´1

˙*˙

.

Next we take the intersection of these cones to form A`3 pωq. For a fixed ω, let spωq “
minj“0,1,2,3

řj
i“1 ωi. Then

´A3pωq
`
“ cone

ˆˆ

´1
´1

˙

,

ˆ

´8 ¨ 2spωq

´1

˙˙

.

Figure (2) illustrates K`
t pωq for various times and realizations of ω.

Now we work with to simplifiy the dual problem (Dex). The objective function is

hpy˚, z˚q “

"

z| inf
xPLppF ,R2q

z˚pE
“

pe´x1 , e´x2qT
‰

q ` y˚pxq ď z˚pzq

*

“

"

z| inf
xPLppF ,R2q

E
“

z˚11e
´x1 ` z˚21e

´x2
‰

` y˚pxq ď z˚pzq

*
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Figure 2: The positive polar cones Ktpωq
` for various t and ω.

Recall that the nature of linear functionals y˚ P LqpF ,Rdq is y˚pxq “ Exy˚, xy. Hence the
objective becomes

"

z| inf
xPLppF ,R2q

E
“

z˚11e
´x1 ` z˚21e

´x2 ` y˚1x1 ` y
˚
2x2

‰

ď z˚pzq

*

Using the fact that our probability space is finite, we expand the expectation
#

z| inf
xPLppF ,R2q

1

27

ÿ

ωPΩ

z˚1e
´x1pωq ` z˚2e

´x2pωq ` y˚1 pωqx1pωq ` y
˚
2 pωqx2pωq ď z˚pzq

+

This infimum is separable over the xipωq variables. Hence,

“

#

z|
1

27

ÿ

ωPΩ

inf
x1pωqPR

tz˚1e
´x1pωq ` y˚1 pωqx1pωqu ` inf

x2pωqPR
z˚2e

´x2pωq ` y˚2 pωqx2pωq ď z˚pzq

+

We can compute each of these infimums explicitly. Note that

inf
x1pωqPR

z˚1e
´x1pωq ` y˚1 pωqx1pωq “ ´f

˚
p´y˚1 pωqq

where fpxq “ z˚1e
´x and f˚ denotes the convex conjugate of f . Recall that for g : R Ñ R

and a P R (See [12])

pagp¨qq˚px˚q “ ag˚px˚{aq

pgpa¨qq˚px˚q “ g˚px˚{aq

g˚px˚q “

$

&

%

x˚ lnpx˚q ´ x˚ if x˚ ą 0
0 if x˚ “ 0

8 otherwise
when gpxq “ ex.
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Hence the objective function becomes
#

z|
1

27

ÿ

ωPΩ

y˚1 pωq ´ y
˚
1 pωq ln

ˆ

y1pωq
˚

z˚1

˙

` y˚2 pωq ´ y
˚
2 pωq ln

ˆ

y˚2 pωq

z˚2

˙

ď z˚pzq

+

when y1pωq, y2pωq, z1, z2 ‰ 0.

Therefore, when y1pωq, y2pωq, z1, z2 ‰ 0, we have the following formulation of the dual prob-
lem: find the supremum of
#

pz1, z2q
T

ˇ

ˇ

ˇ

ˇ

ˇ

1

27

ÿ

ωPΩ

y˚1 pωq ´ y
˚
1 pωq ln

ˆ

y˚1 pωq

z˚1

˙

` y˚2 pωq ´ y
˚
2 pωq ln

ˆ

y˚2 pωq

z˚2

˙

ď z˚1z1 ` z
˚
2z2

+

subject to

ˆ

z˚1
z˚2

˙

P R2
z

"ˆ

0
0

˙*

ˆ

y˚1 pωq
y˚2 pωq

˙

P A3pωq @ω P Ω

When either z1 or z2 equals 0, we only consider x2 or x1, respectively, in our objective because
the other terms vanish. Likewise, the case that y1pωq “ 0 eliminates the expressions with
y1pωq in the objective, because of the conjugation result on the previous page. The case that
y2pωq “ 0 is symmetric.
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