
Limits to causal inference with state-space

reconstruction for infectious disease

Sarah Cobey∗1 and Edward B. Baskerville†1

1Ecology & Evolution, University of Chicago, Chicago, IL, USA

January 6, 2016

Abstract

Infectious diseases are notorious for their complex dynamics, which make it diffi-
cult to fit models and test hypotheses. Methods based on state-space reconstruc-
tion have been claimed to infer causal interactions in noisy, nonlinear dynamical
systems without the need for an underlying model. These “model-free” meth-
ods are collectively known as convergent cross-mapping (CCM). Although CCM
has theoretical support, natural systems routinely violate its assumptions. To
identify the practical limits of causal inference under CCM, we simulated the dy-
namics of two pathogen strains with varying interaction strengths. Traditional
CCM is extremely sensitive to periodic fluctuations, often inferring interactions
between independent strains that oscillate with similar frequencies. This sensi-
tivity vanishes with alternative criteria for inferring causality, which can identify
the correct direction of interactions between strains that are nearly identical.
However, CCM in general is sensitive to high levels of process noise and de-
viations from steady-state dynamics. This sensitivity is problematic because
methods to gauge noise and non-steady-state behavior in natural systems, in-
cluding the quality of reconstructed attractors that underlie cross-mapping, are
not well developed. We illustrate these challenges by analyzing time series of
six reportable childhood infections in New York City and Chicago during the
pre-vaccine era. The inconsistent results suggest that noise and nonequilibrium
behavior may be pervasive obstacles to the application of causal inference based
on state-space reconstruction in natural systems.
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1 Introduction

Identifying the forces driving change in natural systems is a major goal in
ecology. Randomized, controlled experiments provide the strongest evidence
of interactions, but this control can come at the cost of generalizability. For
this reason, and because controlled experiments are often impractical, a com-
mon approach is to fit mechanistic models to observations. Testing hypotheses
through mechanistic models has a particularly strong tradition in infectious dis-
ease ecology [1–4]. Models that incorporate both rainfall and host immunity, for
example, better explain patterns of malaria than models with only rainfall [5];
models with school terms fit the historic periodicity of measles in England and
Wales [6, 7]. The ability of fitted mechanistic models to predict observations
outside the training data strongly suggests that biological insight can be won.
There is nonetheless a pervasive risk that predictive variables merely correlate
with the true, hidden variables, or that the model’s functional relationships cre-
ate spurious resemblances to the true dynamics. This structural uncertainty in
the models themselves limits inference [8–11].

An alternative approach to inferring causality is to examine the time series
of potentially interacting variables without invoking a model. These methods
face a similar challenge: they must distinguish correlated independent variables
sharing a mutual driver from correlations arising from direct or indirect interac-
tions. Many of these methods infer interactions in terms of information flow and
have been proven to work for simple, linear systems (e.g., [12]), or limited types
of interactions (e.g., [13–15]), and are thus not ideal for ecology. A recent suite
of methods claims to infer interactions in noisy and nonlinear systems [16, 17].
The basic idea is that if X drives Y , information about X is embedded in the
time series of Y . Examining the relationships between delay-embeddings of the
time series of X and Y can reveal if the interaction is symmetric, asymmetric,
or absent. These approaches, known collectively as convergent cross-mapping
(CCM), have been offered as general tools to analyze causation in nonlinear
systems [16,17].

CCM has a strong mathematical basis but unclear utility for ecological in-
ference. At equilibrium, the states of a dynamical system can be represented
by an attractor, which is said to occur in the “state space” of the system. Tak-
ens’ theorem holds that the system’s attractor can be smoothly mapped to the
state variables’ shadow manifolds in some delay-embedding space without loss
of information [18]. In other words, points on the original attractor can be
mapped to each state variable’s shadow manifold, which is created from its uni-
variate time series (e.g., the shadow manifold of Y is comprised of points ~y(t)
= {Yt, Yt−τ , Yt−2τ , ..., Yt−(E−1)τ}, where E is the embedding dimension and τ
is the delay). This mapping provides the basis for proposed causal inference.
Two criteria have been advanced to signify causality. In the first, if X drives
Y , improving resolution of the shadow manifold of Y—the density of observa-
tions of Y—improves predictions of contemporaneous points on the manifold of
X [16]. This approach is known to fail in the “pathologic case” [16] of strongly
periodic variables, where the system becomes synchronized to the driver [19].
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The second approach assumes that X drives Y if points on the shadow manifold
of Y are better at predicting points on the shadow manifold of X that are in the
past rather than in the future [17]. Many ecological systems undergo diurnal
or annual fluctuations, in potentially pathologic ways, and thus raise doubts
about the first criterion. Nonstationarity, environmental noise, and observation
error—all ubiquitous in nature—raise general concern, since they violate the
theory’s assumption that variables are perfectly observed at deterministic equi-
librium. Varied forms of CCM have nonetheless been applied to such systems
to test hypotheses about who interacts with whom [16,17,20,21].

Are the frequently periodic, noisy, and nonstationary features of ecological
systems a fundamental obstacle to causal inference based on state-space recon-
struction? Which, if any, of the criteria for causal inference are robust to in-
evitable uncertainties about the dynamics underlying the data? Methods based
on state-space reconstruction, like mechanistic models, are potentially vulnera-
ble to erroneous conclusions if variables are too correlated. When do variables
become too similar to tell apart? To address these questions, we applied CCM
to a simple and well-studied nonlinear dynamical system, the dynamics of two
pathogens and a host. We approach the problem from a practical context, ask-
ing if without prior knowledge of the system, we can correctly infer the direction
of competition from typical time series.

2 Results

To assess the reliability of CCM, we simulated the dynamics of two strains with
stochastic, seasonally varying transmission rates (Materials & Methods). The
extent of process noise in natural time series is almost never known, and we
consequently varied it. We also varied the strength of competition from strain
2 on strain 1 (σ12); strain 1, in contrast, never affected strain 2 (σ21 = 0).
For each level of competition and process noise, we simulated 100 replicates
from random initial conditions to steady state, identified the delay-embedding
for each individual time series, and applied the particular causality criterion to
the reconstructed shadow manifolds. One thousand years of error-free monthly
incidence were reported for each strain. For each combination of parameters, we
examined whether strain interactions were correctly inferred. When σ12 > 0,
strain 2 should be inferred to “drive” (influence) strain 1. Because σ21 = 0,
strain 1 should never be inferred to drive strain 2.

2.0.1 Sensitivity to periodicity

The traditional criterion for CCM frequently detected interactions that did not
exist. When using an increase in cross-map correlation ρ with time series length
L to infer causality, strain 2 was always incorrectly inferred to drive strain 1 in
simulations when it did not (Fig. 1A). Although strain 1 never influenced strain
2, it was usually predicted to (Fig. 1A). Sample time series suggested a strong
correlation between synchronous oscillations and the appearance of bidirectional
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interactions (Fig. 1B). In contrast, when strain 2 appeared to drive strain 1
but not vice-versa (σ12 = 0 and η = 0.05), strain 1 often oscillated in phase
with strain 2 but at a lower frequency (Fig. 1C). Thus, as expected, strongly
synchronized dynamics prevented separation of the variables. Additionally, the
resemblance of strain 2 to the seasonal driver led to false positives even when
the strains were independent and strain 1 oscillated at a different frequency.

The sensitivity of the method to periodicity persisted despite transforma-
tions of the data and changes to the driver. One possible solution to reducing
seasonal effects, sampling annual rather than monthly incidence, reduced the
overall rate of false positives but also failed to detect some interactions (Fig.
S1A). Furthermore, when the effects of strain 2 on 1 were strongest, the re-
verse interaction was more often inferred. Sampling the prevalence at annual
intervals had similar results (Fig. S1B), and first-differencing the data did not
qualitatively change outcomes (Fig. S1C). The method yielded incorrect results
even without seasonal forcing (ε = 0) because of noise-induced oscillations (Fig.
S1D). In all of these cases, the presence of shared periods between the strains
correlated strongly and significantly with the rate of detecting a false interaction
(Fig. 2).

Because cross-mapping skill should be sensitive to the quality of the recon-
structed shadow manifolds, we investigated performance under other methods
of constructing MC1

and MC2
. Nonuniform embedding methods allow the time

delays to occur at irregular intervals, τ1, τ2, ...τE−1, and this flexibility may pro-
vide a more parsimonious embedding of the dynamics. Alternative methods of
attractor reconstruction, including nonuniform embedding [22,23], random pro-
jection [20], and maximizing the cross-map (rather than univariate) correlation
failed to fix the problem (Fig. S2).

The second criterion, which infers that X drives Y if there is a positive cross-
map correlation ρ (from MY to MX) that peaks at a negative cross-map lag,
performed relatively well (Fig. 3). Fewer false positives were detected, although
the method missed some weak extant interactions (σ12 = 0.25) and interactions
in noisy systems (η = 0.05, 0.1). Results for annual data were similar (Fig.
S3A). Requiring that ρ be not only positive but also increasing barely changed
the performance (Fig. S3B).

2.0.2 Limits to identifiability

If two variables X and Y share the same driver but do not interact, at some
limit, X may resemble the driver so strongly that X appears to drive Y . In
a similar vein, when the two strains in our system have identical reproductive
rates (β1 = β2) and one strongly drives the other (σ12 = 1), the direction of
the interaction cannot be detected when the dynamics are nearly deterministic
(η = 10−6) (Fig. S3C). Causal inference in such cases becomes difficult.

To investigate the limits to distinguishing ecologically similar, non-interacting
strains, we varied the correlation of the strain-specific process noise while apply-
ing the more conservative criterion for inferring causality, that the cross-map
correlation ρ be positive and peak at a negative lag. Process noise can be
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Figure 1: Interactions detected as a function of process noise and
the strength of interaction (C2 → C1) and representative time se-
ries. (A) Heat maps show the fraction of 100 replicates significant for each
inferred interaction for different parameter combinations. A significant increase
in cross-map correlation ρ with library length L indicated a causal interac-
tion. (B) Representative time series for which mutual interactions were inferred
(σ12 = 0.25, η = 0.01). (C) Representative time series for which C2 is inferred
to drive C1 but not vice-versa (σ12 = 0.25, η = 0.05).
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Figure 2: Shared frequency spectra predict probability of inferred in-
teraction. Points show the maximum cross-spectral densities of strains 1 and
2 plotted against the p-values for C1 → C2. In all replicates, C1 never actually
drives C2. Point color indicates the strength of C2 → C1 (σ12), and point size
indicates the standard deviation of the process noise (η) on transmission rates.
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tion ρ at a negative lag indicated a causal interaction. Each replicate used 100
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thought of as a hidden environmental driver that affects both strains simulta-
neously, and thus the strength of correlation indicates the relative contribution
of shared versus strain-specific environmental noise. With two identical, inde-
pendent strains and low process noise (η = 0.01), the false positive rate varied
non-monotonically with the correlation strength. It peaked at approximately
19%-24% with perfectly correlated noise and reached a minimum at a correlation
of 0.75 (Fig. S4A). Analyzing annual instead of monthly incidence, or applying
the more stringent criterion that the maximum cross-map correlation ρ not only
be positive but also increase at a negative lag, reduced the false positive rate to
< 5% for imperfectly correlated noise (Fig. S4B, C). Thus, the independence
of two strains will generally be detected as long as they experience imperfectly
correlated noise.

We next considered the problem of identifying two ecologically distinct strains
(β1 6= β2) when one strain strongly drives the other (σ12 = 1) and its dynamics
resemble the seasonal driver. In this case, even with perfectly correlated pro-
cess noise, correct interactions are consistently inferred (Fig. S5). Thus, we
conclude that the presence of noise, even highly correlated noise, can help dis-
tinguish causality between coupled, synchronized variables. It is more difficult
to distinguish non-interacting, dynamically equivalent variables. In the latter
case, noise has inconsistent effects on causal inference, although more stringent
criteria can help. These results at least hold for “modest” noise (η = 0.01): as
shown earlier, higher levels hurt performance (Fig. 3).

2.0.3 Non-steady-state dynamics

CCM assumes steady-state dynamics, and deviations from steady-state should
compromise the integrity of the shadow manifolds. Our results have shown that
the method is robust, and even benefits, from relatively low noise, but severe
deviations from equilibrium behavior could limit effective cross-mapping. As a
proof of principle, we evaluated the impact of transient dynamics on causal in-
ference. When strain 2 weakly drives strain 1 (σ12 = 0.5), the reverse interaction
can be inferred instead (Fig. 4). In 100 simulations of this scenario at steady
state, the correct interaction is inferred 100% of the time, using the criteria
that cross-map correlation ρ be positive and maximized at negative lag. With
transient dynamics, the rate falls to approximately 80%. The true interaction
(C2 → C1) becomes more difficult to detect under the same circumstances (98%
with steady state and 80% with transient dynamics).

2.0.4 Application to childhood infections

Given the success of a modified form of CCM with two strains under some
conditions, we investigated whether it might shed light on the historic dynamics
of childhood infections in the pre-vaccine era. We obtained the weekly incidence
of six reportable infections in New York City from intermittent periods spanning
1906 to 1953 [24] (Fig. 5A). Six of 30 pairwise interactions were significant at the
p < 0.05 level, not correcting for multiple tests (Fig. 5C). Polio drove mumps
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and varicella, scarlet fever drove mumps and polio, and varicella and pertussis
drove measles. Typical cross-map lags occurred at one to three years (Fig.
S6). The inferred interactions were identical if we required that the cross-map
correlation ρ be increasing and not merely positive.

Although we specifically chose infectious diseases not subject to major public
health interventions in the sampling period, it is possible that the New York data
reflect non-steady-state dynamics. To the check robustness of the conclusions,
we analyzed analogous time series from Chicago from the same period (Fig.
5B). Completely different interactions appeared (Fig. 5C). Not correcting for
multiple tests, pertussis drove scarlet fever and varicella; accepting marginally
significant negative lags (p = 0.055), polio drove measles. Requiring that the
maximum cross-map correlation ρ only be positive at negative lag, polio also
drove pertussis, measles drove mumps and varicella, and mumps drove scarlet
fever. Except in one case, all negative lags occurred at more than one year (Fig.
S7). Thus, no consistent interactions appeared from epidemiological time series
of two major, and possibly dynamically coupled, cities.

To investigate the possibility that our method of attractor reconstruction
might be unduly sensitive to noise and nonstationarity, we repeated the proce-
dure with a method based on random projections [20]. Once again, no inter-
actions were common to both cities (Fig. 5D). Only one of the original eight
interactions from the original reconstruction method reappeared with random
projection (two of eight reappeared if disregarding the city), and two inter-
actions changed direction (three if disregarding the city). Similar lags were
selected (Figs. S8, S9).

3 Discussion

CCM is, in theory, an efficient alternative to mechanistic modeling for causal
inference in nonlinear systems. By evaluating properties of reconstructed at-
tractors in state space, it sidesteps any need to formulate and fit what are
usually inaccurate mathematical models. In practice, CCM appears unsuitable
for natural systems. We simulated two interacting strains and found that tra-
ditional CCM can lead to erroneous conclusions whenever strains oscillated at
similar frequencies. Applying a different criterion for causality that considers
the temporal lag at which cross-map correlation is maximized [17], rather than
the change in cross-map correlation with time series length L [16], avoids this
problem. Inference with this modified version of CCM is robust to relatively
low process noise, which can actually improve performance. But the method
as a whole remains susceptible to deviations from its core assumptions. High
process noise and non-steady-state dynamics each diminish performance, lead-
ing to false positives and negatives. Because noise and nonequilibrium behavior
are ubiquitous in nature, and there are currently no reliable methods to gauge
their impact on the quality of state-space reconstruction, we propose CCM has
no effective application for causal inference in natural systems. These prob-
lems raise questions about the suitability of any method based on state-space

10



A

0.0

0.5

1.0

1.5

1910 1920 1930 1940 1950

we
ek

ly 
in

cid
en

ce
 p

er
 1

00
0

pertussis
varicella
measles
mumps
polio
scarletfever

B

0.0

0.5

1.0

1.5

1910 1920 1930 1940 1950

we
ek

ly 
in

cid
en

ce
 p

er
 1

00
0

pertussis
varicella
measles
mumps
polio
scarletfever

 
C

varicella

measles

mumps

polio

scarlet fever

pertussis

Chicago New York

D

varicella

measles

mumps

polio

scarlet fever

pertussis

Chicago New York

Figure 5: Historical childhood infections in New York City and Chicago
and inferred interactions from two reconstruction methods. Time series
show weekly incidence of infections per 1000 inhabitants of New York City
(A) and Chicago (B). Delay-embeddings were constructed by maximizing the
univariate correlation (C) or through a random projection method (D) Arrows
indicate the inferred interactions from the New York (blue) and Chicago (red)
time series under the more stringent criterion (negative lag and increasing cross-
map correlation).

11



reconstruction in ecology.
Oscillatory dynamics are common in nature, especially in infectious disease

ecology, and suggest that the original criterion for causal inference might rou-
tinely mislead in ecological systems. Climatic and seasonal cycles, driven by
such factors as school terms, El Nino, and absolute humidity, pervade the dy-
namics of many pathogens and influence the timing of epidemics [5, 6, 25–27].
Infectious diseases exhibit periodic behavior in the absence of external forcing
too. These oscillations may arise from the well-known transient damped oscil-
lations to equilibrium, but in nature, they perhaps arise more frequently from
demographic stochasticity. This stochasticity induces fluctuations on charac-
teristic time scales that can further interact with seasonal drivers to generate
complex oscillatory patterns [28–31]. Although we did not include demographic
stochasticity in our model, with process noise acting on transmission, each strain
developed a distinct frequency spectrum. A tendency to cycle is not particular
to infectious disease systems: other nonlinear systems incorporating consumer-
resource interactions [32–34] or patchy populations [35,36] demonstrate similar
behavior from stochastic effects alone. However, there may be interesting differ-
ences in the tendency of discrete-time systems to undergo chaotic rather than
periodic fluctuations, and these differences may affect the perceived performance
of traditional CCM in different scenarios [16].

Assuming the stronger criterion for causality [17], under what conditions can
we consider this method “safe” for causal inference? We have demonstrated that
non-steady-state conditions pose one potential problem. Although sometimes
nonstationary or transient dynamics can be readily identified [37], and some
forms of nonstationarity perhaps removed from the time series through first-
differencing or detrending, not all forms of nonstationarity are identifiable or
distinguishable from steady-state dynamics occurring over long time scales. The
lack of consistent bias (e.g., false negatives) from inference on nonstationary time
series implies that this uncertainty might be a severe limitation for systems that
are not already well understood.

If we were confident that the observed dynamics reflected steady-state be-
havior, the next challenge would be the selection of the delay-embedding for
the shadow manifolds and the statistics for identifying the maximum cross-map
correlations and negative lags. Competing criteria for evaluating the quality of
attractor reconstruction highlight the difficulty of justifying a particular delay-
embedding [20, 22, 23, 38, 39], which should become even more difficult in the
presence of process noise. Reconstructions from unknown systems thus run
the risk of being ad hoc. Because the delay-embedding influences the cross-
map correlations ρ, causal inference could rest on slightly arbitrary decisions.
This arbitrariness currently extends to our identification of significant increases
in cross-map correlations, or significantly negative cross-map lags. We boot-
strapped and attempted to validate the approach empirically with simulated
data, but this heuristic differs starkly from the likelihood-based approaches
common to mechanistic modeling [40].

Noise and non-steady-state dynamics could explain the contrasting results
for childhood infections in two cities. Although there is evidence that measles
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increases suceptibility to other infections [41], and that measles and pertussis
compete for susceptible hosts [42], the time series did not strongly support these
hypotheses. Furthermore, it is difficult to imagine a parsimonious mechanism
by which the inferred interactions might be biologically consistent and plausi-
ble. Different rates or modes of transmission for each disease in each city might
lead to varying patterns of infection in different subpopulations, affecting in-
teractions. However, we know of no support for this hypothesis. In contrast,
we could not rule out nonstationarity in the dynamics, which we might expect
from changes in birth rates, mobility, and behavior during this period [43]. High
process noise, implying the omission of important state variables and poor reso-
lution of the underlying attractor, hurt the performance of CCM and could also
affect inference in this case. Errors in attractor reconstruction are another pos-
sibility. Except for pertussis, different delay-embeddings were selected for each
pathogen in each city, and an alternative method of attractor reconstruction
yielded even more divergent results.

While the statistical foundations of attractor reconstruction are in develop-
ment, perhaps the most appropriate use of CCM is for exploratory analysis.
In steady-state systems, causal inference appears reliable when based on the
temporal lag at which the cross-map correlation peaks [17]. Because many pop-
ulations, especially of hosts and pathogens, are evolving and undergoing strong
directional changes, inference from state-space reconstruction must be extended
carefully. Mechanistic models remain the only option for predicting out-of-
sample dynamics in rapidly evolving systems, and they may prove more reliable
for causal inference in these cases too. The balance hangs partly on the degree
to which natural processes are fundamentally ordered and at equilibrium [44].
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5 Materials and Methods

5.1 Dynamical model

We modeled the dynamics of two pathogen strains under variable amounts of
competition and process noise. The state variables in the system are the hosts’
statuses with respect to each strain [45]. Hosts can be susceptible (Si), infected
(Ii), or recovered and immune (Ri) to each strain i. The deterministic model
has the form:
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dSi
dt

= µ− Si
∑
j

σijβj(t)Ij − µSi (1)

dIi
dt

= βi(t)SiIi − (νi + µ)Ii (2)

dRi
dt

= νiIi + Si
∑
j 6=i

σijβj(t)Ij − µRi (3)

βi(t) = βi

(
1 + ε sin

[
2π

ψ
(t− ψ)

])
(4)

Si + Ii +Ri = 1 (5)

Hosts enter the susceptible class for strain i through the birth (and death)
rate µ. They leave through infection with strain i (Si → Ii), infection with
strain j that elicits cross-immunity to i (Si → Ri), or death. The per capita
transmission rate, βi(t), depends on a mean strain-specific rate, βi, and a sinu-
soidal forcing function defined by a shared period, ψ. The amplitude of forcing,
ε, is constant across strains. Infected hosts recover at rate νi (Ii → Ri). The
immune host class grows through these recoveries and also from the fraction of
susceptible hosts, Si, contacting infected hosts, Ij , who develop cross-immunity,
σij (0 < σij < 1). Immunity of this form has been described as “polarizing”
because σij of hosts Si contacting infecteds Ij become completely immune (non-
susceptible) to strain i, while 1−σij remain completely susceptible. This cross-
immunity is a form of competition that determines the directions of interaction
between strains: when σij > 0, strain j drives strain i.

Process noise on the per capita transmission rate produces stochastic differ-
ential equations in Ito form:

dSi = [µ− µSi] dt− Si
∑
j

σijβj(t)Ij [dt+ η dWt,j ] (6)

dIi = βi(t)SiIi[dt+ η dWt,i]− [νi + µ]Ii dt (7)

dRi = [νiIi − µRi] dt+ Si
∑
j 6=i

σijβj(t)Ij [dt+ η dWt,j ] (8)

where the Wi are independent Wiener processes, one for each pathogen i, and η
represents the standard deviation of the noise as a fraction of the deterministic
transmission rate.

The observations consist of the number of new cases or incidence over some
interval. Cumulative cases ci at time t were obtained by summing the Si → Ii
transitions from the start of the simulation through time t. The incidence over
times t−∆tobs to t, written as C(t) for convenience, is given by the difference
in cumulative cases:

Ci(t) = ci(t2)− ci(t1) (9)

dci = βi(t)SiIi[dt+ η dWt,i] (10)
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5.2 Simulation

The equations were solved numerically using the Euler-Maruyama method with
a fixed step size. The step size was chosen to be less than the smallest within-
run harmonic mean step size across deterministic, adaptive-step size pilot runs
performed across the range of parameter space being studied. When numeri-
cal errors arose during transients, the step size was reduced further until the
numerical issues disappeared.

Except where noted, the model was simulated with random initial condi-
tions, and 1000 years of monthly observations were obtained from steady state
conditions. The use of random initial conditions minimizes arbitrary bias in the
simulated dynamics. From visual inspection of dynamics, the transient phase
lasted much less than 1000 years. Time series were obtained from years 2000-
3000.

5.3 Cross-mapping

In its most general form, CCM evaluates predictions of states ofX given observa-
tions of Y . When the system is stationary, two bidirectionally coupled variables
X and Y share an attractor and contain complete information about the attrac-
tor in their time series. We denote this attractorMMM and the shadow manifolds of
individual state variablesMMMX ,MMMY , and so on. To evaluate whether X drives Y ,
we first construct shadow manifoldsMMMY from the time series of Y . Each point in
MMMY is given by an E-dimensional vector ~y(t) = {Yt, Yt−τ , Yt−2τ , ..., Yt−(E−1)τ},
where E is the embedding dimension and τ is the delay. A total of L points,
referred to as the “library“, are used to construct MMMY , and these points are
the basis for predictions of states of X. Each point in the time series of X
has an analogue on its own manifold MMMX , i.e., an E-dimensional vector ~x(t) =
{Xt, ..., Xt−(E−1)τ}. For each point in the time series of X, X(t), we identify
the contemporaneous point ~xt in MMMX and ~yt in MMMY . For ~yt, we identify the
point’s E+1 nearest neighbors. These neighbors (but not ~yt itself) are then
used to derive weights for a prediction of X, X̂(t). Specifically, the E+1 near-
est neighbors of ~yt are each weighted by their Euclidean distances to ~yt [16], so

that the unnormalized weight for neighbor i at distance di is exp
(
− di
d0

)
, where

d0 is the distance to the nearest neighbor. In order to avoid predictability due
to system autocorrelation rather than dynamical coupling, nearest neighbors
were restricted to be greater than dtneighbor = 3dtautocorr samples apart in time,
where dtautocorr is the delay at which the time-series autocorrelation drops below
1/e. To predict X̂t, these weights are then multiplied by the respective points
in MMMX that are contemporaneous to each of the nearest neighbors of ~yt. The
cross-map correlation ρ is computed by comparing the predicted (X̂(t)) and
actual (~xt) values over the entire time series of X.

Libraries consisting of different points will produce different predictions, and
thus define a distribution over ρ. We sample the L delay vectors of Y in the
library randomly with replacement to yield a single library. We perform this
sampling, and the corresponding cross-map prediction, many times to construct
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a bootstrap distribution for ρ as the basis of statistical tests.

5.4 Criteria for causality

We infer causality using three different criteria involving ρ [16,17]: (1) whether
ρ increases with L; (2) whether ρ is positive at L = Lmax, and (3) when cross-
mapping the driven variable to different lags (temporal offsets) of the driver,
whether ρ is maximized at a negative lag.

If X drives Y , MMMY cross-maps to MMMX , and increasing the density of the
shadow manifold MMMY by increasing L should improve predictions of ~xt and
increase ρ [16]. The first criterion tests for this increase in ρ with L. An increase
in ρ is indicated by a lack of overlap between the distributions at Lmin = E+ 2,
the smallest library that will have E + 1 neighbors for most points, and Lmax,
the largest possible library given the time-series length and delay embedding
parameters E and τ .

The second criterion relaxes the requirement of an increase in ρ, and instead
simply requires that ρ be positive at Lmax.

The third criterion requires that for X to drive Y , ρ (fromMMMY cross-mapped
to MMMX) is both positive and peaks at a negative cross-map lag [17]. In other
words, not only must MY contain information about MX (ρ > 0), but this
information must be greatest for past states of X, reflecting the correct temporal
direction for causality. Replicates were also used to evaluate ρ at each possible
cross-map lag.

5.5 Statistical tests for causality criteria

The theory underlying CCM assumes completely deterministic interactions and
infinite data. If X drives Y in the absence of noise, the correlation ρ between
the predicted and observed states of X should converge to one with infinite
samples of Y . In practice, if X and Y share a complex (e.g., chaotic) attractor,
time series of Y may not be long enough to see convergence [16].

The presence of observation and/or process noise violates the deterministic
assumptions and prevents ρ from ever reaching one. Nonetheless, a detectable
increase in the correlation ρ with the library length L used to constructMMMY (for
the first criterion), a detectable positive value of ρ (for the second criterion), or
a maximum correlation at negative lag (for the third criterion), may suffice to
demonstrate that X drives Y in natural systems. It is important to note that
we have no formal theoretical justification for such statistical heuristics.

Our statistics are based on the distributions obtained from bootstrapping.
For the first criterion, which tests for an increase in ρ(L), we perform a nonpara-
metric test of whether ρ(Lmax), obtained at the largest library length is greater
than ρ(Lmin), obtained at the smallest libary length. The p-value for this test
is calculated as the probability that ρ(Lmax) is not greater than ρ(Lmin), and
calculate the p-value directly from the sampled distributions.

For the second criterion, we simply test whether ρ is detectably positive. The
p-value for this test is simply the probability, based on the bootstrap distribution
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of ρ, that ρ is positive.
For the third criterion, which tests whether the best cross-map lag is negative

and thus indicates the correct causal direction in time, we perform a similar
nonparametric test. We identify the negative cross-map lag `(−) with the highest
median correlation, ρ(`(−)) as well as the nonnegative cross-map lag `(0+) with
the highest median correlation. The p-value for this test is calculated as the
probability that ρ(`(−)) is not greater than ρ(`(0+)).

5.6 Choice of delay and embedding dimension

Attractor reconstruction is an unsolved problem [38]. The manifoldMMM is defined
in E-dimensional state space, and the shadow manifolds are similarly defined
by E and some delay τ . In simulated, deterministic models, E can be known
perfectly. In systems with process noise, unknown dynamics, and/or finite obser-
vations, there is no clearly superior method to select the appropriate embedding
dimension and delay [22,23,38,46–48].

We accommodated this uncertainty by using four different methods. Two
methods infer the best delay-embedding for each interaction by maximizing the
ability of one variable, the driven variable, to predict itself (akin to nonlinear
forecasting [39, 49]). The third method instead uses the delay-embedding that
maximizes the cross-mapping correlation ρ for each interaction. Three of the
four methods use uniform embeddings, identifying E and a fixed delay τ , and
the other uses a nonuniform embedding, identifying a series of specific delays
τ1, τ2, etc., whose length determines E.

1. Univariate prediction method : By default, for each causal interaction
(Ci → Cj), E and τ are chosen to maximize the one-step-ahead uni-
variate prediction ρ at Lmax for the driven variable (Cj) based on its own
time series.

2. Maximum cross-correlation method : As an alternative, E and τ are chosen
to maximize the mean cross-map correlation ρ at Lmax for each causal
interaction being tested, for each time series.

3. Random projection method : A recently proposed method based on random
projection of delay coordinates sidesteps the problem of choosing optimal
delays [20]. Instead, for a given E, all delays up to a maximum delay τmax

are projected onto an E-dimensional vector via multiplication by a random
projection matrix. E is chosen to maximize the cross-map correlation ρ.

4. Nonuniform method : For each driven variable Cj , starting with τ0 = 0,
additional delays τ1, τ2, . . . are chosen iteratively to maximize the direc-
tional derivative to nearest neighbors when the new delay is added [22].
The delays are bounded by the optimal uniform embedding based on a
cost function that penalizes irrelevant information [23]. This method can
be seen as a nonuniform extension of the method of false nearest neigh-
bors [50].
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5.7 Code

Code implementing the state-space reconstruction methods is publicly available
at https://github.com/cobeylab/pyembedding. The complete code for the
analysis and figures is publicly available at https://github.com/cobeylab/

causality_manuscript; individual analyses include references to the Git com-
mit version identifier in the ‘pyembedding‘ repository. The simulated time series
on which the analyses were performed are available from the authors on request.

5.8 Data on childhood infections

Time series were obtained from L2-level data maintained by Project Tycho
[24]. All available cases of measles, mumps, pertussis, polio, scarlet fever, and
varicella were obtained from the first week of 1906 through the last week of 1953
for New York City and Chicago. Pertussis data were truncated at the start of
1948. Incidence was calculated by dividing weekly cases by a spline fit to each
city’s population size, as reported by the U.S. Census.
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Figure S1: Interactions detected as a function of process noise and the
strength of interaction (C2 → C1) for different types of data. Heat maps
show the fraction of 100 replicates significant for each inferred interaction for dif-
ferent parameter combinations. A significant increase in cross-map correlation
ρ with library length L indicated a causal interaction. (A) Annual incidence,
(B) prevalence strobed annually, (C) first-differenced annual incidence, and (D)
monthly incidence without seasonal forcing.
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Figure S2: Interactions detected as a function of process noise and
the strength of interaction (C2 → C1) for different delay-embedding
methods. Heat maps show the fraction of 100 replicates significant for each
inferred interaction for different parameter combinations. A significant increase
in cross-map correlation ρ with library length L indicated a causal interaction.
Delay-embeddings were chosen by (A) nonuniform embedding, (B) random pro-
jection, or (C) maximizing the cross-map correlation ρ.
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Figure S3: Interactions detected for different types of data. Heat maps
show the fraction of 100 replicates significant for each inferred interaction for
different parameter combinations. A maximum cross-map correlation ρ at a
negative lag was required for inferring causal interaction. (A) Annual incidence,
requiring that the maximum ρ be positive. (B) Monthly incidence, requiring
that the maximum ρ be increasing. (C) Monthly incidence with identical strains
(β1 = β2 = 0.3), requiring that maximum ρ be positive.
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Figure S4: Interactions detected between identical strains with corre-
lated process noise. Heat maps show the fraction of 100 replicates significant
for each inferred interaction. A maximum cross-map correlation ρ at a negative
lag was required for inferring causal interaction. Monthly (A) and annual (B)
incidence, requiring that the maximum ρ be positive. (C) Monthly incidence,
requiring that maximum ρ be increasing.
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Figure S5: Interactions detected between distinct strains with corre-
lated process noise. Heat maps show the fraction of 100 replicates significant
for each inferred interaction. A maximum cross-map correlation ρ at a negative
lag and ρ > 0 were required for inferring causal interaction. Results shown for
monthly incidence.
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Figure S6: Cross-map lags for New York with default (univariate) em-
bedding.
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Figure S7: Cross-map lags for Chicago with default (univariate) em-
bedding.
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Figure S8: Cross-map lags for New York with embedding based on
random projection.
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Figure S9: Cross-map lags for Chicago with embedding based on ran-
dom projection.
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