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Abstract

In machine learning it is common to interpret each data
point as a vector in Euclidean space. However the data
may actually be functional i.e. each data point is a func-
tion of some variable such as time and the function is dis-
cretely sampled. The naive treatment of functional data as
traditional multivariate data can lead to poor performance
since the algorithms are ignoring the correlation in the cur-
vature of each function. In this paper we propose a method
to analyse subspace structure of the functional data by us-
ing the state of the art Low-Rank Representation (LRR).
Experimental evaluation on synthetic and real data reveals
that this method massively outperforms conventional LRR
in tasks concerning functional data.

1. Introduction

In machine learning it is common to interpret each data
point as a vector in Euclidean space [3]. Such a discretisa-
tion is chosen because it allows for easy closed form solu-
tions and fast computation, even with large datasets. How-
ever these methods ignore the fact that the data may not
naturally fit into this assumption. In fact much of the data
collected for practical machine learning are actually func-
tions i.e. curves. For example financial data such as stock
or commodity prices are functions of monetary value over
time. Functional data have become increasingly impor-
tant in many scientific and engineering research areas such
as ECG (electrocardiogram) or EEG (Electroencephalogra-
phy) in healthcare, biology data analysis, weather or climate
data and motion trajectories from computer vision.

Analyzing functional data has been an emerging topic in
statistical research [7, 13, 20, 21] and has attracted great at-
tention from machine learning community in recent years
[2, 15]. One of important challenges in analyzing func-
tional data for machine learning is to efficiently cluster and
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to learn better representations for functional data. Theoreti-
cally the underlying process for functional data is of infinite
dimension, thus it is difficult to work with them with only fi-
nite samples available. A desired model for functional data
is expected to properly and parsimoniously characterize the
nature and variability hidden in the data. The classic func-
tional principal component analysis (fPCA) [17] is one of
such examples to discover dominant modes of variation in
the data. However fPCA may fail to capture patterns if the
functional data are not well aligned in its domain. For time
series, a special type of functional data, dynamic time warp-
ing (DTW) has long been proposed to compare time series
based on shape and distortions (e.g., shifting and stretching)
along the temporal axis [16, 24].

Another important type of functional data is shape [23,

]. Shape is an important characterizing feature for ob-
jects and in computer vision shape has been widely used
for the purpose of object detection, tracking, classification,
and recognition. In fact, a natural and popular representa-
tion for shape analysis is to parametrize boundaries of pla-
nar objects as 2D curves. In object recognition, images of
the same object should be similar regardless of resolution,
lighting, or orientation. Hence an efficient shape represen-
tation or shape analysis scheme must be invariant to scale,
translation and rotation. A very useful shape representa-
tion is the square-root velocity function (SRVF) represen-
tation [9, 20]. In general, the resulting SRVF of a con-
tinuous shape is square integrable, a well-defined Hilbert
space where appropriate measurement can be applied, refer
to Section 2 for more details. By acknowledging the true
nature of the data we can develop more powerful methods
that exploit features that would otherwise be ignored or lead
to erroneous results with simple linear models.

Our intention in this study is to consider functional data
clustering by accounting for the possible invariance in scal-
ing/stretching, translation and rotation of functional data to
help maintain shape characteristics. The focus of this paper
is upon functional data where data sets consist of continu-



ous real curves including shapes in Euclidean spaces. More
specifically we propose a method of subspace analysis for
functional data based on the idea developed in recent sub-
space clustering. The idea is to apply a feature mapping
such as the aforementioned SRVF to the curves so that they
are transformed onto the curve manifold, where the sub-
space analysis can be conducted based on the geometry on
the manifold. In particular, we adapt the well known low-
rank representation (LRR) framework [12] to deal with data
that lie on the manifold of open curves by implementing the
classical LRR in tangent spaces of the manifold [8, 25, 29].

LRR on Euclidean spaces [12] is closely related to
several state-of-the-art subspace analysis approaches such
as Sparse Subspace Clustering (SSC) [6], Robust PCA
(RPCA) [5] and low-rank Matrix Completion (MC) [28]
methods. This mixture of subspaces model has naturally
led to the development of subspace segmentation methods.
Such methods aim to segment the data into clusters with
each cluster corresponding to a unique subspace. More for-
mally, given a data matrix of observed column-wise data
samples A = [a;,as,...,an] € RP*Y | the objective of
subspace clustering is to assign each data sample to its un-
derlying subspace. The basic assumption is that the data
within A is drawn from a union of ¢ subspaces {.S;}{_; of
dimensions {d;}$_,.

The core of both SSC and LRR is to learn an affinity
matrix for the given dataset and the learned affinity matrix
will be pipelined to a spectral clustering method like nCUT
[19] to obtain the final subspace labels. To learn the affinity
matrix, SSC relies on the self expressive property [0], which
is that

each data point in a union of subspaces can be
efficiently reconstructed by a linear combination
of other points in the data.

In other words, each point can be written as a linear combi-
nation of the other points i.e. A = AZ, where Z ¢ RV*V
is a matrix of coefficients. Most methods however assume
the data generation model X = A + N, where X is the ob-
served data and NN is noise. Since it is difficult to sepa-
rate the noise from the data the solution is to relax the self-
expressive model to X = XZ + E, where E is a fitting er-
ror and is different from IN.

Similarly LRR [12] exploits the self expressive prop-
erty but attempts to learn the global subspace structure by
computing the lowest-rank representation of the set of data
points. In other words, data points belonging to the same
subspace should have similar coefficient patterns. In the
presence of noise LRR attempts to minimise the following
objective

1
I%llél §||E||/ +rank(Z), st. X=XZ+E. (1)

However rank minimisation is an intractable problem.
Therefore LRR actually uses the nuclear norm || - || (sum of
the matrix’s singular values) as the closest convex relation

1
min —||E|l; + ||Z|l., st X=XZ+E, (2)
ZE 2

where || - ||¢ is a placeholder for the norm most appropri-
ate to the expected noise type. For example in the case of
Gaussian noise the best choice is the ¢, norm i.e. || - [|% and
for sparse noise the 1 norm should be used.

Both SSC and LRR rely on the linear self expressive
property. This property is no longer available in the nonlin-
ear manifold, e.g. the manifold of open curves as mentioned
previously. To generalize LRR or SSC for data in the man-
ifold space, we explicitly explore the underlying nonlinear
data structure and utilize the techniques of exponential and
logarithm mappings to bring data to a local linear space.

The rest of the paper is organized as follows. In Section
2, we review the preliminaries about the manifold of open
curves and introduce the curve Low-Rank Representation
(cLRR) model. Section 3 is dedicated to explaining an ef-
ficient algorithm for solving the optimization proposed in
cLRR based on the linearized alternative direction method
with adaptive penalty (LADMAP) and the algorithm con-
vergence and complexity are also analyzed. In Section
4, the proposed model is assessed on both synthetic and
real world databases against several state-of-the-art meth-
ods. Finally, conclusions are discussed in Section 5.

2. LRR over the Curve Manifold

As previously discussed LRR is limited to a linear model
and its current version can only be applied to vector data
from a Euclidean space. Matrix Z in (1) or (2) encodes
the affinity/similarity between data points. However this
assumption is often unnatural and quite limiting. Much of
the data encountered in real world is functional. In other
words it exhibits a curve like structure over a domain. Eu-
clidean linear models are unable to capture the nonlinear
invariance embedded in each data point. For example in
thermal infra-red data of geological substances a curve may
contain a key identifying feature such as a dip near a par-
ticular frequency. This dip may shift or vary position over
time even for the same substance due to impurities. Under
a linear vector model this variation may cause the vector to
drastically move in the ambient Euclidean space and cause
poor results. Or in other cases the feature may be elon-
gated, shrunk or be subject to some non-uniformly warping
or scaling. In all these cases the linear model will fail to
accurately represent the non-linear affinity in the data.

Exploring these unique non-linear invariance in func-
tional data is the focus of this paper. We now discuss how to
adapt LRR (similar approach appliable to SSC) such that it



easily accepts curve data and nonlinear relationships within
clusters can be easily discovered.

2.1. The Curve Manifold

Given a smooth parameterized n-dimension curve [ :

D = [0,1] — R™, we represent it using he square-root
velocity function (SRVF) representation [9, 20], which is
given by
Bt
q(t) = &)

JIBoI

The SRVF mapping transforms the original curve 3(t) into
a gradient based representation, which facilitates the com-
paring of the shape information.

In this paper, we focus on the set of open curves, e.g.
the curves do not form a loop (3(0) # £(1)). For handling
general curves, we refer readers to [20]. The SRVF facil-
itates a measure and geometry bearing invariance to scal-
ing, shifting and reparameterization in the curves domain.
For example, all the translated curves from a curve [3(t)
will have the same SRVF. Robinson [ 18] proved that if the
curve 3(t) is absolutely continuous, then its SRVF ¢(t) is
square-integrable, i.e., ¢(t) is in a functional Hilbert space
L?(D,R™) . Conversely for each ¢(t) € L?(D,R"), there
exists a curve 3(t) whose SRVF corresponds to ¢(t). Thus
the set L?(D, R") is a well-defined representation space of
all the curves. The most important advantage offered by
the SRVF framework is that the natural and widely used
L?-measure on L?(D,R™) is invariant to the reparameter-
ization. That is, for any two SRVFs ¢; and ¢2 and a ran-
domly chosen reparametrization function (non-decreasing)
t = (), we have

lq1(t) = q2(t) > = llg1(v(7)) — q2(v(7))| 2"

This property has been exploited in [2] for functional
data clustering under the subspace clustering framework.
Different from the work proposed in [2], we will adopt
the newly developed LRR on manifolds framework to the
model of curves LRR, see [8, 25, 29]. To see this, we in-
troduce some more notation. Let I' be the set of all diffeo-
morphisms from D = [0,1] to D = [0,1]. This set col-
lects all the reparametrization mappings. I is a Lie group
with the composition as the group operation and the iden-
tity mapping as the identity element. Then all the orbits
[q] = {goy = q(v(t)) | Vy € T} together define the
quotient manifold L?(D,R")/T.

Without loss of generali}y, all curves are normalized to
have unit length, i.e., [, [|3(t)|dt = 1. The SRVFs associ-
ated with these curves are elements of a unit hypersphere
in the Hilbert space L?(D,R™), ie., [, [lq(t)|?dt = 1.
Therefore, under the curve normalization assumption, in-

stead of L2(D,R™), we consider the following unit hyper-
sphere manifold

e = {ae 20 [ aoPar=1}.

The manifold C° has some nice properties, see [1]. For
any two points ¢ and ¢; in C°, a geodesic connecting them
is given by a : [0,1] — C°,

afr) = (sin(0(1 — 7))qo + sin(07)q1),  (3)

sin(6)

where 6 = cos™({qo, q1)) is the length of the geodesic. If
we take derivative of o w.r.t to ¢y, the tangent vector at g
is

0
sin(6)

v = [a1 — (g0, q1)q0]- “)

The above formula is regarded as the Logarithm mapping
log,, (1) on the manifold C°.

As we are concerned with the shape invariance, i.e., we
need to additionally remove the shape-preserving transfor-
mations: rotation and curve reparametrization. The man-
ifold concerning us is the quotient space of the manifold
8° =C°/(SO(n) xT), where SO(n) is the rotation group.
Each element [g] € S° is an equivalent class defined by

lq] = {Oq(v(t))\/ﬁ(t) | O € SO(n)andy € F} .

Given any two points [go] and [¢1] in §°, a tangent repre-
sentative [ 1] in the tangent space T},,1(S°) can be calculated
in the following way, as suggested in [3 1, 22] based on (4),

0 -
—[q1 — (90, ¢1)q0)- ()

sin(#)

where ¢; is the representative of [¢1] given by the well-

v = log,, (q1) =

defined algorithm in [31, 22] and 6 = cos™'({qo, q1)). In
fact, v is the lifting representation of abstract tangent vector

logjg,] ([q1]) on Tjg1(S°) at g1.
2.2. The Proposed Curve LRR

Given a set of N unit-length curves {81 (t), ..., Bn(t)},
denote their SRVFs by {q1(t), ...,qn(t)} such that [¢;] €
&8¢ and ¢;(t) is a representative of the equivalent class [g;].
We cannot apply the standard LRR model (2) directly on
the quotient manifold §°. This is because (2) indeed relies
on the following individual linear combination

N
Xi =Y ziX; +e;, (6)
i=1



which is invalid for [g;]’s on S°. Note that z;; can be ex-
plained as the affinity or similarity between data points x;
and x;.

On any manifold, the tangent space at a given point is lin-
early local approximation to the manifold around the point
and the linear combination is valid in the tangent space.
This prompts us to replace the affinity relation in (6) by the
following

N

logpg, (la:]) = sz‘j logq.1(lg;]) + ei (N
j=1

with the constraint Z;V=1 wy; = 1,4 = 1,2,...,N to
maintain consistency at different locations. The meaning of
w;; in (7) is the similarity between curves §;(t) and §;(t)
via the “affinity” between tangent vectors log, 1([g;]) and
logy,,1([g5]) at the first order approximation accuracy. Each
log,,1([g;]) can be calculated by (5) and it is obvious that
logg,1([¢:]) = 0 for any 1.

With all the ingredients at hand, we are fully equipped to
propose the curve LRR (cLRR) model as follows

N N
. 1
min AWl + > 5| > wijlogiy ([43)117,,;
i=1 j=1

N ®)
sty wi=1i=12,...,N.
j=1

where || - |4 is the metric defined on the manifold, which
is defined by the classic L? Hilbert metric on the tangent
space.

Denote w; the i-th row of matrix W and define

B}, = (logg,1([g5]): logg,1 (lak]))- )]
Then with some algebraic manipulation we can re-write the
model (8) into the following simplified form,
N
H‘lnlln)\”WH* + ZWZB w;

i=1

N (10)
sty wij=1i=12..N.
j=1

where B’ = (B},).

Effectively this objective allows for similarity between
curves to be measured in their tangent spaces. Our highly
accurate segmentation results in Section 4 have demon-
strated that this is an effective way to learn non-linear simi-
larity.

3. Optimisation

3.1. Algorithm

To solve the cLRR objective we use the Linearized
Alternative Direction Method with Adaptive Penalty

(LADMAP) [10, 11]. First take the Augmented Lagrangian
of the objective (10)

N
1 )
L=\|W]|, + 3 § w;B'w! + (y, W1 —-1)
i=1 (11

B
+ §HWl -1

where y is the Lagrangian multiplier (vector) correspond-
ing to the equality constraint W1 = 1, || - || ¢ is the matrix
Frobebius-norm, and we will update 5 as well in the itera-
tive algorithm to be introduced.

Denote by F'(W) the function defined by (11) except for
the first term A||W/||... To solve (11), we adopt a lineariza-
tion of F(W) at the current location W (¥) in the iteration
process, that is, we approximate F'(W) by the following
linearization with a proximal term

F(W) ~F(W®) + (aF(W®) W — W)

nw Bk
2

where 7y is an approximate constant with a suggested
value given by ny = max{||B;|>}+N+1,and OF (W*))
is a gradient matrix of (W) at W(¥), Denote by B the 3-
order tensor whose i-th front slice is given by B?. Let us
define W ©® B the matrix whose i-row is given by w;B?,
then it is easy to show

+ W — W® 3,

OF(W®) =W o B +y1” + g,(W1 -1)17. (12)

Then (11) can be approximated by linearization and w
will be updated by the following

WD = argmin AW -
) 2

LTS [ <W(k) - 8F(W(k)))
5 nw Bk F

Problem (13) admits a closed form solution by using
SVD thresholding operator [4], given by

W(k+1):UWS#(EW)VVII“/v (14)

nw B

where Uy Xy V4] is the SVD of W) — nwlﬁ OF (W k)

k

and S (-) is the Singular Value Thresholding (SVT) [4, 14]
operator defined by

S-(¥) = diag(max{|X;;| — 7,0}). (15)
The updating rule for y
y ") = y®) 4 g (Wk1 - 1) (16)

and the updating rule for S

ﬂk-‘rl = min{ﬂmaxa pﬁk}v a7
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Figure 1: Example plots of curves generated in the Synthetic Data Experiment. Each cluster has a base sine curve (the left
most blue curve) which is progressively warped with each successive instantiation.

Algorithm 1 Solving (10) by LADMAP

Require: {X;}V ., A
1: Initialise: W = 0,y = 0, 8 = 0.1, Bmax = 10, pO =
1.1,n =max{||BY||r} + N+1,e; = le % e = le7?
2: Construct each B? as per (9)
3: while not converged do
4:  Update W using (14)
5:  Check convergence criteria
5(k)||w(k+l) _ W(k)HF <e
[W1-1[p <e

6:  Update Lagrangian Multiplier
y(k+1) =y* 4 ,B(k)(Wl _ 1)T
7. Update p
_ {po if R [WED — WE||p < ¢
1 otherwise,
8:  Update g

/8<k+1) = min(ﬁmax; Pﬁ(k))

9: end while
10: return W

where

_ {Po Bl WL - WH <&,

1  otherwise.

We summarize the above as Algorithm 1. Once the coef-

ficient matrix W is found, a spectral clustering like nCUT

W+ W|T
2

[19] is applied on the affinity matrix to obtain

the segmentation of the data.

3.2. Complexity Analysis

For ease of analysis, we firstly define some symbols used
in the following. Let K and r denote the total number of it-
erations and the lowest rank of the matrix W, respectively.
The size of W is N x N. The major computation cost
of our proposed method contains two parts, calculating all
B*’s and updating W. In terms of the formula (9) through
(4) and (5), the computational complexity of Log algorithm
is O(T?) where T is the number of terms in a discretized
curves; therefore, the complexity of B; . is at most O(T?)
and B¥’s computational complexity is O(N2T?). Thus the
total for all the B is O(N3). In each iteration of the Algo-
rithm, the singular value thresholding is adopted to update
the low rank matrix W whose complexity is O(rN?) [12].
Suppose the algorithm is terminated after K iterations, the
overall computational complexity is given by

O(N?) + O(KrN?)
3.3. Convergence Analysis

Algorithm 1 is adopted from the algorithm proposed
in [11]. However due to the terms of B?’s in the objec-
tive function (11), the convergence theorem proved in [11]
cannot be directly applied to this case as the linearization is
implemented on both the augmented Lagrangian terms and
the term involving B%’s. Fortunately we can employ the
revised approach, presented in [30], to prove the conver-
gence for the algorithm. Without repeating all the details,
we present the convergence theorem for Algorithm 1 as fol-
lows.

Theorem 1 (Convergence of Algorithm 1) [f

+oo
o > max{|Bi|*} + N + 1L > B = +o
k=1
> I Bil? .
Br+1 — Br > Co . , where Cy is a
' mw — max{[[ B[} - N
given constant and || - || is the matrix spectral norm, then



the sequence {W*} generated by Algorithm | converges to
an optimal solution to problem (10).

In all the experiments we have conducted, the algorithm
converges very fast with K < 100.

4. Experiments

In this section we show three sets of experiments to eval-
uate the newly proposed cLRR. The performance of the pro-
posed method is compared with the same type of subspace
clustering algorithm LRR [12]. To compare segmentation
accuracy we use the subspace clustering accuracy (SCA)
metric [6], which is defined as

SCA =1 — num. of misclassified points

18
total num. of points (18)

Therefore a higher SCA % means greater clustering accu-
racy.

The parameters used were fixed across all experiments
with A for LRR set at 1 and 0.1 for cLRR. A wide range
of parameters were tested for each algorithm. Overall we
found that the segmentation accuracy of LRR did not vary
that much with changes in \.

4.1. Synthetic Data

(a) LRR

(b) Curve LRR

Figure 2: The segmentation results from the data in Figure
1.

Mean Median Min Max
LRR 80.4% 83.33% 60% 91.67%
CurveLRR  96.77% 98.33% 73.33% 100%

Table 1: Synthetic Results

To evaluate and confirm the effectiveness of the curve
LRR method we first perform experimental evaluation us-
ing synthetic data. In this test three clusters were created
consisting of twenty 1-D curves of length 100. The curves
in each cluster were sine waves, with each cluster corre-
sponding to a unique frequency. Within each cluster pro-
gressive amounts of warping were applied. See Figure 1 for

an example of data from three syntheticly generated clus-
ters. Clustering was then performed on the data by ap-
plying curve LRR and segmenting the affinity matrix with
nCUT. This experiment was repeated 50 times with new
data generated each time to obtain basic statistics. We com-
pare against the baseline: LRR. Results are reported using
subspace clustering accuracy and can be found in Table 1.
Overall in this experiment Curve LRR outperforms conven-
tional LRR by a significant margin.

4.2. Semi-synthetic TIR Data

We assemble synthetic data from a library of pure in-
frared hyper spectral mineral data. For each cluster we pick
one spectra sample from the library as a basis. Each curve
basis is then randomly shifted and stretched in a random
portion. This random warping is performed 20 times to
produce the curves for each cluster. See Figure 3 for an
example of data used in this experiment. In this experiment
we used three clusters. Again as in the previous experiment
we repeated the test 50 times. Results are reported in Table
2 and Figure 4.

The results show that LRR cannot accurately cluster data
with this sort of nonlinear invariance, which is commonly
found in this type of data due to impurities in the mineral
samples. On the other hand cLRR perfectly clustered the
data.

10 20 30 40 50 )

(a) LRR

(b) Curve LRR

Figure 4: The segmentation results from the data in Figure
3.

Mean  Median Min Max
LRR 60.13% 60% 50% 71.67%
CurveLRR  100% 100% 100% 100%

Table 2: Semi-Synthetic TIR Results

4.3. Character Classification

In this experiment a collection of handwritten English
characters were used to evaluate performance on a real
world data set. The dataset consists of pen position data col-
lected by a digitisation tablet at 200Hz, which is then con-
verted to horizontal and vertical velocities [27, 26]. These



(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Base Curves

Figure 3: Example plots of curves used in the Semi-synthetic TIR Data Experiment. Each cluster has a base curve from the
TIR library. The curves for each cluster have been shifted and stretched randomly from the base.
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Figure 5: Example data from the character classification dataset. The top row plots the x and y pen tip velocities over time
for three sample characters. The bottom row shows the corresponding character reconstruction by integrating the pen tip

velocity data (for visualisation only).

2-D trajectory curves are normalised such that the mean of
each curve is close to zero. See Figure 5 for some examples
of this data. Figure 6 shows the example plots of curves
used in the character classification experiment.

To evaluate performance twenty characters were ran-
domly selected from three character classes. The data as
originally released has been carefully produced and pro-
cessed so that trajectories for each characters are extremely
similar. Far more so than is realistic. For example the start
time for each character has been aligned furthermore the
writing speed, character size and variance in velocity over
time is extremely consistent. Therefore to make the data
more realistic we randomly globally shift each character so
that their start times vary. Furthermore we randomly glob-

ally stretch and shrink each trajectory to account for differ-
ent writing speeds, we also scale the trajectories by applying
constant factors to account for character size and we lastly
perform local warping (as done in the semi-synthetic exper-
iment) to account for variance in speed over time.

Since the data consists of multidimensional curves the X
and Y trajectory curves were concatenated to form data us-
able for conventional LRR since it can only handle vectors.
Results can be found in Table 3 and Figure 7. Once again,
the cLRR clearly outperforms LRR in all metrics. Further-
more cLRR shows excellent performance with a median ac-
curacy of over 90% on an extremely challenging dataset.
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Figure 6: Example plots of curves used in the Character Classification Experiment. Each cluster consists of randomly selected
characters from each class that are then subject to a combination of shifting, warping, stretching or shrinking and scaling.
The top row shows the curves from the pen tip velocity in the X direction over time and the bottom row shows the same but

for the Y direction.
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(a) LRR

(b) Curve LRR

Figure 7: The segmentation results from the data in Figure
6.

Mean Median Min Max
LRR 52.33% 51.67% 43.33% 63.33%
CurveLRR 86.33% 91.67% 70 % 100 %

Table 3: Character Classification Results

5. Conclusion

In this paper, we extended the conventional LRR model
on Euclidean space to a new LRR model for the manifold
of open curves. The new LRR formulation is based on the
tangent space approximation to the manifold so that the
classic data self expressive can be well preserved for the

manifold of curves at relevant high accuracy. The resulting
optimization problem can be solved using the LADMAP
technique and algorithm convergence and complexity were
presented. Finally we tested the new model by conduct-
ing experiments on synthetic, semi-synthetic and real world
data, and the experimental results show the outstanding per-
formance against the conventional LRR. Our next work is
further extended the LRR model to the manifold of general
closed curves.
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