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SYSTEMATIC MEASURES OF BIOLOGICAL NETWORKS, PART II:

DEGENERACY, COMPLEXITY AND ROBUSTNESS

YAO LI AND YINGFEI YI

Abstract. This paper is Part II of a two-part series devoting to the study of system-

atic measures in a complex bio-network modeled by a system of ordinary differential

equations. In this part, we quantify several systematic measures of a biological network

including degeneracy, complexity and robustness. We will apply the theory of stochastic

differential equations to define degeneracy and complexity for a bio-network. Robust-

ness of the network will be defined according to the strength of attractions to the global

attractor. Based on the study of stationary probability measures and entropy made in

Part I of the series, we will investigate some fundamental properties of these systematic

measures, in particular the connections between degeneracy, complexity and robustness.

1. Introduction

Consider a biological network modeled by the following system of ordinary differential
equations (ODE system for short):

(1.1) x′ = f(x), x ∈ R
n,

where f is a C1 vector field on R
n, called drift field. Adopting the idea of activating the

functional connections among modules of the network via external noises in the case of
neural systems [20, 25], we add additive white noise perturbations σdWt to (1.1) to obtain
the following system of stochastic differential equations (SDE system for short):

(1.2) dX = f(X)dt+ ǫσ(x)dWt, X ∈ R
n,

where Wt is the standard m-dimensional Brownian motion, ǫ is a small parameter lying in
an interval (0, ǫ∗), and σ, called an noise matrix, is an n×m matrix-valued, bounded, C1

function on R
n for some positive integer m ≥ n, such that σ(x)σ⊤(x) is everywhere non-

singular. We denote the collection of such noise matrices by Σ. Under certain dissipation
conditions, the SDE system (1.2) generates a diffusion process in R

n with well-defined
transition probability kernel, and moreover, if the transition probability kernel admits a
density function pt(ξ, x), then its time evolution u(x, t) =

∫

Rn p
t(z, x)ξ(z)dz satisfies the

Fokker-Planck equation (FPE for short):

(1.3)







∂u(x,t)
∂t = 1

2ǫ
2

n
∑

i,j=1
∂ij(aij(x)u(x)) −

∑n
i=1 ∂i(f(x)u(x)) := Lǫu(x),

∫

Rn u(x)dx = 1,
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2 Y. LI AND Y. YI

where (aij(x)) := A(x) := σ(x)σ⊤(x). Denote

Lǫ =
1

2
ǫ2

n
∑

i,j=1

aij(x)∂ij +

n
∑

i=1

fi(x)∂i

as the adjoint of Fokker-Planck operator. If u(x) is a weak stationary solution of (1.3),
i.e., u is a strictly positive, continuous function on R

n with
∫

Rn u(x)dx = 1 such that

(1.4)

∫

Rn

Lǫh(x)u(x)dx = 0, ∀h ∈ C∞
0 (Rn),

then the probability measure µǫ(dx) = u(x)dx is clearly a stationary measure of (1.3), i.e.,

(1.5)

∫

Rn

Lǫh(x)µǫ(dx) = 0, ∀h ∈ C∞
0 (Rn).

Conversely, it follows from the regularity theory of stationary measures [6] that any station-
ary measure of (1.3) must admit a density function which is necessarily a weak stationary
solution of (1.3). We remark that an invariant probability measure of the diffusion process
generated from SDE (1.2) must be a stationary measure of the FPE (1.3) and vice versa
under some conditions.

In Part I of the series, we have assumed the following conditions:

H0) System (1.1) is dissipative and there exists a strong Lyapunov function W (x) with
respect to an isolating neighborhood N of the global attractor A such that

W (x) ≥ L1dist
2(x,A), x ∈ N

for some L1 > 0.

H1) For each ǫ ∈ (0, ǫ∗), the Fokker-Planck equation (1.3) admits a unique stationary
probability measure µǫ such that for an isolating neighborhood N of A,

lim
ǫ→0

µǫ(R
n \ N )

ǫ2
= 0,

and moreover, there are constants p,R0 > 0 such that

µǫ({x : |x| > r}) ≤ e−
rp

ǫ2

for all r > R0 and all ǫ ∈ (0, ǫ∗).

The desired concentration in H1) can follow from various conditions, such as the existence
of a quasi-potential function or a suitable Lyapunov function. See Part I of the series and
Proposition 2.1 below for more information in this regard.

For each given ǫ ∈ (0, ǫ∗), the mutual information MI(X1;X2) among any two modules
(coordinate subspaces) X1,X2 can be defined using the margins µ1, µ2 of µǫ with respect
to X1,X2, respectively. Such mutual information can then be used to quantify degeneracy
and complexity. Inspired by [25], we will define the {ǫ, σ}-degeneracy and -complexity of
the evolutionary network (1.1) associated with σ as an averaged combinations of certain
mutual informations between different modules. Let {I,O} be a pair of coordinate sub-
spaces of the variable set R

n which decompose R
n, called an input-output pair. For any

0 ≤ k ≤ |I|, where |I| denotes the dimension of the input space I, the degeneracy Dǫ(Ik),
respectively complexity Cǫ(Ik), associated with the k-decomposition I = Ik ∪ Ick is defined
as

Dǫ(Ik) = MI(I; Ik;O) = MI(Ik;O) +MI(Ick;O)−MI(I;O),
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respectively
Cǫ(Ik) = MI(Ik; I

c
k) ,

where Ik is a k-dimension subspace of I spanned by k variables. The degeneracy Dǫ(O),
respectively complexity Cǫ(O), with respect to the input-output pair {I,O} is simply the
average of all Dǫ(Ik)’s, respectively all Cǫ(Ik)’s. The degeneracy, respectively complexity,
of the network (1.1) associated with σ, is then defined as Dσ = lim infǫ→0 supO Dǫ(O),
respectively Cσ = lim infǫ→0 supO Cǫ(O). We refer the readers to Section 3 for details.

Another systematic measure for the network (1.1) is the robustness, which will be defined
in Section 4 relevant to the strength of its global attractor, either in a uniform way or in
an average way. As suggested in [17, 18], the robustness is not always equivalent to the
stability. As to be seen in Section 4, if the performance function of the network (1.1) is
known, then one can also define its functional robustness.

Many simulations and experiments have already suggested that there are close con-
nections among degeneracy, complexity and robustness in a biological system (see e.g.
[7, 10, 24, 27, 28]). For the evolutionary network (1.1) and its noise perturbation (1.2),
we will rigorously show the following results under the conditions H0) and H1) :

1. With respect to a fixed σ ∈ Σ, high degeneracy always yields high complexity (The-
orem 5.1).

2. A robust system with non-degenerate attractor has positive degeneracy with respect
to any σ ∈ Σ (Theorem 5.2).

3. A robust system with stable equilibrium has positive degeneracy with respect to any
σ ∈ Σ under certain algebraic conditions (Theorem 5.4).

As in [10] for neural systems, results above are useful in characterizing degenerate
biological networks in connection with their system complexities. This series of papers
serves as a mathematical supplement of [20]. We refer readers to [20] for degeneracy,
complexity, and robustness in biological models and discussions in this regard. Examples
in [20] include a signaling pathway network and a population model.

The paper is organized as follows. Section 2 is a preliminary section. Section 3 defines
degeneracy and complexity. The robustness is investigated in Section 4. Finally, the
connection between degeneracy, complexity and robustness are proved in Section 5.

2. Preliminary

2.1. Existence and concentration of stationary measures. It was shown in Part I
of the series [21] that the condition H1) is implied by H0) together with the following
condition:

H2) There is a positive function U ∈ C2(Rn \ A) satisfying the following properties:
i) lim|x|→∞U(x) = ∞;
ii) There exists a constant ρm > 0 such that U is a uniform Lyapunov function

of the family (1.3) of class B∗ in N∞ =: Rn \Ωρm(U), i.e., there is a constant
γ > 0 independent of ǫ such that

LǫU(x) < −γ, x ∈ N∞
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for all ǫ ∈ (0, ǫ∗), and moreover, there is a function H(ρ) ∈ L1
loc([ρm,∞)) and

constants p > 0, R > ρm such that

H(ρ) ≥ |∇U(x)|2, x ∈ Γρ(U),
∫ ρ

ρm

1

H(s)
ds ≥ |x|p, x ∈ Γρ(U)

for all ρ > R;
iii) There exists a constant ρ̄m ∈ (0, ρm) such that U is a uniform weak Lyapunov

function of the family (1.3) in N∗ =: Rn \ N∞ \Ωρ̄m(U), i.e.,

LǫU(x) ≤ 0, x ∈ N∗

for all ǫ ∈ (0, ǫ∗);
iv) ∇U(x) 6= 0, x ∈ R

n \ Ωρ̄m(U);
v) Ωρ̄m(U) ⊂ N .

In the above, Lǫ, ǫ ∈ (0, ǫ∗), is the adjoint Fokker-Planck operator and Γρ,
Ωρ(U) denote the ρ-level set, ρ-sublevel set of U for each ρ > 0 respectively.

In summary, we have the following result.

Proposition 2.1. (Corollary 3.1, [21] ) Conditions H0), H2) imply H1).

Theorem 2.1. (Theorem 3.1, [21]) If both H0) and H1) hold, then for any 0 < δ ≪ 1
there exist constants ǫ0,M > 0 such that

µǫ(B(A,Mǫ)) ≥ 1− δ,

whenever ǫ ∈ (0, ǫ0).

Theorem 2.2. (Theorem 3.3, [21]) Let

V (ǫ) =

∫

Rn

dist2(x,A)µǫ(dx) .

If both H0) and H1) hold, then there are constants V1, V2, ǫ0 > 0 such that

V2ǫ
2 ≤ V (ǫ) ≤ V1(ǫ) , ǫ ∈ (0, ǫ0) .

Let µ be the probability measure with density u, define the differential entropy by

H(µ) = −
∫

Rn

u(x) log u(x)dx .

Theorem 2.3. (Theorem 4.1, [21]) Assume that H0) and H1) hold. If A is a regular
set, then

(2.1) lim inf
ǫ→0

H(µǫ)

log ǫ
≥ n− d ,

where d is the Minkowski dimension of A. If in addition the family {µǫ} is regular with
respect to A, then the equality holds in (2.1).

For the definition of regular sets and measures, see Section 2.3 for the detail.
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2.2. Tightness. For a Borel set Ω ⊂ R
n, let M(Ω) denote the set of Borel probability

measures on Ω furnished with the weak∗-topology, i.e., µk → µ iff
∫

Ω
f(x)dµk(x) →

∫

Ω
f(x)dµ(x),

for every f ∈ Cb(Ω). A subset M ⊂ M(Ω) is said to be tight if for any ǫ > 0 there exists
a compact subset Kǫ ⊂ Ω such that µ(Ω \Kǫ) < ǫ for all µ ∈ M.

Theorem 2.4. (Prokhorov’s Theorem, [9]) If a subset M ⊂ M(Ω) is tight, then it is
relatively sequentially compact in M(Ω).

2.3. Regularity of sets and measures. A set A ⊂ R
n is called a regular set if

lim sup
r→0

logm(B(A, r))

− log r
= lim inf

r→0

logm(B(A, r))

− log r
= n− d

for some d ≥ 0. Hereafter, m(·) denotes the Lebesgue measure on R
n. It is easy to check

that d is the Minkowski dimension of A. Regular sets form a large class that includes
smooth manifolds and some fractal sets like Cantor sets. However, not all measurable sets
are regular.

Assume that (1.1) admits a global attractor A and the Fokker-Planck equation (1.3)
admits a stationary probability measure µǫ for each ǫ ∈ (0, ǫ∗). The family {µǫ} of
stationary probability measures is said to be regular with respect to A if for any δ > 0 there
are constants K, C and a family of approximate funtions uK,ǫ supported on B(A,Kǫ) such
that for all ǫ ∈ (0, ǫ∗),

a)

(2.2) inf
B(A,Kǫ)

(uK,ǫ(x)) ≥ C sup
B(A,Kǫ)

(uK,ǫ(x)) ;

and
b)

‖uǫ(x)− uK,ǫ(x)‖L1 ≤ δ ,

where uǫ is the density function of µǫ.

Part I [21] gives several examples of regular family µǫ with respect to A. We conjecture
that the family µǫ is regular with respect to A for a much larger class of systems. Details
will be given in our future work.

2.4. 2-Wasserstein metric. Originally introduced in the study of optimal transportation
problems, the 2-Wasserstein metric is a distance function for probability distributions on
a given metric space. Let P(Rn) be the set of probability measures on R

n with finite
second moment. The 2-Wasserstein distance W(µ, ν) between two probability measures
µ, ν ∈ P(Rn) is defined by

W2(µ, ν) = inf
r∈P(µ,ν)

∫

Rn×Rn

|x− y|2dr,

where P(µ, ν) is the set of all probability measures on the space Rn×R
n with marginal µ

and ν. Intuitively, W(µ, ν) measures the minimum “cost” of turning measure µ to measure
ν. The topology on P(Rn) defined by the 2-Wasserstein metric is essentially the same as
the weak∗ topology on P(Rn).
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Theorem 2.5. (Theorem 7.1.5, [1]) For a given sequence {µn} ⊂ P(X),
limn→∞W(µn, µ) = 0 if and only if µn → µ under the weak∗ topology and second moments
of {µn} are uniformly bounded.

Given µ, ν ∈ P(Rn), a measure r on P(Rn × R
n) is called the optimal measure if

r ∈ P(µ, ν) and

W2(µ, ν) =

∫

Rn×Rn

|x− y|2dr.

The set of optimal measures with respect to µ, ν ∈ P(Rn) is denoted by P0(µ, ν).
The variational problem in finding the optimal measure is called the Kantorovich prob-

lem, which, under certain regularity conditions, is equivalent to the so-called Monge prob-
lem of finding a measurable map T : Rn → R

n, called a transport map, such that

W2(µ, ν) = inf
T♯µ=ν

∫

Rn

|x− T (x)|2dx ,

where T♯µ standards for the push-forward map.

Theorem 2.6. (Theorem 6.2.4, [1]) Suppose that µ, ν ∈ P(Rn) with µ being Borel regular
and

µ({x ∈ R
n :

∫

Rn

|x− y|2ν(dy) < ∞}) > 0,

ν({x ∈ R
n :

∫

Rn

|x− y|2µ(dy) < ∞}) > 0.

Then there exists a unique optimal measure r, and moreover,

r = (i× T )♯µ

for some transport map T with T♯µ = ν, where i is the identity map on R
n.

2.5. Estimates of differential entropy. Let uǫ(x) be the probability density function
of µǫ.

Lemma 2.1. (Lemma 4.1, [21]) Let l > 0 be a constant independent of ǫ. If H1) holds,
then there exist positive constants ǫ0, R0 such that

∫

|x|>R0

uǫ(x) log uǫ(x) ≥ −ǫl, ǫ ∈ (0, ǫ0) .

Lemma 2.2. (Lemma 4.2, [21]) Let v(x) be a probability density function on R
n. Let Ω

be a Lebesgue measurable compact set. Then there is a constant δ0 > 0 such that for each
δ ∈ (0, δ0), if

∫

Ω
v(x)dx ≤ δ ,

then
∫

Ω
v(x) log v(x)dx ≥ −2

√
δ.

Lemma 2.3. (Lemma 4.3, [21]) If H1) holds, then there is a constant ǫ0 > 0 such that

uǫ(x) ≤ ǫ−(2n+1) whenever x ∈ R
n and ǫ ∈ (0, ǫ0).

In addition, there are positive constants R0 and p such that

uǫ(x) ≤ e−|x|p/2ǫ2

for any |x| > R0 and ǫ ∈ (0, ǫ0).
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3. Degeneracy and complexity

In this section, we give quantitative definitions of degeneracy and complexity for a bio-
logical network modeled by a system of ordinary differential equations. Some fundamental
properties of these quantities will be investigated.

3.1. Quantifying degeneracy and complexity. We first define degeneracy and com-
plexity for a SDE system (1.2) with respect to a fixed ǫ and a fixed noise matrix σ. Let ǫ
and σ be fixed in (1.2) and assume that the corresponding Fokker-Planck equation (1.3)
admits a unique stationary measure µ = µǫ,σ. It follows from the regularity theorem in
[6] that µ admits a density function which we denote by u(x), x ∈ Rn.

Let I be a coordinate subspace, i.e., a subspace of Rn spanned by some of the standard
unit vectors {e1, · · · , en}. Denote J as the orthogonal complement of I. If x1, x2 denote
the coordinates of I, J respectively, then the marginal distribution with respect to I reads

uI(x1) =

∫

J
u(x1, x2)dx2,

and we can define the projected entropy on I by

H(I) = −
∫

I
uI(x1) log uI(x1)dx1,

which roughly measures the uncertainty (amount of information) of the I-component of
the random variable generated by (1.2).

For any two such coordinate subspaces I1, I2, since H(I1 ⊕ I2) = H(I2 ⊕ I1), we can
define this quantity as the joint entropy between I1 and I2, denoted in short by H(I1, I2).
The mutual information among subspaces I1, I2 is defined by

M(I1; I2) = H(I1) +H(I2)−H(I1, I2).

It is easy to see that

(3.1) MI(I1; I2) =

∫

I1⊕I2

uI1,I2(x1, x2) log
uI1,I2(x1, x2)

uI1(x1)uI2(x2)
dx1dx2 .

Statistically, the mutual information (3.1) measures the correlation between marginal dis-
tributions with respect to subspaces I1 and I2.

Now let O be a fixed coordinate subspace of Rn, viewed as an output set, and I be the
orthogonal complement of O, viewed as the input set. To measure the noise impacts on all
possible components of the input set, we consider an arbitrary k-dimensional coordinate
subspace Ik of I and denote its orthogonal complement in I by Ick. The multivariate
mutual information, or the interacting information among Ik, I

c
k and O is defined by

(3.2) MI(Ik; I
c
k;O) := MI(Ik;O) +MI(Ick;O)−MI(I;O) .

Note that if k = 0, we have MI(Ik; I
c
k;O) = 0. We refer readers to [29] for further

properties of the multivariate mutual information.
Similar to the case of neural systems studied in [25], we define the degeneracy associated

with O by averaging all the multivariate mutual information among all possible coordinate
subspaces of I, i.e.,

(3.3) D(O) = 〈MI(Ik; I
c
k,O)〉 :=

∑

0≤k≤|I|

1

2
(|I|
k

)
max{MI(Ik; I

c
k;O), 0} .
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Similarly, the complexity C(O) associated with O is defined by averaging all the mutual
information between Ik and Ick, i.e.,

(3.4) C(O) = 〈MI(Ik; I
c
k)〉 =

∑

0≤k≤|I|

1

2
(|I|
k

)
MI(Ik; I

c
k).

For a biological network, the complexity measures how much the co-dependency in a
network appears among different modules rather than different elements.

However, differing from the case of neural system, output sets in an (evolutionary)
biological network modeled by a system of ODEs are varying. This motivates the following
definition.

Definition 3.1. 1) For fixed diffusion matrix σ and ǫ > 0, the {σ, ǫ}-degeneracy Dǫ,σ and
{σ, ǫ}-complexity Cǫ,σ of the system (1.1) are defined by

Dǫ,σ = max
O

D(O),

Cǫ,σ = max
O

C(O).

2) For fixed diffusion matrix σ, the σ-degeneracy Dσ and (structural) σ-complexity Cσ
of the system (1.1) are defined by

Dσ = lim inf
ǫ→0

Dǫ,σ,

Cσ = lim inf
ǫ→0

Cǫ,σ.

3) The degeneracy D and the (structural) complexity C of system (1.1) are defined by

D = sup
‖σ‖=1

Dσ,

C = sup
‖σ‖=1

Cσ.

4) We call a differential system (1.1) σ-degenerate (resp. σ-complex) with respect to
a perturbation matrix σ if there exists ǫ0, such that Dǫ,σ > 0 (resp. Cǫ,σ > 0) for all
0 < ǫ < ǫ0. The system (1.1) is said to be degenerate (resp. complex) if D > 0 (resp.
C > 0).

Remark 3.1. 1) A common output set is necessary to quantify the degeneracy. Inspired
by [25], we use multivariate information to measure how much more correlation the inputs
Ik and Ick share with output O than expected. Biologically, the multivariate mutual
information MK(Ik, I

c
k,O) measures how much Ik and Ick are structurally different but

perform the same function at the output set O. Similarly, by taking the average over all
possible decomposition of the input set, D(O) measures the ability of structurally different
components in a network performing similar function on designated output set.

2) The purpose of injecting external fluctuation is to detect interactions among the net-
work. When the injected noise at distinct directions are not independent, the measured
interactions (degeneracy) may be polluted by the correlations among the external fluc-
tuations. See Remark 5.1 for further discussion. Hence in application, we usually adopt
additive white noise, i.e., let σ = Id and study DId.

3) In biological applications, one can estimate the degeneracy (in various meanings
above) by selecting suitable output space as the natural space containing “observable”
elements (see [25] for an example of a signaling network).
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4) We remark that degeneracy and complexity depends on the choice of coordinate
systems. Both degeneracy and complexity measure the statistical dependence between
modules of networks. This statistical dependence is determined by both dynamics of
underlying equations and the choice of observables. A change of coordinates means a
change of the observables, which may affect the statistical dependence between modules
of observables. For example random variables X1 +X2 and X1 −X2 may have a strictly
positive mutual information even if X1 and X2 are independent. In application, we usually
use the natural coordinates which is generated by nodes of networks.

3.2. Persistence of degeneracy and complexity. The following lemma gives bounds
of projected density function.

Lemma 3.2. Assume H1) holds and let uI be the projected density function onto a co-
ordinate subspace I. Then there exist positive numbers ǫ0, p and R, such that for any

ǫ ∈ (0, ǫ0), uI(x1) < e−|x1|p/2ǫ2 when |x1| > R and uI(x1) < ǫ−(2n+2) when |x1| ≤ R.

Proof. Since uI is the projection of u, uI has the same tail as u. More precisely, it follows
from H1) that there are constants p0, R0 > 0 such that

∫

I\B(0,r)
uI(x1)dx1 < e−|r|p0/ǫ2

for all r > R0 and all ǫ ∈ (0, ǫ∗). By Lemma 2.3, there exist positive numbers ǫ1, p and

R, such that uI(x1) < e−|x1|p/2ǫ2 as |x1| > R, for all ǫ ∈ (0, ǫ1), where R = R0 + 1.

Using Lemma 2.3 one can make ǫ sufficiently small such that u(x) < ǫ−(2n+1) for all
x ∈ B(0, R). Then it is easy to see from the definition of uI that

uI(x1) ≤ C(R)ǫ−(2n+1) +

∫

J
e−|x2|p/2ǫ2dx2

for all |x1| ≤ R, where C(R) is the volume of ball with radius R in J . Hence for sufficient

small ǫ uI(x1) is smaller than ǫ−(2n+2) as |x1| ≤ R.
�

We now give the result below concerning the persistence of degeneracy and complexity.

Theorem 3.1. Let fl, l ≥ 1 be a sequence of drift fields such that fl → f uniformly in
C2 norm. For any fixed 0 < ǫ ≪ 1, denote the ǫ, σ-degeneracy with respect to (1.2) with
drift fields fl and f by Dl

ǫ,σ and Dǫ,σ respectively. If condition H1) is uniformly satisfied
by equations (1.3) with drift fields {fl}l≥1 and f , then

lim
l→∞

Dl
ǫ,σ = Dǫ,σ.

Proof. Denote the stationary probability measure of equation (1.3) with drift fields {fl}
and f by µl and µ respectively. Denote ul and u as the corresponding density functions.

Since H1) is uniformly satisfied, it is easy to see that the sequence {µl} is tight. By
Theorem 2.4, {µn} is sequentially compact in the space of probability measures on R

n

equipped with the weak-* topology. We note that each µl satisfies

(3.5)

∫

Rn

Lǫh(x)µl(dx) = 0, ∀h ∈ C∞
0 (Rn).

Let µ∗ be a limit point of {µl} and {µlk} be a subsequence of {µl} that converges to µ∗

weakly. Since {fl} are uniformly bounded and h ∈ C∞
0 (Rn), applying the dominated con-

vergence theorem to (3.5) shows that µ∗ is the stationary probability measure of (1.3). It
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follows from the uniqueness of stationary probability measure that µ = µ∗. Consequently,
µl converges to µ weakly as l → ∞. It follows that ul → u, as l → ∞, pointwise in R

n.
By Lemma 2.3, one can make ǫ sufficiently small such that both u(x) and un(x) are

bounded from above by

M(x) =

{

ǫ−(2n+1), if|x| < R∗;

e−|x|p∗/2ǫ2 , if|x| ≥ R∗,

where R∗ and p∗ are constants in A∗). Since |x log x| is increasing on both intervals
(0, e−1) and (1,+∞), it is easy to see that |u(x) log u(x)| ≤ |M(x) logM(x)| + M(x),
|ul(x) log ul(x)| ≤ |M(x) logM(x)| and

∫

Rn

(|M(x) logM(x)|+M(x)) dx < ∞ .

Hence the dominated convergence theorem yields that

lim
l→∞

∫

Rn

ul(x) log ul(x)dx =

∫

Rn

u(x) log u(x)dx .

For any coordinate subspace I of Rn, a similar argument and Lemma 3.3 shows that

lim
l→∞

∫

I
(ul)I(x1) log(ul)I(x1)dx1 =

∫

I
uI(x1) log uI(x1)dx1 .

The theorem now follows easily from the definitions of Dl
ǫ,σ and Dǫ,σ. �

Theorem 3.1 only holds for fixed ǫ and σ. We will see in Section 5 that even for fixed
σ, the continuous dependence of σ-degeneracy on f will require additional conditions.

4. Robustness

In this section, we introduce and discuss various notions of robustness for a global
attractor of an ODE system from different perspectives, which can be used as useful
systematic measures of a biological network. These notions will be introduced to measure
the strength of attraction of the global attractor because a stronger attractor tends to
have a better ability to remain stable under noise perturbations.

4.1. Uniform Robustness. Uniform robustness describes the uniform attracting strength
of the global attractor A of system (1.1).

Assume that A is a strong attractor, i.e., there is a neighborhood N of A, called an
isolating neighborhood, a smooth function U on N , called a strong Lyapunov function, and
a constant γ0 > 0, called Lyapunov function, such that ∇U(x) 6= 0, x ∈ N \ A, and

f(x) · ∇U(x) ≤ −γ0|∇U(x)|2, x ∈ N \ A.

Any nonnegative constant α such that

∇U(x)

|∇U(x)| · f(x) ≤ −αdist(x,A), ∀ x ∈ N

is called an index of A associated with U or simply an index of A (note that α depends
on both choices of N and U).

Definition 4.1. For a strong attractor A with index α, the uniform robustness of the
strong attractor A is the following quantity

Ru = sup{α : α is an index of A}.
The system (1.1) is said to be robust if A is a strong attractor and Ru > 0.
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Proposition 4.1. If H0) holds, then the system (1.1) is robust.

Proof. The proposition follows easily from H0) and the definitions of strong attractor and
robustness.

�

4.2. 2-Wasserstein Robustness. Let P(Rn) denote the space of probability measures
on R

n, endowed with the 2-Wasserstein metric dw. In the case of weak∗ convergence of µǫ,
as ǫ → 0, the 2-Wasserstein distance between µǫ and its limit measures certain averaged
persistence property of A under the stochastic perturbations. We note from [16] that the
limit of µǫ must be an invariant measure of (1.1) supported on A.

Definition 4.2. The 2-Wasserstein robustness (or average robustness) Rw of (1.1) w.r.t.
σ is defined as the reciprocal of metric derivative, i.e.,

Rw = inf
µ0∈M,ǫn→0

{

lim
n→∞

ǫn
W(µǫn , µ0)

: µǫn → µ0 weakly as ǫn → 0

}

,

where M is the set of sequential limit point of {µǫ} as ǫ → 0. The system (1.1) is said to
be robust in the 2-Wasserstein sense w.r.t. σ if Rw > 0.

Roughly speaking, 2-Wasserstein robustness gives the first order expansion of µǫ in
terms of ǫ in the 2-Wasserstein metric spaces.

Theorem 4.1. If H0) and H1) hold, then Rw is finite.

Proof. Without loss of generality, we assume that Rw > 0. Then µǫ converges to an
invariant measure µ0 of (1.1), and it follows from [16] that supp(µ0) ⊂ A. Hence µǫ and
µ0 satisfy conditions of Theorem 2.6.

By Theorem 2.6, W2(µǫ, µ0) solves the following Monge problem

W2(µǫ, µ0) = inf
T♯µǫ=µ0

∫

Rn

|x− T (x)|2dx .

Since µ0 is supported in A, T (x) ∈ A whenever T♯µǫ = µ0. Therefore

|x− T (x)|2 ≥ dist2(x,A)

for any map T : Rn → R
n that satisfies T♯µǫ = µ0. It follows that

(4.1) W2(µǫ, µ0) ≥
∫

Rn

dist2(x,A)µǫ(dx) .

By Theorem 2.2, there are positive constants V2 and ǫ0 such that
∫

Rn

dist2(x,A)µǫ(dx) ≥ V2ǫ
2

for all ǫ ∈ (0, ǫ0). Thus as ǫ approaches zero, the mean square displacement is bounded
from below by V1ǫ

2. Hence Rw is finite by definition. �
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4.3. Functional Robustness. The robustness of a biological system is not completely
equivalent to the stochastic stability. When a complex system deviates from its steady-
state due to external perturbation or disfunctions of some components, it is possible that
the performance of system remains normal. According to [17, 18], such a property can be
evaluated by a performance function.

Definition 4.3. The performance function p(x) of system (1.2) is a continuous function
on R

n such that

a) p(x) = 1, ∀x ∈ A;
b) 0 < p(x) < 1, x /∈ A .

Following Kitano [18], one can define the functional ǫ-robustness Rf (ǫ) w.r.t. σ as

Rf (ǫ) =

∫

Rn

uǫ(x)p(x)dx,

where uǫ(x) is the stationary solution of (1.3).

Remark 4.1. As ǫ → 0, Rf (ǫ) approaches to 1 for any continuous performance function. It
is the rate of convergence of Rf (ǫ) to 1 together with the choice of the performance function
that reveals the robustness of system (1.2). For instance, if system (1.2) has strictly
positive uniform robustness or 2-Wasserstein robustness, the lower bound of functional
robustness can be estimated.

Proposition 4.2. Assume Rw > 0 and p(x) is twice differentiable, then there exist positive
constants ǫ0 and C such that

Rf (ǫ) ≥ 1− Cǫ2

for all ǫ ∈ (0, ǫ0).

Proof. It follow from the definition of Rw that there exists ǫ1 > 0 such that

W2(µǫ, µ0) <
2ǫ2

R2
w

for all 0 < ǫ < ǫ1. Hence by (4.1),
∫

Rn

dist2(x,A)µǫ(dx) ≤
2ǫ2

R2
:= V2ǫ

2,

for all 0 < ǫ < ǫ1.
Since p(x) is twice differentiable, there exists an open neighborhood N of A and a

positive constant M such that p(x) ≥ 1−Mdist2(x,A) for all x ∈ N . Hence
∫

Rn

u(x)p(x)dx =

∫

N
u(x)p(x)dx+

∫

Rn\N
u(x)p(x)dx := I1 + I2 .

Let d = infx∈∂N dist(x,A). Then

1− µǫ(N ) =

∫

Rn\N
dµ ≤ 1

d2

∫

Rn\N
dist(x,A)2dµǫ ≤

V2

d2
ǫ2 .
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It follows that

I1 ≥ µǫ(N )−M

∫

N
u(x)dist2(x,A)dx

= 1−M

∫

N
u(x)dist2(x,A)dx− (1− µǫ(N ))

≥ 1− V2Mǫ2 − V2

d2
ǫ2 .

Since I2 ≥ 0, the proof is complete by letting C = V2M + V2

d2 and ǫ0 = ǫ1. �

Proposition 4.3. Assume that H0) and H1) hold, Ru > 0 and p(x) is twice differentiable.
Then there exist positive constants ǫ0, C such that

Rf (ǫ) ≥ 1− Cǫ2

for all ǫ ∈ (0, ǫ0).

Proof. It follows from Theorem 2.2 that there exists ǫ0 > 0 such that
∫

Rn

dist2(x,A)µǫ(dx) ≤ V2ǫ
2

for all ǫ ∈ (0, ǫ0). The rest of the proof is identical to that of Proposition 4.2. �

Remark 4.2. We note that functional robustness does not imply uniform robustness or
2-Wasserstein robustness. This is obvious by letting p(x) = 1.

4.4. Robustness of simple systems. In the case that A is a singleton, an explicit
formula for the 2-Wasserstein robustness of (1.1) w.r.t. any σ can be obtained.

Proposition 4.4. Assume that H1) holds and A = {x0}. If all eigenvalues of Df(x0)
have negative real parts, then

Rw =

√
2

√

Tr(S−1)

where S solves the Lyapunov equation

S(Df(x0))
⊤ +Df(x0)S

⊤ +A(x0) = 0 .

Proof. According to the WKB expansion (see [8, 22]), there exists a quasi-potential func-
tion V (x) and a C1 continuous function w(x) with w(x0) = 1 such that the density function
uǫ(x) of µǫ has the form

u(x) =
1

K
e−V (x)/ǫ2w(x) + o(ǫ2) .

Moreover, it follows from [8] that V (x) is of the class C3 in a neighborhood N1 of x0,
and the Hessian matrix of V (x) at x0 equals S−1/2. By [15], S is a symmetric, positive
definite matrix.

Since µǫ → δ(x0) weakly, it follows from Theorem 2.6 that

W2(µǫ, δ(0)) =

∫

Rn

|x− x0|2uǫ(x)dx .

Denote N = B(x0, ǫ
0.9) - the ǫ0.9-neighborhood of x0. Let ǫ0 > 0 be small enough such

that N ⊂ N ∩N1 for all 0 < ǫ < ǫ0, where N is as in H1). Since w(x) is continuous, we
have w(x) = 1 +O(ǫ0.9), x ∈ N , 0 < ǫ < ǫ0.
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Let u be the density function of µǫ and

u0 =
1

K0
e−(x−x0)⊤S−1(x−x0)/2ǫ2 ,

where K0 is the normalizer.
Then it is easy to check that the followings hold for all x ∈ N and 0 < ǫ < ǫ0:

1

ǫ2
|V (x)− 1

2
(x− x0)

⊤S(x− x0)| ∼ O(ǫ0.7) ;

w(x) = 1 +O(ǫ0.9);

1− µǫ(N) ∼ o(ǫ2);
∫

Rn\N
u0(x)dx ∼ o(ǫ2) .

It follows from a straightforward calculation that | KK0
− 1| ∼ O(ǫ0.7). Thus,

|uǫ(x)
u0(x)

− 1| ∼ O(ǫ0.7)

for all x ∈ N , and consequently,

|
∫

N
|x− x0|2uǫ(x)dx−

∫

N
|x− x0|2u0(x)dx| ∼ O(ǫ2.5) .

Since
∫

Rn\N
|x− x0|2u(x)dx ∼ o(ǫ2),

∫

Rn\N
|x− x0|2u0(x)dx ∼ o(ǫ2),

we have
∫

Rn

|x− x0|2uǫ(x)dx =

∫

1

K0
|x|2e−x⊤S−1x/2ǫ2dx+ o(ǫ2)

for any ǫ ∈ (0, ǫ0). The rest of the proof follows from the definition of Rw and direct
calculations. �

5. Connections among Degeneracy, complexity and robustness

It has been observed in neural systems that a higher degeneracy is always accompanied
by a high complexity [7, 10, 25, 26]. We will show in this section that this is also the case
for a biological network described by ODE system with respect to a fixed noise matrix σ.

Unlike the connections between degeneracy and complexity, robustness of system (1.1)
alone does not necessarily imply its degeneracy or complexity with respect to a given noise
perturbation σ. As a simple example, the completely decoupled linear system x′i = −xi,
i = 1, 2, · · · , n, has zero complexity hence zero degeneracy with respect to σ(x) ≡ Id
according to Theorem 5.1, but it is uniformly robust. In this section, we will exam two
special cases of (1.1) under either geometric or dynamical condition of its global attractor
A for which degeneracy is actually accompanied by high robustness. This agrees with
the cases of neural systems that robustness can arise from a variety of sources; while
degeneracy is only one of them [26].
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5.1. Degeneracy implies Complexity. Through this subsection, we let σ be a fixed
noise matrix.

Lemma 5.1. With respect to any probability density function on R
n and a given decom-

position R
n = Ik ⊕ Ick ⊕O, we have

(5.1) MI(Ik; I
c
k;O) ≤ min{MI(Ik; I

c
k),MI(Ick;O),MI(Ik;O)}.

Proof. It is sufficient to prove that for any three random variables X,Y,Z with joint
probability density function P (x, y, z),

MI(X;Y ;Z) ≤ min{MI(X;Y ),MI(Y ;Z),MI(X;Z)} .
It follows from the definition of mutual information that

MI(X;Y ;Z) = H(X) +H(Y ) +H(Z)−H(X,Y )−H(Y,Z)

−H(X,Z) +H(X,Y,Z)

= H(X) +H(Y )−H(X,Y )

−(H(X,Z) +H(Y,Z)−H(Z)−H(X,Y,Z))

= MI(X;Y )−MI(X;Y |Z) ,

where the latter term MI(X;Y |Z) is the conditional mutual information. Thus it is
sufficient to prove that MI(X;Y |Z) ≥ 0.

The nonnegativity of conditional mutual information is a direct corollary of Kullback’s
inequality [19]. For the sake of completeness, we borrow the following proof from [29].
Let P (x, y, z) be the joint probability density function. The marginal probability den-
sity functions and conditional probability functions are denoted by P (x), P (y), · · · and
P (x, y | z), P (x | y, z), · · · respectively. Then

MI(X;Y |Z) =

∫

P (x, y, z) [logP (x, y, z) + logP (z) − logP (x, z)

− log P (y, z)] dxdydz

=

∫

P (x, y, z) log

{

P (x, y, z)/P (z)

P (x, z)/P (z) · P (y, z)/P (z)

}

dxdydz

=

∫

P (x, y, z) log
P (x, y|z)

P (x|z)P (y|z)dxdydz

=

∫

P (z)

{
∫

P (x, y|z) log P (x, y|z)
P (x|z)P (y|z)dxdy

}

dz .

¿From Kullback’s inequality [19], for any z there holds
∫

P (x, y|z) log P (x, y|z)
P (x|z)P (y|z)dxdy ≥ 0 .

Inequalities MI(X;Y ;Z) ≤ MI(X;Z) and MI(X;Y ;Z) ≤ MI(Y ;Z) can be proved
analogously. This leads to the inequality (5.1). �

Theorem 5.1. The complexity of a system is no less than its degeneracy.

Proof. Fix ǫ > 0 and noise matrix σ. Let O be the coordinate subspace of Rn as before.
Let {Ik, Ick,O} be any decomposition of coordinate subspaces as described in Section 3.1.
Then by Lemma 5.1,

MI(Ik; I
c
k;O) ≤ MI(Ik; I

c
k) .
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Since mutual information MI(Ik; I
c
k) is nonnegative, max{MI(I, Ick;O), 0} ≤ MI(I; Ick).

Comparing equation (3.3) with (3.4), one obtains

C(O) ≥ D(O).

By taking the supreme over all the subspace O, it is easy to see that Dǫ,σ ≤ Cǫ,σ. The
proof is completed by taking the limit infimum over ǫ > 0 and taking the supreme over σ
with respect to unit norm. �

5.2. Robust systems with non-degenerate global attractor. For a system to have
positive degeneracy, the system must be complex. Geometrically such structural complex-
ity often gives rise to some kind of embedding complexity of the global attractor into the
phase space. Roughly speaking, the components of a complex system interact strongly
with one another and as a result, the global attractor is non-degenerate in the phase space
such that it does not lay in any coordinate subspace. To characterize the non-degenerate
property of the global attractor, it is natural to consider its projections on certain coor-
dinate subspace and measure the dimensions of the corresponding projections. We note
that the attractor as well as its projections may only be fractal sets, hence they should be
measured with respect to the Minkowski dimension, also called box counting dimension
[23].

For any coordinate subspace V of Rn, we denote by dV the co-dimension of A in V, i.e.,
the dimension of V subtracts the Minkowski dimension of the projection of A to V.

Definition 5.2. The global attractor A is said to be non-degenerate if A is a regular set
and there is a coordinate decomposition R

n = I ⊕ J ⊕O such that

dI + dJ + dO + dRn < dI⊕J + dI⊕O + dJ⊕O.

A sufficient condition for a set to be non-degenerate is that the dimension of the set
does not decrease after projecting it onto coordinate subspaces. The following proposition
follows from some straightforward calculation.

Proposition 5.1. Let PV be the projection operator onto a subspace V of Rn. If a regular
set A with strictly positive dimension satisfies dim(PVA) = dim(A) for V = I, J , and O,
then A is degenerate.

Proof. Since all projections do not change the dimension of A, we have

dI + dJ + dO + dRn

= (dim(I)− dim(A)) + (dim(J)− dim(A)) + (dim(O)− dim(A)) + n− dim(A)

< (dim(I)− dim(A)) + (dim(J)− dim(A)) + (dim(O)− dim(A))

+dim(I) + dim(J) + dim(O)

= dI⊕J + dI⊕O + dJ⊕O .

�

The following theorem says that geometric complexity of the global attractor of a system
can imply its degeneracy.

Theorem 5.2. (Non-degenerate Attractor) Assume that both H0) and H1) hold. If the
global attractor A is non-degenerate and each µǫ is regular with respect to A, then there
exists an ǫ0 > 0, such that Dǫ,σ > 0 for all ǫ ∈ (0, ǫ0).
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Proof. Since each µǫ is regular, we have by Theorem 2.3 that

lim
ǫ→0

H(µǫ)

log ǫ
= n− d .

Let I be a coordinate subspace of Rn and P be the projection operator onto I. For
simplicity, we suspend the ǫ-dependency and let u(x) be the density function of µǫ for
fixed ǫ. Denote uI = Pu as the marginal distribution of u(x) on I. We first show that all
marginal distribution uI satisfy the entropy-dimension identity.

For a fixed δ > 0, it follows from the definition of a regular invariant measure with
respect to A that there exist K < ∞, ǫ1 > 0 and a family of approximate functions uK,ǫ

supported on B(A,Kǫ) such that for all ǫ ∈ (0, ǫ1), the L1 error between uK,ǫ and u is
smaller than δ.

Let u2 = u−uK,ǫ, ū1 = PuK,ǫ and ū2 = Pu2. Then the projected entropy on I satisfies
∫

I
uI(x) log uI(x)dx =

∫

I
(ū1(x1) + ū2(x1)) log(ū1(x1) + ū2(x1))dx1.

Therefore,

H(I) = H(Pu) =

∫

I
(ū1(x1) + ū2(x1)) log(ū1(x1) + ū2(x1))dx1

=

∫

I
(ū1(x1) + ū2(x1))

[

log ū1(x1) + log(1 +
ū2(x1)

ū1(x1)
)

]

dx1

≥
∫

I
(ū1(x1) + ū2(x1))

[

log ū1(x1) +
ū2(x1)/ū1(x1)

1 + ū2(x1)/ū1(x1)

]

dx1

≥
∫

I
ū1(x1) log ū1(x1)dx1 −

∫

I
|ū2(x1)|(1 + | log ū1(x1)|)dx1 := I1 − I2 .

Furthermore, it follows from the convexity of x log x that

H(I) = H(Pu) =

∫

I
(ū1(x1) + ū2(x1)) log(ū1(x1) + ū2(x1))dx1

≤
∫

I
(ū1(x1) + |ū2(x1)|) log(ū1(x1) + |ū2(x1)|)dx1 + 2

∫

I
|ū2(x1)|| log(ū1(x1) + |ū2(x1)|)|dx1

≤ 2

∫

I

ū1(x1) + |ū2(x1)|
2

log(
ū1(x1) + |ū2(x1)|

2
)dx1 + 2

∫

I
|ū2(x1)|| log(ū1(x1) + |ū2(x1)|)|dx1

+ log 2

≤
∫

I
ū1(x1) log ū1(x1)dx1 +

∫

I
|ū2(x1)| [log |ū2(x1)|+ | log(ū1(x1) + |ū2(x1)|)|] dx1 + log 2

:= I1 + I3 + log 2 .

To estimate I1, we note from Section 2.3 the definition of regular set and stationary
measure that there are constants C1, C2 independent of ǫ such that

(1− δ)dI(− log ǫ)− C1 ≤ I1 ≤ dI(− log ǫ) + C2.

To estimate I2, we note that
∫

I
|ū2|(x)dx =

∫

Rn

|u2|(x)dx < δ
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and from Lemma 3.3 that |ū2(x)| < ǫ−(2n+2). Thus I2 ≤ (2n + 2)δ(− log ǫ). Similarly
I3 ≤ (4n+ 4)δ(− log ǫ). Summarizing the above, we have

(1− δ)dI ≤ lim
ǫ→0

H(I)

− log ǫ
≤ (1 + 3(2n + 2)δ)dI .

As the above inequality holds for any δ > 0, we have

(5.2) lim
ǫ→0

H(I)

− log ǫ
= dI .

Let Rn = I ⊕ J ⊕O be a coordinate decomposition such that

dI + dJ + dO + dRn < dI⊕J + dI⊕O + dJ⊕O .

Since

MI(I;J ;O) = H(I) +H(J) +H(O) +H(Rn)−H(I ⊕ J)−H(I ⊕O)−H(J ⊕O),

applications of (5.2) to I, J,O, I ⊕ J, I ⊕O, J ⊕O, respectively, yield that

MI(I;J ;O) ≃ (dI + dJ + dO + dRn − dI⊕J − dI⊕O − dJ⊕O) log ǫ > 0,

from which the theorem follows. �

Example 5.3. Consider the system

(5.3)







x′ = y + x(1− x2 − y2) + ǫdWt

y′ = −x+ y(1− x2 − y2) + ǫdWt

z′ = −z + ǫdWt

It is easy to verify that

v(x, y, z) =
1

Z
exp{−ǫ−2(

1

2
z2 +

1

4
(1− x2 − y2)2}

is a stationary density function of (5.3), where Z is the normalizer. Therefore assumption
H1) is satisfied and function v(x, y, z) is regular with respect to A = {(x, y, z) : x2 + y2 =
1}. However, A is not a non-degenerate attractor because A lies on the plane z = 0.

If we change coordinates such that A is not contained in any coordinate subspace, e.g.
v́ia coordinate change (x, y, z) = (u, v, u+v+w), then under the new coordinate A becomes
a non-degenerate attractor and Theorem 5.2 is applicable to system (5.3).

5.3. Simple robust systems. Degenerate phenomenon can also occur when the attractor
A of system (1.1) is both geometrically and dynamically simple. Below, we exam the
case of a simple system in which the global attractor A is an exponentially attracting
equilibrium - a so-called homeostatic system in biological term. We note that such a system
automatically satisfy the condition H0), hence it is robust according to Propositions 4.1.
We will show that if in a neighborhood of the globally attracting equilibrium different
directions demonstrate different sensitivities with respect to the noise perturbation, then
the system must be degenerate.

Let S = (sij) be an n × n matrix and I be a coordinate subspace of Rn spanned by
standard unit vectors {ei1 , · · · , eik} for some k ≤ n. Denote S(I) = (ailim)1≤l,m≤k and
|S(I)| the determinant of S(I).

Theorem 5.4. (Degeneracy of simply systems) Assume that H1) holds, A is an equi-
librium {x0}, and all eigenvalues of Df(x0) have negative real parts. Then the following
holds:
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a) With respect to any coordinate decomposition R
n = I1 ⊕ I2 ⊕O,

(5.4) lim
ǫ→0

MI(I1; I2;O) =
1

2
log

|S(I1)||S(I2)||S(O)||S(I1 ⊕ I2 ⊕O)|
|S(I1 ⊕ I2)||S(I1 ⊕O)||S(I2 ⊕O)| ,

where S solves equation

SJ⊤ + JS +A(x0) = 0 .

Consequently, if, with respect to a given coordinate decomposition R
n = I1⊕I2⊕O,

(5.5) log
|S(I1)||S(I2)||S(O)||S(I1 ⊕ I2 ⊕O)|
|S(I1 ⊕ I2)||S(I1 ⊕O)||S(I2 ⊕O)| > 0 ,

then the σ-degeneracy of system (1.1) is positive.
b) The σ-degeneracy of (1.1) continuously depends on Df(x0).

Proof. For simplicity, denote J = Df(x0), A = A(x0), and u(x) as the density function of
µǫ.

a) By [8, 11, 22], u(x) admits the following WKB expansion

(5.6) u(x) =
1

K
e−V (x)/ǫ2w(x) + o(ǫ2)

for some quasipotential function V (x) and some C1 function w(x) with w(x0) = 1. More-
over, V (x) is twice differentiable in an open neighborhood N(x0) of x0 and it can be
approximated by x⊤S−1x/2, where S is the positive definite matrix uniquely solving the
Lyapunov equation

(5.7) SJ⊤ + JS +A = 0 .

Let νǫ be the Gibbs measure with density function

(5.8) u0(x) =
1

K0
e−x⊤S−1x/2ǫ2 ,

where K0 is the normalizer. Obviously u0 is a multivariate with covariance matrix ǫ2S.
The margin of u0 on any coordinate subspace I has covariance matrix ǫ2S(I). Recall
that the entropy of a k-variable normal distribution with covariance matrix Σ reads
1
2 log((2πe)

k|Σ|). Using this fact, simple calculations show that, with respect to any coordi-
nate decomposition R

n = I1 ⊕ I2 ⊕O, the multivariate mutual information MI0(I1; I2;O)
of u0 satisfies

lim
ǫ→0

MI0(I1; I2;O) =
1

2
log

|S(I1)||S(I2)||S(O)||S(I1 ⊕ I2 ⊕O)|
|S(I1 ⊕ I2)||S(I1 ⊕O)||S(I2 ⊕O)| .

The proof of (5.4) amounts to show that

(5.9) lim
ǫ→0

|MI(I1; I2;O)−MI0(I1; I2;O)| = 0.

We first show that

(5.10) lim
ǫ→0

|H(µǫ)−H(νǫ)| = 0 .

Without loss of generality, we assume that the isolating neighborhood N in H1) satisfies

N ⊆ N(x0). Let ∆ǫ = {x|‖x − x0‖ ≤ ǫ4/5}. We will prove (5.10) in two steps.

Claim 1: lim
ǫ→0

∫

Rn\∆ǫ

u(x) log u(x)dx = lim
ǫ→0

∫

Rn\∆ǫ

u0(x) log u0(x)dx = 0.
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On one hand, since both u0(x) and u(x) satisfy A∗), we have

u0(x) < ǫ−(2n+1), u(x) < ǫ−(2n+1), ǫ ≪ 1,

and
∫

Rn\∆ǫ

u(x)dx ∼ o(ǫ2).

It is also clear that
∫

Rn\∆ǫ

u0(x)dx ∼ o(ǫ2).

It follows that

lim
ǫ→0

∫

Rn\∆ǫ

u(x) log u(x)dx ≤ lim
ǫ→0

ǫ2 log ǫ = 0

and

lim
ǫ→0

∫

Rn\∆ǫ

u0(x) log u0(x)dx ≤ lim
ǫ→0

ǫ2 log ǫ = 0 .

On the other hand, we have by Lemmas 2.1, 2.2 that there is a constant R0 > 0 such
that

∫

Rn\∆ǫ

u(x) log u(x)dx

=

∫

Rn\B(0,R0)
u(x) log u(x)dx+

∫

B(0,R0)\∆ǫ

u(x) log u(x)dx ≥ −ǫ2 − 2
√
ǫ,

∫

Rn\∆ǫ

u0(x) log u0(x)dx

=

∫

Rn\B(0,R0)
u0(x) log u0(x)dx+

∫

B(0,R0)\∆ǫ

u0(x) log u0(x)dx ≥ −ǫ2 − 2
√
ǫ,

whenever ǫ is sufficiently small. Hence

lim
ǫ→0

∫

Rn\∆ǫ

u(x) log u(x)dx ≥ 0, lim
ǫ→0

∫

Rn\∆ǫ

u0(x) log u0(x)dx ≥ 0.

This proves Claim 1.

Claim 2: lim
ǫ→0

|
∫

∆ǫ

u(x) log u(x)dx−
∫

∆ǫ

u0(x) log u0(x)dx| = 0.

We note that

K =
1

µǫ(∆ǫ)

∫

∆ǫ

e−V (x)/ǫ2z(x)dx, K0 =
1

νǫ(∆ǫ)

∫

e−x⊤Sx/ǫdx .

It is easy to check that

1

ǫ2
|V (x)− 1

2
(x− x0)

⊤S(x− x0)| ∼ O(ǫ2/5), x ∈ ∆ǫ;(5.11)

w(x) = 1 +O(ǫ0.8), x ∈ N ;(5.12)

1− µǫ(∆ǫ) ∼ o(ǫ2);(5.13)
∫

Rn\∆ǫ

u0(x)dx ∼ o(ǫ2) .(5.14)
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It follows from straightforward calculations using (5.11)-(5.14) that | KK0
− 1| ∼ O(ǫ2/5).

Thus,

| u(x)
u0(x)

− 1| ∼ O(ǫ2/5), x ∈ N ,

and consequently,

|
∫

∆ǫ

u(x) log u(x)dx−
∫

∆ǫ

u(x) log u(x)dx|

≤
∫

∆ǫ

u(x)| log( u(x)
u0(x)

|dx+

∫

∆ǫ

|u0(x) log u0(x)(
u(x)

u0(x)
− 1)|dx

= O(ǫ2/5) +O(ǫ2/5 log ǫ).

This proves Claim 2. (5.10) now follows from the above two claims.

Next, we show that with respect to any coordinate subspace the projected entropy of
u0 is still an approximation of that of u.

Let x = (x1, x2) be a decomposition of coordinates of Rn and let ū(x1) and ū0(x1) be the
projection of u and u0 respectively such that x1 ∈ R

m. Denote ∆̄ǫ = {x1 : |x1| < ǫ4/5}.
Then the same proof as that for Claim 1 yields that

(5.15) lim
ǫ→0

∫

Rm\∆̄ǫ

ū(x1) log ū(x1)dx1 = lim
ǫ→0

∫

Rm\∆̄ǫ

ū0(x1) log ū0(x1)dx1 = 0 .

Denote

û(x1) =

∫

{|x2|≤ǫ4/5}
u(x1, x2)dx2, û0(x1) =

∫

{|x2|≤ǫ4/5}
u0(x1, x2)dx2 .

Similar to the proof of Claim 2, we have

(5.16) lim
ǫ→0

|
∫

∆̄ǫ

û(x1) log û(x1)dx1 −
∫

∆̄ǫ

û0(x1) log û0(x1)dx1| = 0.

Note that

|
∫

Rm

ū(x1) log ū(x1)dx1 −
∫

Rm

ū0(x1) log ū0(x1)dx1|

≤ |
∫

Rm\∆̄ǫ

ū(x1) log ū(x1)dx1|+ |
∫

Rm\∆̄ǫ

ū0(x1) log ū0(x1)dx1|

+|
∫

∆̄ǫ

û(x1) log û(x1)dx1 −
∫

∆̄ǫ

û0(x1) log û0(x1)dx1|

+|
∫

∆̄ǫ

û(x1) log û(x1)dx1 −
∫

∆̄ǫ

ū(x1) log ū(x1)dx1|

+|
∫

∆̄ǫ

û0(x1) log û0(x1)dx1 −
∫

∆̄ǫ

ū0(x1) log ū0(x1)dx1| .

By equations (5.15) and (5.16), it is sufficient to show that as ǫ → 0,

lim
ǫ→0

|
∫

∆̄ǫ

û(x1) log û(x1)dx1 −
∫

∆̄ǫ

ū(x1) log ū(x1)dx1| = 0,

and

lim
ǫ→0

|
∫

∆̄ǫ

û0(x1) log û0(x1)dx1 −
∫

∆̄ǫ

ū0(x1) log ū0(x1)dx1| = 0.
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The convergence with respect to ū0 and û0 follows directly from the expression of u0.
For the convergence of û and ū, we have by noting ū ≥ û that

|
∫

∆̄ǫ

ū(x1) log ū(x1)dx1 −
∫

∆̄ǫ

û(x1) log û(x1)dx1|

≤
∫

∆̄ǫ

(ū(x1)− û(x1))| log ū(x1)|dx1 +
∫

∆̄ǫ

û(x1)(log ū(x1)− log û(x1))dx1

:= I1 + I2 .

It follows from H1) and (5.13) that for sufficiently small ǫ > 0,
∫

∆̄ǫ

(ū(x1)− û(x1))dx1 ≤
∫

(ū(x1)− û(x1))dx1 ∼ o(ǫ2) .

In addition, for all sufficient small ǫ > 0 and x ∈ ∆̄ǫ, we have by Lemma 3.2 that

ū(x) < ǫ−(2n+2) and by the WKB expansion of u within ∆̄ǫ that ū ≥ û ∼ e−ǫ−2/5
> e−ǫ−1/2

.

Therefore | log ū| < max{−(2n + 2) log ǫ, ǫ−1/2} = ǫ−1/2 for sufficiently small ǫ. Thus
I1 ∼ O(ǫ3/2). Since log(1 + x) ≤ x for x ≥ 0, we also have

I2 =

∫

û(x1) log(1 +
ū(x1)− û(x1)

û(x1)
)dx1 ≤

∫

(ū(x1)− û(x1))dx1 ∼ o(ǫ2) .

Therefore

lim
ǫ→0

|
∫

∆̄ǫ

û(x1) log û(x1)dx1 −
∫

ū(x1) log ū(x1)dx1| = 0 .

It follows from Theorem 5.4 that the multivariate mutual information of system with
stable equilibrium x0 can be calculated explicitly to yield (5.4).

b) By the definition of degeneracy, Dσ is continuously dependent on J if for any coordi-
nate decomposition Rn = I1⊕I2⊕O, the limit limǫ→0MI(I1; I2;O) continuously depends
on J .

For any matrix M ∈ R
n×n, we denote vec(M) as the vector in R

n2

obtained by stacking
the columns of matrix M . Lyapunov equation (5.7) can be rewritten as

(5.17) (I −Kron(J⊤, J⊤))vec(S) = −vec(A) ,

where Kron(J⊤, J⊤) is the Kronecker product (For more detail, see [15] ). Then it is easy
to see that the solution vec(S) continuously depends on the Jacobian matrix J . Thus S
continuously depends on J . �

Remark 5.1. It is known that a large number of chemical reaction networks admit unique
stable equilibriums [2–4, 12–14]. Hence the above theorem concerning degeneracy near
equilibrium is more applicable to these biological/chemical reaction network models.

Different from systems with non-degenerate attractor, the σ-degeneracy of systems with
stable equilibrium strongly depend on the noise matrix σ(x). The distribution of the
perturbed system is approximately determined by the solution of Lyapunov equation (5.7).
Denote

LJS = −J⊤S − JS⊤

as the Lyapunov operator. It follows from [5] that LJ is an invertible operator in the
space of positive definite matrices provided that matrix J is stable (all eigenvalues of J
has negative real parts). This means that one can always find some perturbation matrix
σ(x) such that the resulting system has positive σ−degeneracy.
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[1] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows: in metric spaces and in the
space of probability measures. Springer, 2006.

[2] D.F. Anderson. Stochastic perturbations of biochemical reaction systems. PhD thesis,
Duke University, 2005.

[3] D.F. Anderson. A proof of the global attractor conjecture in the single linkage class
case. SIAM Journal on Applied Mathematics, 71(4):1487–1508, 2011.

[4] D.F Anderson and A. Shiu. The dynamics of weakly reversible population processes
near facets. SIAM Journal on Applied Mathematics, 70(6):1840–1858, 2010.

[5] Rajendra B. A note on the lyapunov equation. Linear Algebra and its Applications,
259:71–76, 1997.
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