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SEMI-STABLE HIGGS SHEAVES AND BOGOMOLOV TYPE INEQUALITY

JIAYU LI, CHUANJING ZHANG, AND XI ZHANG

ABSTRACT. In this paper, we study semistable Higgs sheaves over compact Kahler manifolds,
we prove that there is an approximate admissible Hermitian-Einstein structure on a semi-
stable reflexive Higgs sheaf and consequently, the Bogomolove type inequality holds on a
semi-stable reflexive Higgs sheaf.

1. INTRODUCTION

Let (M,w) be a compact Kéhler manifold, and E be a holomorphic vector bundle on M.
Donaldson-Uhlenbeck-Yau theorem states that the w-stability of E implies the existence of
w-Hermitian-Einstein metric on E. Hitchin [I7] and Simpson [32] proved that the theorem
holds also for Higgs bundles. We [25] proved that there is an approximate Hermitian-Einstein
structure on a semi-stable Higgs bundle, which confirms a conjecture due to Kobayashi [19]
(also see [I8]). There are many interesting and important works related ([21} 17, [32] [4, [6], 12|
(5L I Bl [7, 22 23], 29, 27, 28], etc.). Among all of them, we recall that, Bando and Siu [0]
introduced the notion of admissible Hermitian metrics on torsion-free sheaves, and proved the
Donaldson-Uhlenbeck-Yau theorem on stable reflexive sheaves.

Let &€ be a torsion-free coherent sheaf, and X be the set of singularities where £ is not locally
free. A Hermitian metric H on the holomorphic bundle &[5\ is called admissible if

(1) |F|m,w is square integrable;

(2) |AwFm| g is uniformly bounded.

Here Fy is the curvature tensor of Chern connection Dy with respect to the Hermitian metric
H, and A, denotes the contraction with the Kahler metric w.

Higgs bundle and Higgs sheaf are studied by Hitchin ([TI7]) and Simpson ([32], [33]), which
play an important role in many different areas including gauge theory, Kéhler and hyperkéahler
geometry, group representations, and nonabelian Hodge theory. A Higgs sheaf on (M, w) is
a pair (£,$) where € is a coherent sheaf on M and the Higgs field ¢ € QY%(End(£)) is a
holomorphic section such that ¢ A ¢ = 0. If the sheaf £ is torsion-free (resp. reflexive, locally
free), then we say the Higgs sheaf (£, ¢) is torsion-free (resp. reflexive, locally free). A torsion-
free Higgs sheaf (£, ¢) is said to be w-stable (respectively, w-semi-stable), if for every ¢-invariant
coherent proper sub-sheaf 7 — £, it holds:

_ deg, ()
o (F) = rank(F)
where p,,(F) is called the w-slope of F.

Given a Hermitian metric H on the locally free part of the Higgs sheaf (£, ¢), we consider
the Hitchin-Simpson connection

5(25 = 55 + ¢, D}{’,O(,‘b = D}LI’O + ¢*H, DH,¢> = 5(25 + D}-I’,qu (12)

deg,, (€)

< (Spw(€) = Tank(&)’ (1.1)

1991 Mathematics Subject Classification. 53C07, 58E15.
Key words and phrases. Higgs sheaf, approximate Hermitian-Einstein structure, Bogomolov inequality.
The authors were supported in part by NSF in China, No. 11571332, 11131007, 11526212.

1


http://arxiv.org/abs/1601.00729v1

2 JIAYU LI, CHUANJING ZHANG, AND XI ZHANG

where Dy is the Chern connection with respect to the metric H and ¢* is the adjoint of ¢
with respect to H. The curvature of the Hitchin-Simpson connection is

Fuy=Fu + (6,67 + D56+ 0e¢™, (1.3)

where Fp is the curvature of the Chern connection Dg. A Hermitian metric H on the Higgs
sheaf (&, ¢) is said to be admissible Hermitian-Einstein if it is admissible and satisfies the
following Einstein condition on M \ ¥, i.e

VI (Fr + [, ¢*7]) = Nde, (1.4)
where \ is a constant given by A = %uw(é'). Hitchin ([I7]) and Simpson ([32]) proved
that a Higgs bundle admits a Hermitian-Einstein metric if and only if it’s Higgs poly-stable.
Biswas and Schumacher [8] studied the Donaldson-Uhlenbeck-Yau theorem for reflexive Higgs
sheaves.

In this paper, we study the semi-stable Higgs sheaves. We say a torsion-free Higgs sheaf
(€,¢) admits an approximate admissible Hermitian-Einstein structure if for every positive 4,
there is an admissible Hermitian metric Hs such that

sup |V—=1Ay(Fu, + [¢,¢*7]) — Mde|a, (z) < 6. (1.5)

zEM\X

The approximate Hermitian-Einstein structure was introduced by Kobayashi ([19]) on a holo-
morphic vector bundle, it is the differential geometric counterpart of the semi-stability. Kobayashi
[19] proved there is an approximate Hermitian-Einstein structure on a semi-stable holomorphic
vector bundle over an algebraic manifold, which he conjectured should be true over any Kahler
manifold. The conjecture was confirmed in [18] 25]. In this paper, we proved our theorem holds
for a semi-stable reflexive Higgs sheaf over a compact Kéahler manifold.

Theorem 1.1. A reflexive Higgs sheaf (€,¢) on an n-dimensional compact Kdhler manifold
(M,w) 1is semi-stable, if and only if it admits an approximate admissible Hermitian-Finstein
structure. Specially, for a semi-stable reflexive Higgs sheaf (€, @) of rank r, we have the following
Bogomolov type inequality

/M (2¢2(€) —

The Bogomolov inequality was first obtained by Bogomolov ([9]) for semi-stable holomorphic
vector bundles over complex algebraic surfaces, it had been extended to certain classes of
generalized vector bundles, including parabolic bundles and orbibundles. By constructing a
Hermitian-Einstein metric, Simpson proved the Bogomolov inequality for stable Higgs bundles
on compact Kéahler manifolds. Recently, Langer ([20]) proved the Bogomolov type inequality
for semi-stable Higgs sheaves over algebraic varieties by using an algebraic-geometric method.
His method can not be applied to the Kéhler manifold case. We use analytic method to study
the Bogomolov inequality for semi-stable reflexive Higgs sheaves over compact Kahle manifolds,
new idea is needed.

r—1 w2
01(5) /\01(5)) A

e (1.6)

We now give an overview of our proof. As in [6], we make a regularization on the reflexive
sheaf £, i.e. take blowing up with smooth centers finite times m; : M; — M;_1, where i =
1,--+,k and My = M, such that the pull-back of £* to M} modulo torsion is locally free and

T=mo-om,: M, > M (1.7)

is biholomorphic outside ¥. In the following, we denote My by M, the exceptional divisor
771% by 3, and the holomorphic vector bundle (7*E* /torsion)* by E. ?ince £ is locally free
outside ¥, and the holomorphic bundle E is isomorphic to & on M \ X, the pull-back field
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7*¢ is a holomorphic section of Q'°(End(E)) on M \ ¥. By Hartogs’ extension theorem, the
holomorphic section 7*¢ can be extended to the whole M as a Higgs field of E. In the following,
we also denote the extended Higgs field 7*¢ by ¢ for simplicity. So we get a Higgs bundle (F, ¢)
on M which is 1s0morph1c to the Higgs sheaf (£, ¢) outside the exceptional divisor .

It is well known that M is also Kahler ([I5]). Fix a Kahler metric  on M and set

we =T'w+en (1.8)
for any small 0 < ¢ < 1. Let K.(¢,2z,y) be the heat kernel with respect to the Kéhler metric
w.. Bando and Siu (Lemma 3 in [6]) obtained a uniform Sobolev inequality for (M, w.), using
Cheng and Li’s estimate ([11]), they got a uniform upper bound of the heat kernels K.(t, z,y).

Given a smooth Hermitian metric H on the bundle F, it is easy to see that there exists a
constant Cjy such that

[ 0yl +108,,)% < G (19)

for all 0 < e < 1. This also gives a uniform bound on [y [Ay, (Fy + (¢, ¢*H])|H%
We study the following evolution equation on Higgs bundle (E, ¢) with the fixed initial metric
H and with respect to the Kahler metric we,

1 OH(t) *He(t)]y _
H.(t) 5 = 2(v—1A,, (Fr. ) + [0, ¢ ]) = Addg), (1.10)
H.(0) = A,
2

where A\, = (E). Simpson ([32]) proved the existence of long time solution of the

= Vol(Mw,) Hee
above heat ﬂow( By )the standard parabolic estimates and the uniform upper bound of the heat
kernels K (t,,y), we know that |Ay, (Fy, @) + [9, ¢*H€(t)])|He(t) has a uniform L' bound for
t > 0 and a uniform L* bound for ¢ >ty > 0. As in [6], taking the limit as € — 0, we have
a long time solution H(t) of the following evolution equation on M \ ¥ x [0, +0c0), i.e. H(t)
satisfies:

H(t)™ “;f” = —2(V=TAu(Frry + [¢, 0" 1]) = Alde),

H(0)=H.
Here H(t) can be seen as a Hermitian metric defined on the locally free part of £, i.e. on M\ X.

In order to get the admissibility of Hermitian metric H(¢) for positive time ¢ > 0, we should
show that |@|g (), € L™ for t > 0. In fact, we can prove that [¢|g )., has a uniform L>
bound for ¢t > tp > 0. In [24], by using the maximum principle, we proved this uniform L*°
bound of |¢|g (1) along the evolution equation for the Higgs bundle case. In the Higgs sheaf
case, since the equation ([LII) has singularity on X, we can not use the maximum principle
directly. So we need new argument to get a uniform L> bound of |§|g(4).., see section 3 for
details.

The key part in the proof of Theorem [[LT] is to prove the existence of admissible approxi-
mate Hermitian-Einstein structure on a semi-stable reflexive Higgs sheaf. The Bogomolov type
inequality (LG) is an application. In fact, we prove that if the reflexive Higgs sheaf (£, ¢) is
semi-stable, along the evolution equation ([.I1]), we must have

sup W=T1Au(Fp + (6,07 P]) — \de| 1) (x) — 0, (1.12)
xrEe

(1.11)

as t — +oo. We prove ([LI2)) by contradiction, if not, we can construct a saturated Higgs
subsheaf such that its w-slope is greater than p(€). Since the singularity set ¥ is a complex
analytic subset with co-dimension at least 3, it is easy to show that (M \ 3, w) satisfies all three
assumptions that Simpson ([32]) imposes on the non-compact base Kahler manifold. Let’s
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recall Simpson’s argument for a Higgs bundle in the case where the base Kéhler manifold is
non-compact. Simpson assumes that there exists a good initial Hermitian metric K satisfying
sup s [AwFr ¢k < 00, then he defines the analytic stability for (£, ¢, K') by using the Chern-
Weil formula with respect to the metric X (Lemma 3.2 in [32]). Under the K-analytic stability
condition, he constructs a Hermitian-Einstein metric for the Higgs bundle by limiting the
evolution equation (LTTI).

Here, we have to pay more attention to the analytic stability (or semi-stability) of (&, ¢).
Let F be a saturated sub-sheaf of £, we know that F can be seen as a sub-bundle of £ outside
a singularity set V = X UX of codimension at least 2, then H induces a Hermitian metric Hr
on F. Bruasse (Proposition 4.1 in [I0]) had proved the following Chern-Weil formula

n—1

(1.13)

deg,,(F) = /M\V o (F Hr) N oy

where ¢;(F, Hr) is the first Chern form with respect to the induced metric Hz. By (LI3),
we see that the stability (semi-stability ) of the reflexive Higgs sheaf (€, ¢) is equivalent to the
analytic stability (semi-stability) with respect to the metric Hin Simpson’s sense. But, we are
not clear whether the above Chern-Weil formula is still valid if the metric H is replaced by
an admissible metric H(¢) (t > 0). So, the stability (or semi-stability) of the reflexive Higgs
sheaf (€, ¢) may not imply the analytic stability (or semi-stability ) with respect to the metric
H(t) (t > 0). The admissible metric H(t) (¢ > 0) can not be chosen as a good initial metric
in Simpson’s sense. On the other hand, the initial metric H may not satisfy the curvature
finiteness condition (i.e. [Ay,Fy 4|5 may not be L> bounded), so we should modify Simpson’s
argument in our case, see the proof of Proposition [l in section 4 for details.

If the reflexive Higgs sheaf (£, ¢) is w-stable, it is well known that the pulling back Higgs
bundle (E, ) is we-stable for sufficiently small e. By Simpson’s result ([32]), there exists an
we-Hermitian-Einstein metric H, for every small e. In [6], Bando and Siu point out that it is
possible to get an w-Hermitian-Einstein metric H on the reflexive Higgs sheaf (£, ¢) as a limit
of we-Hermitian-Einstein metric H, of Higgs bundle (E, ¢) on M as € — 0. In the end of this
paper, we solve this problem.

Theorem 1.2. Let H, be an w.-Hermitian-Einstein metric on the Higgs bundle (E, ), by
choosing a subsequence and rescaling it, He must converge to an w-Hermitian-Einstein metric
H in local C*°-topology outside the exceptional divisor ¥ as € — 0.

This paper is organized as follows. In Section 2, we recall some basic estimates for the heat
flow (LIO) and give proofs for local uniform C° C' and higher order estimates for reader’s
convenience. In section 3, we give a uniform L° bound for the norm of the Higgs field along
the heat flow (LII)). In section 4, we prove the existence of admissible approximate Hermitian-
Einstein structure on the semi-stable reflexive Higgs sheaf and complete the proof of Theorem
[[Il In section 5, we prove Theorem [[.21

2. ANALYTIC PRELIMINARIES AND BASIC ESTIMATES

Let (M,w) be a compact K&hler manifold of complex dimension n, and (&£, ¢) be a reflexive
Higgs sheaf on M with the singularity set 3. There exists a bow-up 7 : M — M such that the
pulling back Higgs bundle (E, ¢) on M is isomorphic to (€, $) outside the exceptional divisor
¥ = 778, It is well known that M is also Kéhler ([I5]). Fix a Kéhler metric  on M and
set we = 1w+ en for 0 < e < 1. Let K (z,y,t) be the heat kernel with respect to the Kahler
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metric w,. Bando and Siu (Lemma 3 in [6]) obtained a uniform Sobolev inequality for (M, w,).
Combining Cheng and Li’s estimate ([I1]) with Grigor’yan’s result (Theorem 1.1 in [I6]), we
have the following uniform upper bound of the heat kernels, furthermore, we also have a uniform
lower bound of the Green functions.

Proposition 2.1. (Proposition 2 in [6]) Let K. be the heat kernel with respect to the metric
we, then for any T > 0, there exists a constant Ck (T) which is independent of €, such that

0< Ke(xvyat) < CK(T)(t_n exXp (_ (4 + T)t

for every x,y € M and 0 < t < 400, where dy, (x,y) is the distance between x and y with
respect to the metric w.. There also exists a constant Cq such that

Ge(xuy) > _CG (22)
for every z,y € M and 0 < € < 1, where G. is the Green function with respect to the metric

We.-

Let H,(t) be the long time solutions of the heat flow (L.I0) on the Higgs bundle (E, ¢) with
the fixed smooth initial metric H and with respect to the Kéhler metric w.. By ([9)), there is
a constant C7 independent of € such that

VAT Fy + [6.6) ~ Addil %5 < € 2:3)

For simplicity, we set:
®(He(t),we) = V=1Aw, (Fir, () + [9,6""]) = Acldp. (2.4)

The following estimates are essentially proved by Simpson (Lemma 6.1 in [32], see also Lemma
4 in [25]). Along the heat flow (LI0)), we have:

(A~ Dt (B(H.(1) 1)) = 0, (2.5)
0
(A — a)@(ﬂe(t%we)ﬁuw = 2[Dpo(P(He(t), we)) . (1), 000 (2.6)
and 5
(Ac = FIIS(He(t), wo)lm.r) = 0. (2.7)
Then, for ¢t > 0,
100wl < [ 10000145 <€ (28)
We — = yWe)lr—v = ) .
AW ) Ve Hopl !
N wh
max |D(H.(0), w00 (0(@) < [ Ky 0|0 0] 25 (2:9)
zeM M n:
and
we
meag@( (t+1),we)lp, +1) (@ / Ke(z,y, )| ®(He(t), we)lm.y— 7 (2.10)
By the upper bound of the heat kernels ([Z1]), we have
max |B(He(t), we) . (1) (%) < Cre(T)Ca(t™" + 1), (2.11)
e
and

—T (2.12)

max [ B(H, (t + 1), we) 1. (041) (2) < 2Cc(7) / B, (1), we)
xeM M

)
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Set
exp(Sec(t)) = he(t) = H YH(t), (2.13)
where S, (t) € End(E) is self-adjoint with respect to H and H,(t). By the heat flow [I0), we

have:
1 0hc

%logdet(hé(t)) = tr (! 55) = —2tr (R(H(t), wo)), (2.14)
and
/ tr (S (£) :/ log det (he(t)) 5 = 0 (2.15)
N n! N n!
for all ¢ > 0.
In the following, we denote:
B, (8) = {x € M|d,, (z,%) < 8}, (2.16)

where d,,, is the distance function with respect to the K&hler metric wy. Since H is a smooth
Hermitian metric on E, ¢ € Q};[O(End(E)) is a smooth field, and 7*w is degenerate only along

3, there exist constants ¢(6~1) and by(6~") such that
(A, Fygl g +181% , Hy) <e(67h), o17)
(V5 Faly,, + IV elG . <o), '

for all y € M\ B,,($),all 0 < e<1andall k> 0.
In order to get a uniform local C%-estimate of h.(t), We first prove that |®(H,(t),w.)
is uniform locally bounded, i.e. we obtain the following Lemma.

He(t)

Lemma 2.2. There exists a constant C1 (57" such that
|(I)(He(t)a‘*"6) H(t) (x) < él (6_1) (2'18)
for all (x,t) € (M \ B, (8)) x [0,00), and all 0 < e < 1.

Proof. Using the inequality (2.9), we have

@, (0). )l @) <

[ Y oee)n 2 29)
M\B.(3) Bc(5)

5 n!
€N2
Noting [}, Ké(x,y,t)% =1 and using (ZI7), we have
X W™
[ Edapieels )%
M\B.(%) n

(2.20)

IN

€6+ AP [ Kl
M

n!
<é(07h).
where ¢;(671) is a constant independent of e. Since 7*w is degenerate only along ¥, there exists
a constant a(d) such that
a(0)wy < T'w < we < wy (2.21)
on M\ By, (8), forall0<e<1. Letz € M\ B, (6) and y € 9(B.y (8)), it is clear that
0+/a(d)

dy, (2,Y) > drw(x,y) > V/a(0)dy, (z,y) > 7 (2.22)
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Let a(8) = Y2 Tf 2 € M\ B, (5) and y € By, (3), we have

du, (2,y) > a(d) (2.23)
for all 0 < e < 1. Then,
A we (Y
[ Kdeiew)lym Y
Bw1(%) n.

<) [ el 4 DI w04t

a(d)
4+ 7)t

we' (y)
n!

n

)+ )| ®(H, we)| 5~ (2.24)

€
n!

< C(1) / (t™" exp(—
By (%)

a(d)
447

n

n) " exp(—n)/ |@(ﬁ,we)|g%

B, (%)

< Ci(1)(

< )0 () exp(m),

for all (z,t) € (M \ B, (9)) x [0,00). It is obvious that (ZI9), 220) and 224) imply 2IF).
a

By a direct calculation, we have
0
En log(tr he(t) + tr A1 ()
- Oh. — Ohe -
tr (he(t) - h ' (8) ) — tr (he ' () P - b (1) (2.25)

€ € €

trhe(t) +trh ' (2)

< 2| (He (1), we) | a. (1)
and )
10g(2—(tr he(t) +trhe(t)™1)) < [Se(t)| 5 < r? log(tr he(t) +trhc(t) 1), (2.26)
r
where r = rank(E). By (2.8)) and (2.I8]), we have
/~ log(tr he(t) +trh 1 (1)) — 1og(2r)w—6' < Cht, (2.27)
M .
and
log(tr he(t) + trh1(t)) —log(2r) < 2C, (6~ HT (2.28)

for all (z,t) € (M \ B, (8)) x [0,T]. Then, we have the following local C°-estimate of h.(t).
Lemma 2.3. There exists a constant Co(6~1, T) which is independent of € such that

|Sc(t)] g (x) < Co(6~1,T) (2.29)
for all (x,t) € (M \ B,,(8)) x [0,T], and all 0 < € < 1.

In the following lemma, we derive a local Cl-estimate of he(t).
Lemma 2.4. Let T.(t) = h.*(t)0;he(t). Assume that there exists a constant Co such that

_max |Se(t)] () < Co, (2.30)
(2,)E(M\ By (8)) x[0,7]
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for all 0 < € < 1. Then, there exists a constant C'y depending only on Cqy and 6~' such that

_ max Te(t)| g, <Ch (2.31)
(2,t)€(M\Buw, (§6))x[0,T] e

forall0 <e<1.

Proof. By a direct calculation, we have

(A, — %)m« he(t)
= 2tr (—V/ 1A, Ohe(t) - h 1 (t) - Dghe(t)) + 2tr (he(t)®(H, w))

+2V=TAu tr {he(t) o ([9, ¢*H&<f>1 — 6, ¢*))} (2.32)
= 2tr (—v/—1A,, 0hc(t) - h7H(t) - O he(t)) + 2tr( e(t )@(ﬁ,wé))

+ 2V =T A, tr{[g, he ()] A R (¢ )[ (1), 6]}
> 2tr (—V=TAu, Dhe(t) - b (¢ ) he(®)) + 2tr (he () D(H, ),

%Tm = am(t)(h;l(t)%he(t» = =20, (1 (®(H, (£),w.)), (2.33)

and

0
(A — —)|T€(t)|f{ we = 2V m, t)Té(t)ﬁ{e(t ) swe
- Cl(lAweFH (t) H(t),we + |Rw(we)|we)|T (t )
- Czlvg(Awng) —|Vuolh

where constants C’l, Cs depend only on the dimension n and the rank r.

By the local C%-assumption (Z.30), the local estimate (ZI8) and the definition of w,, it is
easy to see that all coefficients in the right term of (234 are uniformly local bounded outside
3. Then there exists a constant Cs depending only on 6~! and Cy such that

0
A — =) |T.(t))? > 2 T.(t)|?
(@ = GOl 00, > 2V O -
— G| (W), (1), — Cs

(2.34)

H(t),we ),we

Te(t)

e (t),we e(t),we?

on the domain M \ By, (6) x [0,T].
Let ¢1, 2 be nonnegative cut-off functions satisfying:

T 5
“’1(””):{ ; xiﬁdl\(Bi(%) (2.36)
0, x € B,,(9),
=1 L A B (2:3)

and |dgol o < 52, —5zw1 < V—=100p; < szw1. By the inequality (2.21)), there exists a constant
C1(671) depending only on §~! such that

(IdeilZ, + |Acpil) < C1(671), (2.38)

forall 0 <e<1.
We consider the following test function

Fst) = QT o, 1) w, T Wepstr he(t), (2.39)
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where the constant W will be chosen large enough later. From (232) and ([234]), we have
0

(A - 2)f
= ‘P%(ﬂvH (t) ( ) e (t),we C3|T ( )l%ie(t),we - 03 + Awe¢%|Te(t)|§{€(t),wé (2_40)
+401Ver, VITe (), (1), )we + WA, 0388 he(t) + AW (02V 02, Vir he(t) ),
+2W s (tr (V=TAu, h . ()05 he(£)0he (1)) + tr (he(D)(P(H, we))).
We use
2(e1Veor, VIT(8) 3. (1) o )oe > —4<P1|V901|w6|Te(t) H.(t)we Va0 Te)] . (1) 0. (2.41)
— AT (D, 1y — UV 0112 T (), (1) 0 '
W {022, Vit he(t))w, = =3IVt he(t) [, (1) w, — W3 V23, (2.42)
and
ITe(t) 7. (1) 0
(T 00 0B TR ) o1
= tr (V=TAu b (10 he(Dh ! (1)0he (1)) |
< et (V=TAw b (0 he(DOR(1)).
and choose _
= (C5 4+ 401 (071 +2r)ee + 1. (2.44)
Then there exists a positive constant Cy depending only on Cy and 6! such that
(A= 2)f 2 AV .0 TeOl, (0.0 + AT 10, — Co (2.45)

on M x [0,T]. Let f(q,to) = max iz, o) 7> by the definition of ¢; and the uniform local
CP-assumption of h(t), we can suppose that:

(¢:t0) € M\ B, (2

26) x (0,7

By the inequality ([2.45]), we have

ITe(t0) 31, (1) . (@) < Co- (2.46)
So there exists a constant C; depending only on Cy and 6!, such that
I T(®) 5. (1) 0. () < Ch (2.47)

for all (z,t) EM\BMI(% )% [0,7] and all 0 < e < 1.
a

One can get the local uniform C* estimates of h.(t) by the standard Schauder estimate of the
parabolic equation after getting the local C° and C" estimates. But by applying the parabolic
Schauder estimates, one can only get the uniform C™ estimates of h.(t) on M\ By, () x [r, T,
where 7 > 0 and the uniform estimates depend on 7—!. In the following, we first use the
maximum principle to get a local uniform bound on the curvature |Fp_4)|m.(t)w., then we
apply the elliptic estimates to get local uniform C°° estimates. The benefit of our argument
is that we can get uniform C estimates of h(t) on M \ B, (6) x [0,T]. In the following, for
simplicity, we denote

Eeyj = |Vile(t) (FHe(t) + [(bv (b*He(t)])ﬁle(t),we (‘I) + |V{t}t}t)¢|?{€(t),we (248)
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for j = 0,1,---. Here Vp ;) denotes the covariant derivative with respect to the Chern
connection Dy ;) of He(t) and the Riemannian connection V,,, of we.

Lemma 2.5. Assume that there exists a constant Cy such that

, max |Se(t)| (@) < Co, (2.49)
(2.)€(M\ By (6) X[0.7]

for all 0 < e < 1. Then, for every integer k > 0, there exists a constant Chyo depending only
on Co, 6~ and k, such that

_ max Herx < UHQ (2.50)
(z,t)€(M\ Bu, (26))x[0,T]
for all 0 < € < 1. Furthermore, there exist constants C’k+2 depending only on Cy, 6~ and k,
such that

. max IVER2h |y o < Chyo (2.51)
(z,t)€(M\B., (26))x[0,7] We

forall0 <e<1.

Proof. By computing, we have the following inequalities (see Lemma 2.4 and Lemma 2.5
n ([24]) for details):

0
(Ac — E”vHe(t)(bﬁ{e(t),we —2IVa, )V, 0. 1) 0.

> — Cr(|Fu, ) b (1), + [BM(@)|w, + 10071 1) w IV )BT (1) 0 (2.52)
— C119lm, (1) w. |V Ric(we) . [V . (1)1 B, (1) 0.
0 . .
(Ac — E”FHe(t) + 10,9 Hé(t)“?{e(t),we = 2|V, y(Fu.q) + 19,0 He(t)])ﬁle(t),we
> — Cs(IFp, ) + [0, 6™ O3 (1o + IV 0030, (1).0) 7 (2.53)
= Cs(93 (.. + 1BM@w) Pty + [0, 0™ Ol )0, + Vi 0 Bl 0),0.):
then
A — =)Ze0 > 251 — Cs(Ee0)?
(87 gy = 220 = GhiE0) (2.54)

— Cs(|o %{E(t),wé + [Rm(we)|w.) (Ee0) — CS|VRiC(W6)|i€7
where C7, Cg are constants depending only on the complex dimension n and the rank r.
Furthermore, we have
0
A — —)Ec;
( 6t) 3J
- 4o 21 — A1
> 25 11— Ci(Ee)2{ Y (Eei)? +1¢
i+k=j

w. +|VRic(we)

. (0. T [BM(we) w)  (2.55)

we T |VRic(w,)

((Ber)? + 19 )

where C'j is a positive constant depending only on the complex dimension n, the rank r and j.
Direct computations yield the following inequality (see (2.5) in ([24]) for details):

Ho (1) . T [RM(we)

0
(Ae — E)Wﬁ{e(t),we > 2|V, 08 H, (1) .
+2|Ay, (6, 0" ON1F o) — 2| Ric(we)

(2.56)

(bﬁ{e(t),we'

We
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From the local C°-
M \ B, (6) x [0,T]. By Lemma DEI, we have |Tc(t)|q, (+)w, is uniformly bounded on M\
B, (26) x [0,T]. We choose a constant C' depending only on 6~' and Cj such that

H.(t)w. 15 also uniformly bounded on

14 - .
SC=C- (61, ). 1T, (1) 0. ) (@) <C (2.57)
on M\ By, (36) x [0,T]. We consider the test function:

:6 0(,@, t)

C(z,t) = p2 : (2.58)
(|¢|H (t)w + |T5(t)|§{€(t)7w€)(:zr)
where p is a cut-off function satisfying:
[0, ze€ Bwl(§5),
s ={ 1 L b (259

and |dp|2, < &, —Sw1 < V=100p < SHwi. We suppose (zo,to) € M\ B., (36) x (0,T] is
a maximum point of ¢. Using (235), 252), @54), (2.56) and the fact V{ = 0 at the point

(20,t0), we have
0
0> (Ae - E)Ckmo,to)
1 0., o

= Ae__ e
— (18R, . +|Te<t>|z€<t>,wé>( i)\ =e0)

= 0., A

2 €,0 2 2

—-p (Ae = )(C = (1015, (1) w. T T2, (1))

(C (|¢|H e T |Te(t)|§{€(t)ywé))2 ot ) H(b),
) N
- = V(¢) - V(C ~ (19lF, (1) w. + ITe(®)]Fr, (1))
d— (|¢|2 " +|T.(t )|2 t),we) He(t), He(t),
Eeo , 2Zc0— Ca|Te(t)|3, 1y . — C3

> —
20 (0B LB &

T
p
& — (W + TP )
1
- 0892552,0 — Csp®( + [Bm(we)lw.) — 8ldp
p?|VRic(we)|?,

R AT TR

We

Zé + Awep2}

— Oy~ _
¢ OB, )
(2.60)
So there exist positive constants Cy and Cs depending only on Cy and §~!, such that
((0,t0) < Cs, (2.61)
and
Eeo(z,t) < Oy (2.62)

for all (z,t) € M \ B, (£8) x [0,T).
Furthermore, we choose two suitable cut-off functions p1, p2, a suitable constant A which
depends only on Cy and 6!, and a test function

C1(2,t) = piZe1 + ApsEcp. (2.63)
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Running a similar argument as above, we can show that there exist constants Cs and Oy
depending only on Cy and 6! such that

Eei(z,t) < Cs, (2.64)
and
IV aFu. ., <Cs (2.65)
for all (z,t) € M \ By, (£26) x [0, 7).
Recalling the equality
0 prhe(t) = he(t)(Fi, ) — Fig) + Ohe(t) A (he(t)) ™ O he(t) (2.66)

and noting that Kéhler metrics we are uniform locally quasi-isometry to 7*w outside the ex-
ceptional divisor X, by standard elliptic estimates, because we have local uniform bounds on
he, Te, F, and Fy, we get a uniform C*-estimate of he on M \ Bwl(g—;d) x [0, 7).

We can iterate this procedure by induction and then obtain local uniform bounds for = j,
|V%FH€(t)|2wé, and ||hc||gri1.e on M\ By, (26) x [0,T] for any k > 1.
O

From the above local uniform C*°-bounds on H,, we get the following Lemma.

Lemma 2.6. By choosing a subsequence, H(t) converges to H(z,t) locally in C* topological
on M\ X x[0,00) as € — 0 and H(t) satisfies (I11)).

3. UNIFORM ESTIMATE OF THE HIGGS FIELD

In this section, we prove that the norm |¢|g¢),, is uniformly bounded along the heat flow

(@ID) for t >ty > 0.

Firstly, we know |¢|§{ W € LY(M,w,) and the L'-norm is uniformly bounded. In fact,
Jacldl 5 = Jatr (V=TAw (6 A ¢*)) 5

R (3.1)
= [utr (@A) A gy < Cp < o0,

where C'¢ is a positive constant independent of €. Moreover, we will show the L'*2%norm of
|¢|§{ . is also uniformly bounded, for any 0 < 2a < 1. Let’s recall Lemma 5.5 in [31] (see also

Lemma 5.8 in [26]).

Lemma 3.1. ([31]) Let (M,w) be a compact Kdihler manifold of complex dimension n, and
m: M — M be a blow-up along a smooth complex sub-manifold 3 of complex codimension
k where k > 2. Let n be a Kdhler metric on M, and consider the family of Kdhler metric

we = m*w+en. Then for any 0 < 2a < 25, we have Z—Z e L?*(M,n), and the L?*(M,n)-norm

of Z—Z is uniformly bounded independent of €, i.e. there is a positive constant C* such that
n n
[t <cr (3.2)

aowroonl

forall0 <e<1.
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Since ¢ € QM°(End(E)) is a smooth section and w, = 7*w + en, there exists a uniform
constant Cyg such that

|¢| o U:L| «H n—1 ~
( Hn| ) _ ntr ((b A (bnn ) A We < qu (33)

for all 0 < e < 1. By B2), for any 0 < 2a < 3, there exists a uniform constant Cy such that

(1 2aw
[ el

_/ (|¢|Hw “,;:) +2a(n")l+2aw?
Nt 1T w n! (3.4)

S

92 95\ 1420y 20
- [ ()T )

n!
<Cy

€|d

for all 0 < € < 1. By limiting (34]), we have the following lemma.

Lemma 3.2. For any 0 < 2a < 3, we have |¢|%w € L'T2(M \ Z,w), i.e. there exists a

constant Cy such that
/M\E| % 1+2a)w 7 < Co (3.5)

On M\ X, we get ((2.5) in [24] for details)

0 . ,
(A= §)|¢|§J(t),w 2 2|VH(t)¢|%-I(t),w +2[V=1Au[¢, ¢ H(t)”%r(t) - 2|chw|w|¢|%{(t),w' (3.6)
By a direct computation, we have

1 (A— g)|¢|2 _ V|¢|§{(t),w ) v|¢|§{(t),w
log(|6l3 ), +¢) ot (10114 + €2

1 0.\ ,2 B 2|V170t)¢|§{(t : |¢|§{(t),w

0
(A= g) 10g(|¢|%—[(t),w +e) =

> A= )y w
oa( 9+ o) = o) Pl DR
(3.7)
Combining this with (B36), we obtain
9 2|80, 0" DN
(A = =) log(|$l31sy 0 +€) > — 2|Ricy|o (3.8)
ot H@), 03w

on M\ ¥. Based on Lemma 2.7 in [33], we obtain
IV=1Au[d, & O iy = |6, 6Dl 0y 0 > a1|plar ey 0 — a2(|¢|§qﬁw + 1), (3.9)

where a; and ag are positive constants depending only on r and n. Then, for any 0 < 2a < %
we have

2|0 (6, 0™
> (JAuld, 6" D)) + ) — 6e?
(1Aud, "Ny + €)' F % — 6e?

a3(|¢|H(t),w +e)ltE - a4|¢|§;z — as,

(3.10)

Y

Y
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where a3, a4 and a5 are positive constants depending only on a, r and n. Then it is clear that

B3) implies:
(9 a a .
(A= E) 10g(|¢|?—[(t),w +e) = a3(|¢|%{(t),w +e)? — a4|¢|§;w — a5 — 2|Ricy)w, (3.11)
on M\ X.

In the following, we denote:
f=10g(|9l%1).0 + ©)- (3.12)
For any b > 1, we have:

(A= Db = b A= ) f b~ DIV
> ashf* M (Bl 0 + )2 — aabf* TG — (a5 + 2/Ricul)bf T (313)
+b(b—1)[VF2 2
Choosing a cut-off function ¢s with

ps(w) = { (1) ; gg(\;}gﬁ‘;@)’ (3.14)

where By = {z € M|d,(z,%) < 0}, and integrating by parts, we have

9 bW _ 4 9\ pw" / 3 pw"
~ 5 o3 f _/M%(A_E)f H+ M4805V806Vf o

n

_ a W _ aW
- [ Ny ol + et S = [ aubpbfofe
M n: M

H,w p!
= [ (e 2Ric ot 4 [ b= eV
M n. M n.

Wt
- [ 4l 1V Al
M n.

_ aw" _ aw"
> [ asbphf ol + )3 Sy — [ aabbst o )L
M n. M ’ n. )
n n 3.15
; 40b-1% 4b - 2 ;oW (
—/M(a5+2|chw|w)b<p5f g —/M m%’ﬂv%hf pr

(|¢|%{ t + e)% w"
> bt fo—1 p(b—1)B (t).w w™
_/M as (péf f f(b—l)B nl

—a( [ @) ([ o L)’

—/ (a5+2|Ricw|w)bcp5fb 1w'
M

—%(/ 5f2bw /IV%I

where ¢ = 2(;12‘1), p= (122‘1) and B = 13;&2“)

C(a,b) depending only on a and b such that

(|¢|§1(t)7w +e)t
(108108, + )0 D7

+ bzb We can see that there exists a constant

> C(a,b). (3.16)
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Since the complex codimension of ¥ is at least 3, we can choose the cut-off function s such
that

[ 190l ~ 0675%) = o). (317)
M n.
By (83), we obtain

9 4" 4 (bfl)Bwn 4 (bfl)Bwn 5
—Q/M%f P > aﬁ/M%f p —a7(/M<P5f W)

N RW\ B i rwW™\ BTODB
ool [ty ([ oy
M n. M n.

where a; are positive constants depending only on r,n,a, b, |Ric,|,, Vol(M,w) and Cy for i =
6,7,8,9.

(3.18)

Lemma 3.3. For any b > 1, there exists a constant Cy depending only onr,n,b, |Ric,|w, Vol(M,w)
and Cy such that

w” A
/M\E(log(kbﬁ{(t),w + 6))bm <Gy (3.19)

for allt > 0.

Proof.  Suppose that [,, ¢} bl (1) = maxyeo,7] [o 95 b%(t) with t* > 0. Choosing

n!

a= % in (20), at point t*, we have

(9 4 bw"
OZ—Eh:t* /M%sf T

n n L
_ w _ w
> as/ w3 fC® 1)3—, —a7(/ o3 1)3—,)3 (3.20)
M n. M n.

W'\ B 1 pwW"\ TOF
—Gg(/ <P§f(b 1)3—,) —Gg(/ <P§f(b 1>B_,> o
M n: M n:

This inequality implies that there exists a constant Cy, depending only on r, n, b, | Ricy|.,, Vol(M, w)
and Cy such that

w™ ~
/ <P§f(b_l)B—,(t*) < G (3.21)
M n.
So we have . .
40w A 2 b
— () < 1 - —. .22
max [ AP0 <Gt [ (or(loly, + )2 (322)

Noting that the last term in the above inequality is also bounded, and letting 6 — 0, we obtain

the estimate (319) .

O
By the heat equation ([LIT]), we have
9 2
1o 2 Ltel= i :‘ <2(P(H(t),w )
|at g(|¢|H(t), )| |¢|%{(t)7w te |¢|§{(t)1w te | ( ( ) )|H(t)
(3.23)
then
A(Log(|9[311) .o + €)) = =2/ Ricwlw — 2/P(H (1), w)|r(r)- (3.24)
By (2I1)), we have
max_|®(H (t),w)|mn (x) < Cr(T)Ci(t™™ +1). (3.25)

zeEM\X
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So there exists a positive constant C*(¢; ) depending only on t; ' and |Ric,|, such that

A(log(|¢l 1y +€) = —C*(t5 ) (3.26)
on M\ X, for t >ty > 0. Then, we have

o) [ Ar < [ eirars
= [ deirons - [ vadn-vrs e

[ 1¥esh) |2—+/ Vsl

for t >ty > 0. By (B317) and (319), we obtain

[oavrs = [ s
M\S n. 6—0 M\ Bss (%)

. W_"
ghm/ IVips )l (3.28)

< lim C*(t Desf + |V905|wf2
6—0

SC*(to ) ’ Cb

for t > to > 0. This implies f € W12(M,w) and f satisfies the elliptic inequality Af >
—C*(ty!) globally on M in weakly sense for ¢ > o > 0. By the standard elliptic estimate (see
Theorem 8.17 in [14]), we can show that f € L°(M) for all ¢t > ¢ty > 0, and the L*°-norm
depending on C*(t;'), the LP-norm (i.e. Cp) and the geometry of (M,w), i.e. we have the
following proposition.

Proposition 3.4. Along the heat flow ([I.11l), there exists a positive constant C’¢ depending
only on r,n,ty",Cy and the geometry of (M,w) such that
sup [0[77,0 < Co (3.29)
M\%

for allt >ty > 0.

Recalling the Chern-Weil formula in [32] (Proposition 3.4) and using Fatou’s lemma, we have

4r? /M(ch(g) — e (E) A er(€)) A

wn—Z

(n —2)!

= lim 4r? /M(ch(E) —c(E)Ne(E)) A (:E_ 2)!
wn—2
T (3.30)

=lim ~ tr (FHE (t),é A\ FHe(t),qb) A\

e—0

n
wﬁ

=lim [ (|Fg,)el7 (t))?

e—0 N

w
Z/ (Fr )07 0 = IV=1AFu.6lt0) —
M\E n

We

for t > 0. Here, over a non-projective compact complex manifold, the Chern classes of a
coherent sheaf can be defined by the classes of Atiyah-Hirzenbruch ([2], see [16] for details).



SEMI-STABLE HIGGS SHEAVES AND BOGOMOLOV TYPE INEQUALITY 17

The L* estimate of |¢|§{(t)ﬁw, (211D and the above inequality imply that |Fr )| g ). s square
integrable and |Ay, F(4)|p(x) is uniformly bounded, i.e. we have the following corollary.

Corollary 3.5. Let H(t) be a solution of the heat flow (I.11l), then H(t) must be an admissible
Hermitian metric on € for every t > 0.

4. APPROXIMATE HERMITIAN-EINSTEIN STRUCTURE

Let H.(t) be the long time solution of (II0) and H(t) be the long time solution of (IIT]).
We set:

exp S(t) = h(t) = H T H(t), (4.1)
exp S(ty,ta) = h(ty, ta) = H™ (t1)H(tz), (4.2)
exp Se(t1,ta) = he(t1,ta) = HZ ' (t1)He(tz). (4.3)
By Lemma 3.1 in [32], we have
A, log(trh+trh™) > —2|Ay. (Fr.g)la — 2|Au(Fr.g)|x, (4.4)

where exp S = h = K~'H. By the uniform lower bound of Green functions G, (Z.I1)) and the
inequalities (2.26]) , we have

1St t2) | e iy < CallSeltrsto)ll s 7.y + Colts™) (4.5)

for 0 < tg < t1 < to, where C] is a constant depending only on the rank r and Cs (tal) is a
constant depending only on Cx, Cg and ¢, ! By limiting, we also have

IS (t1, t2)ll L (anzy < CLlIS(t1, )l (anm ) + Calty ) (4.6)
for 0 < tg < t1 < t2. On the other hand, (225 and ([2:26) imply that

r (IS (t, t2)| 1 (a\z,w) — Vol(M,w) log(2r)
tg n
w
S/ / WV=1AuFp(s),¢ — Mde|p(s) — ds (4.7)
t1 M\X nt

< él(t2 —t1).

So, we know that the metrics H(t1) and H(t) are mutually bounded each other on &[pnx.
(Elm\x, @) can be seen as a Higgs bundle on the non-compact Kéhler manifold (M \ X,w).
Let’s recall Donaldson’s functional defined on the space &y of Hermitian metrics on the Higgs
bundle (£]ar\x, @) (see Section 5 in [32] for details),

o (K, H) = / tr (SV=TAuFic ) + (U(S)(D}S), DjS) i = (4.8)

M\E !
where U(z,y) = (z —y) 2(e¥® — (y —x) — 1), expS = K 'H. Since we have known that
|AwFr@t),6]H(t) is uniformly bounded for ¢ >t > 0, it is easy to see that H () (for every ¢ > 0)
belongs to the definition space &y. By Lemma 7.1 in [32], we have a formula for the derivative
with respect to t of Donaldson’s functional,
wn

d 2
) HO) = =2 [ (000, 0 o (4.9)
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Proposition 4.1. Let H(t) be the long time solution of (LI1l). If the reflexive Higgs sheaf
(€, ) is w-semi-stable, then

wn
/ W=1AuFr),6 — /\Idgﬁ{(t)—' -0, (4.10)
M\Z n!
as t — +oo.

Proof. We prove ([@I0) by contradiction. If not, by the monotonicity of [|Ay(Fr@),¢) —
Ald||z2, we can suppose that

. w" N
By ([@9)), we have
t wh
Mw(H(to), H(t)) = —/ / |AwFH(s),¢v - )\Idgﬁ{(s)—'ds < —C*(t — to) (412)
to J M\S n.

for all 0 < tg < t. Then it is clear that (L) implies

lim inf — it (H (to), H (t)) zr—%CA_,
t=+oo ||S(to, )l L1 (a\5,w) C1

(4.13)

By the definition of Donaldson’s functional ([&8]), we must have a sequence t; — 400 such that
IS, )l (ans w) — +00. (4.14)
On the other hand, it is easy to check that
1S(t1, t3) m ey < 7(1S(E0s t2)m () + 1S (b2s t3) 1 (22)) (4.15)
for all 0 < t1,t9,t3. Then, by ([4.0), we have
Jim (1S (o, ti)ll 2 an ) = 00, (4.16)
and
1S (o, )l oo (anvsy < TS, D)l Lo (anvs)y + 7115 (0, Dl Lo (ar\5)
< O3 (t0, )z + 100, D) + IS to, Dl vz +C )

for all 0 < tg < t, where C3 and Cy are uniform constants depending only on r, C'x and Cg.
Set w;(tg) = ||S(t0,ti)||2115(to,ti) € SH(to)(g|M\E)7 where SH(to)(£|M\E) ={ne QO(M\
2, End(Epnx))| ) =n}, then ||u;(to)]|rr = 1. By @I5) and (&3), we have

/ tr S(to, ti) =7 =0, (4.18)
M\E n.
SO

/ truito) =5 = 0. (4.19)

By the inequalities (£13), ({.14), (@IT), and the Lemma 5.4 in [32], we can see that, by choosing
a subsequence which we also denote by wu;(to), we have u;(to) — uco(to) weakly in L?, where
the limit ue (o) satisfies: [|uco(to)| 1 =1, [, tr (uos(to)) %y = 0 and

oo (t0) || oo < 72 C. (4.20)
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Furthermore, if T : R x R — R is a positive smooth function such that T (A1, A2) < (A1 —Ag)~*
whenever A1 > Ao, then

n

o 0 0TI, 0) (e 1) Dot ), Tt (0 o
1 CF

S —r 2 —.
Ch

(4.21)

Since [|uoo(to)|lL~ and ||[Aw(Fr(ty),6)llz1 are uniformly bounded (independent of ¢o), ([£21))
implies that: there exists a uniform constant C' independent of to such that

n

_ w .
/M\Z |0 tto0 (t0) 3110 )7 SC (4.22)

From Lemma 22, we see that H and H(ty) are locally mutually bounded each other. By
choosing a subsequence, we have o (tg) — U weakly in local L? outside ¥ as to — 0, where
Uso Satisfies

/tr(uoo)w—':(), and  |uso 1 = 1. (4.23)
M n.

Since |v'—1Ay, Fr (),6|H.(+) € L™ for t > 0, by the uniform upper bound of the heat kernels

@), we have
/ V=1 Fuy,olom—
Buy (O\

n

. w
= lim IV —=1A0, Fr t),6lH.(4) =
€E—> wl(é)
< 1irn/ / K 3: Y, t |\/ Awé | ( )w_('y) | We ("T)
=0JB,, (%) n! n!
. wl(y)\ wl(z
~tim | ((/ L KDV By ) ) )
¢ wp (8) Bu,, (26) N\ B.,, (26) n! n!
: v wl(x
Shm// (09 O TA Pyl ()#- (,>
€0 wl(za n! n!

)
Buy

wn
S/ V=1AuFg ylir—
B, (20)\Z n

- we (7,9) we (y) we (x)
(5)(/M\Bw1(25) Crelre p(= ( )t)|\/_Awé Faslaly) )

n a(d) w™
+ O exp (= 5 TVoloy (B (9) | VTTAF 14 %
(4.24)
By ([@24)) and the uniform bound of ||us(to)|| L, we have
. w™ w™
Jim [t (s (t0)V TN Pl ) oy = /M tr (o =TALFy ) (4.25)
Let’s denote
Su(Elns) = {n € Q(M\ B, End(Eanx)| 7 =n}. (4.26)
and
loo (t0) = (R(t0))? - oo (to) - (h(t0)) ™ 2. (4.27)
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It is easy to check that: i (to) € Sp(Elans) and |ieo(to)| g = |Uoo(to)|H(ty)- Furthermore, we
have:

Lemma 4.2. For any compact domain Q@ C M \ ¥ and any positive smooth function Y :
R x R — R, we have

wn

lim [ (Y (100 (t0)) (Tptioo (t0)), Dstioo (t0)) i (1) — (L (fhoo (t0)) (pins (t0)), Dpios (t0)) | —y = 0.

to—0 Jo | n!

(4.28)

Proof. At each point  on §2, we choose a unitary basis {e;}7_, with respect to the metric
H (to), such that uso(fo)(e;) = Aie;. Then, {é; = (h(to))Ze;} is a unitary basis with respect to
the metric H and @0 (t0)(é;) = A\ié;. Set:

Do (to)(e1) = (Dptuo(t0))€s,  Dylion(t0)(é5) = (Dgiten(to))1e;, (4.29)
then
106t00 (t0) [ Fr(10) 0 = D, ((Patios (t0))], (Fitioo (t0))? oo, (4.30)
=1

(T (too(t0)) (Dgtioc(t0)), Dgtio (to)) r(1e) = Z (T (Ni Aj) (Dgtioo (t0))], (Dptioo (t0))])er  (4.31)
T (floo (10)) (D lico (t0)) (&:) = ZT(/\iv Aj) @giioo (t0))1 €5, (4.32)

and ”
(Y (oo (t0)) (Dg oo (t0)), Dplios (t0)) g = Z (Y (Ni Aj) (gl (t0))], (Dgins (t0))])er  (4.33)

By the definition, we have

— (h(t0))# o uss(to) o (h(t)) ™% 0 By(h(to))? o (h(to))~ (430
= (h(to))? 0 Fguce(to) © (h(to)) ™2 + Dy (h(to))? o (h(to))™ iss (o)
— lisg (t0) © Dy (h(t0))* o (h(to)) "%,
and
(Dsitos (t0))] = @puse(to))] + (N = A){Ba(hlto) o (h(to)) "=}, (4.35)
where 3¢(h(t0>% 9 (h(to)_% (éz) = (gqb(h(to)% o (h(tO)_%)iéJ By (m)v (m’ (m) and

#33]), we have
(Y (fios (t0)) (Do (t0)), D icn (t0)) g7 — (T (o (£0)) (i (t0)), Dstico (t0)) r(to)]

< 8(r2C5)* (B (1)) (1Ducc (t0) (1019 (Ao t0))” 5 + Pa(h(t)* o ((to)) "% [3).
(4.36)
where B*(T) = max|_,2¢, ,2¢c,2 L. Since H(t) are smooth on M \ ¥ x [0,1] and h(t) — Ide
locally in C'*°-topology as t — 0, it is easy to check that

;gg<|<h<to>>*%3¢<h<to>>%|ﬁ,w + (84 (h(to))? (h(te)) %] .,) < Calto), (4.37)

o
—

=
—~

where Cq(to) — 0 as to — 0. On the other hand, [0guoo(to)|# (1), are uniform bounded in

L?, so ([£36) and (E37) imply ([Z2]).
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a

By (&21), (£28) and ([E28), we have that given any compact domain 2 C M \ ¥ and any
positive number € > 0,

w™ . = . = . w"” o
/ tr (oo V—1AuFig, ¢)— + / (Y (tioo(t0)) (D lioc (o)), Oglico(to)) g — < =T R
M\Z n: Q n: (&5
(4.38)
for small tg. As we know that e (to) = teo in L2(9), |4 (to)| 5 is uniformly bounded in L>
and |3¢ﬁm(t0)|ﬁﬁw is uniformly bounded in L?(Q). By the same argument as that in Simpson’s

paper (Lemma 5.4 in [32]), we have

n _ C*
/ tr (uoo V—1ALFy ¢)w—' + ||T%(uoo)(8¢uoo)|\%q(m < —rTT— 42 (4.39)
M\ o Ch
for any ¢ < 2 and any €. Since €, ¢ < 2 and () are arbitrary, we get
_ _ wn ., *
/ tr (oo V—1AuFy ) 4 (T (too) (Optios ), Optios) g —y < =172 = (4.40)
M\ n Ch

By the above inequality and the Lemma 5.5 in [32], we can see that the eigenvalues of uq,
are constant almost everywhere. Let \; < --- < A; denote the distinct eigenvalue of us,. Since
S trum% = 0 and ||uso|zr = 1, we must have | > 2. For any 1 < a < [, define function
P, : R — R such that

1, < A,
P, = { 0 =3 (4.41)

Set mo = Py (o), Simpson (p887 in [32]) proved that:

1) Mo EL%(M\X},Q},IA{),
) w2 = 7wy = il

)
)

Ide — 74 )0mg = 0;
(Ide — ma)[#, ma] = 0.

By Uhlenbeck and Yau’s regularity statement of L?-subbundle ([35]), 7, represent a satu-
rated coherent Higgs sub-sheaf E, of (£,¢) on the open set M \ X. Since the singularity set
¥ is co-dimension at least 3, by Siu’s extension theorem ([34]), we know that E, admits a
coherent analytic extension E,. By Serre’s result ([30]), we get the direct image i, E, under
the inclusion i : M \ ¥ — M is coherent. So, every E, can be extended to the whole M as a
saturated coherent Higgs sub-sheaf of (£, ¢), which will also be denoted by E, for simplicity.
By the Chern-Weil formula ([I3]) (Proposition 4.1 in [I0]) and the above condition (4), we
have

(

(2
(3
(4

deg,,(En) = / tr(m/_1AwFﬁ)_|5m|gw%
MA ' (4.42)

n

:/ tr (o "TALFy ) — |Dlmall .
M\E ’ = nl

Set
-1
v=XNdeg, () — Y (Aat1— Aa)deg,(Fy). (4.43)
1

[e3%
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. o -1 w™
Since uoo = NiIde — >0 (Aat1 — Aa)7Ta and fM\E tr oo L = 0, we have

-1
Arank(€) — Y (Aa+1 — Ao)rank(E,) = 0, (4.44)
1

(e

then
-1
v = (Aat1 — Aa)rank(Eq )(

a=1

degw(g) _ degw (E(l)
rank(€)  rank(E,)

). (4.45)

By the argument similar to the one used in Simpson’s paper (P888 in [32]) and the inequality

E4Q), we have
I/:/ tr (uoo V—1AuFy )
" :

-1

+ <Z(/\a+1 - )‘a)(dpa)2(u00)(Dgu00)a DgUOO>H (4.46)
a=1
_1C7
<—7r 2——.
Cq
On the other hand, (£45) and the semi-stability imply v > 0, so we get a contradiction.
O
Proof of Theorem [I.1] By ([2.12)), we have
wn
sup [V =TAu(Fr(e11).6) — Mde 540y (@) < CK/ V=TAu(Fr1y,0) — \de 3 -
zEM\X M\ n:
(4.47)
If the reflexive Higgs sheaf (£, ¢) is w-semi-stable, ([@I0) implies
sup [V —=1Au(Fr(e),6) — Mdel 40y () = 0, (4.48)

zeM\X

as t — +00. By corollary[3.5l we know that every H (¢) is an admissible Hermitian metric. Then
we get an approximate Hermitian-Einstein structure on a semi-stable reflexive Higgs sheaf.

By choosing a subsequence € — 0, we have H,(t) converge to H(t) in local C*°-topology.
Applying Fatou’s lemma we obtain

r—1 wh—2
472 [ (2¢2(E) — EYNer(E)) A
s /M( c2(€) " c1(&) Ner(E)) (n—2)!
. 9 T 1 w?72
_1%471' /M(2C2(E) ’ Cl(E) A Cl(E)) AN (TL — 2)'
( n n ) wn—2
= lim tr (F ANF N —=
=0 |1y He (1), He(t),¢ (n—2)! (4.49)
1 1 2 1 2 we
= lim /M it )0 1. (0w = B Fir, .0l 7

2 Fl 2 ww_n
/M\E | H(t),<i>|]17(t)7 nl

1
_ / V=TAu P, = Alde = ~tx (V=TAuFiy(,6 — Alde)lde 3,
M\S

w’ﬂ

n!
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for t > 0, where Fj; , is the trace free part of Fr 4. Let t — +oo, then (£I0) implies the
following Bogomolov type inequality

r—1 w2

/M(zcz(g) — T al®) Aeal€) A gy 20 (4.50)

Now we prove that the existence of an approximate Hermitian-Einstein structure implies the
semistability of (£,¢). Let s be a #-invariant holomorphic section of a reflexive Higgs sheaf
(G,0) on a compact Kiahler manifold (M,w), i.e. there exists a holomorphic 1-form n on M\ Xg
such that 6(s) = n ® s, where Xg is the singularity set of G. Given a Hermitian metric H on
G, by computing, we have

V—=1A,(s,—[0,60"7]s) i
= — V1A (05,0 sV g — V/—1A,(05,08) i

* * s * * S
== V=IAL0 s — (0 s, s)p—5, 0" s — (0" s, 8) 5 )
B |s|%r (4.51)
VAN 5, 8 g (07, 8 b — VA (95, 65) 1

|s|3; Is|%r

S
=105 — (075, 8)n—5[Fr0 > 0,

[s[7

where we have used 6(s) = n®s in the third equality. Then, we have the following Weitzenbock
formula

L Aulsly = VTN
= |D%s[} 0+ V=TAu(s, Fus)m
— D813 — (5, V=T Frgs)r — V—TA,(s,[0,0""]s)
> |D}1;Os|§£w — (s, V=1A,Fuos)n

(4.52)

on M \ Eg.
We suppose that the reflexive Higgs sheaf (G, #) admits an approximate admissible Hermitian-

Einstein structure, i.e. for every positive d, there is an admissible Hermitian metric Hs such
that

sup |\/ —lAwFH&e — )\(g)ldh{é (I) < 6. (4.53)
zEM\Xg

If deg,, G is negative, i.e. A(G) < 0, by choosing § small enough, we have
Aulslir, = 21Dy sl .0 — AG)IslH, (4.54)

on M\ ¥g. Since every Hy is admissible, by Theorem 2 in [6], we know that |s|mg, € L™°(M).
Then, the inequality (@54]) can be extended globally to the compact manifold M. So, we must
have

s=0. (4.55)
Assume that (£, ¢) admits an approximate Hermitian-Einstein structure and F is a saturated
Higgs subsheaf of (£, ¢) with rank p. Let G = APE @ det(F)~ !, and 6 be a Higgs filed naturally

induced on G by the Higgs field ¢. One can check that (G,6) is also a reflexive Higgs sheaf
which admits an approximate Hermitian-Einstein structure with constant

AG) = 2T S(01(8) = (). (4.56)

= Vol(M,w
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The inclusion F < £ induces a morphism det(F) — APE which can be seen as a nontrivial
f-invariant holomorphic section of G. From above, we have A\(G) > 0, so the reflexive sheaf
(€, ¢) is w-semistable. This completes the proof of Theorem [Tl

O

5. LIMIT OF w.-HERMITIAN-EINSTEIN METRICS

Assume that the reflexive Higgs sheaf (€, ¢) is w-stable. It is well known that the pulling back
Higgs bundle (F, ¢) is we-stable for sufficiently small e. By Simpson’s result ([32]), there exists
an we-Hermitian-Einstein metric H, for every sufficiently small e. In this section, we prove that,
by choosing a subsequence and rescaling it, He converges to an w-Hermitian-Einstein metric H
in local C"*°-topology outside the exceptional divisor 3. }

As above, let H be a fixed smooth Hermitian metric on the bundle E over M. By taking a
constant on H., we can suppose that

A W ~ wh
trSe—= = log det(h.)—< = 0. 5.1
s = [ togden(ho (1)
where exp(S.) = he = H1H..

Let H,(t) be the long time solutions of the heat flow (L.I0) on the Higgs bundle (E, ¢) with

the fixed initial metric H and with respect to the Kéhler metric w.. We set:
exp(Se(t)) = he(t) = H(t) ' H,. (5.2)

By [2I3), (5.I) and noting that exp(Se) = exp(Se(t)) exp(Se(t)), we have

/M tr Sé(t)ﬁ = /M log det(he(t))—= =0 (5.3)

n!

for all t > 0. We first give a uniform L' estimate of 5'6.
Lemma 5.1. There exists a constant C' which is independent of €, such that
N ~ w? N
1Sell s sttty = /M bl g < € (5.4)
forall0 <e<1.

Proof. We prove (.4) by contradiction. If not, there exists a subsequence ¢; — 0 such
that

Zlirgo ||S’€1 ”Ll(M,wéi,H) — 0Q. (5.5)
By (2.26)), (227) and (£I5), we also have
11_1530 [|Se, (t)||L1(1\?[,wei,H€i(t)) — 09, (5.6)

for allt > 0. By (@A), the uniform lower bound of Green functions G. (Z11]) and the inequalities

@24l), we have
||S€(1)||L°°(M,H€(l)) < Ol||S€(1)||L1(M,we,H€(1)) + Co, (5.7)

where C; and Cy are uniform constants independent of ¢ and ¢t. Using the inequality (£15)
again, we have

||ge(t)||Loo(M,He(t)) < T2Cl(||g5(t)||L1(M,we7H€(t)) + ||S€(t, l)HLl(M,we,He(l)))

\ (5.8)
A 7[1Se(t, Dll oo (.11, 1) + 7Co
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for all t > 0. R ~
Set 14(t) = 18, (01 iy See(0)s then [0 s 41,0, 1, ) = 1o By (63) and (G35,

we have [ trui(t)% = 0 and [|Gi(t)|| oo (7,1 1)) < C(1). Since He(t) — H(t) locally in
C*-topology and w, are locally uniform bounded outside ¥, by the Lemma 5.4 in [32], we
can show that, by choosing a subsequence which we also denote by ;(t), we have @;(t) —

a(t) weakly in L2, (M \ ,w, H(t)), where the limit @(t) satisfies: 1@ v 0,1 = 1o

1,loc

Jins tr(@(8)2r = 0. By (B8), we have

Na(E) oo 37\ 0,11 (1)) < rCh. (5.9)

Furthermore, if T : R x R — R is a positive smooth function such that T (A1, A2) < (A1 —Ag)~*
whenever A1 > Ao, then

_ _ w™

[ e @OV i) + (X0 @ot6) Do) 0 oy
M\E n (5.10)
<0.

Since M \ ¥ is biholomorphic to M \ ¥, and £ is locally free on M \ X, @(t) can be seen as
an L? section of End(€). By the same argument as that in section 4 (the proof of {40)), we
can show that, by choosing a subsequence ¢ — 0, we have (t) — iy weakly in local L?, where
1 satisfies

_ o w" _ . .
/M tr (UO)H =0, ||U0||L1(M\2,w,ﬁ) =1, ||u(t)||L°°(M\E,ﬁ) <7r2Ch. (5.11)
and
_ A <N s W
/ \ tr (GoV—1AuFy 4) + (T (t0)(9elo), 8¢u0>ﬁm <0. (5.12)
M\Z :

Now, by Simpson’s trick (P888 in [32]), we can construct a saturated Higgs subsheaf F of
(&, ¢) with py,(F) > pw(E), which contradicts with the stability of (€, ¢).
a

Proof of Theorem Since ||S’€||L1(M,WS,M) are uniformly bounded, by ([2.26), (Z27) and
([@I3), there also exists a uniform constant C'3 such that
||§6(1)||L1(M,w€,H€(l)) < CS- (5.13)

By (&), we have
||gé(1)||Loo(1\}[7Hé(1)) <105+ Cy (5.14)

for all 0 < € < 1. By the local estimate (Z29) in Lemma[2:3] we see that there exists a constant
Co(671) independent of € such that

|Sel () < Co(671) (5.15)

for all z € M\ By, (6) and all 0 < € < 1. Since H, satisfies the w.-Hermitian-Einstein equation
(T4, by the same argument as that in Lemmas 2.4] and in section 2, we have uniform
higher-order estimates for h,, i.e. there exist constants Cj(§~!) independent of €, such that

||iLe||ck+1,a,1\2r\Bw1 (26) < ék+1 (5_1) (5.16)
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for all £ > 0 and all 0 < ¢ < 1. So by choosing a subsequence, we have H. converges to a
Hermitian metric H on M \ X in locally C*°-topology, and H satisfies the Hermitian-Einstein
equation, i.e.
V=1, (Fy + [¢,¢"7]) = Alde. (5.17)
By (6.14), we see that the metrics H(1) and H are mutually bounded each other on &[5
On the other hand, we have shown that |@|g(1). € L°(M) in section 3, then [¢|x,., also
belongs to L*°(M). This implies that |A,(Fg)|g is uniform bounded on M \ ¥. By @30), it
is easy to see that |F|m,, is square integrable. So we know that the metric H is an admissible
Hermitian-Einstein metric on the Higgs sheaf (£, ¢). This completes the proof of Theorem
O
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