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Abstract 

We propose a formal mathematical model for sparse representations in neocortex based on a neuron 
model and associated operations. The design of our model neuron is inspired by recent experimental 
findings on active dendritic processing and NMDA spikes in pyramidal neurons. We derive a number 
of scaling laws that characterize the accuracy of such neurons in detecting activation patterns in a 
neuronal population under adverse conditions. We introduce the union property which shows that 
synapses for multiple patterns can be randomly mixed together within a segment and still lead to 
highly accurate recognition. We describe simulation results that provide overall insight into sparse 
representations as well as two primary results. First we show that pattern recognition by a neuron can 
be extremely accurate and robust with high dimensional sparse inputs even when using a tiny number 
of synapses to recognize large patterns. Second, equations representing recognition accuracy of a 
dendrite predict optimal NMDA spiking thresholds under a generous set of assumptions. The 
prediction tightly matches NMDA spiking thresholds measured in the literature. Our model neuron 
matches many of the known properties of pyramidal neurons. As such the theory provides a unified 
and practical mathematical framework for understanding the benefits and limits of sparse 
representations in cortical networks. 

1. Introduction 

A wealth of empirical evidence suggests the neocortex represents information using sparse 
distributed patterns of activity (Barth and Poulet, 2012). Representations are sparse because at any 
point in time only a small percentage of neurons are active while the rest are inactive.  
Representations are distributed because although each active neuron contributes information, it is the 
set of active neurons that determine what is being represented. The diversity of sparse distributed 
representations (SDRs) in neocortex is remarkable. Sparse representations exist in early auditory, 
visual and somatosensory areas (Hromádka et al., 2008; Weliky et al., 2003; Vinje and Gallant, 2000; 
Crochet et al., 2011). These representations correspond directly to sensory features such as visual 
edges and audio frequency bands. Representations in higher cortical areas are more abstract and 
categorical in nature.  These areas can encode concepts that have no direct correlation to sensory 
features (Kiani et al., 2007). Primary motor areas encode sparse motor maps that correspond to 
specific movements (Graziano and Aflalo, 2007). Premotor areas encode more abstract behavioral 
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“plans” such as the notion of “grasping and inserting food into your mouth” (Graziano et al., 2002). 
The ubiquity of sparse distributed representations suggests that they enable operations essential for 
brain function and neural computation.  To function effectively these representations must have 
tremendous capacity and must be extremely tolerant to noise.   The exact laws governing their 
behavior are unknown. 

Our experimental understanding of the mechanics of how neurons operate on their inputs has evolved 
significantly over the last 15 years. The majority of computational models (starting with the 
McCulloch–Pitts neuron (McCulloch and Pitts, 1943)) assume a linear integration of inputs followed 
by a non-linear transfer function (Gazzaniga, 2004) (Figure 1A). Experimentally it is now well 
established that biological neurons are significantly more complex, particularly with respect to 
synaptic integration. Excitatory neurons, specifically pyramidal cells, have thousands of synapses 
(Spruston, 2008) and a complex dendritic structure (Figure 1B). Proximal synapses, those closest to 
the cell body, have a relatively large effect on the likelihood of a cell generating an action potential.  
However, a majority of the synapses are distal, or far from the cell body. The activation of a single 
distal synapse has little effect at the soma, but the coincident activation of a cluster of spatially 
localized synapses generates a large regenerative NMDA spike (Spruston, 2008; Larkum et al., 2009; 
Antic et al., 2010). NMDA spikes depolarize the cell; thus spatially localized dendritic segments act 
as coincidence detectors and provide a means for the many distal synapses to play a significant role 
in the cell’s activity (Losonczy et al., 2008). The characteristics of such “active dendrites” has been 
studied extensively and it is generally understood that pyramidal cells contain a large number of non-
linear active dendritic segments that independently modulate cell responses (Branco and Häusser, 
2011; Major et al., 2013). 

Sparse representations are ubiquitous in neocortex, and the basic properties of active dendrites and 
pyramidal cells are also thought to be consistent throughout neocortex (Spruston, 2008). It behooves 
us to ask whether there exist a common set of governing principles related to active dendrites and 
sparsity that are universal and independent of modality. A number of studies have explored sparse 
representations from a theoretical perspective. Early work on sparse coding (Olshausen and Field, 
1997) suggests that sparse representations of the type found in V1 might satisfy information theoretic 
optimality criteria. Additional analysis (Kanerva, 1988; Olshausen and Field, 2004) suggests that 
sparse representations may be particularly convenient for learning and memory systems. However 
none of these studies have considered realistic neuron models with active dendrites. With a few 
notable exceptions (Poirazi and Mel, 2001; Legenstein and Maass, 2011) theoretical studies have 
ignored active dendrites altogether. The studies that do model active dendrites have not explicitly 
incorporated sparse representations.  

In this paper we develop a novel mathematical theory of sparse distributed representations and 
networks of neurons with active dendrites. We develop our analysis first from the perspective of a 
single dendritic segment and then from the perspective of a population of neurons. We propose that 
neurons form just a few synapses to a sparse subsample of active cells in activity patterns they need 
to recognize. In other words, a small set of spatially localized synapses on a dendritic branch can 
detect a prototypical pattern in a large population of active cells. We derive theoretical results that 
characterize the learning capacity and robustness of such representations in the context of neural 
tissue.  The analysis demonstrates that individual neurons have the capacity to learn and classify an 
enormous number of patterns under extremely unreliable and noisy conditions. The results hold even 
when they form synapses with a small subset of the cells in the pattern they want to recognize.  
Additionally, computer simulations of the equations provide some detailed numerical insights, such 
as natural bounds on the sparsity of representations, and the specific number of synapses required to 
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initiate dendritic spikes.  The results suggest that, due to active dendrites, neurons can operate on 
sparse distributed representations in a highly robust and efficient manner. 

2. Materials and Methods 
2.1. Model Neuron 

We first develop an abstract neuron model and discuss how such neurons might operate on SDR’s. 
Our model departs from the traditional integrate and fire neurons used in artificial neural network 
models (Figure 1A). Instead we model the neuron as a set of independent dendritic segments, each 
detecting one or more patterns of activity in some presynaptic area. This is similar in spirit to the 
models adopted by (Poirazi and Mel, 2000; Losonczy et al., 2008; Larkum et al., 2009; Wu and Mel, 
2009). Note that in real neurons synaptic input can be classified by where the dendrite segment is on 
the cell (proximal, distal basal, and apical) and where the afferents that connect to the dendrite 

	

Figure	1.	A.	A	point	neuron	used	in	most	artificial	neural	networks.		The	output	of	the	point	neuron	is	a	function	of	the	sum	of	all	

the	inputs;	active	dendritic	properties	are	ignored.	B.	A	neocortical	pyramidal	neuron	has	thousands	of	excitatory	synapses	that	are	

located	on	dendrites.		Synapses	proximal	to	the	cell	body	(green	area)	comprise	<10%	of	a	cell’s	inputs,	receive	feedforward	input,	

and	define	the	basic	receptive	field	response	of	the	cell.	 	Synapses	on	the	basal	distal	dendrites	typically	receive	contextual	input	

from	nearby	cells.		Apical	distal	synapses	typically	 receive	feedback	inputs.	 	The	activation	of	a	single	distal	synapse	often	has	no	

measurable	effect	at	the	soma.		However,	the	activation	of	a	small	number	of	synapses	in	close	spatial	and	temporal	proximity	on	a	

basal	 distal	 dendrite	 can	 cause	 an	NMDA	 spike	 and	 significant	 depolarization	 at	 the	 soma.	C.	 The	neuron	model	 we	use	 in	 this	

analysis	 is	 composed	 of	 an	 array	 of	 active	 dendritic	 segments	 (only	 five	 shown).	 Each	 dendritic	 segment	 contains	 a	 number	 of	

synapses	 and	 is	 associated	 with	 a	 spiking	 threshold.	 If	 the	 instantaneous	 number	 of	 active	 synapses	 on	 a	 segment	 reaches	

threshold,	the	segment	initiates	a	spike,	thus	acting	as	a	coincidence	detector.	
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segment originate.  These dendritic zones are shown in Figure 1B.  For the present analysis we 
analyze the recognition capability of generic dendritic segments, as shown in Figure 1C, without 
regard to the functionality or structure of presynaptic areas. For this paper the segment is generic and 
agnostic – it simply receives some input and decides whether or not to initiate a dendritic spike. 

2.2. Computing A Match 

Figure 2 illustrates our segment model and how a segment detects patterns. We model the 
instantaneous activity of presynaptic cells as being either on or off. The effect of an individual 
synapse is similarly binary. As shown in Figure 2A, a dendritic segment would typically be 
connected to a very small subset of all possible neurons in an input region. The specific subset can 
change over time as a result of learning (Chklovskii et al., 2004). Therefore the number of potential 
connections to a segment is much larger than the number of actual connections. The actual 
connections are a subset of prototype activity patterns to be recognized.  

Formally, we denote the number of potential connections as !. A dendritic segment is represented as 
a binary vector ! = !!,⋯ , !!!!  where a non-zero value !! indicates a synaptic connection to cell ! 
and ! = !  indicates the number of synapses on that segment. Experimental findings suggest that 
typical numbers for ! are between 20 and 300 (Major et al., 2013). !, the number of potential 
connections is assumed to be much larger (numbering in the thousands) leading to very sparse !.  

Similarly, the binary vector !! represents presynaptic activity (the activity of all potential 
connections) at time !. !! is of dimensionality ! with !! = !!  as the number of active cells. The 
activity is assumed to be sparse, i.e. !! ≪ !.  Figure 2B illustrates such a scenario. When a threshold 
! of the synapses on ! fire simultaneously, this is a “match” and causes a dendritic spike: 

!"#$ℎ(!! ,!) ≡ !"#$%&'(!! ,!) ≥ ! (1) 

The overlap score is simply the number of bits that are “1” in the same locations in both vectors (i.e. 
the dot product): 

!"#$%&'(!!,!) ≡ !! ∙! (2) 

The use of the overlap metric with very sparse vectors models the biology of active dendrites and is 
similar to the model in (Wu and Mel, 2009). It is a departure from most other computational models 
that typically assume full connectivity between a cell and its input area. An important property of our 
model is that activity in the presynaptic area that does not correspond to a synaptic connection on a 
segment has no impact on that segment. 
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Figure	2.	A.	This	figure	shows	a	single	example	dendritic	segment	and	its	connections	to	some	presynaptic	area	!!.	The	grey	
area	 represents	 the	 set	 of	 potential	 connections	 to	 this	 segment.	 The	 clear	 circles	 denote	 25	 presynaptic	 cells	

corresponding	to	25	synapses	on	the	segment.	 In	this	example	the	synapses	detect	a	roughly	vertical	bar	of	activity	near	

the	 center	of	!!.	 The	bar	 is	 purely	 for	 illustration	purposes	 -	 in	 general	 the	 segment	 could	 contain	 an	arbitrary	 random	

subsample	 of	!!.	 	 B.	 This	 figure	 illustrates	 the	 behavior	 of	 the	 segment	 given	 a	 specific	 pattern	 of	 active	 presynaptic	

neurons.	The	small	black	circles	represent	the	currently	active	cells	in	!!,	and	filled	circles	denote	synaptic	connections	that	
overlap	with	active	cells.	In	this	example	there	is	a	fair	amount	of	noise.	Many	of	the	cells	within	the	segment’s	preferred	

vertical	 pattern	 did	 not	 become	 active	 and	 there	 are	 several	 additional	 active	 cells.	 However	 14	 of	 the	 active	 cells	 are	

connected;	a	threshold	of	14	or	lower	will	cause	the	segment	to	initiate	a	dendritic	spike.	When	the	dimensionality	is	high,	

the	chance	that	a	 random	pattern	of	activity	will	overlap	sufficiently	with	 the	segment	 is	extremely	 low,	hence	 it	 is	very	

likely	that	the	activity	represents	an	actual	vertical	pattern,	and	not	an	accident.	
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3. Results 

3.1. Accuracy of detecting a single pattern on a single segment 

The synapses on segments represent a small subsample of the full pattern of activity in presynaptic 
areas. Given this, how reliably can a single segment detect the larger pattern? We assume that 
through learning the segment has created synapses to a subset of the active cells corresponding to a 
given pattern. The segment thus represents some prototypical pattern. We consider the problem of 
robustly detecting repeat occurrences of that pattern under various distortions. The degree to which a 
presynaptic pattern has to match the synapses is controlled by !, the NMDA spike threshold. The 
lower the value of ! with respect to !, the more deviation or noise the segment can tolerate. The 
lower the value of ! the more likely the segment would falsely detect a match to a different pattern. 
Thus there are inherent tradeoffs between the number of synapses per segment, the segment 
threshold, and the number of potential connections that affect overall noise robustness and the 
possibility of false matches. This is illustrated conceptually in Figure 3.  

In order to quantify this effect, we introduce the notion of an “overlap set”.  Let ! be a binary SDR 
vector with ! components. The overlap set of ! with respect to !,  Ω!(!,!, !), is defined as the set 
of vectors of size ! with ! bits on that have exactly ! bits of overlap with !. The cardinality of this 
set, Ω!(!,!, !) , is the number of such vectors. Assuming ! ≤ !  and ! ≤ !, Ω!(!,!, !)  can be 
computed as the number of subsets of ! with ! bits ON, multiplied by the number of other patterns 
containing  ! − !  bits, of which ! − ! bits are ON. In other words, this is: 

Ω! !,!, ! = !
! × ! − !

! − !  (3) 

We can now answer the following question: given a dendritic segment ! and random presynaptic 
activity pattern !!, what is the probability of a match? In other words, what is !(!"#$%&' !! ,! ≥
!)?  This is simply the number of possible matching vectors divided by the number of possible 
patterns: 

!(!"#$%&' !! ,! ≥ !) = Ω! !,!! , !!
!!!

!
!!

 
(4) 

It may be difficult to get an intuitive sense for this equation but as !, ! and ! increase, the 
denominator increases exponentially faster than the numerator. This means that the “grey area” 
representing the overall space in Figure 3 increases much faster than any of the “white areas” 
representing possible matches. In other words it is easy to increase the parameters such that the 
chance of false matches is extremely small. 
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In general !!, the number of cells active in !! will be greater than !, the number of synapses on a 
segment. ! will thus represent a (possibly very small) subsample of the actual pattern. To get a sense 
of the actual numbers for realistic scenarios, consider the following example. Suppose ! = 10,000 
and ! = 30. If the overall sparsity is 3% (i.e. !! = 300 active cells) the segment is subsampling a 
tenth of the bits in !!. With a threshold ! = 15, the probability of a false match is about one in 
10!!". In other words, with 10% subsampling and with 50% noise robustness, there is a negligible 
chance of a false match with a different pattern. As we show later through simulations, the range of 
parameters for robust performance is fairly large. As long as !, ! and ! are not trivially low numbers 
the recognition accuracy is extremely robust. 

	

Figure	 3.	 This	 figure	 illustrates	 the	 conceptual	 effect	 of	 decreasing	!,	 the	 dendritic	 threshold	 and	 increasing	 n,	 the	
overall	population	of	cells.	 The	 large	 grey	ovals	 denote	 the	universe	of	 possible	patterns.	 The	 smaller	 circles	within	

indicate	M	 different	 dendritic	 segments,	 each	 representing	 one	 pattern	 within	 this	 universe.	 If	 !	 is	 equal	 to	 the	
number	of	synapses	s,	as	shown	in	oval	A,	very	few	patterns	will	match	any	of	these	segments	(this	is	denoted	by	the	

small	 black	 circles).	As	 you	decrease	!	 the	 set	of	 potential	matches	 to	 each	 segment	 increases,	 as	 indicated	by	 the	

large	white	circles	 in	oval	 B.	With	smaller	!	 the	segments	will	 therefore	be	more	tolerant	 to	changes	but	 there	 is	a	

larger	probability	of	false	matches	to	random	patterns.	The	ratio	of	white	to	grey	becomes	larger	as	you	decrease	!.	
Oval	C	shows	that	when	you	increase	n,	the	universe	of	possible	patterns	increases	and	the	relative	size	of	the	white	
circles	shrinks	rapidly.	Thus	there	is	a	tradeoff	between	these	parameters.	You	get	more	robustness	as	you	decrease	!	
at	the	cost	of	additional	false	positives.	This	is	mitigated	if	you	increase	the	overall	cell	population	n.	
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3.2. Accuracy of a population of segments 

Neurons have thousands of synapses arranged along numerous dendrite segments.  It only takes 8 to 
20 active synapses on a short section of dendrite to generate an NMDA spike (Major et al., 2013).  
Therefore a neuron has the potential to recognize hundreds of unique patterns.  Further, in any 
cortical region, millions of neurons are each simultaneously trying to recognize hundreds of patterns.  
Will the robustness exhibited by a single dendrite segment be maintained in a region of neural tissue?  

Consider the case of ! independent dendritic segments (potentially on different cells), each with ! 
synapses and a threshold of !. In the strictest scenario, it is a false positive if any of the segments 
falsely detect a pattern. 

Let ! be a set of ! vectors, ! = !!,⋯ ,!!!!  where each vector !!  represents a single dendritic 
segment.  Given random presynaptic input !, we classify it as belonging to this set as follows: 

! ∈ ! ≝  ∃!!∈!!"#$ℎ !! ,! =  !"#$ (5) 

Given a new pattern !!, how reliably can we classify it? Here we assume the number of noise bits to 
be ≤ !! − ! where !! = !! .  As such there are no false negatives, only false positives. The 
probability of a false positive (one or more matching segments) is: 

! ! ∈ ! = 1− (1− ! !"#$%&' !! ,!! ≥ ! )! (6) 

In practice the probability of an individual overlap is extremely small and it is difficult to compute 
without numerical issues. It is useful to use instead the following bound: 

!(! ∈ !) ≤ ! ∙ !(!"#$%&'(!! ,!!) ≥ !) (7) 

For sparse high dimensional vectors, with parameters in the ranges we are concerned with, Eq. (7) is 
in fact a very tight upper bound.  To get a sense of the numbers and the overall capacity, consider the 
following example. Suppose n=10,000 and you have 3% sparsity (! = 300). By storing 30 synapses 
per segment using a segment threshold of 15, you can detect a million random SDR patterns with a 
false positive rate better than 1 in a billion!  

This result points to a remarkable property of high dimensional sparse representations. You can 
convert patterns to a set of decorrelated high dimensional SDRs and simply store a small bit-wise 
subsample of each one. You can then classify a massive number of these patterns almost perfectly 
even in the presence of a large amount of noise and system unreliability.  Thus a large collection of 
independent neurons, each with an independent set of segments, can robustly classify a very large 
number of patterns with a relatively small number of synapses. 

3.3. The surprising union property 

We have shown that a small number of synapses can reliably detect patterns in large populations of 
cells. The synapses recognizing a given pattern have to be co-located on a dendritic segment. 
However it is highly unlikely that synapses on dendritic segments are cleanly segregated into 
individual patterns. It is much more likely that synapses are somewhat mixed together. This is 
consistent with experimental results which show that a dendritic segment can contain hundreds of 
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synapses yet a relatively small number of active synapses anywhere on the segment can trigger an 
NMDA spike (Major et al., 2013). In this section we consider what happens if the synapses to 
recognize multiple patterns are mixed together within a given dendritic segment. We show that our 
model neuron can maintain robust recognition when multiple sets of synapses dedicated to 
recognizing different patterns are mixed together on a common dendritic segment. 

It turns out that one of the most fascinating properties of high dimensional sparse representations is 
their ability to reliably store a set of patterns within a single vector. We call this the “union property” 
as it involves creating a union (binary OR) of multiple patterns.  Suppose we allow a single segment 
to contain ! synapses from !!! and an additional ! synapses from !!!. The segment would spike if at 
least ! cells from !!! or !!! are active. By adding additional groups of ! synapses from other 
patterns, this segment will detect additional patterns.  The vector representation of such a segment 
consists of the binary OR of the ! synapses from each pattern. We say that this segment now 
represents a union of patterns and any combination of ! active synapses from this union will cause a 
spike.  

The advantage of a union is that a fixed SDR element (such as that represented by a single segment) 
can be used to recognize a varying number of patterns.  There will never be a false negative: the 
segment will reliably fire in the presence of any of the stored activity patterns with up to ! − ! bits of 
noise.  The downside of course is that there is now a larger potential for false positives. It is possible 
for the segment to spike due to a mixture of active cells, say half from !!!and half from !!!. As you 
add more patterns to the union there are an increasing number of mismatch possibilities and the 
segment is increasingly likely to spike for random patterns.  Although forming a union introduces a 
potentially significant source of error, we will show that with high dimensional vectors pattern 
recognition can still be performed very reliably using such a union representation. 

Formally, the mechanics of unions are simple. To “store” a set of ! SDR vectors we simply take the 
Boolean OR of all of them to create a new binary vector X (Figure 4).  

! = !!
!!!

!!!
 

(8) 

Some of the bits in !! may overlap so ! is now a binary vector such that ! ≤ !!!!!
!!! . To check if 

a new pattern y is a member of the set, we compute the match as in Eq.	(1).  

How reliable is the classification operation? We first consider the case of exact matches, i.e. ! = ! .   
For simplicity we also assume all vectors in ! have the same number of ON bits. Note that if ! = !! 
for some !, the match operation will always be successful. However for other vectors there is a 
chance of a false positive match due to mix and match errors. A false positive with a new random 
pattern ! occurs if all of the bits in ! overlap with !.  When ! = 1, the probability that any given bit 
is 0 is 1− !, where ! = !!

! .  As M grows, the probability that a given bit is still 0 is: 
!! = (1− !)! (9) 

The probability that a given bit in X is ON is therefore 1− !! . The probability of a false positive 
match, i.e. that all the bits in ! are ON is therefore: 

!(!"#$%&' !,! ≥ !) = (1− !!) ! = (1− 1− ! !) !  (10) 
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This calculation is equivalent to the probability of false positives in Bloom filters (Bloom, 1970). We 
can now plug this back into Eq. (4) to compute the probability of error for inexact matches. After M 
union operations, the expected number of ON bits in X is:  

! ! = 1− !! ! (11) 

The expected size of the overlap set is: 
! Ω! !,!, ! = 1− !! !

! × ! − 1− !! !
! − !  (12) 

We can now calculate how accurately a single dendritic segment can represent a mix of different 
patterns. Suppose a segment D represents a union of M different patterns. The expected number of 
synapses on this segment ! is ! ! = 1− !! !. Given random presynaptic activity !!, the expected 
probability of a false match is therefore: 

![!(!"#$%&' !,!! ≥ !)] = ![ Ω! !,!, ! ]!
!!!

!
!

 (13) 

The equation is complex but the numbers can be illuminating. As an example, suppose the population 
size ! = 20000, with ! = 100 cells active at a time. Suppose each pattern on a segment is 
represented by 25 synapses and ! = 15. If you union together ! = 10 patterns, on average you 
would get fewer than 250 synapses on the segment. In this scenario the false positive rate is less than 
one in 10!!.  To gain an intuition for this, it is useful to think about the expected number of ON bits 
in the SDR, i.e. Eq. (11). With ! = 10, 98.75% of the bits in the vector representing this segment 
are zero. When you match against an additional vector, there is a very high chance it will have most 
of its bits among this 98.75%, and hence it won’t lead to a false positive. Only vectors that have at 
least 15 of their bits ON among the 1.5% will cause a false positive. 

The net impact of the union property is that individual dendritic segments can be sloppy and reliable 
at the same time. There are limits, but such segments can mix together a number of independent 
patterns with virtually no chance of false positive errors. 

 
4. Simulation Results 

Due to the various factorials and exponentials involved in the above equations it is sometimes 
difficult to develop a solid intuitive understanding of the various scaling properties. The range of 
parameters leading to robust recognition may be unclear, and it may also be unclear whether these 
results translate to real neurons and experimental data. In this section we describe a number of 
simulation results. Our goal is to develop intuitions for the reader, and to demonstrate the 
applicability of the results.  

We ran a number of simulations to illustrate some of the properties of dendritic matching (i.e. 
Eq. (4)). Figure 4A shows the effect of the underlying dimensionality of the representation space, i.e. 
the population of cells. We plot the drop in error rates as you increase the population size, !, while 
maintaining a fixed sparsity level and a fixed number of synapses on a segment. The error drops 
rapidly (faster than exponentially) as ! increases, becoming essentially 0 once ! > 2000. Note that it 
is not possible to get robust recognition with a dense representation, as shown by the dashed line 
representing a 50% activity level. Thus both sparsity and high dimensionality are required to achieve 
robust recognition with a small number of synapses. 



	 	 Sparse	Distributed	Representations	

	 11	

Figure 4B examines the effect of changing the number of synapses on a dendritic segment. It 
illustrates how segments can store a tiny subsample from a large population and still robustly 
recognize complex patterns. If the population of cells increases beyond a few thousand, and the 
overall activity is sparse, it is possible to achieve reliable recognition with a small sample of each 
pattern. The chart shows that the error rate decreases exponentially with the number of synapses. For 
many situations a subsample of 20 to 25 synapses leads to an error rate better than 10!!". Note that 
since ! = !

!, this includes a noise level up to 50%.  This helps explain how even a small number of 
synapses on a segment are sufficient for robust recognition performance.  The dashed line shows that 
denser representations lead to high error rates. Although not shown, small ! and ! (e.g. ! = 32 and 
! = 128) also lead to high error.  In other words, in order to achieve accurate recognition with a 
small subsample, you need both sparsity and a sufficiently high dimensionality. 

The mathematics behind sparse representations can help provide insight into key experimental 
results. In Figure 5 we show that the equations can be used to explore the effect of different dendritic 
spike thresholds and suggest an optimal range. Figure 5 shows the median probability of error as a 
function of the synaptic threshold for a dendritic spike. Each point on the graph holds the threshold ! 
fixed and represents the median probability of error computed over a large range of all other 
parameters: ! (the number of potential synapses), presynaptic activity !, and ! the number of 
synapses on each segment. We systematically varied ! from 10,000 to 200,000, presynaptic activity 

	

Figure	4.	A.	This	graph	illustrates	the	behavior	of	Eq.	(4)	and	the	effects	of	cell	population	and	sparsity.	The	three	solid	curves	
show	the	rapid	drop	in	error	rates	as	the	number	of	cells	n	increases.	Each	curve	shows	a	different	sparsity	level.	For	example,	if	

128	out	of	4000	cells	are	active	 (3.2%	 sparsity)	 the	error	rate	 is	a	 little	higher	 than	10
-12
.	 	The	dashed	 line	corresponds	 to	an	

activity	level	of	50%.	The	fact	that	the	error	corresponding	to	this	condition	does	not	drop	demonstrates	that	both	sparsity	and	

high	dimensionality	are	required	to	achieve	 low	error	rates.	 In	all	 of	 these	simulations,	 the	number	of	synapses	s=24	and	 the	
dendritic	threshold	!=12,	corresponding	to	50%	noise	tolerance.	B.	This	graph	illustrates	the	behavior	of	Eq.	(4)	and	the	effect	of	
s,	 the	number	of	synapses	on	a	 segment.	 The	segment	 threshold	 is	set	 to	!= !

!.	 As	 the	 curves	 show,	 there	 is	 an	exponential	
improvement	in	error	rates	as	the	number	of	synapses	increases.	The	three	solid	curves	show	error	rates	for	a	variety	of	sparsity	

levels	 (
!
!	 is	 between	0.8%	 to	3.2%)	and	a	range	of	dimensionalities	 (n	between	2000	and	16000).	The	curves	 show	 that	 if	 the	

overall	activity	level	 is	sparse	and	the	cell	population	 is	sufficiently	high,	values	of	s	between	15	and	25	can	 lead	to	 low	error	
rates.	This	helps	explain	why	even	a	tiny	number	of	synapses	on	a	dendritic	segment	subsampling	from	a	much	larger	pattern	of	

activity	 is	 sufficient	 for	 robust	 recognition	 performance.	 	 The	dashed	 curve	 is	 an	 example	 illustrating	 that	 a	 relatively	 dense	

representation	(25%	shown)	does	not	lead	to	low	error	even	if	the	underlying	dimensionality	is	high.	
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from 0.5% to 3% of !, and ! from 20 to 50. The shaded area of the chart is the region corresponding 
to low error (for illustration purposes we show the range of thresholds that lead to an error of 1 in a 
billion or lower).   

Figure 5 demonstrates that a NMDA spike threshold of 9 and higher leads to low error rates under a 
very wide range of assumptions.  A spike threshold beyond 15 or 20 leads to diminishing returns. 
Beyond 20 the error rates are so low that the extra metabolic cost of forming additional synapses due 
to higher thresholds is not justified. Thus the equations predict that the optimal dendritic spiking 
threshold is between 9 and 20. This lines up well with experimental results, which show actual 
spiking thresholds to be between 8 and 20 (Major et al., 2013; Branco and Häusser, 2011). 

Figure 6 shows two simulations that demonstrate the effect of the union property on a dendritic 
segment. As discussed earlier, a segment can contain synapses from a mixture of independent 
patterns and initiate an NMDA spike if any of them are detected. Figure 6A shows how the expected 
number of synapses on a segment scales with the number of patterns (i.e. Eq. (11)). Experimental 
results show that a single dendritic segment can contain anywhere from 100 and 400 synapses (Major 
et al., 2013). The graph suggests that this translates to between 4 and 16 independent patterns, 
dependent on the number of synapses used to represent each pattern. Figure 6B illustrates the 

	

Figure	5.	The	equations	can	be	used	to	characterize	the	effect	of	different	synaptic	 thresholds	and	predict	an	 ideal	range.	This	

chart	shows	the	median	probability	of	error	as	a	 function	of	 the	synaptic	 threshold	 for	a	dendritic	spike	!.	 Each	point	on	the	
graph	holds	!	fixed	and	represents	the	median	probability	of	error	computed	over	a	large	range	of	all	other	parameters:	n	(the	
number	of	potential	synapses),	presynaptic	activity	a,	and	s,	the	number	of	synapses	on	each	segment.	We	exhaustively	varied	n	
from	10,000	 to	200,000,	 presynaptic	 activity	 from	0.5%	 to	3%	of	n,	 and	 s	 from	20	to	50.	The	shaded	area	of	 the	chart	 is	 the	

region	corresponding	to	low	error	(for	illustration	purposes	we	show	the	range	of	thresholds	that	lead	to	an	error	of	1	in	a	billion	

or	lower).	 	The	chart	demonstrates	 that	a	spike	threshold	of	9	and	higher	leads	to	low	error	rates	under	a	very	wide	range	of	

assumptions.	 	A	spike	threshold	beyond	15	or	20	 leads	to	diminishing	returns.	Beyond	that	 the	error	rates	are	so	low	that	the	

extra	metabolic	cost	of	additional	synapses	due	to	higher	thresholds	is	not	justified.	
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probability of mix and match errors for segments that represent such a union of patterns. Here !, the 
size of the presynaptic population, and the overall sparsity levels are critical factors.  As the graph 
shows, a larger presynaptic population implies a low chance of mix and match errors. A small 
presynaptic population of 1000 leads to relatively high error rates, but a population of 20,000 can 
lead to extremely low error rates even with 10 patterns stored. Overall these graphs show that it is 
possible for a single dendritic segment to sloppily store a mixture of multiple patterns, yet maintain 
remarkably high accuracy for detecting each pattern. 

Note that the error rates plotted in Figures 4, 5, and 6B are for individual neurons. However, the 
correct classification of a pattern is always performed by a population of neurons. Populations of 
active cells can contain a significant number of incorrect false positives activations without error in 
classification of the entire population. Therefore, even if individual neurons operate in a region of 
unacceptably high false positives, the population accuracy will be substantially lower.  

5. Discussion 

Sparse distributed representations are ubiquitous in neocortex. In this paper we have proposed a 
formal mathematical model for sparse representations in neocortex based on a specific neuron model 
and associated operations. Our model neuron and the core operations of overlap and match are 
inspired by experimental findings on active dendritic processing and NMDA spikes in pyramidal 
neurons. We derived a number of scaling laws demonstrating that systems based on these principles 
can achieve extreme robustness to noise and faults in the system. Our simulation results provide 
insights into various parameter regimes and show that both sparsity and high dimensionality are 
required for maximum accuracies. In addition we show that the equations can be used to predict 
experimental results, such as the optimal spiking thresholds for active dendrites. 

	

Figure	6.	A.	This	figure	plots	the	expected	number	of	synapses	on	a	segment	that	represents	M	different	patterns.	Each	curve	

shows	a	different	value	of	s,	the	number	of	synapses	used	represent	a	single	pattern.		The	point	of	this	plot	is	to	show	the	

curve	grows	slower	than	linearly	because	as	more	patterns	are	included	in	the	union	the	chance	that	two	patterns	contain	

overlapping	presynaptic	cells	grows.	B.	This	figure	shows	the	expected	error	rates	for	segments	that	contain	a	union	of	

multiple	patterns.	The	error	increases	monotonically	with	the	number	of	patterns	“stored”	on	each	segment.	The	size	of	the	

presynaptic	population	is	a	critical	factor;	a	larger	presynaptic	population	implies	a	much	lower	probability	for	mix	and	match	

errors.	A	small	presynaptic	population	of	1000	leads	to	relatively	high	error	rates,	but	a	population	of	20,000	can	lead	to	

extremely	low	error	rates	even	with	10	patterns	stored.	In	this	graph	the	activity	of	the	population,	a,	is	200.	s,	the	number	of	

synapses	representing	each	pattern,	is	25.	The	dendritic	threshold	!	is	15.	
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Our work is related to the theoretical work of (Kanerva, 1988; Olshausen and Field, 2004) as well as 
the work on active dendrites (Poirazi and Mel, 2001).  A major difference with these papers is that 
they use a typical Euclidean distance norm and a weighted linear sum with scalar vectors instead of 
our overlap metric with binary vectors. (Babadi and Sompolinsky, 2014) have also developed a 
theoretical model of sparsity. Although they too conclude that sparsity in high dimensional spaces is 
desirable, their neuron model is simplistic and does not consider the realities of active dendrites nor 
does it use overlap. The overlap metric matches the biological operation in neurons and is key to the 
robustness properties described above. Overall the numerical results in our paper more closely match 
known biological data. We also explicitly characterize error rates and show how to achieve high 
reliability under very noisy and imprecise scenarios.  Despite the above differences, taken together 
these papers provide general support for the power of sparse high dimensional representations, and 
the insights to be gained from mathematical modeling and simulations of sparsity. 

In this paper we have discussed neurons with active dendrites, and their error rates in pattern 
detection. We have not discussed the functional implication of these matches. What does the neuron 
do once a match occurs? The functional benefits of active dendrites are a topic of active research, and 
there have been a few theories proposed in the literature. These theories include the efficient 
propagation of neural activity (Polsky et al., 2009), facilitating top-down prediction (Larkum, 2013), 
sequence storage (Losonczy et al., 2008), and gain control (Larkum et al., 2004). Elsewhere we have 
described a detailed theory and working implementation that shows how active dendrites and 
networks of pyramidal cells lead to a sophisticated and practical sequence memory algorithm 
(Hawkins and Ahmad, 2015).  The mathematical framework proposed in this paper can be used to 
provide insights into the overall robustness and capabilities of these models. 

The equations in this paper assume random and de-correlated neural activity. The distribution of 
individual spiking neurons and neural correlation in neocortex is a topic of some debate (Cohen and 
Kohn, 2011). A number of papers have suggested that one of the outcomes of neural plasticity and 
inhibition is to de-correlate the inputs. For example, Hebbian-style learning plus inhibition leads to 
individual neurons that represent successive principal components of the input space (Oja, 1982). 
Indeed in-vivo measurements of neural activity imply correlation is low, even for neurons with 
highly overlapping receptive fields (Smith and Häusser, 2010; Ecker et al., 2010). It is our belief that 
it is not necessary to have completely uniform random distributions to obtain high fault tolerance. 
Extending our results to other distributions is an interesting topic for future work. 

The equations in this paper assume binary synapses and binary cell activations, and ignore the 
possibility of scalar weights or outputs. The question of binary synapses is a topic that is heavily 
debated in literature. For example some researchers have argued that synapses are inherently binary 
(Petersen et al., 1998), while others have argued the opposite (Enoki et al., 2009). Interestingly, in 
their model (Poirazi and Mel, 2001) found that binary receptive fields led to the best memory 
capacity.  We simply note that the robustness demonstrated in this paper does not rely on continuous 
values. Continuous vectors are a superset of binary vectors and thus in theory can only add to the 
power demonstrated here. A study of the scaling properties of continuous SDRs is beyond the scope 
of this paper, but represents an interesting direction for future research. 

Individual neurons and synapses are inherently unreliable (Faisal et al., 2008), yet the overall system 
works extremely well.  The results in this paper shed light on how cortical processing can be 
incredibly robust and fault tolerant as long as the underlying representation is sparse and high 
dimensional. The mathematical model described here is not specific to any sensory modality or 
cortical area. As such the properties should be ubiquitous for pyramidal cells everywhere. It is our 
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hope that over time, a complete theoretical understanding of the learning and scaling properties of 
neocortical representations can be developed. 
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