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ON CHARACTERIZATIONS OF BISTOCHASTIC KADISON-SCHWARZ

OPERATORS ON M2(C)

FARRUKH MUKHAMEDOV AND HASAN AKIN

Abstract. In this paper we describe bistochastic Kadison-Schawrz operators acting on M2(C).
Such a description allows us to find positive, but not Kadison-Schwarz operators. Moreover,
by means of that characterization we construct Kadison-Schawrz operators, which are not com-
pletely positive.
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1. Introduction

It is known that entanglement is one of the essential features of quantum physics and is funda-
mental in modern quantum technologies [34]. One of the central problems in the entanglement
theory is the discrimination between separable and entangled states. There are several tools
which can be used for this purpose. There are many papers devoted to find a given state is
separable (see [16]). The most general approach to characterize quantum entanglement uses a
notion of an entanglement witness [17, 7, 44]. One of the big advantages of entanglement witness
is that they provide an economic method of detection which does not need the full information
about the quantum state (see for recent review [10]). Interestingly, the entanglement witnesses
are deeply connected to a theory of positive maps in operator algebras [6, 9, 15]. Therefore, it
would interesting to find some conditions for the positivity of given mappings. In this direction
there are several papers [4, 6, 8, 9, 15, 21, 40, 41]. Therefore, it would interesting to find some
conditions for the positivity of given mappings (see [21]-[25]). In the literature the most tractable
maps, the completely positive mapping, have proved to be of great importance in the study of
quantum system (see [11, 35, 36, 37, 42]). It is therefore of interest to study conditions stronger
than positivity, but weaker than complete positivity. Such a condition is called Kadison-Schwarz
(KS) property. Note that KS-operators no need to be completely positive. In [39] relations be-
tween n-positivity of a map φ and the KS property of certain map is established (see also [2]).
Some ergodic properties of the Kadison-Schwarz maps were investigated in [20, 14, 38]. Unfortu-
nately, like completely positive maps, the description of Kadison-Schwarz maps is not provided.
Very recently, one of the authors of this paper in [28] has described bistochastic KS-operators
from M2(C) to itself. But, in general, the problem still remains open.

In [13] it was proposed to study positive operators P from a von Neumann algebra M to its
tensor square M ⊗ M (we refer a reader to [12, 33] for recent review on quadratic operators).
It turns out that this kind of mappings have some applications to quantum information theory.
One of such an application is to detect entangled states. For example, let P be a block positive,
then a state φ on the algebra M⊗M is separable, then the state P∗φ is positive. If φ is entangled,
then P∗φ may not be positive. This observation leads to more investigation of operators from
M to M ⊗ M . In general, description of this kind of mappings was fully not studied yet.
Some positivity conditions were found in [21, 24]. In [30, 27] it was considered trace preserving
mappings from M2(C) to M2(C) ⊗ M2(C), and each such kind of mappings can be written as
a sum of two ”linear” and ”nonlinear” operators (see (2.7)-(2.9)). In [29] mappings of the form
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(2.8) have been studied. Namely, some sufficient conditions for positivity (resp. Kadison-Schwarz
property) of the mentioned mappings were found.

In the present paper we are going to describe or characterize operators of the form (2.9). To
do it, we first in Section 3 we provide a characterization of KS-operators form M2(C) to M2(C)
which improves the main result of [28]. In section 4, we give a sufficient condition for a class of
bistochastic mappings from M2(C) to M2(C)⊗M2(C) to be KS-operator. Note that this class
of operators are totally different from the operators studied in [29]. Such a description allows
us to find positive, but not Kadison-Schwarz operators. Moreover, by means of that conditions
one can construct KS-operators, which are not completely positive. Note that some parts of this
section have been announced in [31]. Moreover, our results allow to produce higher dimensional
examples of positive, but completely positive maps. The proposed approach can be extended
to a more general setting rather that M2(C), and will produce non trivial examples of positive
mappings.

2. Preliminaries

In this section we recall some definitions and notations.
Let Mn(C) be the algebra of n × n matrices over the complex field C. Recall that a linear

mapping Φ : Mn(C) → Mm(C) is called

(i) positive if Φ(x) ≥ 0 whenever x ≥ 0;
(ii) unital if Φ(1I) = 1I;
(iii) trace preserving if τ(Φ(x)) = τ(x), where τ is the normalized trace;
(iv) bistochastic if Φ is unital and trace preserving;
(v) n-positive if the mapping Φn : Mn(A) → Mn(B) defined by Φn(aij) = (Φ(aij)) is positive.

Here Mn(A) denotes the algebra of n× n matrices with A-valued entries;
(vi) completely positive if it is n-positive for all n ∈ N;
(vii) Kadison-Schwarz operator (KS-operator), if one has

Φ(x)∗Φ(x) ≤ Φ(x∗x) for all x ∈ A.(2.1)

It is clear that any KS-operator is positive. Note that every unital 2- positive map is KS-
operator, and a famous result of Kadison states that any positive unital map satisfies the in-
equality (2.1) for all self-adjoint elements x ∈ A.

By KS(Mn,Mm) we denote the set of all KS-operators mapping from Mn(C) to Mm(C).

Theorem 2.1. [28] The following assertions hold true:

(i) Let Φ,Ψ ∈ KS(Mn,Mm), then for any λ ∈ [0, 1] the mapping Γ = λΦ+(1−λ)Ψ belongs
to KS(Mn,Mm). This means KS(Mn,Mm) is convex;

(ii) Let U, V be unitaries in Mn(C) and Mm(C), respectively, then for any Φ ∈ KS(Mn,Mm)
the mapping ΨU,V (x) = UΦ(V xV ∗)U∗ belongs to KS(Mn,Mm).

By M2(C)⊗M2(C) we mean tensor product of M2(C) into itself. We note that such a product
can be considered as an algebra of 4 × 4 matrices M4(C) over C. By S(M2(C)) we denote the
set of all states (i.e. linear positive functionals which take value 1 at 1I) defined on M2(C).

Recall that a linear operator ∆ : M2(C) → M2(C)⊗M2(C) is said to be quantum quadratic
operator (q.q.o.) if it is unital and positive.

A state h ∈ S(M2(C)) is called a Haar state for a q.q.o. ∆ if for every x ∈ M2(C) one has

(2.2) (h⊗ id) ◦∆(x) = (id⊗ h) ◦∆(x) = h(x)1I.

Remark 2.2. Let U : M2(C)⊗M2(C) → M2(C)⊗M2(C) be a linear operator such that U(x⊗y) =
y⊗x for all x, y ∈ M2(C). If a q.q.o. ∆ satisfies U∆ = ∆, then ∆ is called a quantum quadratic
stochastic operator or symmetric q.q.o. Recent reviews on this kind of operators can be found
in [12, 33]).
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Recall [5] that the identity and Pauli matrices {1I, σ1, σ2, σ3} form a basis for M2(C), where

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i

i 0

)
σ3 =

(
1 0
0 −1

)
.

In this basis every matrix x ∈ M2(C) can be written as x = w01I + wσ with w0 ∈ C,
w = (w1, w2, w3) ∈ C

3, here wσ = w1σ1 + w2σ2 + w3σ3.

Lemma 2.3. [40] The following assertions hold true:

(a) x is self-adjoint iff w0,w are reals;
(b) Tr(x) = 1 iff w0 = 0.5, here Tr is the trace of a matrix x;

(c) x > 0 iff ‖w‖ ≤ w0, where ‖w‖ =
√

|w1|2 + |w2|2 + |w3|2.

Note that any state ϕ ∈ S(M2(C)) can be represented by

(2.3) ϕ(w01I +wσ) = w0 + 〈w, f〉,

where f = (f1, f2, f3) ∈ R
3 with ‖f‖ ≤ 1. Here as before 〈·, ·〉 stands for the scalar product in

C
3. Therefore, in the sequel we will identify a state ϕ with a vector f ∈ R

3.
In what follows by τ we denote a normalized trace, i.e. τ(x) = 1

2 Tr(x), x ∈ M2(C),
Let ∆ : M2(C) → M2(C)⊗M2(C) be a q.q.o. We write the operator ∆ in terms of a basis in

M2(C)⊗M2(C) formed by the Pauli matrices. Namely,

∆1I = 1I⊗ 1I;(2.4)

∆(σi) = bi(1I⊗ 1I) +

3∑

j=1

b
(1)
ij (1I⊗ σj) +

3∑

j=1

b
(2)
ij (σj ⊗ 1I) +

3∑

m,l=1

bml,i(σm ⊗ σl),(2.5)

where i = 1, 2, 3.
In general, a description of positive operators is one of the main problems of quantum infor-

mation. In the literature most tractable maps are positive and trace-preserving ones, since such
maps arise naturally in quantum information theory (see [18, 19, 34, 40]). Therefore, in the
sequel we shall restrict ourselves to the trace preserving q.q.o. Hence, from (2.4),(2.5) one finds

(2.6) ∆(x) = w01I⊗ 1I +B(1)w · σ ⊗ 1I + 1I⊗B(2)w · σ +
3∑

m,l=1

〈bml,w〉σm ⊗ σl,

where x = w0 +wσ, bml = (bml,1, bml,2, bml,3), and B(k) = (b
(k)
ij )3i,j=1, k = 1, 2.

In general, to find some conditions for ∆ to be KS-operator, is a tricky job. Therefore, one
can rewrite (2.6) as follows

(2.7) ∆(x) = λ∆1(x) + (1− λ)∆2(x),

where

∆1(x) = w01I⊗ 1I +
1

λ

3∑

m,l=1

〈bml,w〉σm ⊗ σl,(2.8)

∆2(x) = w01I⊗ 1I +
1

1− λ

(
B(1)w · σ ⊗ 1I + 1I⊗B(2)w · σ

)
.(2.9)

In [29, 32] we have studied q.q.o. of the form (2.8). It is found necessary conditions for (2.8)
kind of operators to be KS-operator. But operators of the form (2.9) has not been studied yet.
Therefore, main aim of this paper to find some conditions on operators (2.9) to be Kadison-
Schwarz. Then using Theorem 2.1 and our findings with the results of [32], we can find sufficient
conditions for (2.7) to be KS-operator.
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3. Kadison-Schwarz operators from M2(C) to M2(C)

To investigate operators of the form (2.9) (see section 4) we need some preliminary facts from
[28]. In this section we collect some of them, and improve a main result of [28].

It is known that every Φ : M2(C) → M2(C) linear mapping can also be represented in this

basis by a unique 4 × 4 matrix F. It is trace preserving if and only if F =

(
1 0

t T

)
where T

is a 3× 3 matrix and 0 and t are row and column vectors, respectively, so that

(3.1) Φ(w01I +w · σ) = w01I + (w0t+ Tw) · σ.

When Φ is also positive then it maps the subspace of self-adjoint matrices of M2(C) into itself,
which implies that T is real. A linear mapping Φ is unital if and only if t = 0. So, in this case
we have

(3.2) Φ(w01I +w · σ) = w01I + (Tw) · σ.

Hence, any bistochastic mapping Φ : M2(C) → M2(C) has a form (3.2). In [28] it has been
given a characterization bistochastic KS-operators, i.e. the following

Theorem 3.1. [28] Any bistochastic mapping Φ : M2(C) → M2(C) is KS-operator if and only
if one has

‖Tw‖ ≤ ‖w‖, Tw = Tw(3.3) ∥∥∥∥T [w,w]−
[
Tw, Tw

]∥∥∥∥ ≤ ‖w‖2 − ‖Tw‖2(3.4)

for all w ∈ C
3.

Let Φ be a bistochastic KS-operator on M2(C), then it can be represented by (3.2). Following
[18] let us decompose the matrix T as follows T = RS, here R is a rotation and S is a self-adjoint
matrix (see [18]). Define a mapping ΦS as follows

(3.5) ΦS(w01I +w · σ) = w01I + (Sw) · σ.

Every rotation is implemented by a unitary matrix in M2(C), therefore there is a unitary U ∈
M2(C) such that

(3.6) Φ(x) = UΦS(x)U
∗, x ∈ M2(C).

On the other hand, every self-adjoint operator S can be diagonalized by some unitary operator,
i.e. there is a unitary V ∈ M2(C) such that S = V Dλ1,λ2,λ3

V ∗, where

Dλ1,λ2,λ3
=




λ1 0 0
0 λ2 0
0 0 λ3


 ,(3.7)

where λ1, λ2, λ3 ∈ R.
Consequently, the mapping Φ can be represented by

(3.8) Φ(x) = ŨΦDλ1,λ2,λ3
(x)Ũ∗, x ∈ M2(C)

for some unitary Ũ . Due to Theorem 2.1 the mapping ΦDλ1,λ2,λ3
is also KS-operator. Hence,

all bistochastic KS-operators can be characterized by ΦDλ1,λ2,λ3
and unitaries. In what follows,

for the sake of shortness by Φ(λ1,λ2,λ3) we denote the mapping ΦDλ1,λ2,λ3
. It is clear to observe

from (3.3) that |λk| ≤ 1, k = 1, 2, 3.

In [40] it has been given a characterization of completely positivity of Φ(λ1,λ2,λ3).
Using Theorem 2.1 we are going to characterize KS-operators of the form Φ(λ1,λ2,λ3).
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Theorem 3.2. Φ(λ1,λ2,λ3) is a KS-operator if and only if the following inequalities are satisfied:

(1 + λ2
1)(3 + λ2

2 + λ2
3 − λ2

1) ≤ 4(1 + λ1λ2λ3);(3.9)

(1 + λ2
2)(3 + λ2

1 + λ2
3 − λ2

2) ≤ 4(1 + λ1λ2λ3);(3.10)

(1 + λ2
3)(3 + λ2

1 + λ2
2 − λ2

3) ≤ 4(1 + λ1λ2λ3).(3.11)

where λ1, λ2, λ3 ∈ [−1, 1].

Proof. ’only if’ part. Using simple calculation from (3.4) of Theorem 3.1 with T = Dλ1,λ2,λ3
we

obtain

A|w2w3 − w3w2|
2 + B|w1w3 − w3w1|

2

+ C|w1w2 − w2w1|
2 ≤

(
α|w1|

2 + β|w2|
2 + γ|w3|

2
)2
,(3.12)

where w = (w1, w2, w3) ∈ C
3 and

α = |1− λ2
1|, β = |1− λ2

2|, γ = |1− λ2
3|(3.13)

A = |λ1 − λ2λ3|
2, B = |λ2 − λ1λ3|

2, C = |λ3 − λ1λ2|
2.(3.14)

Due to the inequality |2ℑ(uv)| ≤ |u|2 + |v|2, one has

|wiwj − wjwi|
2 = |2ℑ(wiwj)|

2 ≤ |wi|
4 + 2|wi|

2|wj |
2 + |wj |

4 (i 6= j)(3.15)

Note that this inequality is reachable by appropriate choosing of values wi and wj .
Hence, we estimate LHS of (3.12) by

A(|w2|
4 + 2|w2|

2|w3|
2 + |w3|

4) +B(|w1|
4 + 2|w1|

2|w3|
2 + |w3|

4) + C(|w1|
4 + 2|w1|

2|w2|
2 + |w2|

4)

Consequently, from (3.12) we derive the following one

|w1|
4(α2 −B − C) + |w2|

4(β2 −A−C) + |w3|
4(γ2 −A−B)

+2|w1|
2|w2|

2(αβ −C) + 2|w1|
2|w3|

2(αγ −B) + 2|w2|
2|w3|

2(βγ −A) ≥ 0(3.16)

for all (w1, w2, w3) ∈ C
3. It is easy to see that (3.16) is satisfied if one has

α2 ≥ B + C, β2 ≥ A+ C, γ2 ≥ A+B,

αβ ≥ C, αγ ≥ B, βγ ≥ A.

Substituting above denotations (3.13),(3.14) to the last inequalities, and doing simple calcu-
lation one derives

(1 + λ2
1)(3 + λ2

2 + λ2
3 − λ2

1) ≤ 4(1 + λ1λ2λ3);(3.17)

(1 + λ2
2)(3 + λ2

1 + λ2
3 − λ2

2) ≤ 4(1 + λ1λ2λ3);(3.18)

(1 + λ2
3)(3 + λ2

1 + λ2
2 − λ2

3) ≤ 4(1 + λ1λ2λ3);(3.19)

λ2
1 + λ2

2 + λ2
3 ≤ 1 + 2λ1λ2λ3.(3.20)

where λ1, λ2, λ3 ∈ [−1, 1].
Now we would like to show that (3.20) is an extra condition, i.e. the inequality (3.20) always

satisfies when (3.17), (3.18) and (3.19) are true. Suppose that

λ2
1 + λ2

2 + λ2
3 = 1 + 2λ1λ2λ3(3.21)

is true. We will show that the elements of the surface do not satisfy the inequalities (3.17),
(3.18) and (3.19) except for (0, 0, 0), (±1,±1,±1). Using simple algebra from (3.17), (3.18) and
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(3.19) with (3.21) we obtain the followings

(1− λ2
1)(λ

2
1 − λ1λ2λ3) ≤ 0;

(1− λ2
2)(λ

2
2 − λ1λ2λ3) ≤ 0;

(1− λ2
3)(λ

2
3 − λ1λ2λ3) ≤ 0,

where λ1, λ2, λ3 ∈ [−1, 1]. Due to our assumption λ1 6= ±1, λ2 6= ±1, λ3 6= ±1 from the last
inequalities we infer that

λ1(λ1 − λ2λ3) ≤ 0(3.22)

λ2(λ2 − λ1λ3) ≤ 0(3.23)

λ3(λ3 − λ1λ2) ≤ 0,(3.24)

where λ1, λ2, λ3 ∈ (−1, 1). Let λ1 > 0, then one gets λ1 ≤ λ2λ3. It implies λ2 > 0, λ3 > 0 or
λ2 < 0, λ3 < 0. Now assume λ2 > 0, λ3 > 0, then from (3.23) and (3.24) one gets

λ2 ≤ λ1λ3, λ3 ≤ λ1λ2.

From λ1 ≤ λ2λ3 and λ2 ≤ λ1λ3 one has λ2 ≤ λ2λ
2
3. This means 1 ≤ λ2

3. This contradicts to our
assumption.

Now let λ1 > 0, λ2 < 0 and λ3 < 0, then from (3.23) and (3.24) one finds

λ2 ≥ λ1λ3, λ3 ≥ λ1λ2.(3.25)

From (3.25) one finds λ3 ≥ λ2
1λ3. This implies that λ2

1 ≥ 1. It is again a contradiction. In case
λ1 < 0, using the similar argument we will get again contradiction. This implies the required
assertion.

’if’ part. Let (3.9)-(3.11) be satisfied. Then it implies that (3.20) is always true. This means
(3.16) is satisfied. This yields (3.12), hence Φ(λ1,λ2,λ3) is a KS-operator. This completes the
proof. �

Note that the proved theorem provided necessary and sufficient conditions for the mapping
Φ(λ1,λ2,λ3) to be KS-operator. In [28] it was proved only sufficient conditions to be KS-operators.
Therefore, the last theorem essentially improves a main result of [28]. Moreover, the last theorem
allows us to construct lots of KS-operators, which are not completely positive.

4. A class of Kadison-Schwarz operators from M2(C) to M2(C)⊗M2(C)

In this section we are going to provide description of operators of the form (2.9). First we
need the following auxiliary

Lemma 4.1. Let x = w01I⊗ 1I +w · σ⊗ 1I + 1I⊗ r · σ. Then the following statements hold true:

(i) x is self-adjoint if and only if w0 ∈ R and w, r ∈ R
3;

(ii) x is positive if and only if w0 > 0 and ‖w‖+ ‖r‖ ≤ w0.

Proof. (i). One can see that

x∗ = w01I⊗ 1I +w · σ ⊗ 1I + 1I⊗ r · σ

So, self adjointness x implies w0 = w0, w = w, r = r.
(ii). Let x be self-adjoint. Then from the definition of Pauli matrices one finds

x =




w0 + w3 + r3 w1 − iw2 r1 − ir2 0
w1 + iw2 w0 − w3 + r3 0 r1 − ir2
r1 + ir2 0 w0 + w3 − r3 w1 − iw2

0 r1 + ir2 w1 + iw2 w0 − w3 − r3






KADISON-SCHWARTZ OPERATORS 7

It is easy to calculate that eigenvalues of last matrix are the followings

λ1 = w0 − ‖r‖+ ‖w‖, λ2 = w0 − ‖r‖ − ‖w‖,

λ3 = w0 + ‖r‖+ ‖w‖, λ4 = w0 + ‖r‖ − ‖w‖

So, we can conclude that x is positive if and only if the smallest eigenvalue is positive. This
means w0 − ‖r‖ − ‖w‖ ≥ 0, which completes the proof. �

Now we rewrite operator (2.9) as T : M2(C) → M2(C)⊗M2(C) given by

T (w01I +w · σ) = w01I⊗ 1I +Aw · σ ⊗ 1I + 1I⊗Cw · σ(4.1)

where A,C are linear operators on C
3.

We first find conditions when T is positive. This is given by the following

Theorem 4.2. The mapping T given by (4.1) is positive if and only if

‖Aw‖+ ‖Cw‖ ≤ 1,

for all w ∈ R
3 with ‖w‖ = 1.

Proof. Let x = w01I+w ·σ be positive, i.e. w0 > 0, ‖w‖ ≤ w0. Without lost of generality we may
assume w0 = 1. Now Lemma 4.1 yields that T (x) is positive if and only if ‖Aw‖ + ‖Cw‖ ≤ 1.
This competes the proof. �

Corollary 4.3. Let A = C then T is positive if and only if ‖A‖ ≤ 1
2 .

Now let us turn to the Kadison-Schwarz property.
Define the following mappings

Φ(x) = w01I + 2Aw · σ(4.2)

Ψ(x) = w01I + 2Cw · σ(4.3)

Then one finds

T (x) =
1

2

(
Φ(x)⊗ 1I + 1I⊗Ψ(x)

)
.(4.4)

Theorem 4.4. Let T be a mapping given by (4.4). If one has

‖w‖2 − 2‖Aw‖2 − 2‖Cw‖2 ≥ 0(4.5)

‖A[w,w]− 2[Aw,Aw]‖+ ‖C[w,w]− 2[Cw,Cw]‖ ≤ ‖w‖2 − 2‖Aw‖2 − 2‖Cw‖2(4.6)

Then T is a Kadison-Schwarz operator.

Proof. From (4.4) one finds that

T (x∗x)− T (x)∗T (x) =
1

2

((
Φ(x∗x)− Φ(x)∗Φ(x)

)
⊗ 1I

+1I⊗
(
Ψ(x∗x)−Ψ(x)∗Ψ(x)

))

+
1

4

(
1I⊗Ψ(x)− Φ(x)⊗ 1I

)
∗
(
1I⊗Ψ(x)− Φ(x)⊗ 1I

)
.(4.7)

Now taking into account the following formula

x∗x =
(
|w0|

2 + ‖w‖2
)
1I +

(
w0w + w0w − i

[
w,w

])
· σ
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from (4.2) and (4.3) we have

Φ(x∗x)− Φ(x)∗Φ(x) =
(
‖w‖2 − ‖2Aw‖2

)
1I− 2i

(
A[w,w]− 2[Aw,Aw]

)
σ,

Ψ(x∗x)−Ψ(x)∗Ψ(x) =
(
‖w‖2 − ‖2Cw‖2

)
1I− 2i

(
C[w,w]− 2[Cw,Cw]

)
σ.

Therefore, one gets(
Φ(x∗x)− Φ(x)∗Φ(x)

)
⊗ 1I + 1I⊗

(
Ψ(x∗x)−Ψ(x)∗Ψ(x)

)

=

((
‖w‖2 − 4‖Aw‖2

)
1I− 2i

(
A[w,w]− 2[Aw,Aw]

)
σ

)
⊗ 1I

+1I⊗

((
‖w‖2 − 4‖Cw‖2

)
1I− 2i

(
C[w,w]− 2[Cw,Cw]

)
σ

)

=
(
2‖w‖2 − 4‖Aw‖2 − 4‖Cw‖2

)
1I⊗ 1I

−2i
(
A[w,w]− 2[Aw,Aw]

)
σ ⊗ 1I− 1I⊗ 2i

(
C[w,w]− 2[Cw,Cw]

)
σ

According to Lemma 4.1 we conclude that the last expression is positive if and only if (4.5) and
(4.6) are satisfied. Consequently, from (4.7) we infer that under the last conditions the mapping
T is a KS operator. This completes the proof. �

We should stress that the conditions (4.5),(4.6) are sufficient to be KS-operator.

Corollary 4.5. If the mappings Φ and Ψ are KS operators, then T is also KS operator.

The proof immediately follows from (4.7).

Remark 4.6. We have to stress that if T is KS operator, then the mappings Φ and Ψ no need
to be KS.

4.1. Case: C = A. Now let us study the operator T given by (4.1) when C = A. Consequently
from (4.1) one finds

TA(w01I +w · σ) = w01I⊗ 1I +Aw · σ ⊗ 1I + 1I⊗Aw · σ.(4.8)

From Theorem 4.4 we immediately have the following

Corollary 4.7. Let TA be a mapping given by (4.8). If one has

‖w‖2 − 4‖Aw‖2 ≥ 0

2‖A[w,w]− 2[Aw,Aw]‖ ≤ ‖w‖2 − 4‖Aw‖2.(4.9)

Then TA is a Kadison-Schwarz operator.

Now using the same argument as in section 3, we can write

(4.10) TA(x) = ŨTDλ1,λ2,λ3
(x)Ũ∗, x ∈ M2(C)

for some unitary Ũ . Due to Theorem 2.1 all bistochastic KS-operators can be characterized by
TDλ1,λ2,λ3

and unitaries. In what follows, for the sake of shortness by T(λ1,λ2,λ3) we denote the
mapping TDλ1,λ2,λ3

.
Next we want to characterize KS operators of the form T(λ1,λ2,λ3).

Theorem 4.8. If

4(1 + 8λ1λ2λ3) ≥ (1 + 4λ2
1)(3 + 4λ2

2 + 4λ2
3 − 4λ2

1),

4(1 + 8λ1λ2λ3) ≥ (1 + 4λ2
2)(3 + 4λ2

1 + 4λ2
3 − 4λ2

2),

4(1 + 8λ1λ2λ3) ≥ (1 + 4λ2
3)(3 + 4λ2

1 + 4λ2
2 − 4λ2

3)

are satisfied, then T(λ1,λ2,λ3) is a KS operator.
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Proof. Taking A = Dλ1,λ2,λ3
in (4.9), we obtain

4A1|w2w3 − w2w3|
2 + 4A2|w1w3 − w1w3|

2 + 4A3|w1w2 − w1w2|
2

≤
(
B1|w1|

2 +B2|w2|
2 +B3|w3|

2
)2

,(4.11)

where w = (w1, w2, w3) ∈ C
3 and

A1 = |λ1 − 2λ2λ3|
2, A2 = |λ2 − 2λ1λ3|

2, A3 = |λ3 − 2λ1λ2|
2,(4.12)

B1 = (1− 4λ2
1), B2 = (1− 4λ2

2), B3 = (1− 4λ2
3).(4.13)

By (3.15) LHS of (4.11) can be evaluated as follows

4A1

(
|w2|

4 + 2|w2|
2|w3|

2 + |w3|
4
)

+ 4A2

(
|w1|

4 + 2|w1|
2|w3|

2 + |w3|
4
)

+ 4A3

(
|w1|

4 + 2|w1|
2|w2|

2 + |w2|
4
)
.

Therefore, from (4.11) one gets
(
B2

1 − 4A2 − 4A3

)
|w1|

4 +
(
B2

2 − 4A1 − 4A3

)
|w2|

4 +
(
B2

3 − 4A1 − 4A2

)
|w3|

4

+2|w2|
2|w3|

2(B2B3 − 4A1) + 2|w1|
2|w3|

2(B1B3 − 4A2) + 2|w1|
2|w2|

2(B1B2 − 4A3) ≥ 0

It is obvious that above inequality is satisfied if one has

B2
1 ≥ 4A2 + 4A3, B2

2 ≥ 4A1 + 4A3, B2
3 ≥ 4A1 + 4A2,

B2B3 ≥ 4A1, B1B3 ≥ 4A2, B1B2 ≥ 4A3.

Substituting above denotations (4.12), (4.13) to the last inequalities, and doing some calculations
one derives

4(1 + 8λ1λ2λ3) ≥ (1 + 4λ2
1)(3 + 4λ2

2 + 4λ2
3 − 4λ2

1),(4.14)

4(1 + 8λ1λ2λ3) ≥ (1 + 4λ2
2)(3 + 4λ2

1 + 4λ2
3 − 4λ2

2),(4.15)

4(1 + 8λ1λ2λ3) ≥ (1 + 4λ2
3)(3 + 4λ2

1 + 4λ2
2 − 4λ2

3),(4.16)

1 + 16λ1λ2λ3 ≥ 4λ2
1 + 4λ2

2 + 4λ2
3,(4.17)

where λ1, λ2, λ3 ∈
[
− 1

2 ,
1
2

]
.

Now using the same argument as in the proof of Theorem 3.2 one can show that (4.17) is an
extra condition. This completes the proof. �

It is interesting to study when the operator T(λ1,λ2,λ3) is complete positive. Let us characterize
completely positivity of T(λ1,λ2,λ3).

Theorem 4.9. A map T(λ1,λ2,λ3) is complete positive if and only if the followings inequalities
are satisfied

(1) |λ3| <
1
2 ;

4λ2
1 + 4λ2

2 + 4λ2
3 ≤ 1 + 16λ1λ2λ3;

λ2
1 + λ2

2 +

√(
λ2
1 + λ2

2

)2
− 4λ1λ2λ3 + λ2

3 ≤
1
2 ;

(2) λ3 =
1
2 , λ1, λ2 ∈

[
− 1

2 ,
1
2

]

(3) λ3 = −1
2 , λ1 = ±1

2 , λ2 = ∓1
2

Proof. From [11] we know that the complete positivity of T(λ1,λ2,λ3) is equivalent to the positivity
of the following matrix

T̂(λ1,λ2,λ3) =

(
T(λ1,λ2,λ3)(e11) T(λ1,λ2,λ3)(e12)
T(λ1,λ2,λ3)(e21) T(λ1,λ2,λ3)(e22)

)
.
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It is clear that

T(λ1,λ2,λ3)(e11) =
1

2




1 + 2λ3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1− 2λ3


 ,

T(λ1,λ2,λ3)(e12) =
1

2




0 λ1 + λ2 λ1 + λ2 0
λ1 − λ2 0 0 λ1 + λ2

λ1 − λ2 0 0 λ1 + λ2

0 λ1 − λ2 λ1 − λ2 0




and T(λ1,λ2,λ3)(e22) = 1I⊗ 1I− T(λ1,λ2,λ3)(e11), T(λ1,λ2,λ3)(e21) = T(λ1,λ2,λ3)(e12)
∗.

(1). According to [3, Theorem 1.3.3] the matrix T̂(λ1,λ2,λ3) is positive if and only if

T(λ1,λ2,λ3)(e11)− T(λ1,λ2,λ3)(e12)T(λ1,λ2,λ3)(e22)
−1T(λ1,λ2,λ3)(e21) ≥ 0,(4.18)

where T(λ1,λ2,λ3)(e11) and T(λ1,λ2,λ3)(e22) are positive matrices.
It is easy to see that T(λ1,λ2,λ3)(e11) and T(λ1,λ2,λ3)(e22) are positive if and only if

|λ3| ≤
1

2
.(4.19)

One can calculate that (4.18) is equivalent to



α1 0 0 α4

0 1 + α3 α3 0
0 α3 1 + α3 0
α4 0 0 α2


 ≥ 0

where

α1 = 1 + 2λ3 − 2(λ1 + λ2)
2, α2 = 1− 2λ3 − 2(λ1 − λ2)

2,

α3 =
(λ1 − λ2)

2

2λ3 − 1
−

(λ1 + λ2)
2

2λ3 + 1
, α4 = −2

(
λ2
1 − λ2

2

)
.

It is known that the matrix is positive if and only if the eigenvalues are positive. The eigen-
values of the last matrix can be calculated as follows

s1 = 1, s2 =
4λ2

1 + 4λ2
2 + 4λ2

3 − 16λ1λ2λ3 − 1

4λ2
3 − 1

,

s3 = 1− 2λ2
1 − 2λ2

2 + 2

√(
λ2
1 + λ2

2

)2
− 4λ1λ2λ3 + λ2

3,

s4 = 1− 2λ2
1 − 2λ2

2 − 2

√(
λ2
1 + λ2

2

)2
− 4λ1λ2λ3 + λ2

3.

To check the their positivity, it is enough to have s2 ≥ 0 and s4 ≥ 0. These mean

λ3 6=
1

2
;(4.20)

4λ2
1 + 4λ2

2 + 4λ2
3 ≤ 1 + 16λ1λ2λ3;(4.21)

λ2
1 + λ2

2 +

√(
λ2
1 + λ2

2

)2
− 4λ1λ2λ3 + λ2

3 ≤
1

2
;(4.22)

(
λ2
1 + λ2

2

)2
+ λ2

3 ≥ 4λ1λ2λ3.(4.23)
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Note that the expression standing inside the square root is always positive, indeed, we have
(
λ2
1 + λ2

2

)2
+ λ2

3 ≥ 2
(
λ2
1 + λ2

2

)
λ3 ≥ 2(2λ1λ2)λ3 = 4λ1λ2λ3.

Therefore, from (4.19), (4.20), (4.21) and (4.22) one has

|λ3| <
1

2
;

4λ2
1 + 4λ2

2 + 4λ2
3 ≤ 1 + 16λ1λ2λ3;

λ2
1 + λ2

2 +

√(
λ2
1 + λ2

2

)2
− 4λ1λ2λ3 + λ2

3 ≤
1

2
.

(2). Let λ3 =
1
2 , then T̂(λ1,λ2,λ3) has the following form

T̂(λ1,λ2,
1

2
) =




2 0 0 0 0 β1 β1 0
0 1 0 0 β2 0 0 β1
0 0 1 0 β2 0 0 β1
0 0 0 0 0 β2 β2 0
0 β2 β2 0 0 0 0 0
β1 0 0 β2 0 1 0 0
β1 0 0 β2 0 0 1 0
0 β1 β1 0 0 0 0 2




,

where where β1 = λ1 + λ2, β2 = λ1 − λ2, λ1, λ2 ∈
[
− 1

2 ,
1
2

]
. According to the Silvester’s

criterion, the matrix given above is positive if and only if the leading principal minors are

positive. Let Dn, (n = 1, 8) be the leading principal minor of T̂(λ1,λ2,
1

2
). One can see that for

each n ∈ {1, . . . , 8}, the minor Dn is positive. Hence, if λ3 =
1
2 then T̂(λ1,λ2,

1

2
) is positive.

(3). Now assume λ3 = −1
2 , then one finds

T̂(λ1,λ2,−
1

2
) =




0 0 0 0 0 β1 β1 0
0 1 0 0 β2 0 0 β2
0 0 1 0 β2 0 0 β1
0 0 0 2 0 β2 β2 0
0 β2 β1 0 2 0 0 0
β1 0 0 β2 0 1 0 0
β1 0 0 β1 0 0 1 0
0 β1 β1 0 0 0 0 0




,

where as before β1 = λ1 + λ2, β2 = λ1 − λ2, λ1, λ2 ∈
[
− 1

2 ,
1
2

]
. One can calculate that principal

minors of the last matrix are

Dn = 0 (n = 1, 5),

D6 = (λ1 + λ2)
2
(
4(λ1 − λ2)

2 − 4
)
,

D7 = (λ1 + λ2)
2
(
8(λ1 − λ2)

2 − 8
)
,

D8 = 16(λ1 + λ2)
4,

It is easy to see that T̂(λ1,λ2,−
1

2
) is positive if D6 ≥ 0 and D7 ≥ 0. It implies that λ1 = ±1

2 , λ2 =

∓1
2 . This completes the proof. �

In [40] a characterization of completely positivity of Φ(λ1,λ2,λ3) has been given. Namely, the
following result holds.
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Theorem 4.10. A mapping Φ(λ1,λ2,λ3) is complete positive if and only if the following inequal-
ities are satisfied

(λ1 + λ2)
2 ≤ (1 + λ3)

2,(4.24)

(λ1 − λ2)
2 ≤ (1− λ3)

2,(4.25)
(
1−

(
λ2
1 + λ2

2 + λ2
3

))2
≥ 4

(
λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

1λ
2
3 − 2λ1λ2λ3

)
.(4.26)

Example. Let us consider a mapping T(a,a,b), where a, b ∈
[
− 1

2 ,
1
2

]
. Then one can see

that Φ(2a,2a,2b) is the corresponding operator. Now let us check conditions of Theorem 4.9 and
Theorem 4.10. From conditions of Theorem 4.9 one finds

|b| <
1

2
;(4.27)

a2 ≤
1 + 2b

8
;(4.28)

1− 4a2 − 2

√(
2a2 − b

)2
≥ 0.(4.29)

Now we would like to show that (4.29) is extra condition. It means that the left hand side of
(4.29) is always positive if (4.27) and (4.28) are satisfied. Let (4.27) and (4.28) be true. Then

1− 4a2 − 2

√(
2a2 − b

)2
≥ 1− 4 ·

1 + 2b

8
− 2

√(
2 ·

1 + 2b

8
− b

)2

= 1−
1 + 2b

2
− 2

√(
1− 2b

4

)2

= 0.

Now from conditions of Theorem 4.10 one has

a2 ≤
(1 + 2b)2

16
.(4.30)

The graphics of the inequalities (4.27), (4.28) and (4.30) are given in the following figure.
From the graph we can see that the class of CP operators corresponding to T(a,a,b) are much

bigger then the class of CP operators corresponding to Φ(2a,2a,2b)

4.2. Case: Aw = λw, Cw = µw. In this subsection we consider a more concrete case, namely,
Aw = λw and Cw = µw. By Tλ,µ we denote the corresponding operator (see (4.1)). Then one
can see that Φ(2λ,2λ,2λ) and Ψ(2µ,2µ,2µ) are the corresponding mappings (see (4.2)-(4.4)). Due to
Theorem 3.1 one can find that Φ(2λ,2λ,2λ) is a KS-operator if and only if

2|λ||1 − 2λ|‖[w,w]‖ ≤
(
1− 4λ2

)
‖w‖2.

From ‖[w,w]‖ ≤ ‖w‖2 (if we choose w = (0, 1, i), then one gets ‖[w,w]‖ = ‖w‖2) one finds

2|λ|(1 − 2λ) ≤ 1− 4λ2.

The solution of the last inequality is λ ∈
[
− 1

4 ;
1
2

]
.

Similarly, one finds that Ψ(2µ,2µ,2µ) is a KS-operator if and only if µ ∈
[
− 1

4 ;
1
2

]
.

From Corollary 4.5 we immediately conclude that if λ, µ ∈
[
− 1

4 ;
1
2

]
then Tλ,µ is a KS- operator.

Next we want to provide other values of λ and µ for which Tλ,µ is Kadison-Schwarz.

Theorem 4.11. Let Tλ,µ : M2(C) → M2(C)⊗M2(C) be given by (4.1). If

|λ||1− 2λ|+ |µ||1− 2µ| ≤ 1− 2λ2 − 2µ2

is satisfied, then the map Tλ,µ is KS-operator.
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Figure 1. Shaded region is CP operators corresponding to Φ(2a,2a,2b). White
region indicates CP operators corresponding to T(a,a,b).

Proof. From (4.5),(4.6) one has

λ2 + µ2 ≤
1

2(
|λ||1 − 2λ|+ |µ||1 − 2µ|

)∥∥[w,w]
∥∥ ≤

(
1− 2λ2 − 2µ2

)
‖w‖2.

From the arbitrariness of w with
∥∥[w,w]

∥∥ ≤ ‖w‖2 we find

|λ||1 − 2λ|+ |µ||1− 2µ| ≤ 1− 2λ2 − 2µ2,

which is the required assertion. �

From the figure 2, we conclude that if the pair (λ, µ) belongs to the outside of the yellow
and red regions, then the mappings Φ(2λ,2λ,2λ) and Ψ(2µ,2µ,2µ) are not Kadison-Schwarz, but the
mapping Tλ,µ is Kadison-Schwarz.

Now we are interested when the operator Tλ,µ is complete positive.

Theorem 4.12. Let Tλ,µ : M2(C) → M2(C)⊗M2(C) be given by (4.1). Then Tλ,µ is completely
positive if and only if

λ+ µ+ 1− 2
√

λ2 − λµ+ µ2 ≥ 0

λ+ µ ≤ 1

Proof. It is know [11] that the complete positivity of Tλ,µ is equivalent to the positivity of the
following matrix

T̂λ,µ =

(
Tλ,µ(e11) Tλ,µ(e12)
Tλ,µ(e21) Tλ,µ(e22)

)
.
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One can calculate that

Tλ,µ(e11) =
1

2




1 +M1 0 0 0
0 1−M2 0 0
0 0 1 +M2 0
0 0 0 1−M1


 ,

Tλ,µ(e12) =
1

2




0 2λ 2µ 0
0 0 0 2µ
0 0 0 2λ
0 0 0 0




and Tλ,µ(e22) = 1I ⊗ 1I − Tλ,µ(e11), Tλ,µ(e21) = Tλ,µ(e12)
∗. Where M1 = λ + µ, M2 = λ − µ.

Therefore, we obtain

T̂λ,µ =
1

2




1 +M1 0 0 0 0 2λ 2µ 0
0 1−M2 0 0 0 0 0 2µ
0 0 1 +M2 0 0 0 0 2λ
0 0 0 1−M1 0 0 0 0
0 0 0 0 1−M1 0 0 0
2λ 0 0 0 0 1 +M2 0 0
2µ 0 0 0 0 0 1−M2 0
0 2µ 2λ 0 0 0 0 1 +M1




One can calculate the the eigenvalues of T̂λ,µ are the followings

λ+ µ+ 1 + 2
√

λ2 − λµ+ µ2,

λ+ µ+ 1− 2
√

λ2 − λµ+ µ2,

1− λ− µ.

Hence, T̂λ,µ is positive if and only if the the eigenvalues are positive, which implies the
assertion. �
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