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Abstract. We consider two classes of stream-based computations which admit
taking linear combinations of execution runs: probabilistic sampling and general-
ized animation. The dataflow architecture is a natural platform for programming
with streams. The presence of linear combinations allows us to introduce the no-
tion of almost continuous transformation of dataflow graphs. We introduce a new
approach to higher-order dataflow programming: a dynamic dataflow program
is a stream of dataflow graphs evolving by almost continuous transformations.
A dynamic dataflow program would typically run while it evolves. We introduce
Fluid, an experimental open source system for programming with dataflow graphs
and almost continuous transformations.
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1 Introduction

Standard software architectures tend to be too brittle, and typical software systems are
of discrete nature and not sufficiently robust with respect to small changes.

The ability to take linear combinations of execution runs allows one to change soft-
ware in a continuous fashion. In this paper, we consider two classes of computations
which admit taking linear combinations of execution runs: probabilistic sampling and
generalized animation. Because these two classes are both stream-based, dataflow pro-
gramming is a natural programming paradigm for this situation.

Dataflow paradigm develops since at least early 1960s [6]. Many dozens of text-
based and visual programming dataflow systems have been created since then. For a
very extensive and still incomplete overview of state of the field ten years ago see [5].
Many dataflow programming systems are in active use today, and new dataflow pro-
gramming systems keep emerging.

The descriptions of dataflow formalisms and syntax of visual dataflow programs are
sometimes centered around transformations of data streams. During our experiments
with prototype dataflow systems in this paper we found this practice to be inconvenient.
We explored two alternatives.
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For the first-order dataflow programming we found it convenient to consider a for-
malism based on bipartite dataflow graphs with two kinds of vertices: nodes represent-
ing data streams and nodes representing transformations. Under this approach, the two
kinds of nodes are equally important, and there is often a duality between them.

For the higher-order dataflow programming, we found it convenient to be able to
copy subgraphs of a dataflow graph in meaningful ways, and for that it is convenient
to take an approach centered around target nodes. So the datastreams take the central
role under this approach, and transformations are made subordinate to the streams they
produce.

What we have described so far is applicable to any dataflow programming situa-
tions. The ability to take linear combinations comes into play because it enables the
following sequence of reversible transformations. We start with the following two steps
we call benign discontinuities. First, we take a datastream node A and replace it with
nodes B and C connected by an identity transformation. Node B inherits from node A
its incoming links and their transformation. Node C inherits from node A its outgoing
links. Second, we replace C = Id(B), with C = (1−α) ·B+α ·D where α = 0, so a
zero weight link from some node D to C is added. Finally, we can continuously vary α.

We call this process of continuously varying linear coefficients in a dataflow graph
punctuated by benign discontinuities at a discrete set of moments in time an almost
continuous transformation.

The goal of this paper is to give a detailed informal overview of this approach to
dataflow graphs and to describe Fluid [3], an experimental open source system provid-
ing first-order and higher-order prototype implementations. A system like Fluid should
be applicable both to streams of probabilistic samples and streams of generalized im-
ages. The current prototype works with streams of ordinary images.

1.1 Motivation and Paper Structure

It became apparent in our earlier work [1] that having an ability to consider linear com-
binations of execution runs should be conducive for program learning in the context of
genetic programming and higher-order probabilistic sampling. It also became apparent
to us that two major classes of computations with the ability to take linear combina-
tions of execution runs, probabilistic sampling and generalized animations, are both
stream-based, and hence it is natural to use dataflow architecture in this context.

Moreover, dataflow architecture is convenient in the context of program learning,
because syntax of dataflow diagrams tends to be tied closer to their semantics than the
syntax of programs in more conventional software architectures.

This paper contributes the ability to almost continuously evolve dataflow programs
while they are running. This makes it possible to sample almost continuous trajectories
in the space of dataflow programs, in addition to the usual practice of sampling the pro-
gram syntax trees, thus enabling us to try new evolutionary and probabilistic schemas
for program learning.

The paper is structured as follows. Section 2 introduces both classes of stream-
based computations admitting linear combinations of execution runs. This section also
briefly describes context: the ability to take linear combinations should be quite useful,
if one wants to enrich genetic programming with mechanisms inspired by regulation



of levels of protein expression; there are recent interesting advances in probabilistic
programming within the higher-order “sampling the samplers” paradigm; and there are
deep connections between the ability to have negative coefficients in linear models of
computations and various mathematical motives which together constitute the so-called
“partial inconsistency landscape” [1].

Section 3 describes using bipartite graphs for the first-order dataflow programming
and Fluid implementation of this architecture.

Section 4 describes the notion of almost continuous transformations of dataflow
graphs and the resulting streams of dataflow graphs. The Fluid implementation of this
architecture is discussed. An important feature of this implementation is that the dataflow
program in question is normally running as it changes in almost continuous fashion.

We find ourselves in a situation where in addition to ordinary datastreams one has
datastreams of dataflow graphs available. This opens a variety of possibilities for higher-
order dataflow programming, some of which are discussed in Section 5.

2 Linear Models of Computations and Evolutionary Programming

In this Section we are briefly reviewing the relevant material from [1].

2.1 Convex Linear Combinations

Here we are considering linear combinations (1−α) ·A+α ·B, where 0≤ α≤ 1.
A generalized image is a set of points, together with any secondary structure on this

set, and with points taking real values. An ordinary monochrome image corresponds to
the situation when this secondary structure is a continuous or discrete rectangle, and for
the color image one typically considers the Cartesian product of this rectangle and the
three-element set representing colors, {R,G,B}.

If two generalized images have the same secondary structure on their points, one
can take convex linear combinations of those images point-wise.

A generalized animation is a function from discrete or continuous time to general-
ized images with the same secondary structure.

If two generalized animations have the same secondary structure for their images
and are synchronized time-wise, one can take convex linear combinations of those an-
imations by taking convex linear combinations of their images corresponding to the
same point on the time axis.

If two probabilistic samplers produce points independently sampled from distribu-
tions P and Q at the rate of one sample per clock tick, one can obtain a sampler from
the convex linear combination of these distributions by taking the latest sample from P
with probability (1−α) and the latest sample from Q otherwise at each clock tick.

2.2 Evolutionary Programming and Regulation of Levels of Gene Expression

To quote from [1]: ”Biological systems tend to be much more flexible and adaptive with
respect to variation. In particular, biological cells are capable of functioning at wide
ranges of the level of expressions of various proteins, which are machines working in



parallel. Regulation of the level of expression of specific proteins is a key element of
flexibility of biological systems. It is argued in evolutionary developmental biology that
the flexible architecture together with conservation of core mechanisms is crucial for
the observed rate of biological evolution [4,7]. It is suggested that morphology evolves
largely by altering the expression of functionally conserved proteins [2].”

Computational architectures which admit the notion of linear combination of exe-
cution runs with non-negative coefficients are particularly attractive in this sense. Then
one can regulate the system simply by controlling coefficients in a linear combination
of its components, as computational equivalent of the level of expression of a particular
protein.

2.3 Sampling the samplers

The term “higher-order probabilistic programming” usually means a higher-order func-
tional programming language implementing sampling semantics. We have recently seen
examples of research implementing higher-order sampling schemas in a more narrow
and focused sense of the word: samplers which generate other samplers, probabilistic
programs sampling the space of probabilistic programs.

In particular, one should mention the recent work on learning probabilistic programs
by Yura Perov and Frank Wood [11] and recent advances in compositional concept
learning obtained by Brenden Lake [9] (see Section 3 of [1] for the brief overview of
these two sets of results).

We’ll return to these two possible ways to understand the notion of “higher-order
programming” for stream-based program architectures in Section 5.

2.4 Negation

The availability of negation is not strictly necessary for the material of this paper. Nev-
ertheless, one often finds that the presence of negation (that is, the ability to have nega-
tive coefficients in linear combinations) is very useful computationally. For animations,
one simply sets zero at the appropriate gray level and uses the standard color inversion
operation as negation (we are using this operation in the Fluid demo examples).

For probabilistic sampling, one needs to use two sampling channels, positive and
negative, in order to implement negation. The formalism allowing negative probabili-
ties is convenient for this situation. The ability to take negation is often closely linked
with the ability to handle partial and graded contradictions (see the material in [1] and
references therein for more details).

3 Bipartite Graphs and First-order Dataflow

For a static dataflow graph, and assuming no need to manage subgraphs and make their
copies, we found it convenient to use a bipartite dataflow graph model: two main types
of nodes are data steams (in this case, image streams) and transforms. Directed links
can only go from data streams to transforms (the case of data stream being a source for



a transform), or from transforms to data streams (target nodes for transforms). Links
from data streams to data streams, or from transforms to transforms are not allowed.

In a typical situation, many data streams can have links into the same transform, but
a transform only generates one data stream. Exceptions from this typical situation exist,
nevertheless this points to a certain kind of duality: in a typical situation a data stream
has one incoming graph edge and many outgoing graph edges, while a transform has
many incoming graph edges and one outgoing graph edge.

Invoking neural analogies, a data stream is similar to an axon, and a transform is
similar to a body of a neuron together with its dendrites.

One often wants to modulate the transforms with the controls. One can think about
controls as special kinds of data streams (in a typical situation, the values stay constant
until changed by a mouse click). Unlike images, the amount of data in a control is
usually small.

In this study, most dataflow computations are synchronous and are coordinated by
global clock. The stream of values of global clock is a special type of control (it is not
clickable, but just advances at a constant rate).

3.1 Fluid Implementation

Implementation of this architecture in Fluid is rather straightforward: under 300 lines
of code in Processing [12] + about 70 lines of code for each of the example dataflow
graphs (see may 9 15 experiment subdirectory of the Fluid project).

The object oriented design of this experiment is as follows. The program P is an
object of MasterConfig class, which is built during the initial setup. The work cycle
of the program at every clock tick is as follows. First, the system draws all images
registered with P as outputs. Then, the system applies all transforms registered with P
as transforms. Finally, the system shifts the target instances of images into the source
position for all data streams registered as (dynamic) data with P. In this fashion, a new
frame is produced for all dynamic data streams on each work cycle.

Images/data streams are of two types. DataRectangle objects contain constant im-
ages, which can be used as sources for transforms (and visualized if desired). In princi-
ple, nothing prevents us from adding input movies, but we have not done so for this ex-
periment. The objects of class DataRectangleDynamic inherit from DataRectangle,
and also provide the target instances of images for the transforms to write to, and the
ability to shift the target and source images on each step of the work cycle.

Transforms all inherit from the abstract class Transform with the single method
apply. Three types of transforms turn out to be sufficient to provide rich behavior of
the demos. The negation transform reads the image on top of the source stream and
produces its color inversion on the output. The sum-of-2 transform reads images which
are on top of its two source streams and produces on the output their convex sum,
(1−α) ∗A+α ∗B where 0 ≤ α ≤ 1. The value of α is determined by the associated
instance of NumericControl, which tends to be located to the right of the drawing
field of the image stream generated by the sum-of-2 transform in question.

CustomWaveTransform reads the image on the top of the source stream and pro-
duces an image on the output which can be thought of as a “reflection in a snapshot of
a synthetic water wave”. The parameters of this synthetic wave depend on the implicit



global clock control frameCount built into Processing, and also on the values stored
in the associated CustomClickControl. Therefore, a wave transform takes an input
stream of images and produces a stream of the reflections of the input stream in the
moving waves (no physical realism is attempted). The CustomClickControl associ-
ated with the wave simply uses the drawing field of the image stream generated by the
wave transform in question in order to catch clicks.

Upon click, the wave is effectively restarted in the position of the click as the new
center, and the frame count base of the control is set to the current frameCount (the
wave dynamics depends only on frameCount - frame count base).

All controls inherit from ClickControl class and need to be registered with the
program as controls in order to work.

Two examples of a first-order dataflow program are included in the subdirectory
may 9 15 experiment, one is based on a directed acyclic graph, and one contains a
loop. A short video demonstrating work with the first of these examples is posted on
youtube.com (see the main page of the Fluid repository [3] for details).

4 Almost Continuous Transformations and Streams of Dataflow
Graphs

In this study, we support “almost continuous evolution” of dataflow graphs while they
are running as programs. Almost continuous evolution of dataflow graphs is understood
as continuous evolution of their coefficients punctuated by benign discontinuities at
discrete moments of time.

One type of benign discontinuity is creation of new dataflow circuits which don’t
have outgoing links to the currently existing and running dataflow circuits and thus
don’t affect the existing behavior (unless the outside environment provides feedback
based on the output of the program). We find it convenient to implement this type of
benign discontinuity not by building new circuits vertex by vertex, but by copying the
intact dataflow graphs and subgraphs (see Limited deep copy in Section 4.3 below).

It turns out the bipartite graph approach of the previous section makes it difficult to
correctly identify and copy subgraphs. Hence we adopt an entirely different architec-
ture, which is grouped around the notion of dataflow vertex (also known as target node),
with necessary transforms, controls, references to sources, and associated datastreams
all being subordinate to the target nodes they belong to.

Two other kinds of benign discontinuity mentioned in the Introduction are combined
into an S-insert operation (see Section 4.4 below for details and discussion).

All benign discontinuities described here are reversible, and it seems likely that one
can almost continuously deform any dataflow graph into any other via these benign
discontinuities, their reversals, and continuous changes of coefficients, as long as one
type of data streams and a fixed set of built-in transform operations is used.

4.1 Dataflow Programs, Dataflow Graphs, and Dataflow Vertices

In this study, a dataflow program P is a finite collection of dataflow graphs, dataflow
vertices, and data associated with dataflow vertices. This collection varies with time and
is organized as folllows.



A dataflow graph G in P consists of a finite, possibly empty collection VG of
dataflow vertices in P called immediate target nodes of G and a finite, possibly empty
collection SG of dataflow graphs in P called immediate subgraphs of G.

For each V ∈ VG graph G is called a parent graph of V . For each S ∈ SG graph G
is called a parent graph of S. In this study we require that for every vertex V in a given
program P there is one and only one parent graph in P, and that for every dataflow graph
G in a given program P there is no more than one parent graph in P. A dataflow graph
G in P which does not have a parent graph in P is called a top-level graph of P.

Typically, exactly one of the top-level graphs of P is called the main graph of P and
is executed, while it varies in time.

A dataflow vertex V in P consists of a finite, possibly empty collection of references
to other dataflow vertices in P (those references are called sources of V ), a structure
representing data associated with V , and a reference to its parent graph.

The set of all vertices of a dataflow graph can be obtained by a recursively defined
flattening operation, F(G) = VG ∪{F(S)|S ∈ SG}. The set of all vertices of a program
is F(P) =

⋃
{F(G)|G is a top-level graph of P}.

In the software implementation of this study, dataflow programs, dataflow graphs,
and dataflow vertices are represented by classes ProgramEditor, DataFlowGraph,
and DataFlowVertex respectively.

4.2 Data Associated with Dataflow Vertices

A structure D called data associated with a dataflow vertex in P consists of the refer-
ence to the unique dataflow vertex V containing D, and the data itself. In the software
implementation of this study, data associated with a dataflow vertex are represented by
subclasses of class VertexData.

In this study, the most important type of data associated with a dataflow vertex
is a stream of images, which comes in several varieties. Class VertexDataImage

and its subclass VertexDataImageDynamic correspond to classes DataRectangle

and DataRectangleDynamic from Section 3.1 respectively. The three types of trans-
forms described in Section 3.1 and their associated controls are now subclasses of
DataRectangleDynamic.

In Section 5, we also consider streams of dataflow graphs as data associated with a
dataflow vertex.

4.3 Limited Deep Copy

Limited deep copy of a dataflow graph G in P, where G can be a top-level graph or
a subgraph, is a dataflow graph G′ in P constructed by the following algorithm in the
current implementation. G′ can be added to P as a top-level graph or as a subgraph to
an existing dataflow graph in P.

Step 1. G′ is created as a recursive copy of G, by recursive traversal of G. Structures
for data associated with dataflow vertices of F(G) are copied, because the correspond-
ing data streams in G and G′ might differ, so they need to be able to unfold in different



memory spaces. For each dataflow vertex V in F(G), a forward reference to the cor-
respondent V ′ in F(G′) is created. The source references of V at this stage are copied
intact into V ′.

Step 2. Source references of dataflow vertices of G′ are updated, by recursive traver-
sal of G′. If a vertex V ′ in F(G′) has a source link to vertex W , and if vertex W has a
forward reference to vertex W ′, then this source link is set to point to W ′.

Step 3. The clean-up step. Forward references set in Step 1 are reset to null values,
by recursive traversal of G.

The result is that the references to the sources external to G are preserved in the
newly created copies, the internal structure of G including dataflow vertices, references
to sources within F(G), and the data associated with the dataflow vertices in F(G) are
subject to the usual “deep copy” procedures, and no outgoing external links from F(G′)
are created (in the current implementation this is facilitated by the fact that all explicit
links are from target nodes to their sources; if a different implementation were to require
explicit outgoing links, one would then need to take special care to only include internal
outgoing links in the “deep copy” and to omit the external outgoing links).

4.4 S-insert

We have described the following two benign discontinuities in the Introduction.
First, one takes a datastream node A and replaces it with nodes B and C connected

by an identity transformation. Node B inherits from node A its incoming links and their
transformation. Node C inherits from node A its outgoing links. Second, one replaces
C = Id(B), with C = (1−α) ·B+α ·D where α = 0, so a zero weight link from some
node D to C is added.

S-insert (soft insert/special insert) combines these two steps without going through
the intermediate state of explicitly having C = Id(B) configuration. The two main pa-
rameters of this operation are dataflow vertices target vertex and side vertex.
First a dataflow vertex new vertex is created and references to sources and to the
parent graph are copied from target vertex to new vertex. Then vertex data asso-
ciated with target vertex are moved to new vertex. Then target vertex obtains
two new sources, new vertex and side vertex, instead of its old sources. Then new
vertex data based on sum-of-2 transform is created for target vertex and the coeffi-
cients of this transform are set in such a way that 1 corresponds to new vertex and 0
corresponds to side vertex.

If the time step were infinitely small (a system similar to differential equations), this
transformation would not have any immediate effect on the dynamics, which is why we
call it benign discontinuity. However, one should keep in mind that the replacement
of node A by C = Id(B) actually introduces time delay of one clock tick here in our
typical situation of discrete time. Normally one would expect the effect of this extra
time delay not to be too noticeable, but certainly there are some situations when precise
synchronization might matter, and then the operation is no longer innocent.

The main effect of the S-insert operation is, however, that it enriches the space of
possibilities to continuously change the system, by allowing us to continuously vary α.



4.5 An Experimental Setup in Fluid

Implementation of this architecture in Fluid is around 700 lines of code in Processing
(see jun 21 15 experiment subdirectory of the Fluid project).

The setup of this experiment starts with the empty main graph (program) and two
small template top-level graphs, each consisting of two nodes, a constant image node
being a source for a transform node (in one case, the negation transform node, in another
case, the wave transform node).

4.6 Program Execution in Fluid

The work cycle at every clock tick consists of two steps. One is execution of the work
cycle of the main graph (which is well defined even when the main graph is empty
and is similar to the work cycle described in Section 3.1), and another is an optional
transformation of a program by benign discontinuities (in this experiment, this trans-
formation is programmed in the tweak optionally method of the ProgramEditor

class, eventually one should be able to also associate an edit control with the graph node
containing the program itself (see Section 5)).

In this particular experiment, a limited deep copy of a wave transform template is
added first, then while the program is running, a limited deep copy of the negation
transform template is added at a later point, and then while the program is running, the
S-insert is used to link the output of the copy of the wave transform template to the input
of the copy of negation transform template. Section 5 describes a follow-up experiment
visualizing this program evolution (see Fig. 1).

While the program is running, one can also change wave parameters and linear
coefficients by clicking on controls which are associated with the drawing fields of
the respective target nodes in this experiment. Those changes constitute more abrupt
discontinuities, so strictly speaking when those happen, it’s not almost continuous any-
more. But they only affect the parameters of the transformations, not the structure of
the program, so we still tend to consider them to be within this programming paradigm
overall.

5 Higher-order Dataflow Programming

There are two major classes of approaches to higher-order stream-based programming.
One approach takes standard higher-order functional programming as a starting point,
and focuses on integrating stream-based programming into the standard higher-order
paradigm. The second approach takes the notion of streams of programs as its start-
ing point and develops from there. The third approach which must be mentioned is an
approach based on multidimensional streams [13].

This second approach is the one we are pursuing in this paper. We have already
mentioned the dichotomy between the first two approaches in Section 2.3 for the case
of probabilistic programming. The body of research on higher-order dataflow program-
ming based on streams of functions is modest. An early work which should be men-
tioned in connection with this is the preprint [10] by the second author. There are recent
related papers exploring various aspects of this approach, for example [8].



The previous section introduces streams of dataflow graphs which is the first step
towards adopting this approach to higher-order dataflow programming for Fluid.

The next step is to include such streams of dataflow graphs as datastreams contained
in the nodes of other dataflow graphs (self-reference is, of course, possible and is a
natural starting point as we’ll see in a moment).

Pragmatically speaking, one needs to add the capabilities for imaging a dynamically
changing dataflow graph, and it is desirable to enable the use of such an image as an edit
control capable of editing the underlying dataflow program while it is running (just like
we use drawing fields of ordinary moving images as controls altering their dynamics in
the examples above). It is easier to achieve those goals if one includes a node containing
a reference to the main graph of the program into the main graph itself.

Our most recent experiment represents a partial step in this direction. A node con-
taining a reference to the main graph of the program is included into the main graph
itself, but this setup is only used to provide visualization of a dynamically evolving
dataflow graph, there is no associated edit control yet (see jun 28 15 experiment

subdirectory of the Fluid project).
One starts with the main graph containing only the node containing a reference to

the main graph itself, and then gradually adds functionality as in Section 4.6. A short
video demonstrating gradual evolution of this data flow program while it is running and
being used in an interactive fashion is posted on youtube.com (see the main page of
the Fluid repository [3] for the link to the video and see the legend included with the
video for details; see Fig. 1 for a screenshot).

Fig. 1. Screenshot from jun 28 15 experiment



5.1 Further Work in Higher-order Dataflow Programming

This is a very modest start on the road towards real-life higher-order dataflow pro-
gramming and program evolution involving streams of almost continuously changing
programs. One would like the node containing a dataflow graph to depend on other
nodes as sources.

Then in a higher-order setting one could, for example, modulate the evolution and
behavior of a stream of dataflow graphs by a moving image, etc.

One circumstance to keep in mind is that in order to evolve a program while it is
running, the changing program must inherit state from the earlier moments in time, just
like it is done in Section 4. This seems to imply that the node containing a dataflow
graph must be one of its own sources.

6 Conclusion

Most of the formalism we described is applicable to any kind of streams. However, the
ability to evolve streams of programs via almost continuous transformations requires
the ability to take convex linear combinations of two streams. In the absence of such
an ability, one might need to rely on discontinuous transformations, such as abrupt
switching of a link from one source to another.

The ability to almost continuously evolve dataflow programs while they are running
makes it possible to sample almost continuous trajectories in the space of dataflow
programs. This should allow us to try new evolutionary and probabilistic schemas for
program learning.

Stream based architecture is conductive to various modalities such as audio streams,
streams of text snippets, etc., and also for streams of samples from probability distri-
butions of arbitrarily structured objects. Many of them, in particular audio steams and
streams of probabilistic samples, admit convex linear combinations.

The “code sensory modality” (see Section 3.1 in [14]) is the most fundamental
one, since everything in the digital world is made from code. Moving from discrete
representations of code to streams of code, and, in particular, to almost continuous
streams of code is likely to be fruitful in this context.
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