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Abstract. We consider a stochastic particle system in which a finite number
of particles interact with one another via a common energy tank. Interaction
rate for each particle is proportional to the square root of its kinetic energy, as
is consistent with analogous mechanical models. Our main result is that the rate
of convergence to equilibrium for such a system is ∼ t−2, more precisely it is
faster than a constant times t−2+ε for any ε > 0. A discussion of exponential vs
polynomial convergence for similar particle systems is included.

This paper is about dynamical models of (large numbers of) interacting parti-
cles, a topic of fundamental importance in both dynamical systems and statistical
mechanics. Our focus is on the speed of convergence to equilibrium, equivalently
the rate of decay of time correlations. On a fixed energy surface, Liouville mea-
sure, which describes the states of a system in equilibrium, does not depend on the
dynamics generated by the Hamiltonian, but once the system is taken out of equilib-
rium, the speed with which it returns to equilibrium can be affected by dynamical
details. One of the purposes of this paper is to call attention to the fact that for
particle systems, this convergence can be fast or slow depending on how the particles
interact.

While Hamiltonian models are considered to be physically more realistic than
stochastic ones, questions of ergodicity and mixing for general Hamiltonian systems
are out of reach at the present time, let alone the rate of mixing. Simplifications on
the level of modeling are necessary if one is to gain insight into the problem. Since
chaotic dynamics are known to produce statistics very similar to those of genuinely
random stochastic processes [40, 2, 47, 7, 38], it seems logical to first tackle stochastic
models designed to capture similar underlying phenomena.

The following model of binary collisions introduced by Kac [24] half a century ago
as an idealization of Boltzmann dynamics was in this spirit. In Kac’s model, the
velocities of N particles are described (abstractly) by N real numbers v1, v2, . . . , vN ,

so that the system has total energy
∑N

i=1 v
2
i = E. An exponential clock rings with

rate N . When it rings, a pair of particles, i and j, is randomly chosen and assumed
to interact, resulting in new velocities, v′i and v′j, given by

v′i = (cos θ)vi − (sin θ)vj

v′j = (sin θ)vi + (cos θ)vj
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where θ ∈ [0, 2π) is uniformly distributed. This model has been much studied.
Among other things, it has been shown that its infinitesimal generator has a spectral
gap uniformly bounded away from zero in size for all N [21, 4, 32]. Models with
energy-dependent interactions, which are more realistic than the constant rate of
interaction in the original model, have also been studied [5] , as have other variants
of this model; see e.g. [39, 19] for binary collision processes on lattices and [18] for
extensions to quantum N-body problems.

In general, for systems with direct particle-particle interactions and an interaction
potential that falls off with distance, it is very difficult to identify a simple stochastic
rule that captures faithfully the deterministic dynamics. In this paper, we consider
a class of particle systems for which such modeling is more straightforward, namely
when the particles do not interact with one another directly but only via their
“environment”, or a “hub”. Concrete examples of mechanical models of this type
were introduced in [33, 36] and studied later in [10, 30, 29, 11, 12, 13, 44, 25].
In these models, the “environment” is symbolized by the kinetic energy stored in
rotating disks placed at various locations in the physical domain. When a particle
collides with a disk, energy is exchanged in accordance with a rule consistent with
energy and angular momentum conservation; point particles do not “see” each other
otherwise. See Fig. 2. The models considered in the present paper are a stochastic
version of these mechanical models; details are given in Sects. 1.1 and 1.2.

An example of the type of stochastic modification we make is that we “forget”
the precise location of a particle, and replace the time to its next collision by an
exponential random variable with mean ∝ 1√

e
where e is the kinetic energy of the

particle. This idea was also used in [10], and is consistent with the statistics produced
by chaotic dynamical systems. More detailed justification is given in Sect. 1.1.

We prove for our models that the speed of convergence to equilibrium is not
exponential but polynomial. More precisely, we show that for any γ > 0, this rate is
faster than ∼ tγ−2. Because the rate of interaction is ∝

√
e, it is not hard to see that

convergence rate cannot be faster than ∼ t−2. Thus our results are sharp, and to our
knowledge they are new; a literature search has not turned up comparable results
involving polynomial rates of convergence. The closest that we are aware of are
[46, 45], which showed slower than exponential convergence for certain mechanical
models with special properties (e.g. particles interacting only with heat baths, or
particle systems on physical domains with special geometry).

The speed of convergence to equilibrium, equivalently the rate of decay of time
correlations, impacts the type of probabilistic limit laws obeyed by the system. We
do not pursue that here as these questions will take us too far afield, but remark
only on some immediate consequences: With polynomial correlation decay, one
cannot expect to have a large deviation principle with a reasonable rate function
[43, 42, 26, 1]. As a result, Gallavotti-Cohen type fluctuation theorems will not hold
[37, 27]. A Markov chain central limit theorem for bounded observables, on the
other hand, follows from polynomial ergodicity; see Theorem 5.

The main ideas of our proof are as follows: Since low-energy particles are the
source of slow convergence, we call a state of the system, equivalently an energy
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configuration, “active” if every particle carries an energy above a certain minimum.
Starting from the set of active states we prove a Doeblin-type condition, suggesting
exponential correlation decay for an induced process. We then return to the full
system, and propose to view the dynamics as having been refreshed, or renewed,
each time a trajectory returns to the set of active states. This puts us in a framework
bearing some resemblance to renewal processes, for which it has been shown that
the speed of convergence to equilibrium is determined by the moments of renewal
times. Following ideas from renewal theory, we seek to control first passage times to
the set of active states. This is done by constructing a suitable Lyapunov function;
see Section 2.

Polynomial vs exponential convergence: further examples. The root cause of the
slow convergence in our model is that once a particle acquires a low energy in an
interaction, it simply stays “frozen” until its clock rings again; there is no way
to activate it sooner. This need not be the case in models with direct particle-
particle interactions, if another particle can pass by and activate a slow particle. The
question of exponential vs polynomial rates of convergence to equilibrium is most
transparent in the setting of one particle per site, nearest-neighbor interactions, an
example of which is the locally confined disk models introduced in [3] and studied
in [16, 15]: A linear chain of cells is connected by openings. Inside each cell is a
single finite-size convex body (hard disk), the diameter of which exceeds that of
the opening so it is trapped, but adjacent disks can meet and exchange energy; see
Fig. 1. For these models, the rate of convergence hinges on whether a disk can
be completely out of reach of its neighbors. When the openings are large enough,
heuristic argument and numerical simulations both give exponential convergence.
On the other hand, if the openings between cells are small enough that a disk can
get entirely out of reach of its neighbors, then a phenomenon similar to that in the
present paper can occur: it is easy to prove that the rate of mixing cannot be faster
than t−2; see [28], which contains also a numerical study confirming that the rate of
mixing is ∼ t−2, and the rate of interaction between disks with kinetic energies ei
and ei+1 can be approximated by ∼

√
min{ei, ei+1}.

We comment on related works: In a nonrigorous derivation, [17] argued for the
same model that under certain assumptions, the rate of interaction between the ith
and (i + 1)st disks is ∼

√
ei + ei+1. Assuming this interaction rate, [39, 19] proved

exponential rates of convergence for stochastic versions of these models. To our
knowledge, this interaction rate appears in a certain rare interaction limit (when
the openings between cells tend to zero), and involves a rescaling of time. In the
mechanical model above, without any rescaling of time, it is a simple mathematical
fact that correlations cannot decay faster than t−2 when the disks can “hide” from
their neighbors.

Organization of this paper: Section 1 contains a precise model description and state-
ment of results. The bulk of the technical work goes into the construction of a Lya-
punov function; this is carried out in Section 2. In Section 3, we use this Lyapunov
function to deduce the desired results on polynomial convergence to equilibrium.
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Figure 1. Locally confined hard disks model. Whether the system con-
verges to equilibrium at exponential or polynomial speeds depends on its
geometric configuration, specifically whether or not there are positions
where a disk (black) can be out of reach of its neighbors.

1. Model and results

As explained in the Introduction, the models considered in this paper are sto-
chastic versions of some known mechanical models. We begin with a review of
these mechanical models, followed by a discussion of the rationale for replacing the
deterministic dynamics by Markovian dynamics. Sect. 1.2 contains the precise def-
initions of the models studied in the rest of this paper, and the statement of results
are announced in Sect. 1.3.

1.1. Mechanical models with particle-disk interactions.

We review here a class of models consisting of a rotating disk and a finite number
of particles in a closed domain, energy being exchanged when a particle collides with
the disk. The rules of energy exchange are borrowed from [33]; see also [36]. These
models, both in and out of equilibrium, were studied in [10].

A precise model description is as follows: Let Γ ⊂ R2 be a bounded domain with
concave piecewise C3 boundary; see Fig 2 for an example. In the interior of Γ is
a rotating disk D, nailed down at its center and rotating freely, carrying with it
a finite amount of kinetic energy. In the region Γ \ D are m point particles, each
moving with uniform motion until it collides with ∂Γ or D. Upon collision with
∂Γ, a particle is reflected elastically. Upon collision with D, energy is exchanged
according to the following rule: Let v be the velocity of the particle just prior
to collision, v = vn + vt its decomposition into components that are normal and
tangential to the disk, and let ω denote the angular velocity of the disk. If ′ denotes
the corresponding velocities following the collision, then from the conservation of
energy and angular momentum, one obtains, following [33],

v′n = −vn

v′t = vt −
2η

1 + η
(vt −Rω)

Rω′ = Rω +
2

1 + η
(vt −Rω) .
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In these formulas, m̄ is the mass of the particle, R is the radius of the disk, θ is the
moment of inertia of the disk, and η = θ/(m̄R2). This is a complete description of
the model.

Figure 2. Example of a mechanical system that motivated the present
study: Particles in a domain Γ (white) are scattered as they are reflected
off ∂Γ, and energy is exchanged when a particle collides with the rotating
disk (blue) nailed down at the center of the domain.

Choosing R = η = 1 leads to the especially simple equations

(1.1) v′n = −vn , v′t = ω , ω′ = vt .

For simplicity, we will work with these special parameters, though conceptually it
makes no difference in the present study.

Connection to stochastic model

Though easy to describe, an analysis of the mechanical model above is consider-
ably outside of the reach of current dynamical systems techniques. Thus we seek to
simplify the model while retaining its essential characteristics, including the way in
which energy is transferred among particles. By “forgetting” the precise locations
of particles in the cell and their directions of travel, as well as the direction of rota-
tion of the disk, we turn the deterministic dynamical system above into a Markov
process. Specifically, the times to energy exchange for a particle are determined
by exponential distributions with mean x−1/2 where x is the instantaneous kinetic
energy of the particle, and the repartitioning of energy at exchanges are as in (1.1)
assuming random angles of incidence. Details are given in Sect. 1.2.

We provide below some heuristic justification for the memory loss and interaction
rates proposed in the last paragraph:

First we explain the rationale behind neglecting precise locations within a cell.
Billard systems on domains with concave boundaries (or scatterers) are well known
to exhibit chaotic, or hyperbolic, behavior [40, 6]. Hyperbolicity here refers to expo-
nential divergence of nearby orbits, a property that leads to rapid loss of memory of
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trajectory history. By taking the rotating disk in our model to be relatively small,
between energy exchanges a typical particle trajectory is reflected many times as it
bounces off the walls of the domain. (Adding more scatterers in Γ \D as was done
in [29] will further enhance mixing.) As our system is a hyperbolic billiard between
collisions with the rotating disk, the rapid loss of memory gives justification for
neglecting precise locations within a cell.

Next we explain the use of exponential random variables to describe the times be-
tween collisions. Another well known fact for strongly hyperbolic systems including
billiards is that for points randomly distributed in a specific region, return times to
this region have exponentially small tails [47]. Thus for particles that emerge from
an energy exchange with a fixed energy but randomly distributed otherwise in terms
of location and angle, we can expect the times to their next collision with the disk
to have an exponentially small tail.

Finally, fixing initial location and direction of travel, the time for a particle to
reach a pre-specified region is proportional to its speed; that is the rationale for
assuming mean collision time is proportional to x−1/2.

For another confirmation of the close connection between the stochastic model
in Sect. 1.2 and the mechanical model above, notice that modulo constants their
invariant measures coincide; see the remark following Proposition 1.

1.2. Precise description of stochastic model.

The stochastic model considered in the rest of this paper is a time-homogeneous
Markov jump process xt, t ≥ 0, with

xt = (x1
t , . . . , x

m
t , yt) .

Here m is a fixed positive integer, x1
t , . . . , x

m
t are the energies of the m particles at

time t, and yt is the energy of the disk, which we regard from here on as an abstract
“energy tank”. As the domain is assumed to be closed, total energy remains constant
in time, i.e., there exists a constant Ē > 0 such that

∑
i x

i
t + yt = Ē for all t ≥ 0.

Thus the state space of xt is the open (m+ 1)-dimensional simplex

∆ = ∆m+1(Ē) =

{
(x1, · · · , xm, y) ∈ Rm+1

+ | y +
m∑
i=1

xi = Ē

}
.

As in the mechanical model in Sect. 1.1, the particles in this system do not interact
directly with one another. Instead, they interact via the energy tank, which symbol-
izes the “environment” within the domain, and it is these particle-tank interactions
that give rise to the jumps in the process. The rules of interaction are as follows:
Particle i carries a clock that rings at an exponential rate equal to

√
xit; notice that

this rate changes each time the particle acquires a new energy. The clocks carried
by different particles are independent of one another and of history. When its clock
rings, a particle exchanges energy with the tank according to the following rule:
Suppose the clock of particle i rings at time t, and let xt+ = (x1

t+ , x
2
t+ , . . . , x

m
t+ , yt+)

denote the state immediately following the interaction at time t. Then assuming
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that the angles of incidence are uniformly distributed, the rules for updating, i.e.
(1.1), translate into

(1.2) xit+ = yt + (1− u2)xit, yt+ = u2xit, and xjt+ = xjt for j 6= i ,

where u ∈ (0, 1) is a uniform random variable. For a detailed calculation, see [29].
The transition probabilities above together with an initial condition x0 defines

the Markov process xt. The notation xt = (x1
t , . . . , x

m
t , yt) is used throughout; in

particular, xi is used exclusively to denote the energy of the ith particle, not the ith
power of x.

We fix also the following notation: For t ≥ 0 and x ∈∆, let P t(x, ·) be the tran-
sition probabilities of the process xt. That is to say, P t(x, ·) is the Borel probability
distribution on ∆ describing the possible states of the system t units of time later
given that its initial condition is x. To simplify notation, we use the same notation
for the left and right operators generated by P t:

(P tξ)(x) =

∫
∆

P t(x, dy)ξ(y)

for a measurable function ξ on ∆, and

(µP t)(A) =

∫
∆

P t(x, A)µ(dx)

for a probability measure µ on ∆. Finally we say µ is an invariant measure for the
process xt if µP t = µ for all t > 0.

1.3. Statement of results.

Proposition 1. The probability measure π with density

ρ(x1, · · · , xm, y) =
1

Z
y−1/2

where Z is a normalizing constant is an invariant measure for the process xt.

By the change of variables x = |vi|2 and y = ω̃2, one sees that π coincides
with Liouville measure on a fixed energy shell for a Hamiltonian system with H =
|vi|2 + ω̃2. Here vi is the velocity of the ith particle, and ω̃ is the angular velocity
of the rotating disk.

Theorem 1 (Uniqueness of invariant measure). The measure π in Proposition
1 is the unique invariant probability for xt; hence it is ergodic.

Theorem 2 (Speed of convergence to equilibrium). For every x ∈ ∆ and
γ > 0,

lim
t→∞

t2−γ ‖P t(x, ·)− π‖TV = 0

where ‖ · ‖TV is the total variational norm.
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Theorem 2 is in fact deduced from Theorem 3 below. For δ > 0, let Mδ be the
collection of probability measures µ on ∆ such that∫

∆

(
m∑
k=1

(xk)2δ−1 + yδ−
1
2

)
µ(dx) < ∞ .

Theorem 3 (Polynomial contraction of Markov operator). For any γ > 0
and µ, ν ∈Mγ/8,

lim
t→∞

t2−γ ‖µP t − νP t‖TV = 0 .

The following simple argument shows that the bound in Theorem 3 is tight:
Consider, for example, two initial distributions µ and ν that differ by a positive
amount when restricted to the set Bε := {xi < ε} for some fixed i. For definiteness,
let us assume that for all small enough ε, µ|Bε ≤ cπ|Bε and ν|Bε ≥ c′π|Bε for some
c < 1 < c′. Since π(Bε) ∝ ε, xi < 1

t2
implies that the probability with respect to π

of the ith clock ringing before time t is < 1− e−1. It follows that

‖µP t − νP t‖TV ≥ ‖(µP t − νP t)|{xi< 1
t2
}‖TV ≥ constant · 1

t2
.

Another corollary of Theorem 3 is the rate of decay of time correlations.

Theorem 4 (Polynomial correlation decay). For any γ > 0 and µ ∈Mγ/8, let
ξ and ζ ∈ L∞(∆). Then∣∣∣∣∫

∆

(P tζ)(x)ξ(x)µ(dx)−
∫

∆

(P tζ)(x)µ(dx)

∫
∆

ξ(x)µ(dx)

∣∣∣∣ = o

(
1

t2−γ

)
as t→∞.

The next result is another consequence of Theorem 3.

Theorem 5 (Central limit theorem). Let f : ∆→ R be a Borel function that is
uniformly bounded π-a.s. For any δ > 0, let {f δn}∞n=1 = {f(x0), f(xδ), · · · , f(xnδ), · · · }
be a sequence of observables, and define

f̄ =
1

n

n∑
i=0

f δn .

Then for any initial distribution x0,
√
n(f̄ − Eπf)

d−→ N(0, σ2
f ) as n→∞ ,

provided

σ2
f := varπ{f(x0)}+ 2

∞∑
i=1

cov{f(x0), f(xiδ)} <∞ .
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2. Construction of Lyapunov function

Let ∆ be as in Sect. 1.2. For α < 1
2
, we define V = Vα : ∆→ R+ by

V (x) = Vα(x) =
m∑
i=1

(xi)−2α + y−α .

Our main technical result is the following:

Theorem 2.1. For α < 1
2

close enough to 1
2

and h > 0 small enough, there exist
c0,M > 0 depending on α and h such that for V = Vα and β = 1− (4α)−1,

(P hV )(x)− V (x) ≤ −c0V (x)β

for every x ∈ {V > M}.

The motivation for this choice of Lyapunov function is as follows. As noted in the
Introduction, low energy particles are our main concern, for they are not expected
to interact for a long time, and that slows down the mixing process. For this reason,
a desirable Lyapunov function should satisfy V (x) → ∞ as x → ∂∆. We explain
heuristically why one may expect something along the lines of P hV − V ∼ −hV 1/2,
corresponding to α, β ≈ 2: Assume x1 � 1 is the smallest particle energy. Then
V (x) ∼ (x1)−1. If the clock of particle 1 rings on the time interval [0, h) and y is
“large”, then the expected drop of V (x) following an interaction is ∼ (x1)−1 ∼ V (x).
But the probability that the clock of particle 1 will ring exactly once before time h
is ∼ h

√
x1. This means the expected drop of V (x) is ∼ h(x1)−1/2 ∼ hV 1/2.

It is convenient to use the following equivalent description of Φt: Starting from
t = 0, a clock rings at time τ1 where τ1 is an exponential random variable with mean
(
∑m

i=1

√
xi0)−1. When this clock rings, energy exchange takes place between exactly

one particle and the tank, and the probability that particle i is chosen is√
xi0∑m

i=1

√
xi0
.

The rule of energy redistribution is determined by equation (1.2) as before, and
this process is repeated, i.e., at time τ2, an exponential random variable with mean(∑m

i=1

√
xi
τ+1

)−1

, the clock rings again, and so on.

We begin with the following technical estimate:

Lemma 2.2. There exist constants ε0 > 0 and c∗ > 0 such that

E[V (xτ+1 ) |x0] ≤ V (x0)− c∗∑m
i=1

√
xi0
V (x0)β

for every x0 ∈ B, where

B =
{

x ∈∆ | y < ε0, or xi < 4−
1
2α ε0 for some i ∈ {1, . . . ,m}

}
.
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Proof. By definition,

E[V (xτ+1 ) |x0] = V (x0) +
1∑m

i=1

√
xi0

m∑
i=1

Qi

where

Qi =
√
xi0

{∫ 1

0

[
(xi0(1− u2) + y0)−2α + (xi0u

2)−α
]

du−
[
(xi0)−2α + y−α0

]}
,

i.e., we need to show
∑
Qi ≤ −c∗V (x0)β for some c∗ > 0. In the rest of the proof,

we will omit the subscript 0 in x0, x
i
0 and y0, and write

C1 =

∫ 1

0

(1− u2)−2αdu and C2 =

∫ 1

0

u−2αdu,

noting that C1, C2 <∞ for α < 1
2
. We will use many times the bound

(2.1) Qi ≤
√
xi
{

min{C1(xi)−2α, y−2α}+ C2(xi)−α − (xi)−2α − y−α
}
.

Without loss of generality assume

x1 = min
1≤i≤m

xi .

Let 0 < ε0 � ε1 � Ē be two small numbers to be determined. We decompose B,
the neighborhood of ∂∆ in the statement of the lemma, into three regions (see Fig
3) and analyze each one as follows:

Figure 3. Decomposition of neighborhood of ∂∆

Region I. 4
1
2αx1 < ε0, y ≥ ε1

With regard to lowering V , we clearly have the most to gain if particle 1 interacts
with the tank: Applying (2.1) to x1 and substituting in y ≥ ε1, we obtain

Q1 ≤
√
x1 ·

{
(ε1)−2α + C2(x1)−α − (x1)−2α

}
.

Using 4
1
2αx1 < ε0 � ε1, we see that the third term dominates. Hence

Q1 ≤ −
1

2
(x1)−2α+ 1

2 .

For i 6= 1, we consider separately the following two cases: For xi < 1
2
ε1 <

1
2
y, we

have

(2.2) Qi ≤
√
xi
{

(2xi)−2α + C2(xi)−α − (xi)−2α
}
,
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which is < 0 since the last term dominates. If xi ≥ 1
2
ε1, then from (2.1) we obtain

Qi ≤
√
xi{C1(xi)−2α + C2(xi)−α} ≤ C ′(ε1)−2α+ 1

2

for some C ′ independent of ε0 or ε1. Notice that we have used 1
2
− 2α < 0, or α > 1

4
.

Altogether, we have shown, using ε0 � ε1 � 1, that
m∑
i=1

Qi ≤ −1

2
(x1)−2α+ 1

2 + (m− 1)C ′(ε1)−2α+ 1
2 ≤ −1

3
(x1)−2α+ 1

2 .

It follows from V (x) ≤ (m+ 1)(x1)−2α that this is ≤ − 1
3(m+1)

V (x)β.

Region II. 4
1
2αx1 < ε0, 4

1
2αx1 < y < ε1

For i = 1, applying (2.1) and using y > 4
1
2αx1, we obtain

Q1 ≤
√
x1
{

(4
1
2αx1)−2α + C2(x1)−α − (x1)−2α

}
≤ −1

2
(x1)−2α+ 1

2 .

For i 6= 1, if xi < 1
2
y, then the situation is as in (2.2), and Qi < 0. The case where

xi ≥ 1
2
y is one of the more delicate: Applying (2.1), we obtain

Qi ≤ C ′′x−2α+ 1
2 −
√
xy−α ≤ C ′′′y−2α+ 1

2 −
√
xy−α .

Without loss of generality, assume x2, · · · , xk ≥ 1
2
y, and xj < 1

2
y for all j > k. Then

max{x2, . . . , xk} > Ē
2m

. Therefore

k∑
i=2

Qi ≤ (k − 1)C ′′′y−2α+ 1
2 −

(
k∑
i=2

√
xi

)
y−α

≤ y−α

[
mC ′′′y−α+ 1

2 −
√

Ē

2m

]
.

As y < ε1 and α < 1
2
, the quantity in square brackets is < 0 provided ε1 is sufficiently

small.
Thus arguing as in Region I, we have shown that

m∑
i=1

Qi ≤ −
1

2
(x1)−2α+ 1

2 < − 1

2(m+ 1)
V (x)β .

Region III. 4
1
2αx1 ≥ y, y < ε0

Since xi ≥ x1 ≥ 4−
1
2αy for all i, a calculation analogous to that in Region II gives

m∑
i=1

Qi ≤ y−α

[
mC ′′′′y−α+ 1

2 −
√

Ē

2m

]
< −1

2

√
Ē

2m
y−α

provided ε0 is small enough. Since V (x) ≤ m(x1)−2α + y−α ≤ (4m + 1)y−2α, it
follows that

m∑
i=1

Qi ≤ −
1

2

√
Ē

2m
· 1√

4m+ 1
V (x)

1
2 ≤ −1

2

√
Ē

2m
· 1√

4m+ 1
V (x)β
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since β < 1
2
.

The assertion is proved since it holds for x0 in all three regions of B. �

Proof of Theorem 2.1. Let τ1 < τ2 < . . . be the times of clock rings as defined in the
paragraph preceding the statement of Lemma 2.2, and let B be the neighborhood
of ∂∆ in Lemma 2.2. Letting τ0 = 0, we have shown that for any n ≥ 0, if xτ+n ∈ B,
then

(2.3) E[V (xτ+n+1
) |xτ+n ] ≤ V (xτ+n ) − c∗∑m

i=1

√
xi
τ+n

V (xτ+n )β .

For xτ+n 6∈ B, we will use the bound

(2.4) E[V (xτ+n+1
) |xτ+n ] ≤ M0 +M1

where

M0 = sup
x∈∆\B

V (x) and M1 = sup
x∈∆\B

1∑m
i=1

√
xi

m∑
i=1

Qi(x) .

It is easy to check that M0,M1 <∞.

We now use these estimates to deduce a bound for P hV for fixed h > 0. Let
S = inf{n, τn > h}, and define τ̂n = min{τn, τS−1}. Then

P hV (x) = lim
n→∞

E[V (xτ̂+n )1S≤n+1 |x0 = x] ≤ lim
n→∞

E[V (xτ̂+n ) |x0 = x] .

We will prove a uniform bound for E[V (xτ̂+n ) |x0 = x] for all n ≥ 1.
First, assuming the worse of (2.3) and (2.4), we have

(2.5) E[V (xτ+n+1
) | τn+1 ≤ h] ≤ E[V (xτ+n ) | τn+1 ≤ h] +M0 +M1

for every n ≥ 0. Notice that conditioning on τn+1 ≤ h does not affect the bounds
in (2.3) and (2.4) because given xτ+n , xτ+n+1

is independent of τn+1 − τn. Second, as∑m
i=1

√
xi ≤

√
mĒ for all x ∈∆, we have, for every xτ+n ∈∆,

P[τn+1 ≤ h |xτ+n , τn ≤ h] ≤
(

1− e−h
√
mĒ
)

P[τn ≤ h] ,

so that inductively,

(2.6) P[τn+1 ≤ h |x0] ≤
(

1− e−h
√
mĒ
)n+1

for n ≥ 0 .

The estimates (2.5) and (2.6) together imply the following: Given x0 = x,

E[V (xτ̂+n+1
)]

= E[V (xτ̂+n+1
) | τn+1 > h] · P[τn+1 > h] + E[V (xτ̂+n+1

) | τn+1 ≤ h] · P[τn+1 ≤ h]

≤ E[V (xτ̂+n ) | τn+1 > h] · P[τn+1 > h]

+
(
E[V (xτ̂+n ) | τn+1 ≤ h] +M0 +M1

)
· P[τn+1 ≤ h]

≤ E[V (xτ̂+n )] + (M0 +M1)(1− e−h
√
mĒ)n+1 .
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Summing over n, this gives

P hV (x) ≤ E[V (xτ̂+1 ) |x0 = x] +
M0 +M1

e−h
√
mĒ

.

Let h > 0 be small enough so that for all x ∈∆,

P[τ1 ≤ h |x0 = x] = 1− e−h
∑m
i=1

√
xi >

h

2

m∑
i=1

√
xi .

This is the only condition we impose on h.
We choose M ′ large enough so that {V > M ′} ⊂ B, and consider x0 ∈ {V > M ′}.

Noting again that E[V (xτ+1 )] is independent of τ1, we have, by Lemma 2.2,

E[V (xτ̂+1 )] = E[V (xτ+1 ) | τ1 ≤ h] · P[τ1 ≤ h] + V (x0) · P[τ1 > h]

≤

(
V (x0)− c∗∑√

xi
V (x0)β

)
· P[τ1 ≤ h] + V (x0) · P[τ1 > h]

≤ V (x0)− c∗h
2
V (x0)β .

This gives

P hV (x) ≤ V (x)− c∗h
2
V (x)β + (M0 +M1)eh

√
mĒ .

To complete the proof of Theorem 2.1, it suffices to replace M ′ by a large enough

number M so that for x ∈ {V > M}, the constant (M0 + M1)eh
√
mĒ is absorbed

into c0V (x)β for c0 = c∗ h
4
. �

We record for later use the following fact that follows from the proof above:

Corollary 2.3.
sup
x 6∈B

P hV (x) < ∞

3. Completing the proofs

After some preliminaries in Sect. 3.1, we proceed to the main task of this section,
the deduction of Theorem 3 from the Lyapunov function introduced. Two proofs
are given, one in Sects. 3.2 and 3.3 and the other in Sect. 3.4. Proofs of Theorems
2, 4 and 5 follow quickly once Theorem 3 is proved.

3.1. Existence and uniqueness of invariant measure.

Proof of Proposition 1. Let π be the probability measure with density ρ(x1, . . . , xm, y)
= 1

Z
y−1/2. To prove π = πP ξ for ξ � 1, it suffices to fix an arbitrary state

x̄ = (x̄1, · · · , x̄m, ȳ) ∈∆, let

D = D(x̄, ε) = {x ∈∆ | |xi − x̄i|, |y − ȳ| < ε ∀i}
for ε > 0 arbitrarily small, and show that

Pπ[x0 ∈ D,E] = Pπ[xξ ∈ D,E] +O(ξ2)
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where E is the event that exactly one interaction takes place on the interval (0, ξ).
Clearly,

Pπ[x0 ∈ D,E] = ξ(2ε)m

(
m∑
i=1

√
x̄i

)
· Z−1ȳ−1/2 +O(ξ2εm + ξεm+1) .

The estimation of Pπ[xξ ∈ D,E] requires a straightforward computation identical
to that in Lemma 6.6 of [29]. �

To prove uniqueness, we prove Doeblin’s condition on a subset of ∆, which for
convenience we take to be a set of “active states” of the form

Aε := {x ∈∆ |xi, y ≥ ε}
for some ε > 0. For S ⊂∆, let US denote the uniform probability measure on S.

Proposition 3.1. For any t > 0 and ε > 0, there exists a constant η = η(ε, t) such
that for every x ∈ A = Aε,

P t(x, ·) ≥ ηUA(·) .

Proof. We cover A with finitely many sets of the form D = D(x̄, ξ) where D(x̄, ξ) is
as defined in the proof of Proposition 1 with the property that dist(D, ∂∆) > 4ε

5
. It

suffices to show that given any t > 0, there exists η > 0 such that for every x ∈ A,
P t(x, ·) ≥ ηUD(·) for all the D in this cover. There are many ways to arrive at this
outcome; below we describe one possible scenario.

Let x and D be fixed. There will be two rounds of interactions. The first round,
which takes place on the time interval (0, t

2
), will result in most of the energy col-

lecting in the tank; and in the second round, which takes place on ( t
2
, t), energy is

redistributed according to D. In more detail, starting from x, the first round consists
of particle 1 interacting twice with the tank in quick succession, followed by particle
2, and so on through particle m, with no other interactions besides these. For each
i, the goal of the second interaction is to result in xit

2

∈ (2ε
5
, 3ε

5
). This requires two

interactions to achieve because after the first interaction, xis+ ≥ ys (see (1.2)), and
tank energy prior to interaction with each particle is ≥ ε. In the second round, each
particle interacts twice with the tank as before, resulting in xit ∈ [x̄i − ξ, x̄i + ξ]
uniformly distributed and independent of xjt for j = 1, 2, . . . , i− 1.

We leave it to the reader to check that the scenario above occurs with probability
η > 0 independent of x provided x ∈ A. �

Proof of Theorem 1. Let A = Aε and t be as above. It is obvious that for any
x ∈ ∆, P t/2(x, A) > 0. Together with Proposition 3.1, this implies that P t(x, ·)
has a strictly positive density on all of A, and that in turn implies that all x ∈ ∆
belong in the same ergodic component, equivalently, xt admits at most one invariant
probability measure, which must therefore be π. �
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3.2. Review of tools from probability.

We recall here some tools that we will use to prove polynomial convergence. As
these are very general ideas, we will present them in the context of general Markov
chains. Let Ψn be a (discrete-time) Markov chain on a measurable space (X,B)
with transition kernels P(x, ·).

(A) Atoms of Markov chains. A set α ∈ B is called an atom if there is a
probability measure θ on (X,B) such that for all x ∈ α, P(x, ·) = θ(·). Most Markov
chains on continuous or uncountable spaces do not possess atoms. We review here
a technique introduced in [34] which shows that under quite general conditions for
Ψn, one can construct explicitly another chain, Ψ̃n, defined on an enlarged state
space (X̃, B̃), such that Ψ̃n is an extension of Ψn and it has an atom.

The relevant condition for Ψn is that for some set A0 ∈ B, there exists a probability
measure θ and a number η > 0 such that for every x ∈ A0, P(x, ·) ≥ ηθ(·). Let us
call a set A0 with this property a special reference set. Assuming the existence of
such an A0, the splitting technique of [34] is as follows: Let X̃ = X ∪ A1 (disjoint
union) where A1 is an identical copy of A0, with the obvious extension B̃ of B to X̃.
First we define the “lift” of a measure µ on (X,B) to a measure µ∗ on (X̃, B̃):{

µ∗|X = (1− η) µ|A0 + µ|X\A0

µ∗|A1 = η µ|A0 , A0
∼= A1 via the natural identification .

The transition kernels P̃(x, ·) are then given by
P̃(x, ·) = (P(x, ·))∗ x ∈ X \ A0

P̃(x, ·) = [(P(x, ·))∗ − ηθ∗(·)]/(1− η) x ∈ A0

P̃(x, ·) = θ∗(·) x ∈ A1

It is straightforward to check that the chain Ψ̃n projects to Ψn, meaning (µP)∗ =
µ∗P̃ , so that ‖µPn − νPn‖TV ≤ ‖µ∗P̃n − ν∗P̃n‖TV. Finally, A1 is an atom for the
chain Ψ̃n — this is the whole point of the construction.

(B) Connection to renewal processes. For E ∈ B, we let τE denote the first
passage time to E, i.e.,

τE = inf{n > 0|Ψn ∈ E} .
Suppose the chain Ψn has an atom α, and that α is accessible, i.e., Px[τα <∞] = 1
for every x ∈ X. Given two initial distributions µ and ν on X, we wish to bound
the rate at which ‖µPn − λPn‖TV tends to 0 as n → ∞ where ‖ · ‖TV is the
total variational norm. One way to proceed is to run two independent copies of
the chain with initial distributions µ and ν respectively, and perform a coupling at
simultaneous returns to the atom α. It is well known that if T is the coupling time,
then

(3.1) ‖µPn − νPn‖TV ≤ 2 P[T > n] .

The quantities P[T > n], on the other hand, can be studied via two associated
renewal processes as follows:
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Let Y0 and Y ′0 be independent N-valued random variables having the distributions
of τα, the first passage time to α, starting from µ and ν respectively, and let Y1, Y2, . . .
and Y ′1 , Y

′
2 , . . . be i.i.d. random variables the distributions of which are equal to that

of τα starting from α. In addition, we assume the return times to α are aperiodic,
i.e., gcd{n ≥ 1 |P[Yi = n] > 0} = 1. Then Sn :=

∑n
i=0 Yi and S ′n :=

∑n
i=0 Y

′
i ,

n = 0, 1, 2, . . . , are renewal processes, and T above is the first simultaneous renewal
time, i.e.

T = inf
n≥0
{Sk1 = S ′k2 = n for some k1, k2} .

The following known result relates the finiteness of the moments of T to the corre-
sponding moments for the distributions of Y0, Y

′
0 and Y1:

Theorem 3.2. (Theorem 4.2 of [31]) Let Yi and Y ′i be as above. Suppose that for
some β ≥ 1, we have

(3.2) E[Y β
0 ], E[Y ′β0 ] and E[Y β

1 ] <∞ .

Then E[T β] is also finite.

The discussion above implies the following:

Corollary 3.3. Let Ψn be a Markov chain on (X,B) with transition kernel P.
Suppose Ψn has an atom α that is accessible and whose return times are aperiodic.
Let µ and ν be two probability distributions on X, and assume that for some β > 1,

Eµ[τβα ], Eν [τβα ] and Eα[τβα ] <∞.
Then

lim
n→∞

nβ‖µPn − νPn‖TV = 0 .

The proof is as discussed, together with the following general relation: Let Z be
a random variable taking values in N, and let β > 1. Then

(3.3) E[Zβ] <∞ =⇒ lim
n→∞

nβP[Z > n] = 0 .

(C) Lyapunov function and moments of first passage times. The following
result, which is sufficient for our purposes, is a simple version of Theorem 3.6 of [22]:

Theorem 3.4. (Theorem 3.6 of [22]) Let Ψn be a Markov chain on (X,B) with
transition kernel P. We assume that there exist a function W : X → [1,∞), a set
A ∈ B, constants b, c > 0 and 0 ≤ β < 1 such that

(3.4) PW −W ≤ −cW β + b1A .

Then there is a constant ĉ such that for all x ∈ X,

Ex

[
τA−1∑
k=0

(k + 1)β̂−1

]
≤ ĉW (x) , β̂ = (1− β)−1 .
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Clearly, Ex[τ β̂A] is bounded above by a constant times the expectation above.
The reader may notice that we have omitted some of the hypotheses in Theorem

3.6 of [22] in the statement of Theorem 3.4 above. This is because they are not
needed: here we consider only the first passage time to A, which can be thought
of as a set of the form {W ≤ constant}, while [22] considers first passage times
to arbitrary sets. We remark also that [22] does not give the rate of convergence
to equilibrium we claim; it shows that in general, convergence rate is bounded by

∼ tβ̂−1, but as we will see, additional information for our systems enables us to prove

a faster convergence rate ∼ tβ̂−2.

Remarks: In (A), (B) and (C) above, we have outlined a general strategy for
deducing polynomial rates of convergence or of correlation decay for Markov chains.
While we have cited specific references, they are not the only ones that contributed
to this general body of ideas [20, 35, 8, 41, 9, 14]. We acknowledge in particular
[35], which was proved earlier and which used similar ideas as above though some
of the arguments were carried out a little differently. We mention also [48], which
models deterministic dynamical systems with chaotic behavior as objects that are
slight generalizations of countable state Markov chains. This paper focuses on tails
of return times, i.e., P[τα > n], rather than on moments of τα, to a set α that is
effectively a special reference set as defined in (A); tails of first passage times and
moments are, as we have noted, essentially equivalent.

3.3. Proofs of Theorems.

We first prove Theorem 3. Theorems 2, 4 and 5 follow easily; their proofs are
given at the end of the subsection.

Let h > 0 be small enough for Theorem 2.1 to apply, and let

x̂n = (x̂1
n, · · · , x̂mn , ŷn) = (x1

nh, · · · , xmnh, ynh) , n = 0, 1, 2, · · · ,
be the time-h sampling chain of xt. Letting b t

h
c denote the largest integer ≤ t

h
, we

observe that

‖µP t − νP t‖TV = ‖(µP b
t
h
ch − νP b

t
h
ch)P (t−b t

h
c)h‖TV ≤ ‖µP b

t
h
ch − νP b

t
h
ch‖TV ,

so it suffices to prove the theorem for x̂n corresponding to a fixed h. From here on,
h is fixed, and since we will be working exclusively with the discrete-time chain x̂n,
the ˆ in x̂n is dropped for notational simplicity.

Let γ > 0 be small enough that Theorem 2.1 applies with α = 1
2
− γ

8
. We define

A = Aγ,h = {x ∈∆ |V 1
2
− γ

8
(x) ≤M}

where M = M(1
2
− γ

8
, h), and let

τA = inf
n>0
{xn ∈ A}

be the first passage time to A. We plan to proceed as follows:
(1) First we estimate the moments of τA .
(2) Using A as a special reference set, we split the chain, obtaining an atom α for

the split chain x̃n.
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(3) We deduce from (1) the moments of τ̃α, the first passage time of x̃n to α, and
(4) finally, we apply Corollary 3.3 to τ̃α to obtain the desired results.

Lemma 3.5. Given γ as above, there exists C = C(γ) such that for all x ∈∆,

Ex[τ
2− γ

2
A ] ≤ CV 1

2
− γ

8
(x) .

Proof. We apply Theorem 2.1 to V 1
2
− γ

8
. From Corollary 2.3, it follows that if W =

max{V 1
2
− γ

8
, 1}, then b := supx∈A

{
P hW (x)−W (x)

}
<∞, and we have

P hW −W ≤ −cW 1− 2
4−γ + b1A .

Theorem 3.4 then tells us that there is a constant ĉ such that for all x,

Ex

[
τA−1∑
k=0

(k + 1)1− γ
2

]
≤ ĉW (x) .

As W ≤ C2V 1
2
− γ

8
for some constant C2 > 0 that depends only on Ē,m and γ, it

follows that

Ex

[
τ

2− γ
2

A

]
≤ 2 · Ex

[
τA−1∑
k=0

(k + 1)1− γ
2

]
≤ 2C2 · ĉ · V 1

2
− γ

8
(x) .

This completes the proof. �

Recall that for small δ > 0, Mδ is the set of Borel probability measures µ on ∆
such that ∫

∆

(
m∑
k=1

(xk)2δ−1 + yδ−
1
2

)
µ(dx) ≡

∫
∆

V 1
2
−δ(x)µ(dx) < ∞ .

Proof of Theorem 3. Let γ > 0 and h > 0 be as above, and let µ, ν ∈ Mγ/8 be
given. It follows from Proposition 3.5 that

Eµ[τ
2− γ

2
A ] , Eν [τ

2− γ
2

A ] <∞ .

Observe next that A is a special reference set in the sense of Sect. 3.2(A); this
follows from Proposition 3.1, for A ⊂ Aε for ε > 0 small enough. We split the chain
as discussed in Sect. 3.2(A), denoting the split chain by x̃n, and let A0 and A1 be

identical copies of A in ∆̃, with A1 = α being an atom.
To apply Corollary 3.3 to the chain x̃n, we first check that the atom α is accessible:

It is easy to see that if τ̃ is first passage time of x̃n, then τA = τ̃A0∪A1 , and from
Theorem 1, we know that A is accessible under xn. Moreover, every time x̃n returns
to A0∪A1, it has probability η of entering α. This guarantees the accessibility of α.
Aperiodicity of return times to α follows from the fact that for all x̃0, P[x̃1 ∈ α] > 0.

It remains to pass the moments of τA to the moments τ̃α. For a measure λ on ∆,
λ̃ denotes its lift to ∆̃.

Lemma 3.6. (i) Eα[τ̃ 2−γ
α ] <∞ .

(ii) Eλ̃[τ̃ 2−γ
α ] <∞ for λ with Eλ[τ

2− γ
2

A ] <∞ .
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This lemma follows from Lemma 3.1 of [35]; we provide an elementary proof
below for completeness. Assuming Lemma 3.6, we may now apply Corollary 3.3 to
x̃n with β = 2 − γ, giving a convergence rate of t2−γ. To finish, recall from Sect.
3.2(A) that if P and P̃ are the Markov operators for xn and x̃n respectively, then
‖µPn − νPn‖TV ≤ ‖µ̃P̃n − ν̃P̃n‖TV. �

Proof of Lemma 3.6. To prove (i), it suffices to show that for some γ′ < γ, there
exists C such that

(3.5) Pα[τ̃α > k] ≤ Ckγ
′−2 for all k .

Let τn, n = 1, 2 . . . , denote the nth entrance time into A0∪A1, and let N be smallest
n such that τ̃α = τn. Since at each τn, the probability of being in α is η, we have

P[N > k] = (1− η)k. Note also that since supx∈A Ex[τ
2− γ

2
A ] <∞ by Proposition 3.5,

it follows that
P[τn+1 − τn ≥ k |N > n, x̃τn ] ≤ C ′k−(2− γ

2
)

for some constant C ′.
For any δ > 0, we have

{τN > k1+δ} ⊂ {N > kδ} ∪
bkδc⋃
n=0

{τn+1 − τn > k; N > n} .

Thus

Pα[τ̃α > k1+δ]

≤ Pα[N > kδ] +

bkδc∑
n=0

Pα[τn+1 − τn > k |N > n]

= Pα[N > kδ] +

bkδc∑
n=0

∫
Pα[τn+1 − τn > k |N > n, x̃τn = x̃]Pα[x̃τn = dx̃,N > n]

≤ (1− η)k
δ

+ kδC ′k−(2− γ
2

) .

Noting that the second term dominates for large k, we obtain (3.5) by choosing δ
sufficiently small.

The proof of (ii) follows similar steps and uses the finiteness of Eµ[τ
2− γ

2
A ]. �

Proof of Theorem 2. A simple computation using the density of π shows that π ∈
Mδ for every δ > 0. Also, for every x ∈ ∆, the point mass δx clearly belongs in
Mδ for all δ > 0. Thus Theorem 2 is a special case of Theorem 3, with µ = π and
ν = δx. �



20 YAO LI AND LAI-SANG YOUNG

Proof of Theorem 4. As a direct consequence of Theorem 3, we have∣∣∣∣∫ (P tζ)(x)ξ(x)µ(dx)−
∫

(P tζ)(x)µ(dx)

∫
ξ(x)µ(dx)

∣∣∣∣
=

∣∣∣∣∫ ξ(x)

(
(P tζ)(x)−

∫
(P tζ)(z)µ(dz)

)
µ(dx)

∣∣∣∣
≤ ‖ξ‖L∞ ‖ζ‖L∞

∫
‖δxP t − µP t‖TV µ(dx) = o

(
1

t2−γ

)
.

�

Proof of Theorem 5. Theorem 5 follows in a straightforward way from Theorem 3
and the Markov chain central limit theorem (Corollary 2 of [23]). It is a simple
exercise to check that all conditions are satisfied by the time-δ chain {xnδ}∞n=0 for
any δ > 0. �

3.4. Alternate proof of Theorem 3.

As pointed out by one of our reviewers, Theorem 3 also follows from Theorem
4.1 in [20]. We thank him/her for pointing us to this result. Below we recall the
statement of it, and then show how to use it to deduce Theorem 3.

Let Ψt be a strong Markov chain on a metric space X with infinitesimal genera-
tor L and associated semigroup Pt. The following result of sub-geometric rates of
convergence holds.

Theorem 3.7 (Theorem 4.1 of [20]). Assume Ψt has a cadlag modification and Pt is
Feller. Assume furthermore that there exists a continuous function V : X 7→ [1,∞)
with pre-compact sublevel sets such that

LV ≤ K − φ(V )

for some constant K and for some strictly concave function φ : R+ → R+ with
φ(0) = 0 and increasing to infinity. In addition, we assume that sublevel sets of V
are “small” in the sense that for every C > 0 there exists α > 0 and T > 0 such
that

‖PT (x, ·)− PT (y, ·)‖TV ≤ 2(1− α)

for every (x, y) such that V (x) + V (y) ≤ C. Then

• There exists a unique invariant measure µ for Ψt and µ is such that∫
X

φ(V (x))µ(dx) ≤ K

• Let Hφ be the function defined by

Hφ(u) =

∫ u

1

ds

φ(s)
.

Then, there exists a constant C such that for every x, y ∈ X, one has the
bounds

‖Pt(x, ·)− Pt(y, ·)‖TV ≤ C
V (x) + V (y)

H−1
φ (t)

.
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The proof of Theorem 4.1 uses a different coupling that bypasses the explicit
splitting of the Markov chain, and the Lyapunov function is lifted to X×X. Similar
estimates of hitting times as in Lemma 3.5 and 3.6 are also ingredients in this proof.

Proof of Theorem 3 using Theorem 4.1. It is a simple exercise to check that
(1) xt is a strong Markov process with an infinitesimal generator G, and (2) xt is a
Feller process with cadlag sample paths.

Let V (x) = Vα(x) be the same Lyapunov function used before. (One may multiply
V by a constant to make its minimum be greater than 1, if necessary.) We have

GV (x) =
m∑
i=1

Qi ,

where

Qi =
√
xi0

{∫ 1

0

[
(xi0(1− u2) + y0)−2α + (xi0u

2)−α
]

du−
[
(xi0)−2α + y−α0

]}
.

Therefore it follows from Lemma 2.2 that there exist constants ε0 > 0 and c∗ > 0
such that

GV (x) ≤ −c∗V β(x)

for every x ∈ B, where β = 1− (4α)−1 and

B =
{

x ∈∆ | y < ε0, or xi < 4−
1
2α ε0 for some i ∈ {1, . . . ,m}

}
.

Let

K = sup
x∈∆\B

m∑
i=1

Qi(x) .

It is easy to check that K <∞ and

GV ≤ K − c∗V β .

It remains to check that the sublevel sets of V are “small”. Let A = AC be the
sublevel set {V ≤ C}. By the same proof as in Proposition 3.1, for any t > 0 and
C > minV (x), there exists a constant η = η(C, t) such that for every x ∈ A,

P t(x, ·) ≥ ηUA(·) ,
where UA is the uniform probability measure on A. This implies

‖P t(x, ·)− P t(y, ·)‖TV ≤ 2(1− η)

for each x,y such that V (x) + V (y) ≤ C.

Therefore, let φ(x) = c∗xβ, by Theorem 4.1, we have

‖P t(x, ·)− P t(y, ·)‖TV ≤ C0
V (x) + V (y)(

c∗
∫ t

1
s(4α)−1−1ds

)−1 = C ′0(V (x) + V (y))t−4α .

for some constants C0 and C ′0. The proof of Theorem 3 is completed by letting
α = 1

2
− γ/4. �
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