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Abstract

In this report, we present the theory on aerodynamics of quadrotors using the well established momentum and
blade element theories. From a robotics perspective, the theoretical development of the models for thrust and
horizontal forces and torque (therefore power) are carried out in the body fixed frame of the quadrotor. Using
momentum theory, we propose and model the existence of a horizontal force along with its associated power.
Given the limitations associated with momentum theory and the inadequacy of the theory to account for the
different powers represented in a proposed bond graph lead to the use of blade element theory. Using this theory,
models are then developed for the different quadrotor rotor geometries and aerodynamic properties including
the optimum hovering rotor used on the majority of quadrotors. Though this rotor is proven to be the most
optimum rotor, we show that geometric variations are necessary for manufacturing of the blades. The geometric
variations are also dictated by a desired thrust to horizontal force ratio which is based on the available motor
torque (hence power) and desired flight envelope of the vehicle. The detailed aerodynamic models obtained using
blade element theory for different geometric configurations and aerodynamic properties of the aerofoil sections
are then converted to lumped parameter models that can be used for robotic applications. These applications
include but not limited to body fixed frame velocity estimation and individual rotor thrust regulation [1, 2].

1 Introduction

In recent years, there has been an increased interest within the robotics community in understanding the aerody-
namics of quadrotors to enhance modelling and control of such platforms. The only available references are those
written for helicopters by aerodynamicists. Some of these references include [6, 9, 17, 21] and contain theories
developed for aerodynamicists and helicopter performance analysts. From a robotic point of view, many of the
parameters in the theories are immeasurable and therefore not available for control purposes. Hence the arguments
in the report are driven by robotic and not aerodynamic arguments. In addition, the non-linear scaling of the
forces and their effects and mechanisms (e.g. Bell-Hiller system), blade geometries and disc loading are different
between quadrotors and full-sized helicopters. Quadrotors are designed based on simplicity, ease of maintenance
and cost. For these reasons, the majority of quadrotors have fixed pitched blades contrary to the variable pitch
and flapping hinges of the rotor blades typical of helicopters. An example of a helicopter rotor mechanism is
shown in Figure 1. In this report, we present the relevant aerodynamic models for quadrotors based on the well
established momentum and blade element theories developed primarily for helicopters. From these theories, we
extend our analysis to produce simplified or lumped aerodynamic models that can be used in robotic applications.
The quadrotor used in the analysis is that used in [5] which weighs 1.2kg and has 10in diameter propellers.

The report starts by describing the different frames of reference on quadrotors and their rotor blades. By
choosing the body fixed frame, Section 2 uses momentum theory to model thrust and horizontal force and torque.
By looking at a bond graph representation of power and axial flights, the limitations of momentum theory which
include its inability to model some of the vortex states and a distribution of the forces across the rotor implies
that another modelling technique has to be used. In Section 3 to 6, blade element theory is applied to individual
elements to produce models for the forces and torque for different blade geometries and aerodynamic properties
of the aerofoil sections used on quadrotors. In Section 3, the modelling framework for elemental forces and
torque is developed. With the assumption of constant chord and pitch, infinite aspect ratio (AR) and zero-lift
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Figure 1: A helicopter rotor mechanism with Bell-Hiller flybar and swash plates mechanism for controlling cyclic
and collective pitch.

angle of attack, which represent the simplest rotor blades used predominantly in the helicopter literature, lumped
parameter models for thrust, horizontal force and torque (hence power) are developed in Section 4. In Section 5,
the assumptions of zero-lift angle of attack aerofoil and infinite aspect ratio are removed and a more complicated
model is developed. In Section 6, ideal twist and chord are considered in developing models for the so-called ideal
rotors used on the majority of quadrotors. In the development of the models for the ideal rotor, we show that the
geometry is a design parameter that must be optimised with respect to the flight envelope of the quadrotor and
the mechanical properties of the material used in manufacturing the blades.

2 Momentum Theory of Rotors

In this section, we present the aerodynamics of the rotor blades on quadrotors using momentum theory. The
models for thrust, horizontal force and power are derived with the necessary assumptions contained in the theory.
Starting with frames of reference, we carry out detailed momentum theory analysis of quadrotor rotor blades. To
account for the fact that we are modelling in the body fixed frame of the quadrotor and not the rotor plane used in
helicopter literature, we propose the existence of a horizontal force with an associated required power. The section
concludes with a bond graph representation of the different powers and the limitations of momentum theory.

2.1 Frames of Reference

Consider Figure 2 which shows a quadrotor along with a rotor and the different planes and frames of reference.
We consider that there exists a fixed frame on the Earth’s surface termed inertial frame {A}. Attached to the
quadrotor which is assumed rigid is the body fixed frame {B}. If we let the relative velocity of {B} to {A} be
V ∈ {B} where V ∈ R3. If there is wind blowing at a velocity of W ∈ R3 relative to {A}, then the total air relative
velocity seen by the quadrotor is −W + V expressed in {B}. Throughout the report Ð→e 1,

Ð→e 2,
Ð→e 3 ∈ R3 are used to

denote unit vectors in x, y and z directions respectively.
Taking a closer look at the rotor shaft and rotor plane, the rotor shaft is always aligned with the Ð→e 3 axis of{B}. This implies that the hub reference frame and the body fixed frame {B} are equivalent. We define the rotor

reference frame {C} which has its Ð→e 3 aligned with that of {B} and the Ð→e 1,
Ð→e 2 directions in rotation at the speed

of the rotor ($) relative to {A}. In the sequel, the disposition of Ð→e 1 of {C} from that of {B} is referred to as the
azimuthal angle ψ. For the rotating rotor, a plane on its spinning tips is referred to as the tip path plane denoted{D} and is otherwise known as the axis of zero flapping. In addition, it is the plane on which an observer does
not see the conning or tilting of the rotor disc. It is a known phenomenon that as the spinning rotor translates, it
tilts sideways and backwards and forms a cone around the rotor hub (shown later in Figure 8) thus moving this
plane ({D}) above the rotor hub and putting it at an angle to the hub and therefore {B}. This phenomenon is
referred to as blade flapping and in the sequel will be modelled by the angle β. If the quadrotor has variable pitch
propellers such as helicopters, there is an additional plane known as the no-feathering plane {NFF} and is normal
to the plane of the swash plates. To minimise the effect of blade flapping, quadrotors are designed with most often
fixed pitch rotor blades that are very stiff and rigid. For consistency with current quadrotor dynamic models, the
analysis and theoretical developments will be carried out in the rotor hub frame which aligns with the quadrotor
body fixed frame {B}. It should be noted that derotating Ð→e 1,

Ð→e 2 of {C} gives the Ð→e 1,
Ð→e 2 of {B} through the
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Figure 2: A quadrotor and the different frames of reference. In addition to {A} and {B} defined for quadrotors,
the rotor and rotor hub also have additional frames of reference which include the rotor reference frame {C}, the
tip path plane {D} and the no-feathering plane NFF . These are also shown in the figure.

azimuthal angle (ψ) and the flapping angle (β) which depends on the rotor azimuthal position as such is denoted
by β(ψ). This is the approach taken in the blade element theory (Sections 3 to 6) in developing models for the
different forces, torque and power for the different rotor geometric and aerodynamic configurations. The frames{C} and {D} along with β(ψ) will also be explained and modelled in detail in the next sections.

Remark 1 We choose to model the thrust force T ∈ R in the Ð→e 3 direction of {B}. It is the component of force
along the rotor shaft/hub used in the quadrotor dynamic modelling literature [4, 5]. As the rotor translates, a force
perpendicular to T lying on the plane containing Ð→e 1,

Ð→e 2 in {B} is generated to oppose the motion. This force
we model by the so-called in-plane horizontal force (H ∈ R3). In common practice for slow moving quadrotors,
H⊺Ð→e 3 = 0. As the rotor translates, there is tilting of the tip path plane ({D}) from the rotor hub/shaft as a
result of blade flapping and this causes the misalignment of the tip path plane and the rotor shaft ({B}). This
creates one of the components of the H-force. In addition, there is an induced drag term associated with forward
motion. Blade flapping and induced drag have been lumped in the quadrotor literature and used to improve the
control performance of multirotor vehicles [13].

Remark 2 For helicopters, thrust is changed by using the feathering mechanism to change the blade pitch either
collectively or cyclically using a swash plate and the Bell-Hiller mechanism shown in Figure 1. For the majority
of small-scale electrically powered fixed pitch quadrotors, thrust changes are achieved by changing the speed of the
rotor using an electronic speed controller (ESC). This is because quadrotors have a low moment of inertia blades
relative to helicopters that make rotor speed changes easily achievable.

2.2 Introduction to Momentum Theory

Momentum theory for rotary wing vehicles was developed by Glauert based on earlier work by Froude for aircraft
propellers. It is one of the two most popular theories for propeller analysis. Its simplistic approach has made it
the starting point for modelling aerodynamic forces on rotors. The theory considers a rotor as an actuator disc
with the accelerating air forming a streamtube. The control volume shown in Figure 3 shows this streamtube. As
the air is sucked and accelerated by the rotor as it goes through it, it generates a virtual induced airflow with
velocity vi ∈ R3 or vi = (vix, viy, viz)⊺. Glauert made several assumptions which are stated in Assumption 2.1.

Assumption 2.1 These assumptions include

• The rotor disc has an infinite number of rotor blades such that there is a uniform constant distribution of
aerodynamic forces over the rotor disc.
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• The rotor disc is an infinitely thin disc of area A which offers no resistance to air passing through it.

• The flow is irrotational and therefore no swirl is imparted to it.

• The air outside the streamtube remains undisturbed by the actuator disc.

It has been observed that the higher the disc loading, the more these assumptions hold. The disc loading (DL) is
defined as

DL = T
A
.

Noting the quadrotor considered in this report (and quadrotors in general) has a higher disc loading than the
majority of helicopters, indicates that momentum theory holds better for quadrotors than for helicopters.

Remark 3 As we are considering the entire rotor disc, the forces generated are in the rotor hub plane, i.e. {B},
and any effects resulting from blade flapping are not considered in the control volume but should be seen as a
validation of the existence of the proposed H-force. Details on blade flapping and its effects on the generated
forces and torque will be covered in detail in Section 3. It should be noted that blade flapping is responsible for the
misalignment of the rotor plane and the rotor hub shown in Figure 4.

2.3 Momentum Theory for z-Direction or Axial Motion

To develop the thrust and power models using momentum theory, consider the simplest of control volumes shown
in Figure 3 where the velocity of the vehicle is V = (0,0, Vz)⊺. It should be noted that in {B}, Vz > 0 indicates
that the vehicle is moving downwards based on our right hand coordinate system shown in Figure 2. For the rotor
in hover or undergoing purely axial motion, we make the following additional assumptions

Assumption 2.2 The flow through the rotor is one-dimensional, quasi-steady, incompressible, inviscid, and be-
haves as an ideal fluid and the radius of a plane perpendicular to the control volume at the rotor disc equals the
rotor radius.

From Froude’s theory, the airflow through the propeller disc is continuous and characterised by a constant speed
which at hover is the induced velocity denoted by vi. The propeller disc introduces a discontinuity in the pressure.
This discontinuity is denoted by ∆P and can also be thought of as the increment in the static pressure across the
disc. As shown in Figure 3, we consider also a virtual cylindrical surface of radius R0 > R containing the propeller
disc of radius R and displaced along the propeller spin axis. This surface will be employed only to compute the
amount of air flowing inside and outside the propeller disc. More specifically, let us denote as upstream plane the
disc of radius R0 and as downstream plane the disc of radius r2 < R which are located at the beginning and at the
end of the cylinder respectively. By assuming that they are infinitely far from the propeller disc implies that the
streamlines are parallel to the propeller spin axis. By applying momentum theory, the thrust force T (in the axial
direction i.e. Ð→e 3 of {B}) can be computed as the difference between the momentum of the flux going out and the
momentum of the flux coming into the streamtube i.e.

T = ṁ(V ∞
z − Vz) − ṁ(−Vz),= ṁV ∞
z , (1)

where ṁ is the mass flow rate which is defined as

ṁ = ρA∣V a∣,
and

V a = ⎛⎜⎝
0
0

viz − Vz
⎞⎟⎠ ,
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Figure 3: Vertical streamtube for hover and axial analysis. In the figure, there are three sections: upstream (0),
rotor disc (1) and downstream (2) to help with the analysis. The figure also shows the velocities at each of these
sections. Please note for ease of analysis, V ∞ is pointing downwards and therefore positive in {B}.

is the total air velocity at the rotor disc within the streamtube. The area of the streamtube is that of the rotor
disc given by A = πR2. The power supplied can then be computed as the product of the thrust and the local
velocity across the disc (i.e., viz − Vz in the direction of T along Ð→e 3) and is given by

PT = T (viz − Vz). (2)

This power is also the rate of kinetic power imparted into the air across the streamtube and is given by

PT = 1

2
ṁ(−Vz + V ∞

z )2 − 1

2
ṁ(Vz)2,

PT = 1

2
ṁ(V 2

z − 2VzV
∞
z + (V ∞

z )2) − 1

2
ṁ(Vz)2.

Hence,

PT = 1

2
ṁ ((V ∞

z )2 − 2VzV
∞
z ) . (3)

Substituting for T using (1) in the power equation (2), and comparing it to (3), we get

ṁV ∞
z V a = 1

2
ṁ ((V ∞

z )2 − 2VzV
∞
z ) .

This implies that

viz = 1

2
V ∞
z .

Thus substituting for ṁ and viz in (1), the aerodynamic thrust and power in the air for a given rotor in axial or
z-direction flight are given by

T = 2ρAviz(viz − Vz), (4)

PT = T (viz − Vz). (5)
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Figure 4: Rotor control volume for generalised motion. The figure shows the streamtube and generated forces, the
velocity of the rotor V and the resultant air velocity V a seen by the rotor along with the induced velocity at the
disc. Please note for ease of analysis, V ∞ is pointing downwards and therefore positive in {B}.

Remark 4 It is worth noting that at hover (Vz = 0), using (4) and (5), the known static relationship between
thrust T and power P holds and is given by

P = T
3
2√

2ρA
.

In designing helicopters, large rotor blades are used since for the generation of the same thrust, there is less power
required thus implying that helicopters have low disc loading. This equation can also be applied to the design of
heavy lifting quadrotors. However as will be shown later, larger and heavier blades are disadvantageous for fast and
agile quadrotor vehicles due to reduced transient performance of the rotor speed as a result of rotor mass moment
of inertia. Hence high performance quadrotors have rotor blades with higher disc loading than helicopters.

2.4 Momentum Theory for Generalised Motion

Consider now Figure 4 which shows a slightly tilted actuator disc to that of Figure 3. In this case, the rotor
experiences both translational and vertical airflow. As such the induced airflow now has all the components in
x, y, z. Figure 4 also shows a well known phenomenon of rotor blades, blade flapping which is responsible for the
coning and backwards tilting of rotor blades. Its net effect is to create/increase any force in the plane of Ð→e 1,

Ð→e 2

opposing the motion of the rotor. As a result of the coning and tilting, the Ð→e 3 direction of {B} and {D} are
misaligned. Hence the induced airflow (vi)⊺Ð→e 3 ∈ {D} now has components in the horizontal plane and vertical
direction of {B}. In the helicopter literature vih = (vix, viy,0)⊺ is ignored as it is relatively small compared to viz and
its existence is as a result of Vh and exists only in {B} and not in {D}. This is because they assume a completely
vertical flow and carry out their analysis in the tip path plane {D}. As shown previously in Section 2.3, for a
purely vertical flight, there is only viz. However, for a purely horizontal flight, there are viz and vix, v

i
y.

Remark 5 In the hub frame ({B}), the rotor experiences the resultant horizontal/planar velocity. This velocity
is represented by the subscript h. For example Vh = (Vx, Vy,0)⊺ ∈ {B} is seen as the resultant ∣Vh∣. Hence in the
sequel, derivations are for a 2-D flow. To minimise notational confusion, we use Vh, v

i
h,H to represent ∣Vh∣, ∣vih∣, ∣H ∣

respectively.

From Figure 4 and more obvious in Figure 5, it is quite clear that there is an additional force to T . This is the
force (H ∈ R3) in the plane of the rotor acting against the motion of the plane that is perpendicular to the rotor
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Figure 5: Rotor reference frame {C}.The figure shows the resolution of T into components parallel and perpen-
dicular to the airflow thus clearly showing the existence of H as it is required for steady state flight.

hub. This force exists as we are modelling in the rotor hub or {B} of the vehicle and not in {D} as in traditional
helicopter literature [6, 9, 21]. Before continuing with the analysis, we make the following assumption on the wind
velocity W .

Assumption 2.3 The wind velocity ∣W ∣ = 0.

It is however not tedious to incorporate the wind velocity W into the computations by setting the air velocity to(−Wx + Vx,−Wy + Vy,Wz − Vz)⊺.
We reapply the same analysis as the axial flight in Section 2.3 and carry out the analysis in the rotor hub or {B}.

It should be noted that because our Ð→e 3 is pointing downwards, we introduce a new variable V s = (Vx, Vy,−Vz)⊺
to represent the velocity at the farstream seen by the rotor. Starting with the application of momentum theory in
the direction of motion of air around the rotor hub or {B} by first considering the momentum of the fluid entering
and leaving the control volume and letting the forces be F = (Hx,Hy, T )⊺ with H⊺Ð→e 3 = 0 for slow moving vehicles,
then

F = ṁ(V ∞ + V s) − ṁ(V s).
Hence,

F = ṁV ∞.
Taking note of the Ð→e 3 of V ∈ {B} and by letting

V a = (vih + Vh
viz − Vz) ,

be the total velocity of the air at the rotor hub, the power to generate this force is

P = F ⊺V a. (6)

To determine the relationship between V ∞ and vi, it is worth noting that power is a scalar as such we can consider
it as a result of horizontal and vertical motion separately and sum them to get the total power. Consider first
the axial direction (Ð→e 3) which contains the thrust force T . Applying Newton’s second law or the conservation of
momentum at the farstream and downstream and along the rotor hub ({B}),

FÐ→e 3 = T = ṁ(V ∞
z + (−Vz)) − ṁ(−Vz),= ṁV ∞
z , (7)

and the power (PT ) for generating this thrust is

PT = T (viz − Vz). (8)
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Power is also the rate of kinetic power imparted into the air across the streamtube. This is given by

PT = 1

2
ṁ (V ∞

z − Vz)2 − 1

2
ṁ (−Vz)2 ,

PT = 1

2
ṁ(−2VzV

∞
z + (V ∞

z )2). (9)

Comparing (8) and (9) and substituting for T using (7), we get

ṁV ∞
z (viz − Vz) = 1

2
ṁ(−2VzV

∞
z + (V ∞

z )2).
Hence after expansion and cancellation of the V ∞

z terms as in Section 2.3, we get

viz = 1

2
V ∞
z .

Substituting for V ∞
z and ṁ = ρAV a in (7), we obtain

T = 2ρAviz ∣V a∣. (10)

The same relationship for the induced and downstream velocity components for the horizontal motion can be
obtained

vih = 1

2
V ∞
h .

Thus in a similar manner to T , the horizontal force H generated that is acting against the direction of motion of
the plane at the rotor hub and power in generating this force are given by

H = 2ρAvih∣V a∣,
and

Ph =H(vih + Vh),
respectively. The original generalised momentum theory equations which do not include the H force and vih though
were originally developed for vertical or axial flights as shown in Section 2.3 have not been theoretically verified.
There are however experimental evidence supporting the theory [21, pg. 51-52]. In the literature, the H force is
the drag force and it has been used in the estimation of the body fixed frame velocity of quadrotors [1, 2]. The
modified generalised momentum theory equations are presented in (11) to (14).

T = 2ρAviz ∣V a∣, (11)

H = 2ρAvih∣V a∣, (12)

P = T (viz − Vz) +H(vih + Vh), (13)

V a = (vih + Vh
viz − Vz) . (14)

In Figure 6, we show the different powers generated and consumed at the rotor hub. In the diagram Pp represents
the profile power dissipated as a result of the spinning of the rotor blades. It should be noted that momentum
theory does not account for this power and will be later modelled in Section 3. Intuitively, profile power can be
seen as Pp = τa$, where τa is the air resistance torque and $ the speed of the rotor. From experiments performed
in [3, 4], the aerodynamic power (13) can be rewritten as

Pa = 1

FoM
(PT + Ph) ,

= 1

FoM
(T (viz − Vz) +H(vih + Vh)) ,
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Figure 6: The different powers on a spinning rotor.

where FoM is the figure of merit and is defined as an efficiency factor to account for non-ideal losses and the
region not modelled by momentum theory as shown in the bond diagram in Figure 7. If Pm is the mechanical
power supplied to the rotor shaft, then the FoM is defined as

FoM = TV a

Pm
. (15)

In helicopter literature, losses occur in two parts: rotor wake and tip vortices. Typical values are 10% for wake
flow and 15% for tip vortices and other losses [9, pg. 45-46]. From experiments performed in [3, 4], the FoM was
found to be between 60 and 70% for most rotors. The theoretical maximum of FoM at hover is 81% [9, pg. 47]
though values as high as 77% have been recorded [15, 16]. It should be noted that the FoM is the same for both
axial and planar axis because the properties of the fluid are uniform and so the non-ideal loses are the same in
every direction.

Carrying out a power balance at the rotor hub and ignoring the power due to profile blade losses and if Pr is
the power dissipated in accelerating the rotor to a constant rotor speed ($), the mechanical power Pm defined as
the power supplied to the rotor shaft is given by

Pm = Pr + Pa.
In reality, this is the power that is controlled and can be set to a desired value. The Pr is estimated using methods
described in [3]. A bond diagram showing the power flow from the rotor shaft to the air and the generated forces
on the vehicle are shown in Figure 7. Starting from the rotor shaft which acts as a source of effort producing for
the entire vehicle the torque τ and rotor speed $ with the power lost through the resistance Rl = Pr modelled by
a 1-junction. Through algebraic equations i.e. a modulated transformer MTF, the distribution of forces f(r,ψ)
and velocity U(r,ψ) are obtained. These then go through a 0-junction and an MTF to produce the force F and
velocity V a with power losses in the wake represented by the conductance 1

Rl1
. Applying momentum theory to

this region through the 0-junction, the power used in moving the vehicle (FV ) and power lost in the induced flow
(Fvi) are seen through the conductance 1

Rl2
. The distribution of forces f(r,ψ) and velocities U(r,ψ) will be dealt

with using blade element theory which is covered in the remainder of the report.

2.5 Rotor Wake and Vorticity

The induced velocity distribution is not constant across the rotor as would be expected especially for forward
flights where its value at the leading edge (face directed into wind) is greater than at the trailing edge (face away
from wind). To account for such a non-constant induced velocity distribution, let vi0 ∈ R3 be the mean induced
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Se 1
τ

$

Rl

$ τtip

MTF
τ ′
$

0
f(r,ψ)
U(r,ψ)

1
Rl1

f Vwake

MTF
f

V a
1 (r,ψ) 0

F

V a

1
Rl2

vi F

∑F

V

Momentum theory fails. Momentum theory region.

Figure 7: Bond diagram for a motor/rotor system. The source of effort (Se) is the motor shaft which makes the
vehicle to fly and overcome vortices and wake. The figure also shows that the forces on a rotor should be modelled
by a distribution f(r,ψ) and velocity U(r,ψ) at every radial position and azimuthal angle. In addition the figure
also shows losses represented by conductance and resistances (Rl) which are embedded in the FoM .

velocity at the disc centre and its components are given by (based on (11) and (12) respectively)

vi0z = T

2ρA∣V a∣ ,
vi0h = H

2ρA∣V a∣ .
Glauert proposed the following induced velocity model

viz = vi0z (1 + κe r
R

cosψ) ,
where r ∈ [0,R] is the radial position, ψ is the azimuthal angular position and κe is a number greater than unity
(usually 1.2 for helicopters) [21, pg. 54]. For our modelling application, we believe that this model also holds for
the proposed vih with the same κe value. Details on a better induced velocity model are presented in Section 3.4
using the Mangler and Squire’s method. A drawback of these models is the vio dependence on itself through V a

and on thrust both of which are unknown for small-scale open-source quadrotors. From a robotics perspective,
the induced power (power associated with induced velocities) in the power model (13) can be modified to account
for the non-uniform and non-constant induced velocities. Thus the modified power equation is

P = T (κeviz − Vz) +H(κevih + Vh).
From static tests performed in [3, 4], without any exact measurements of V a, it can be said that κe is embedded in
the FoM value obtained. Hence proper wind tunnel tests where accurate measurements of V,V a are necessary to
experimentally determine κe and FoM . In the sequel, it will be shown that unlike helicopters, quadrotor blades are
designed to produce substantial amount of lift across the different sections of the blades and not only at the outer
blade sections as a result of blade geometry which suffer from significant tip vortices in the case of helicopters.

2.6 Limitations of Momentum Theory

There are flight regimes in which momentum theory fail. These regimes are associated with axial motion corre-
sponding to cases where the streamtube model and Assumptions 2.1 and 2.2 are no longer valid. These axial flight
regimes which rotors of quadrotors and helicopters experience in addition to the normal state are outlined below
[4].

Vortex Ring State (VRS): The rotor is said to be in this state when the rate of descent is half the vertical
induced velocity. In this state, vortex ring encircles the disc causing the flow to become unsteady resulting
in high levels of vibration. It should be noted that momentum theory cannot be used to model in this state.

10



Turbulent Wake State (TWS): This state occurs when the rate of descent of the rotor equals that of the
vertical induced velocity as such there is no net flow of air through the rotor. From (11) and (13), it is easily
seen that there is no thrust generated and the power required is zero. This contradicts the fact that power
has to be supplied to maintain the spinning of the rotors. Thus indicating that momentum theory cannot
be applied. However, the vibrations are less in this state than those of the VRS.

Windmill Brake State (WBS): This state occurs when the rate of descent of the rotor is more than twice
the induced velocity. At this rate, the blade sections are likely to stall. In this state, the net flow of air
is entirely upwards thereby creating negative thrust which causes a consumption of power from the air. Of
the three axial descent states mentioned, momentum theory models for T and P are only valid in this state
[4],[9, pg. 60], [21, pg. 10-13].

Unlike axial flights, there are no limitations caused by the horizontal/planar motion as both ∣vih∣ and ∣Vh∣ are
always positive in the direction of motion. Contrary to helicopters, to avoid such axial states for quadrotors, more
power is supplied to the motors. By doing so, the vortices on the tip of the rotor blades are blown away. In
the subsequent sections, it will be shown that most quadrotor blades are designed to have optimal chord with
the entire blade span generating lift and drag forces required to generate T,H and P . Hence the tip vortices
have minimal effects on the aerodynamic forces generated compared to helicopters which have the majority of the
aerodynamic forces generated in the outer portion of the blade.

In the next sections, blade element theory is presented. It uses an element of a blade to model forces and torque
(hence power) irrespective of the axial flight condition. In addition, it makes use of the fact that the elemental
forces and velocities along the elements of a rotor are functions of the elemental radial and azimuthal position.

3 Introduction to Blade Element Momentum Theory

Blade element theory considers the individual elements of a rotor blade, the aerodynamic properties (lift and drag
coefficients) of the aerofoil, blade geometry and uses elemental forces and torque. The overall model for thrust (T ),
in-plane horizontal force (H) and torque (τ) and power (P ) are obtained by integrating along the entire blade and
over a rotor revolution of these elemental forces and torques. In this section, we examine the necessary assumptions
and models for induced velocity and blade flapping that are used in the development of the elemental forces and
torque. These models are then incorporated into the model for the total velocity along with its horizontal and
vertical components. This then led to the examination of the different elemental aerodynamic forces in the tip
path plane {D} and {C} and their resultants which is the thrust and horizontal force in the body fixed frame{B}. The final elemental results will be used in the subsequent sections to model T,H and P for a variety of rotor
geometries and aerodynamic properties.

The following assumptions form the basis of blade element theory.

Assumption 3.1 The outward centripetal force acting on the blades ensure that they can be assumed rigid and
do not stall.

It should be noted that similar to Section 2, the development of the models for T,H and P are carried out in
the rotor hub frame or body fixed frame {B}. The airflow consists of the vertical component and a horizontal
component which is the resultant of the airflow in the Ð→e 1 and Ð→e 2 directions. For this reason, we only model the
thrust T acting in Ð→e 3 and the magnitude of the horizontal force H = ∣H ∣ in the plane containing Ð→e 1,

Ð→e 2.

3.1 Theoretical Framework

Since blade element theory considers individual elements of the rotor, it is necessary to obtain the total of these
elements along the span of the rotor which defines the physical quantity of interest. In addition, the rotor spins
resulting in azimuthal changes from 0 to 2π. Hence we can model the elemental contribution of a quantity say
force F as dF (r,ψ) for an element located at a distance r from the rotor hub (r ∈ [0,R]) and ψ is its azimuthal
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Figure 8: A view of the rotor-shaft system of quadrotors. The figure shows a side view with the coning angle a0
and sideways tilt a1 relative to {B} which are part of the flapping angle β. In addition, there is the top view
which shows the TPP relative to the e⃗1 of {B} and its disposition, the azimuthal angle ψ.

angular displacement. The total force is then given by the sum of the individual elements across all the azimuthal
positions for the blade. For Nb number of blades, the total force is given by

F = Nb

2π

2π

∫
0

R

∫
0

dF (r,ψ)drdψ. (16)

Remark 6 From Section 2.5, it was pointed out that rotors shed tip vortices which are accounted for by using a
tip loss model. If ct is the chord of the rotor at the tip, if B ∈ [0,1] where BR is the effective radius of the rotor,
then B is defined by the Prandtl tip loss function

B = 1 − ct
2R

.

Glauert used this to model tip loss such that the radial limits of the integrand (16) are [0,BR]. In the sequel B = 1
is used to obtain a simplified model. BR will be a coefficient to be determined experimentally as will be shown in
the lumped parameter model presented in Section 4.

3.2 Relevant Definitions

Before presenting blade element theory, it is worth defining some non-dimensional variables in line with Remark 1
which states that the forces and torque are modelled in {B} i.e. along and perpendicular to the rotor shaft/hub.
If Ib is the mass moment of inertia of the blades, Nb is the number of blades, c is the chord length of the blade, R
is the blade radius and $ is the speed of the rotor, then

Definition 1 The rotor hub/shaft advance ratio µ in the direction of Vh

µ = ∣vih + Vh∣
$R

= ∣µi + µh∣.
Definition 2 The rotor hub/shaft vertical inflow ratio λ in the Ð→e 3 of {B}

λ = viz − Vz
$R

= λi − λz.
Definition 3 The Solidity ratio

σ = Nbc

πR
.

Definition 4 The Lock number for a constant chord blade

γ = ρAcR4

Ib
.
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We define two further coefficient variables which will be shown in the sequel to be dependent on the aerodynamic
state of the rotor.

Definition 5 The thrust coefficient

CT = T

$2
.

Definition 6 The power coefficient

CP = P

$3
.

3.3 Model for Blade Flapping Angle (β(ψ))
With the assumption of steady state flight, we model the blade flapping angle β at an azimuth ψ using the following
Fourier series expression with harmonic terms (a0, a1, . . . , an, b1, . . . , bn) by

β(ψ) = a0 − ∞∑
n=1an cosnψ − ∞∑

n=1 bn sinnψ. (17)

Further details on the treatment of blade flapping as a drag term is presented in [4].
In this work, we consider only the first harmonics, i.e. n = 1, since the higher harmonic terms a2, b2, a3 . . . , can

be ignored as they are very small or negligible for short rigid rotors. The blade flapping model is thus given by

β(ψ) = a0 − a1 cosψ − b1 sinψ. (18)

The derivative with respect to ψ is given by

dβ(ψ)
dψ

= a1 sinψ − b1 cosψ. (19)

And the time derivative of β(ψ) is

β̇(ψ) = dβ(ψ)
dψ

dψ

dt
,

=$dβ(ψ)
dψ

. (20)

From Figure 8, a0 can be seen as the coning angle of the blade and a1 and b1 as the −Ð→e 1 ∈ {B} and −Ð→e 2 ∈ {B}
tilt of the rotor disc or the tip path plane. The coefficient a0 is strongly linked to blade rigidity and is very small
for quadrotors since they have high rigidity and stiffness rotor blades. It should be noted that even at hover, there
is an a0 for long, slender and fully flexible rotor blades especially those used on helicopters. The presence of a0
does not cause any misalignment of the TPP or {D} from {B}. The other coefficients a1 and b1 are the backward
and sideways tilting of the TPP from {B} and therefore results in the misalignment of {D} from {B}.

If θ0 is the blade pitch/twist, then the flapping coefficients for a no flapping hinge offset are defined by [6, pg.
107]

a0 = γ
8
[θ0 (1 + µ2) − 4

3
λ] , (21)

a1 = 2µ (4θ0/3 − λ)
1 − µ2/2 , (22)

b1 = 4
3µa0

1 − µ2/2 . (23)

Given that µ is small such that 1
1±µ2/2 can be approximated to 1, the flapping angle coefficients are

a0 = γ
8
[θ0 (1 + µ2) − 4

3
λ] , (24)

13



a1 = 2µ (4θ0/3 − λ) , (25)

b1 = 4

3
µa0. (26)

Multiples and higher powers of these coefficients are such that they can be neglected. This is used in the compu-
tations of the H-force and torque.

One of the root causes of blade flapping is the dissymetry in the lift during forward flights. This dissymetry
creates a moment at the rotor hub. To minimise this moment, rotors are either connected to a hinge at the hub
or rigidly attached and cyclically feathered by decreasing the pitch of the advancing and increasing the pitch of
the retreating blade thus removing the lift imbalance (see Figure 1). Furthermore as was pointed out, quadrotors
neither have flapping hinges nor swash plates but have short rigid and stiff blades to minimise the flapping effect.

3.4 Induced Velocity (vi(r,ψ)) Distribution

In order to apply blade element theory, the induced velocity distribution along the span and different azimuth
angles must be known. The estimation of the distribution of the vertical component of the induced velocity (and
therefore proposed horizontal induced velocity) distribution on the rotor is a complex problem. In the theoretical
development of the forces and torque, we will assume a constant vi distribution and therefore have the induced
and translational velocities modelled through λ and µ. Furthermore, a good approximation for vi was proposed
by Mangler and Squire [11]. The model treats the rotor as a lifting surface with a pressure jump. The induced
velocity field is modelled as a small perturbation superimposed upon an otherwise uniform velocity field. The
velocity distribution is expressed by a Fourier series of harmonic terms given by (27)

vi(r,ψ) = 4vi0 [1

2
d0 + ∞∑

n=1dn (r,αD) cosnψ] , (27)

where αD is the rotor disc incidence and vi0 ∈ R3 is the mean induced velocity. To obtain vi0, recall from Section 2
the total velocity of the air through the rotor

V a = (vi0h + Vh
vi0z − Vz) ,

where V is the velocity of the vehicle. Using momentum theory, we restate the mean induced velocities are given
by

vi0z = T

2ρA∣V a∣ , (28)

vi0h = H

2ρA∣V a∣ . (29)

This use of momentum theory in determining the mean induced velocity vi0 is the reason the theoretical develop-
ment is also referred to as blade element momentum theory (BEMT ). The harmonic terms or coefficients di are
[6, pg. 82-83]

d0 = 15

8
η ( r

R
)2 ,

d1 = −15π

256
(5 − 9η2)( r

R
)(1 − sinαD

1 + sinαD
)1/2 ,

d3 = 45π

256
( r
R

)3 (1 − sinαD

1 + sinαD
)3/2 ,

where η2 = 1 − (r/R)2. For n = 2k, k = 1,2, . . . ,∞,

dn = (−1)(n−2)/2 15

8
[ η + n
n2 − 1

⋅ 9η2 + n2 − 6

n2 − 9
+ 3η

n2 − 9
](1 − η

1 + η)
n/2 (1 − sinαD

1 + sinαD
)n/2 .
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Figure 9: An aerofoil section of a blade at a location r from the rotor hub. The figure also shows the different
elemental forces which include lift and drag and the horizontal and vertical forces on the aerofoil in {D}. The
different angles and velocity components are also shown.

For n = 2k + 1, k ≥ 2,
dn = 0.

As has been stated in Section 3.3, we are only concerned with the primary modes and therefore first harmonic
flapping motion. However, d1 << d0 and αD introduces another unknown which is not measured as it is a function
of β(ψ). The final simplified model for the induced velocity is given by

vi(r,ψ) = 4vi0 (1

2
d0) . (30)

It will shown later in the sequel that (30) can be represented by a constant i.e. vi(r,ψ) = vi and later on changed
as it does not change the computations. Hence, the modelling process does not make use of the Mangler and
Squire model for vi(r,ψ). By choosing a constant vi implies that we are not required to know the thrust before
hand (through (28) and (29)) as for present day quadrotor technology, T as well as the induced velocity vi are
unknown. Furthermore, given the near hovering flight envelope for which quadrotors are designed and their use
of ideal rotors (see Section 6) implies that this assumption is valid.

Similarly, the current helicopter literature, uses these assumptions in the development of the models for T,H
and P . A consequence of this is a model for a lower power as the induced power is underestimated but can however
be compensated for during the calibration process and the introduction of a scaling factor in the final induced
power model.

3.5 Velocity Components at a Blade Section

Consider a blade element at a distance r from the rotor hub shown in Figure 9. For ease of analysis (mainly for 2-D
flow assumptions to hold), we consider only the planar component of velocity i.e. ∣Vh∣ = ∣Vx, Vy,0∣, ∣vih∣ = ∣vix, viy,0∣
and vertical velocity Vz. To reduce notational confusion, the ∣.∣ around the induced horizontal velocity and
horizontal induced velocity will be dropped. The total airflow velocity at the blade element is U(r,ψ) ∈ R3 and
U(r,ψ) ∈ {D}. The transverse scalar velocity at a blade element Uh(r,ψ) ∈ R which is the magnitude of the planar
projection of U(r,ψ) in Ð→e 1,

Ð→e 2 ∈ {D} is

Uh(r,ψ) =$r + (Vh + vih) sinψ. (31)

For the vertical velocity Uz(r,ψ)
Uz(r,ψ) = viz − Vz + rβ̇(ψ) + (vih + Vh)β(ψ) cosψ. (32)
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Normalising or non-dimensionalising by dividing by the tip velocity of the rotor $R, the following are obtained

uz(r,ψ) = Uz(r,ψ)
$R

= λ + r

R$
β̇(ψ) + 1

R$
(vih + Vh)β(ψ) cosψ,

= λ + r

R

dβ(ψ)
dψ

+ µβ(ψ) cosψ, (33)

and

uh(r,ψ) = Uh(r,ψ)
$R

,

= r

R
+ µ sinψ. (34)

The total or resultant velocity at the blade element is

∣U(r,ψ)∣ = √
Uh(r,ψ)2 +U2

z (r,ψ).
Assumption 3.2 We assume that U2(r,ψ) ≅ U2

h(r,ψ) for the quadrotor used in this report.

This is a valid assumption as the quadrotor which weighs under 2kg, experiments have shown that for its rotor
of radius 10in with $ ≥ 5000RPM , the velocity of the vehicle is bounded and in this case ∣V ∣ ≤ 5m/s. This
implies that if the vehicle is doing an axial motion at this maximum velocity such that Uh(r,ψ) = 52.3m/s and
Uz(r,ψ) = 5m/s. Hence Uh(r,ψ) > 10Uz(r,ψ) from which it is easily seen that U2(r,ψ) ≅ U2

h(r,ψ).
3.6 Aerodynamic Forces acting on Blade Elements

The aerodynamic forces acting on a blade element shown in Figure 9 are defined as

Lift dL(r,ψ) ∈ R is the force generated by the blade element perpendicular to the direction of the resultant airflow
U(r,ψ).

Drag dD(r,ψ) ∈ R is the force generated by the blade element that is parallel to the direction of the resultant
airflow.

The elemental lift and drag forces on a blade element expressed in the TPP {D} are defined by

dL(r,ψ) = 1

2
ρU(r,ψ)2Cl(r,ψ)c(r)d r, (35)

dD(r,ψ) = 1

2
ρU(r,ψ)2Cd(r,ψ)c(r)d r, (36)

where Cl(r,ψ) is the lift coefficient, Cd(r,ψ) the drag coefficient and c(r) is the chord length at a section radius
r from the hub. The coefficients Cl(r,ψ) and Cd(r,ψ) are expressed respectively as

Cl(r,ψ) = Cl0 +Clαα(r,ψ), (37)

Cd(r,ψ) = Cd0 +KCl(r,ψ)2,K > 0. (38)

For a 3 −D wing planform, the constant K = 1
πARe , where AR is the aspect ratio of the wing and e is the Oswald

span efficiency. The AR for helicopter blades is usually large > 10 and e = 0.8 for an elliptical lift distribution.
From Figure 9, the blade element angle of attack α(r,ψ) which is the angle between the mean chord line of the
aerofoil and the direction of motion of the blade or airflow is defined as

α(r,ψ) = θ(r) − φ(r,ψ), (39)

where θ(r) is the blade pitch and φ(r,ψ) is the relative inflow angle at the blade section defined by

φ(r,ψ) = tan−1 Uz(r,ψ)
Uh(r,ψ) , (40)

for which we make the following assumption.
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Assumption 3.3 The relative inflow angle ∣φ(r,ψ)∣ ≤ 10○ is small such that cosφ(r,ψ) ≅ 1 and sinφ(r,ψ) ≅
φ(r,ψ) for all r and ψ.

With this assumption, (40) becomes

φ(r,ψ) ≅ Uz(r,ψ)
Uh(r,ψ) . (41)

Hence (39) can be approximated by

α(r,ψ) ≅ θ(r) − Uz(r,ψ)
Uh(r,ψ) . (42)

Remark 7 The most ideal or optimum rotor geometry is one that maintains a constant angle of attack and
constant induced velocity across the entirety of the blade [6, pg. 54]. To produce a constant angle of attack for
purely axial flights, the optimum rotor makes use of a hyperbolic pitch geometry from the hub to the tip of the rotor.
In addition, using a hyperbolic geometry for the chord ensures constant spanwise induced velocity. In [15, 16],
the authors designed a slight variation of such an optimum rotor for the ANU-X4 flyer. It should be noted that
there are physical limitations on the rotor around the hub such that limr→0 c(r), θ(r) → R+ or c(r), θ(r) have
physical values. In addition the 20 to 30% rotor around the hub is curved inwards to prevent large horizontal
forces, torque and practicallity of manufacture. The blade element chord and pitch at a distance r from the hub
for the ideal/optimum rotor are defined by the following hyperbolic functions

c(r) = ctip

r/R,
θ(r) = θtip

r/R,
where ctip ad θtip are the tip chord and pitch respectively, r ∈ [0,R] is the distance from the rotor hub and R is the
rotor radius.

The theoretical development of models for T,H and P using the ideal blade geometry with aerofoils for which
along the span and every azimuth angle ψ, Cl(r,ψ) and Cd(r,ψ) are defined by (37) and (38) respectively are
carried out in Section 6.

From the elemental forces defined by (35) and (36) are the forces along the Ð→e 1,
Ð→e 2 plane and the Ð→e 3 of the

tip path plane {D}. These horizontal and vertical forces defined in {D} are given by

dFx(r,ψ) = dL(r,ψ) sinφ(r,ψ) + dD(r,ψ) cosφ(r,ψ), (43)

dFz(r,ψ) = dL(r,ψ) cosφ(r,ψ) − dD(r,ψ) sinφ(r,ψ). (44)

It should be noted that Fx represents the magnitude of the force along the x−y plane or plane containing Ð→e 1,
Ð→e 2.

Furthermore we define the following elemental forces along the rotor hub or body fixed frame {B}.

In-plane H force dH(r,ψ) ∈ R is the resultant elemental force generated on the plane of Ð→e 1,
Ð→e 2 of {B} that

opposes the motion along the Ð→e 1,
Ð→e 2 plane of {B}.

Thrust dT (r,ψ) ∈ R is the resultant elemental force generated along Ð→e 3 of {B}.

In the next sections, derivations of these elemental forces and associated elemental torque and their respective
sums in {B} will be presented in accordance with Figure 10 which shows the rotor reference frame ({C}) with the
horizontal and vertical forces that are tilted from {B} by the flapping angle β(ψ). The derivations are carried out
in the body fixed frame of the rotor ({B}) or the rotor hub or shaft for different blade geometries and aerodynamic
characteristics of the aerofoil section and rotor aspect ratio AR.
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Figure 10: Blade element forces in {B} and {D}. The figure shows the horizontal and vertical forces in the TPP{D} rotated by β(ψ) from the rotor hub/body fixed frame {B}.

3.7 Induced Power Factor κ

The induced power factor κ is a factor that accounts for the additional power/energy dissipated due to wake
rotation, tip loss and non-uniform flow that is not modelled by momentum theory. These power lost effects are
more significant for small rotors such as quadrotor blades with high disc loading and low power efficiency (T

P
) that

are generally less efficient than helicopters. It changes with changing aerodynamic conditions around a rotor and
increases with increasing tip loss and decreases with increasing rotor efficiency. These aerodynamic losses only
apply to the induced power component of power. The induced power factor is closely related to but not the same
as the figure of merit. Unlike the figure of merit used in the analysis of full scale helicopters, κ does not model
profile power losses. This κ contains κe described in Section 2.5 which is incorporated to account for the use of
the assumption of uniform and constant induced inflow velocities.

The induced power factor can be better explained in terms of disc loading DL. For helicopters with low disc
loading i.e. large rotor areas relative to the thrust they produce, they have a high thrust coefficient CT and high
power efficiency (T

P
) than quadrotors. Furthermore, the following also apply for a helicopter

1. Given the disc area and high torque engines for helicopter rotors implies that they require less RPM compared
to quadrotors. For example the blades on the quadrotor under study require RPM ≈ 5000 to hover while
those on normal helicopters require significantly less.

2. The induced velocity vi, is lower for helicopters compared to quadrotors at hover. Hence, to maintain the
low angle of attack, helicopter blades have low collective pitch at hover. The higher CT is as a result of
higher rotor radius as CT is proportional to the cube of the radius.

3. The high rotor efficiency at hover is as a result of the high thrust generated by large area with small induced
velocity where in hover the total airflow through the rotor is viz and therefore low required power.

4. The low disc loading on helicopter blades implies that they are under less back pressure than quadrotor
blades.

5. Because the thrust is very high with less back pressure, axial relative wind only slightly affects the back
pressure and the thrust produced at a given power. It should be noted that the thrust and power are very
high thus there is no significant change in the efficiency i.e. T

P of the rotor with axial wind. Note however
that given the low RPM of the rotors implies that small changes in thrust results in observable changes in
CT .

So in the presence of an updraft, there is only a slight increase in rotor efficiency despite an increase in CT .
The dominant effect is the additional work done by the rotors as a result of increased swirl in the wake as well
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as additional tip losses in the generation of tip vortices. Thus increasing CT as a result of an updraft causes
additional losses with little changes in rotor efficiency and therefore corresponds to a moderate increase in κ.

For high disc loading rotors with low thrust coefficients CT such as quadrotors,

1. The angle of attack of such rotors is very high which corresponds to higher blade pitch angle in static free air
or at hover. It should be noted that in such aerodynamic condition, given the small rotor disc area implies
that to produce thrust requires higher induced velocity viz which corresponds to higher power and therefore
lower efficiency than do helicopter rotors.

2. With an updraft, the thrust produced increases, hence CT and a decrease in total velocity through the rotor.
This leads to an increase in rotor efficiency. The relative high disc loading, low thrust and power requirements
including high $ compared to helicopters implies that adding or removing power into the system will have a
significant effect on the rotor efficiency. This can be illustrated mathematically by using the rotor efficiency
equations (for e.g. (15)) and recognising the low profile power requirement for quadrotor blades compared
to helicopter blades.

Hence for quadrotor rotor blades an updraft increases CT slightly (due to high $), increases efficiency significantly
due to low thrust and power and a negligible change in the already high tip loss. Hence overall for high disc
loading low CT quadrotor blades, κ decreases with increasing CT .

With these intuitions and with reference to Figure 11, we propose the following general model relating κ to CT

κ = d0 + d1 1

CT
+ d2CT . (45)

It should be noted that the model illustrated in Figure 11 is supported by Figure 3.18 [9, pg. 105] although
Leishman only considers low disc loading helicopter rotor blades. In the region of operation of quadrotors (CT <<
10−4), the dominant part of the model is d1

1
CT

. For helicopters with large CT , the dominant part is d2CT .

Given that the dominant part of the induced power factor model (45) for quadrotors (CT << 10−4) is d1
1
CT

and

if C̄T is an operating point of the rotor, then it can be shown algebraically that

d1
1

CT
= const1

C̄T
− const2

C̄2
T

(CT − C̄T ) ,
where the constants const are some arbitrary constants. Hence one can approximate the κ model for quadrotors
by a linear model

κ = β0 + β1CT , (46)

where β0 > 0 and β1 < 0 is a large negative constant. With this linear model, there is a significant reduction in the
computational requirement for κ when implementing on computationally constrained embedded electronic speed
controllers used on quadrotors. In the derivations carried out in the sequel, the induced velocity components of
the power contains κ. To reduce the number of variables during the development of the models, we make the
following remark.

Remark 8 To reduce the many variables in the torque/power derivations, we will use λ in the power models and
later on account for the effects mentioned in the final model by replacing it with κλi + λz or κviz − Vz. This also
applies to the contribution of the horizontal force i.e. κµi + µh or κvih + Vz.

4 Blade Element Theory for Classical Rotor Geometry (Constant chord and
pitch) and Infinite Aspect Ratio

In this section, we apply the elemental forces obtained in Section 3 to model T,H and τ hence power P of the
entire rotor blade in {B}. The blade geometry used in the analysis is the simplest geometry which consists of a
constant chord c(r) = c, constant pitch θ(r) = θ0 and a blade of infinite aspect ratio (AR) of length R. In addition,
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Figure 11: An illustration of the induced power factor κ and thrust coefficient CT for low and high disc loading
rotor blades used on quadrotors and helicopters respectively.

the rotor aerofoil considered has zero-lift angle of attack i.e. Cl0 = 0 and a linear lift slope. This is the rotor
geometry and aerofoil characteristics considered in the analysis contained in the helicopter literature [6, 9, 21].
Though this rotor is far from the rotors used on quadrotors, it is however a good starting point for modelling. The
final models obtained are simplified to obtain lumped parameter models that can be used for Robotic applications.

With AR = ∞ implies K = 0 and Cl0 = 0, the lift coefficient (37) and drag coefficient (38) become

Cl(r,ψ) = Clαα(r,ψ),
Cd(r,ψ) = Cd0 = Cd.

Therefore from (42)

Cl(r,ψ) ≅ Clα (θ(r) − Uz(r,ψ)
Uh(r,ψ)) , (47)

which implies that with Assumption 3.2, (35) becomes

dL(r,ψ) ≅ 1

2
ρUh(r,ψ)2Clα (θ(r) − Uz(r,ψ)

Uh(r,ψ)) c(r)d r, (48)

and the elemental drag force (36)

dD(r,ψ) ≅ 1

2
ρUh(r,ψ)2Cdc(r)d r. (49)

4.1 Rotor Thrust

Classical helicopter theory for this is covered in [6, pg. 96-98] and [21, pg. 58-60]. From the definitions given in
Section 3.6, an expression for the thrust modulus dT (r,ψ) or the elemental thrust can be obtained. To do this,
consider again Figure 10 and resolving forces in the Ð→e 3 direction of {B} for a blade element,

dT (r,ψ) = dFz(r,ψ) cosβ(ψ) + dFx(r,ψ) sinβ(ψ).
Substituting for dFx and dFz,

dT (r,ψ) = [dL(r,ψ) cosφ(r,ψ) + dD(r,ψ) sinφ(r,ψ)] cosβ(ψ)+ [dL(r,ψ) sinφ(r,ψ) + dD(r,ψ) cosφ(r,ψ)] sinβ(ψ).
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Realising that dD(r,ψ) sinφ(r,ψ) cosβ(ψ) and dD(r,ψ) cosφ(r,ψ) sinβ(ψ) both consist of two small terms that
can be neglected i.e.

dD(r,ψ) sinφ(r,ψ) cosβ(ψ) ≅ 0,

dD(r,ψ) cosφ(r,ψ) sinβ(ψ) ≅ 0.

Hence,
dT (r,ψ) = dL(r,ψ) cosφ(r,ψ) cosβ(r,ψ) + dL(r,ψ) sinφ(r,ψ) sinβ(ψ).

In addition, dL(r,ψ) sinφ(r,ψ) sinβ(ψ) consists of two small terms hence its effect is also negligible i.e.

dL(r,ψ) sinφ(r,ψ) sinβ(ψ) ≅ 0.

Therefore the elemental thrust is approximated by

dT (r,ψ) ≅ dL(r,ψ). (50)

Hence,

dT (r,ψ) ≅ 1

2
ρUh(r)2Clα (θ(r) − Uz(r,ψ)

Uh(r,ψ)) c(r)dr,
= 1

2
ρClα (θ(r)Uh(r,ψ)2 −Uz(r,ψ)Uh(r,ψ)) c(r)dr.

(51)

Substituting for Uz(r,ψ) and Uh(r,ψ) using their normalised forms (33) and (34) and from (16), (51) becomes

T = Nb

2π

2π

∫
0

R

∫
0

1

2
ρClα$

2R2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
θ(r) ( r

R
+ µ sinψ)2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Tθ

−uz ( r
R
+ µ sinψ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Tφ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
c(r)drdψ,

Knowing that ∫ 2π
0 sinψ = 0 along with all other odd powers of sinψ,

Tθ = Nb

2π

2π

∫
0

R

∫
0

1

2
ρClαR

2$2 [θ(r)(( r
R

)2 + µ2 sin2ψ)] c(r)drdψ.
Given that we are using a constant chord c(r) = c and pitch θ(r) = θ0,

Tθ = Nb

2π

2π

∫
0

R

∫
0

1

2
ρcClα$

2R2 [θ0 (( r
R

)2 + 2( r
R

)µ sinψ + µ2 sin2ψ,)]drdψ

= 1

4
NbρcClαcR

3$2 [2

3
θ0 (1 + 3

2
µ2)] .

Consider now the φ component of T and substituting for β(ψ) and
dβ(ψ)
dψ

dT (r,ψ)φ = 1

2
ρcClα$

2R2 (λ + r

R

dβ(ψ)
dψ

+ µβ(ψ) cosψ)( r
R
+ µ sinψ) cdrdψ,

= 1

2
ρcClα$

2R2 (λ + r

R
(a1 sinψ − b1 cosψ) + µ (a0 − a1 cosψ − b1 sinψ) cosψ)( r

R
+ µ sinψ) cdrdψ,

dT (r)φ = 1

2
NbρcClα$

2R2 (λ r
R
+ r

2R
a1µ − a1µ r

2R
) cdr,

Tφ = 1

4
NbρcClα$

2R3λ
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Hence using blade element momentum theory, the thrust T is modelled by

T = Tθ − Tφ,
T = 1

4
NbρcClαcR

3$2 [2

3
θ0 (1 + 3

2
µ2) − λ] . (52)

To illustrate the effect of nonuniform and non-constant distribution of vi, consider the induced velocity model for
viz from Section 3.4

viz(r,ψ) = 4vi0z (1

2
d0) ,

then the viz component of the thrust which is embedded in λ based on (51) is given by

dT (r,ψ)vi = Nb

2π

R

∫
0

2π

∫
0

(1

2
ρcClαR$)4d0 (1

2
vi0z )( r

R
+ µ sinψ)dψdr,

= 15

8
ρcNbClαR$

R

∫
0

√
1 − ( r

R
)2 ( r

R
)3 vi0z dr,

Tvi = 1

4
ρcNbClαR

2$vi0z .

This shows that there is no change in the equation obtained for T in (52) since λ = viz−Vz
$R and therefore reaffirms

our use of vi(r,ψ) = vi = vi0 in the computation of T . If any effects, non-constant vi will affect the P model as
outined in Remark 8.

4.2 Rotor In-Plane H-Force Component

Classical helicopter theory for this is covered in [6, pg. 98-100] and [21, pg. 60-61]. It is now left to show
derivation of the drag force opposing the motion of the rotor plane which is otherwise known as the the rotor
in-plane horizontal force H. Referring again to Figure 10, the force on the horizontal plane of {B} on the rotor
hub is resolved as

dH(r,ψ) = −(dFx(r,ψ) cosβ(ψ) sinψ + dFz(r,ψ) sinβ(ψ) cosψ) .
It should be noted that with the vehicle moving forward i.e. Vh > 0 shown in Figure 9, this force is pointed in the
negative direction to the direction of motion. Hence it is negative and therefore opposes the direction of motion.
However, the analysis will be carried out to determine the magnitude of the force. Given that β(ψ) is small and
substituting for dFx and dFz using (43) and (44) respectively, the following is obtained

dH(r,ψ) = dD(r,ψ) sinψ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dHp(r,ψ)

+dL(r,ψ) (β(ψ) cosψ + φ(r,ψ) sinψ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dHi(r,ψ)

, (53)

where dHi(r,ψ) is known as the induced in-plane force as it is induced by the inclination of the elemental lift
vector dL(r,ψ) and dHP (r,ψ) is the profile drag as it is the contribution of the elemental drag dD(r,ψ) and it
is the drag force generated by the transverse velocity of the rotor blades through the air [4]. The profile (HP )
contribution to H is obtained as follows

Hp = Nb

2π

2π

∫
0

R

∫
0

dHP(r,ψ)drdψ = Nb

2π

2π

∫
0

R

∫
0

dD(r) sinψdrdψ.

Substituting for dD(r,ψ) using (36)

Hp = Nb

2π

2π

∫
0

R

∫
0

1

2
ρU(r,ψ)2Cd(r,ψ)c(r) sinψdrdψ. (54)
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From Assumption 3.2, U2(r,ψ) ≅ U2
h(r,ψ) and substituting for Uh(r,ψ) = µ$R from the definitions,

Hp = Nb

2π

2π

∫
0

R

∫
0

1

2
ρ$2R2 (( r

R
)2 + 2( r

R
)µ sinψ + µ2 sin2ψ)Cd(r,ψ)c(r) sinψ d r dψ. (55)

Once more, it should be noted that we are using a constant induced velocity such that vi(r,ψ) = vi and therefore
there is no need to consider the Mangler and Squire expressions for the induced velocities presented in Section 3.4.
Using c(r) = c, θ(r) = θ0,Cd(r,ψ) = Cd,Cl(r,ψ) = Clαα(r), the integral in (55) becomes

Hp = 1

4
ρNbcCdR

3µ$2. (56)

This is the in-plane horizontal force or drag force generated as a result of forward motion of the rotor disc that does
not involve the contribution from the lift force. The lift induced component dHi(r,ψ) is obtained by substituting
for dL(r,ψ) using (48) and substituting for and using the small angle assumption for φ(r,ψ)

dHi(r,ψ) = dL(r,ψ) (β(ψ) cosψ + φ(r,ψ) sinψ) ,
= 1

2
ρU2(r,ψ)Clα (θ0 − Uz(r,ψ)

Uh(r,ψ)) [β(ψ) cosψ + Uz(r,ψ)
Uh(r,ψ) sinψ] cd r.

Expanding the equation with U2(r,ψ) ≅ Uh(r,ψ)2 (Assumption 3.2),

dHi(r,ψ) = 1

2
ρClα [(θ0Uh(r,ψ)2 −Uz(r,ψ)Uh(r))β(ψ) cosψ+

(θ0Uz(r,ψ)Uh(r,ψ) −Uz(r,ψ)2) sinψ] cd r.
(57)

The overall induced drag Hi is given by

Hi = Nb

2π

2π

∫
0

R

∫
0

dHi(r,ψ)dψ,

= Nb

2π

2π

∫
0

R

∫
0

1

2
ρcClα

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(θ0U2

h(r,ψ) −Uh(r,ψ)Uz(r,ψ))β(ψ) cosψ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Hiβ

+(θ0Uz(r,ψ)Uh(r) −Uz(r,ψ)2) sinψ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Hiφ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
drdψ.

Taking first the φ component,

Hiφ = Nb

2π

2π

∫
0

R

∫
0

1

2
ρcClα (θ0Uh(r,ψ)Uz(r,ψ) −U2

z (r,ψ)) sinψdrdψ,

= Nb

2π

2π

∫
0

R

∫
0

1

2
ρcClαR

2$2 (θ0 ( r
R
+ µ sinψ)uz − u2z) sinψdrdψ,

Hiφ = Nb

2π

2π

∫
0

R

∫
0

1

2
ρcClαθ0R

2$2 (θ0 ( r
R
+ µ sinψ)(λ + r

R

dβ(ψ)
dψ

+ µβ(ψ) cosψ)−
(λ + r

R

dβ(ψ)
dψ

+ µβ(ψ) cosψ)2⎞⎠ sinψdrdψ.

Therefore,

Hiφ = 1

4
NbρcClαR

3$2 (θ0 (a1
3
− a1µ2

4
+ λµ) − a1λ + a21µ

4
− b21µ

4
+ a0b1µ2

2
) .
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However, the terms with products of the flapping coefficients and products with µ2 given that they are very small,
results in

Hiφ = 1

4
NbρcClαR

3$2 (θ0 (λµ + 1

3
a1) − λa1) .

Then the Hiβ component is

Hiβ = Nb

2π

2π

∫
0

R

∫
0

1

2
ρcClαU

2
h(r,ψ)(θ0 − Uz(r,ψ)Uh(r,ψ))β(ψ) cosψdrdψ,

= Nb

2π

2π

∫
0

R

∫
0

1

2
ρcClα (θ0U2

h(r,ψ) −Uz(r,ψ)Uh(r,ψ))β(ψ) cosψdrdψ.

Hence,

Hiβ = Nb

2π

2π

∫
0

R

∫
0

1

2
ρcClα (θ0 ( r

R
+ µ sinψ)2 −

(λ + r

R

dβ(ψ)
dψ

+ µβ(ψ) cosψ)( r
R
+ µ sinψ))(a0 − a1 cosψ − b1 sinψ) cosψdrdψ.

Therefore

Hiβ = 1

4
ρClαNbcR

3$2 [a0b1/3 + a1λ/2 − a1θ0/3 − a20µ/2 − a21µ/4 − b21µ/4 − a1µ2θ0/4 + a0b1µ2/2] .
Given that the flapping coefficients are small for quadrotor blades implies that their products are negligible. Hence

Hiβ = 1

4
ρClαNbcR

3$2 [a1λ
2

− a1θ0
3

] .
Hence the overall induced H-force is

Hi =Hiφ +Hiβ,

Hi = 1

4
NbρClαcR

3$2 [θ0 (λµ + 1

3
a1) − λa1 + a1λ

2
− a1θ0

3
] ,

Hi = 1

4
NbρClαcR

3$2µ [θ0 (λ + 2

3
(4θ0/3 − λ)) − λ(4θ0/3 − λ) − 2

3
θ0(4θ0/3 − λ)] . (58)

For very rigid blades the flapping coefficients a0, a1, b1 are very small resulting in a very small Hi. This is the
reason quadrotor blades are designed to be very rigid.

This is the additional component of the H-force as a result of the tilting of the tip path plane with respect to
the hub {B}. Therefore, the total in-plane horizontal force H is given by

H =Hp +Hi,

H = 1

4
NbρClαcR

3$2µ [ Cd
Clα

+ θ0 (λ + 2

3
(4θ0/3 − λ)) − λ(4θ0/3 − λ) − 2

3
θ0(4θ0/3 − λ)] ,

By making use of the fact that θ0 is small such that θ20 ≈ 0,

H = 1

4
NbρClαcR

3$2µ [ Cd
Clα

− 1

3
θ0λ + λ2] (59)

For low pitched blades, the H-force decreases with increasing λ. Hence H-force is directly linked to T . In the
current quadrotor literature, a linear relation H ∝ T has been proposed in [2, 13].
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4.3 Aerodynamic Torque (τ) and Power (P )

This model is covered in [6, pg. 100-103] and [21, pg. 61-62] for helicopters. In order to determine the rotational
torque created around the rotor hub or Ð→e 3 of {B}, consider again Figure 9 from which the elemental torque
created by a blade element at a distance r from the hub is given by

dτ(r,ψ) = r (dD(r,ψ) cosφ(r,ψ) + dL(r,ψ) cosβ(ψ) sinφ(r,ψ))drdψ,= rdD(r,ψ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dτp

+ rdL(r,ψ)φ(r,ψ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dτi(r,ψ)

drdψ, (60)

where dτP is the torque required for spinning the rotor and is termed profile drag and dτi is the induced torque as
a result of the tilting of the thrust force. The profile drag torque τP is given by

τp = Nb

2π

2π

∫
0

R

∫
0

dτP(r,ψ)dψ = Nb

2π

2π

∫
0

R

∫
0

rdD(r,ψ)drdψ.
Substituting for dD(r,ψ) using (36)

τp = Nb

2π

2π

∫
0

R

∫
0

1

2
ρU(r,ψ)2Cd(r,ψ)c(r)r d r dψ.

Substituting for U2(r,ψ) with U2(r,ψ) ≅ U2
h(r,ψ) (Assumption 3.2), c(r) = c and Cd(r,ψ) = Cd,

τp = Nb

2π

2π

∫
0

R

∫
0

1

2
ρcCd$

2R2 ( r
R
+ µ sinψ)2 r d r dψ,

= 1

8
ρNbcCd$

2R4 (1 + µ2) . (61)

For the induced torque (τi) component of (60)

dτi(r,ψ) = 1

2
ρcU2(r,ψ)Clααφ(r,ψ)rdrdψ,

= 1

2
ρcClα(θ0Uz(r,ψ)Uh(r,ψ) −U2

z (r,ψ))rdrdψ.
Torque hence power as pointed out in Section 2 always has components for the generation of T and H. In
order to get τ in terms of these forces, we first substitute for r from the definition of Uh(r,ψ) given by (31) i.e.

r = Uh(r,ψ)−(vih+Vh) sinψ
$ . So that

dτi(r,ψ) = 1

2

ρClαc

$
(θ0Uz(r,ψ)Uh(r,ψ) −U2

z (r,ψ))(Uh(r,ψ) − (vih + Vh) sinψ)drdψ.
Expanding this and substituting for dT (r,ψ),

dτi(r,ψ) = [1

2

ρClαcUz(r,ψ)
$

(θ0U2
h(r,ψ)−

Uz(r,ψ)Uh(r,ψ)) − 1

2

ρClαc(vih + Vh) sinψ

$
(θ0Uz(r,ψ)Uh(r,ψ) −U2

z (r,ψ))]drdψ,

dτi(r,ψ) = Uz(r,ψ)
$

dT (r,ψ) − 1

2

ρClαc(vih + Vh) sinψ

$
(θ0Uz(r,ψ)Uh(r,ψ) −U2

z (r,ψ))drdψ. (62)
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From the equation for dHi (57), it can be shown that

1

2
ρClαc(θ0Uz(r,ψ)Uh(r,ψ) −U2

z (r,ψ)) sinψ = dHi − 1

2
ρClαc (θ0U2

h(r,ψ) −Uz(r,ψ)Uh(r,ψ))β cosψ,

= dHi(r,ψ) − dTβ(ψ) cosψ.

Using the dτi(r,ψ) expression from (62)

dτi(r,ψ) = 1

2
ρClαc(θ0Uz(r,ψ)Uh(r,ψ) −U2

z (r,ψ))rdrdψ,
= Uz(rψ

$
dT (r,ψ) − (dHi(r,ψ) − dT (r,ψ)β(ψ) cosψ)(vih + Vh)

$
.

Substituting Uz(r,ψ) = viz − Vz + rβ̇(ψ) + (vih(r,ψ) + Vh(r,ψ))β(ψ) cosψ, we obtain

dτi(r,ψ) = viz − Vz + rβ̇(ψ) + (vih + Vh)β(ψ) cosψ

$
dT (r,ψ) − (dHi − dTβ cosψ)(vih + Vh)

$
,

= viz − Vz + rβ̇(ψ)
$

dT (r,ψ) − dHi
(vih + Vh)

$
.

The component as a result of flapping motion β̇(ψ)
r

$
rβ̇(ψ)dT (r,ψ) = rdT (r,ψ)dβ(ψ)

dψ
.

If there is no flapping hinge [6, pg. 101-102],

rdT (r,ψ)dβ(ψ)
dψ

= 0.

Hence for fixed pitch quadrotor blades that do not have flapping hinges

τi = (Tλ −Hiµ)R.
Substituting for Hi and using

τ = τp + τi,= τp +HpµR + TλR −HµR,
the torque is obtained as

τ = ρNbcCdR
4$2(1 + 3µ2)/8 + (Tλ −Hµ)R. (63)

The power can thus be easily obtained using P = τ$.

P = 1

8
NbρcCdR

4$3(1 + 3µ2) + (Tλ −Hµ)$R.
This power can be seen as consisting of profile power (1 + 3µ2) term, power for axial motion Tλ and power for
translational motion Hµ of air relative to the rotor blade.

In summary, from blade element theory, we obtain the following equations for thrust T , power P and in-plane
H (magnitude and direction) force for a constant chord and pitch rotor blade with a constant drag coefficient Cd
and zero-lift angle of attack with linear lift slope aerofoil are

T = 1

4
NbρClαc$

2R3 [2

3
θ0 (1 + 3

2
µ2) − λ] , (64)

H = −1

4
ρClαNbcR

3$2µ [ Cd
Clα

− 1

3
θ0λ + λ2] , (65)

P = 1

8
NbρcCdR

4$3(1 + 3µ2) + (Tλ −Hµ)$R. (66)

Remark 9 From the power model given by (66), the P dependence on H results in a µ2 term. For slow moving
quadrotors with high disc loading, this term can be ignored.
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4.4 Lumped Models for Robotic Applications

In order to use these models for any practical robotic application, a lumped parameter model is required. By
setting the following coefficients

c0 = R,
c1 = 1

4
NbρClαcc

3
0,

c2 = 2

3
θ0,

the thrust force is given by

T = c1$2 [c2(1 + 3

2
µ2) − λ] .

From the power equation in (66), if we set

c3 = 1

8
ρNbcCdc

4
0,

we get
P = c3$3 (1 + 3µ2) + (Tλ −Hµ)$c0.

Therefore (65) can be rewritten as

H = −c1µ$2 [ 2c3
c1c0

− 1

3
θ0λ + λ2] .

So in summary, the lumped parameter model for thrust T , horizontal force H and power P and invoking Remark 8
for a rotor with

Assumptions

• Infinite aspect ratio with finite radius,

• Constant chord and pitch,

• Linear lift slope with zero-lift angle of attack aerofoil and

Forces and Power Relationships

T = c1$2 [c2(1 + 3

2
µ2) − λ] , (67)

H = −c1µ$2 [ 2c3
c1c0

− 1

3
θ0λ + λ2] , (68)

P = c3$3 (1 + 3µ2) + (T (κλi − λz) −H(κµi + µh))$c0. (69)

The coefficients c0, c1, c2, c3 can be determined by fitting the models to experimental data using linear regression
or computed through measurements.

Though the assumptions of constant chord and pitch along with infinite aspect ratio and zero-lift angle of attack
of the above models are generally not true for quadrotor rotors, they however represent a good starting point for
modelling of quadrotor rotor blades. It should be noted that for helicopters, $ is maintained at a constant value,
changing power and the collective pitch setting using the swash plate mechanism results in changes in T,H,µ and
λ. For quadrotors however, given the low mass moment of inertia blades indicates that fast dynamic responses
of the rotor speed ($) are achievable using an electronic speed controller (ESC). This results in changes in power
and therefore T and λ. H and µ are generated through differential thrust changes in the four rotors that generate
torques around Ð→e 1,

Ð→e 2 and Ð→e 3 of {B}.
In Section 5 and 6, we gradually remove some of the geometric (chord and pitch) and aerodynamic (lift and

drag coefficients) assumptions made in this section to produce a more realistic model for quadrotor rotor blades.
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5 Blade Element Theory for Constant Pitch, Constant Chord, Zero-lift An-
gle of Attack Aerofoil with Finite Aspect Ratio

Taking a keen look at quadrotor rotor blades, they are neither very long nor slender thus distinguishing them from
helicopter rotor blades. Therefore the assumption of infinite aspect ratio (i.e. AR = ∞) or K = 0 cannot hold.
Furthermore quadrotor rotors are not made out of thin flat sheets or aerofoils with no camber (or with zero-lift
angle of attack) which may be true for helicopter rotors. The aerofoils on quadrotors have significant camber as
they are required to produce higher thrust to torque ratios around hovering conditions. In this section, we take the
blade element momentum theory modelling further by removing the zero-lift angle of attack aerofoil with infinite
aspect ratio (AR) rotor assumption. The assumptions of constant chord and pitch are kept because they are true
for certain quadrotors. An example of a quadrotor with such rectangular planform blades with cambered aerofoils
is the Y4-Triangular configuration quadrotor [14].

5.1 The Thrust Force

Recall the elemental thrust from (50) and (51), hence

dT (r,ψ) = 1

2
ρU(r,ψ)2Cl(r,ψ)c(r)drdψ,

= 1

2
ρUh(r,ψ)2(Cl0 +Clαα)c(r)drdψ. (70)

The Clα component is as found in Section 4.1. So we need only compute the Cl0 component of (70)

dTCl0(r,ψ) = 1

2
ρCl0c(r)Uh(r,ψ)2drdψ.

Substituting for Uh(r,ψ) and c(r) = c,
dTCl0(r,ψ) = 1

2
ρCl0c$

2R2 ( r
R
+ µ sinψ)2 drdψ,

TCl0 = Nb

2π

R

∫
0

2π

∫
0

1

2
ρCl0c$

2R2 ( r
R
+ µ sinψ)2 drdψ,

TCl0 = 1

4
NbρcCl0R

3$2 (2

3
+ µ2) .

Adding this to the thrust due to Clα found in Section 4.1,

T = 1

4
NbρcR

3$2 [Clα (2

3
θ0 (1 + 3

2
µ2) − λ) +Cl0 (2

3
+ µ2)] .

Comparing this to the thrust given by (64), there is an extra term ∝ Cl0 (2
3 + µ2) which clearly shows that any

camber or lift offset for an angle of attack of zero will result in an increase in thrust. There is an additional thrust
increment as a result of any translational motion.

5.2 The Horizontal H-Force

Recall from Section 4.2 where the H-force was shown to consist of both profile and lift induced components. If we
consider first the profile contribution

HP = Nb

2π

2π

∫
0

R

∫
0

1

2
ρU(r,ψ)2Cd(r,ψ)c(r) sinψdrdψ.
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With Cd(r,ψ) = Cd0 +KC2
l (r,ψ) = Cd0 +K (C2

l0 + 2Cl0Clαα(r,ψ) +C2
lαα

2(r,ψ)). The Cd0 and KC2
l0 components

are similar to that obtained in Section 4.2. The 2Cl0Clαα(r,ψ) component is calculated as follows

dHpcla(r,ψ) = ρKCl0ClαcU2
h(r,ψ)(θ − Uz(r,ψ)Uh(r,ψ)) sinψdrdψ,

= ρKCl0Clαc (θ0U2
h(r,ψ) −Uz(r,ψ)Uh(r,ψ)) sinψdrdψ,

= ρKCl0Clαc$2R2 (θ0 ( r
R
+ µ sinψ)2 − ( r

R
+ µ sinψ)(λ + r

R

dβ(ψ)
dψ

+ µβ(ψ) cosψ)) sinψdrdψ,

Hpcla = 1

2
ρNbKCl0Clαc$

2R3 (θ0µ − λµ − 1

3
a1) ,

after setting µ2 = 0. For the C2
lαα

2(r,ψ) component,

dHpcla2(r,ψ) = 1

2
ρKC2

lαα
2U2

h(r,ψ) sinψdrdψ,

= 1

2
ρKC2

lαU
2
h(r,ψ)(θ − Uz(r,ψ)Uh(r,ψ))

2

sinψdrdψ,

Hpcla2 = Nb

2π

2π

∫
0

R

∫
0

1

2
ρKC2

lαR
2$2 [θ20 (( rR)2 + 2( r

R
)µ sinψ + µ2 sin2ψ) − 2uzθ0 ( r

R
+ µ sinψ) + u2z] sinψdrdψ.

The integral of uzθ0 + . . . + u2z is

= (−2uzθ0 ( r
R
+ µ sinψ) + u2z) sinψdrdψ,

= ⎛⎝−2(λ + r

R

dβ(ψ)
dψ

+ µβ(ψ) cosψ) θ0 ( r
R
+ µ sinψ) + (λ + r

R

dβ(ψ)
dψ

+ µβ(ψ) cosψ)2⎞⎠ sinψdrdψ,

= −2µλθ0 − 2

3
a1θ0 − 2µ2a0θ0 + µb1θ0 + 2λa1 − b1λµ.

Setting multiples of the flapping coefficients and µ2 to zero,

Hcla2 = 1

4
NbρKC

2
lα$

2R3 (a1λ
2

− 2a1θ0
5

+ λ2µ − 2λµθ0 + µθ20) .
Adding all the components of Hp, we get

Hp =Hpcd0 +Hpcla +Hpcla2,

Hp = 1

4
NbρcR

3$2 (µCd0 +KCl0Clα (θ0µ − λµ − 1

3
a1) +KC2

lα (a1λ
2

− 2a1θ0
5

+ λ2µ − 2λµθ0 + µθ20)) ,
Hp = 1

4
NbρcR

3$2µ(Cd0 +KCl0Clα (θ0 − λ − 2

3
(4/3θ0 − λ)) +KC2

lα (λ(4/3θ0 − λ) − 4θ0(4/3θ0 − λ)
5

+ λ2 − 2λθ0 + θ20)) .
For the lift induced H-force, its Clα component is the same as in Section 4.2 and the Cl0 component is obtained
as follows

dHicl0(r,ψ) = 1

2
ρcCl0 (( r

R
)2 + 2( r

R
)µ sinψ + µ2 sin2ψ)(β(ψ) cosψ + φ(r,ψ) sinψ)drdψ.

Consider first the φ(r,ψ) sinψ component which gives

Hicloφ = 1

4
NbρcCl0$

2R3 (a1
3
+ µλ − a1µ2

4
) .
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Then consider the β(ψ) component

dHicl0β(r,ψ) = 1

2
ρCl0 (( r

R
)2 + 2( r

R
)µ sinψ + µ2 sin2ψ)(a0 − a1 cosψ − b1 sinψ) cosψdrdψ.

Taking the integral, it can be shown that

Hicl0β = −1

4
ρCl0a1$

2R3 (1

3
+ 1

4
µ2) .

Summing all of these, we get

Hi0 =Hicl0φ +Hicl0β,

Hi0 = 1

4
ρNbcR

3Cl0$
2 [a1

3
+ µλ − a1µ2

4
− a1 (1

3
+ 1

4
µ2)] ,

Hi0 = 1

4
ρNbcR

3Cl0$
2µλ. (71)

The total induced component is

Hi =Hi0 +HiClα.

Hi = 1

4
NbρClαcR

3$2µ [λ − 1

3
θ0λ + λ2] .

Hence the total H-force is given by

H =Hp +Hi

H = 1

4
NbρClαcR

3$2µ [X + λ − 1

3
θ0λ + λ2] ,

where

X = Cd0 +KCl0Clα (θ0 − λ − 2

3
(4/3θ0 − λ)) +KC2

lα (λ(4/3θ0 − λ) − 4θ0(4/3θ0 − λ)
5

+ λ2 − 2λθ0 + θ20) .
With camber or any nonzero lift at zero angle of attack, there is an additional term due to Cl0 (in the induced
H-force) which causes an increment in the H-force. This further increases with translational motion. Given that
Cl0 affects both T and H is the reason the blades are designed so that Cl

Cd
is maximum for the designed operating

region. Furthermore the finite AR causes a further increase in this force. Hence to minimise the H-force, it is
necessary to design blades with symmetric or Cl0 = 0 aerofoils that are infinitely long and thin so as to have a very
large AR and therefore low K or K ≅ 0. This is the principal reason helicopter rotors are designed to be long and
slender. It should also be noted that very long blades may result in higher blade flapping β(ψ) due to reduced
rigidity and increased flexibility.

5.3 The Torque and Power

Recall from (60) in Section 4.3,

dτ(r,ψ) = r (dD(r,ψ) cosφ(r,ψ) + dL(r,ψ) cosβ(ψ) sinφ(r,ψ))drdψ,= rdD(r,ψ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dτP

+ rdL(r,ψ)φ(r,ψ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dτi(r,ψ)

drdψ. (72)
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Considering again the profile torque contribution first,

dτp = rdD(r,ψ)drdψ,
= 1

2
ρcCd(r,ψ)U2

h(r,ψ)rdrdψ,
= 1

2
ρcU2

h(r,ψ)⎛⎜⎜⎝Cd0 +K
⎛⎜⎜⎝C

2
l0 + 2Cl0Clαα(r,ψ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

τpclocl

+C2
lαα

2(r,ψ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
τpcla2

⎞⎟⎟⎠
⎞⎟⎟⎠ rdrdψ,

The Cd0 and KC2
l0 components are similar to the Cd(r,ψ) obtained in Section 4.3. For the 2Cl0Clαα(r,ψ) term,

dτpclocl = (1

2
ρc)2KCl0ClαU

2
h(r,ψ)(θ0 − Uz(r,ψ)Uh(r,ψ)) rdrdψ,

= (1

2
ρc)2KCl0Clα (θ0U2

h(r,ψ) −Uz(r,ψ)Uh(r,ψ)) rdrdψ,
τpclocl = (1

4
Nbρc)2KCl0Clα (θ0 (1

2
+ 1

2
µ2) − 1

3
λ) ,

τpclocl = (1

4
Nbρc)KCl0Clα (θ0 (1 + µ2) − 4

3
λ) .

It should be noted that in the computation of τpclocl, the flapping terms occur as products (for e.g. a1b1) which
can be assumed zero as it has higher powers of µ and are thus considered negligible.

The C2
lα component is computed by noting that the products of any two flapping coefficients result in higher

powers of µ and are therefore negligible.

dτpcla2 = (1

2
ρc)KU2

h(r,ψ)C2
lαα

2rdrdψ,

= (1

2
ρc)KC2

lαU
2
h (θ0 − Uz(r,ψ)

Uh(r,ψ))
2

rdrdψ,

= (1

2
ρc)KC2

lα (θ0Uh(r,ψ) −Uz(r,ψ))2 rdrdψ,
= (1

2
ρc)KC2

lα$
2R2 (θ20u2h(r,ψ) − 2uz(r,ψ)uh(r,ψ) + u2z(r,ψ)) rdrdψ.

Hence

τpcla2 = (1

8
Nbρc)KC2

lα$
2R4 (4λ2 − 16/3λθ0 − a1µλ + 2θ20) ,

τpcla2 = (1

8
Nbρc)KC2

lα$
2R4 (4λ2 − 16/3λθ0 + 2θ20) .

If the profile torque due to Cd0 and KC2
l0 is τcd, the

τp = τcd + τpclocl + τpcla2,

τp = 1

8
ρNbc$

2R4
⎡⎢⎢⎢⎢⎣(Cd0 +KC2

l0) (1 + µ2) + 2KCl0Clα (θ0 (1 + µ2) − 4

3
λ)+

KC2
lα (4λ2 − 16/3λθ0 + 2θ20)

⎤⎥⎥⎥⎥⎦.
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In a similar manner to Section 4.3, it can be shown that τi = (Tλ −Hiµ)R. Hence the total torque is

τ = τp + τi,= τp +HpµR + TλR −HµR,
= 1

8
ρNbc$

2R4Z + (Tλ −Hµ)R,
where

τp = 1

8
ρNbc$

2R4
⎡⎢⎢⎢⎢⎣(Cd0 +KC2

l0) (1 + µ2) + 2KCl0Clα (θ0 (1 + µ2) − 4

3
λ)+

KC2
lα (4λ2 − 16/3λθ0 + 2θ20) + 2∆τ

⎤⎥⎥⎥⎥⎦,
and

∆τ = µ2 1

4
NbρcR

3$2µ(Cd0 +KCl0Clα (θ0 − λ − 2

3
(4/3θ0 − λ)) +KC2

lα (λ(4/3θ0 − λ) − 4θ0(4/3θ0 − λ)
5

+ λ2 − 2λθ0 + θ20)) .
Comparing this result to that obtained in Section 4.3, it can be deduced that an increase in camber results in a
higher required torque which translates to increase required power. Furthermore, the finite AR of the rotor blades
result in an increase in the H-force and power required.

So in summary based on Remark 8 for a rotor with

Assumptions

• Nonzero lift angle of attack aerofoil with linear lift slope,

• Constant chord and pitch,

• Finite aspect ratio and

Forces and Power Relationships

T = 1

4
NbρcR

3$2 [Clα (2

3
θ0 (1 + 3

2
µ2) − λ) +Cl0 (2

3
+ µ2)] , (73)

H = −1

4
NbρClαcR

3$2µ [X + λ − 1

3
θ0λ + λ2] , (74)

P = 1

8
ρNbc$

3R4Z + (T (κλi − λz) −H(κµi + µh))$R, (75)

where

X = Cd0 +KCl0Clα (θ0 − λ − 2

3
(4/3θ0 − λ)) +KC2

lα (λ(4/3θ0 − λ) − 4θ0(4/3θ0 − λ)
5

+ λ2 − 2λθ0 + θ20) ,
Z = (Cd0 +KC2

l0) (1 + 3µ2) + 2KCl0Clα (2(θ0 − λ)µ2 + θ0(1 + µ2) − 2

3
λ)+

KC2
lα (2θ0(θ0 − 2λ)µ2 + θ20(1 + µ2) − 8

3
λ + 2λ2) +∆τ ,

and

∆τ = µ2 1

4
NbρcR

3$2µ(Cd0 +KCl0Clα (θ0 − λ − 2

3
(4/3θ0 − λ)) +KC2

lα (λ(4/3θ0 − λ) − 4θ0(4/3θ0 − λ)
5

+ λ2 − 2λθ0 + θ20)) .
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If we set K = 0 or infinite AR and Cl0 = 0, (73) to (75) reduce to (64) to (66) respectively. It is now clear that
high cambered (or any nonzero Cl0) aerofoils result in increased thrust with an increased H-force and required
power. Any reduction in K by increasing the AR of the blades result in lower H-force and hence required power
to maintain a desired T for some advance ratio µ. This is the reason helicopters have very long slender blades.
Thus the aerofoil section geometry dictated by Cl0 and AR of the blades must be carefully chosen to meet the
design specification of the quadrotor if constant chord and pitch rotors are used.

6 Blade Element Momentum Theory for Ideal Rotor Blades

In this section, we develop further the models outlined in Section 4 and 5 for the majority of quadrotor blades for
which the constant chord and pitch assumptions do not hold. These blades are designed to have ideal twist and
chord in order to achieve optimality at hover and are otherwise referred to as ideal or optimum hovering rotor
blades [8]. Similar to Section 5, the blades are considered to be made out of cambered aerofoils or have nonzero
lift angle of attack sections with finite AR. Before going any further, it is worth defining an important parameter
in the study of the dynamics of objects in fluids, the Reynolds number (Re).

Definition 7 The Reynolds number Re is a non-dimensional quantity defined as the ratio of inertial forces to
viscous forces

Re(r,ψ) = Uh(r,ψ)c(r)
ν

,

where ν is the kinematic viscosity and is defined as the ratio of dynamic viscosity (vµ) to density (ρ) i.e. ν = vµ/ρ.
At room temperature, vµ = 1.983 × 10−5Pa.s, ρ = 1.225kg/m3 for air. Hence ν = 1.6188 × 10−5m2/s. If the tip
velocity of the rotor is 52m/s (Assumption 3.2) with tip chord 1cm, then the Reynolds number at the tip is

Re = 52 × 0.01

10−5 = 3.2123 × 104.

This is the maximum Reynolds number for hover. Given that for the quadrotor under study, the maximum
assumed velocity is 5m/s, implies that translational velocities will have little effect on this value. This value of
Reynolds number is considered as low and the flow on the rotor is therefore laminar and is dominated by viscous
forces [18, 19]. A second important parameter is the Mach number which is defined as

Definition 8

M = V

Vsound
.

Assuming sea level operating conditions where the speed of sound Vsound = 340.29m/s implies that the tip Mach
number is M = 0.15. This value of Mach number is said to be small and thus the assumption of incompressibility
holds.

6.1 Ideal Rotors and Optimality

Recall from Section 3.6, that an optimal rotor is one with ideal chord and pitch defined by the following hyperbolic
functions respectively

c(r) = ctip

r/R,
and

θ(r) = θtip

r/R,
respectively. In which Ctip, θtip are the tip chord and pitch respectively. From [6, pg. 54] and [8, 15, 16], an
optimal hovering rotor is a rotor that is capable of maintaining

1. Constant spanwise Reynolds number,
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2. Constant spanwise angle of attack,

3. Constant induced velocity to reduce induce power

at hover. Given that θ → 90○ is possible at the hub where r → 0 for the hyperbolic geometry, implies that the
angle of attack α → 90○ as r → 0. Hence the linear coefficient of lift relationship Cl = Cl0 + Clαα which if αs is
the stall angle holds only when ∣α∣ ≤ αs. To prove optimality, consider the rotor at hover for which ∣V ∣ = 0. The
Reynolds number at a blade section is given by

Re(r) = $r ctipr
ν

= $ctip
ν

,

which is constant. Hence the first condition of optimality at hover is satisfied by choosing an ideal chord. The
angle of attack for small angles based on Assumption 3.3 defined previously is given by

α(r,ψ) = θ(r) − Uz(r,ψ)
Uh(r,ψ) .

At hover, µ = 0. Hence Uz(r,ψ) = λ$R. To obtain a constant spanwise angle of attack, ideal twist results in

α(r) = θtipR
r
− λR

r
,

= (θtip − λ) R
r
.

Hence at every section along the span, the angle of attack α is a constant which we denote by αr and therefore
satisfies the second condition of optimality. This angle is chosen to maximise Cl

Cd
[6]. Given that we choose α = αr,

the pitch at every section is given by

θ(r) = αr + viz
$r

,

The most optimum induced velocity for the reduction of induced power is a constant value. This was pointed out
in Remark 7. From Section 5, the effect of Cl0 is to cause an offset in T thereby increasing or decreasing it when
µ = 0. By ignoring this for simplicity of analysis, the elemental thrust is given by

dT = 1

2
ρ$2r2Clααc(r)dr,

= 1

2
ρ$2r2Clα (θtip − λ) R

r
c(r)dr, (76)

and from momentum theory (Section 2.3),
dT = 4πρ(viz)2dr (77)

Equating (76) to (77) for a constant induced velocity, one requires c(r) = ctip
r/R . Therefore condition 3 is satisfied

by choosing an ideal chord. The lift and therefore thrust is thus given by

dT (r,ψ) ≅ dL(r,ψ) = 1

2
ρU(r,ψ)2Cl(r,ψ)c(r)drdψ,

= 1

2
ρctip$

2R (Cl0 +Clααr) rdrdψ,
T = 1

4
Nbρctip$

2R3 (Cl0 +Clααr) .
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The H force is zero as µ = 0. The profile torque is given by

dτp(r,ψ) = 1

2
ρU(r,ψ)2Cd(r,ψ)c(r)rdrdψ,

dτp(r,ψ) = 1

2
ρctipR$

2r2 (Cd0 +KC2
l )drdψ,

τp = 1

6
NbρctipR

4$2 (Cd0 +KC2
l ) .

Given that Cl(r,ψ) is a constant as α is also constant, the lift induced torque is thus

dτi(r,ψ) = dL(r,ψ)φ(r,ψ)rdrdψ,
dτi(r,ψ) = 1

2
ρctipU

2
hClφRdrdψ,

dτi = 1

2
ρctipR

2$2r (Cl0 +Clααr)λdrdψ,

τi = 1

4
NbρctipR

4$2 (Cl0 +Clααr)λ.
Comparing this to the thrust equation and in a similar manner to Section 4.3,

τi = TλR.
Hence for the optimum hovering rotor at hover,

T = 1

4
Nbρ$

2R3ctip (Cl0 +Clααr) , (78)

H = 0, (79)

P = 1

6
NbρctipR

4$3 (Cd0 +K (Cl0 +Clααr)2) + Tλ$R. (80)

Therefore maximum thrust is generated for a very low power. This is seen through the choice of αr such that

Cl0 +Clααr
Cd0 +K (Cl0 +Clααr)2 ,

is maximum. In the design of this optimum rotor, αr is chosen based on the aerofoil used in making the blades and
then the tip chord (ctip) and pitch (θtip) based on the radius (R) of the rotor. In reality, the rotor is required to not
only hover or perform axial motion but also translational motion. The next subsection looks at the development of
models for T,H and τ (hence P ) for a rotor with some geometric variation from ideal to enhance general quadrotor
flight. These blades we refer to as “near ideal” rotor blades.

6.2 Generalised Blade Element Theory for “Near Ideal” Rotor Blades

In this subsection, the models for T,H and τ (hence power) for “near ideal” rotors operating in non-hovering
conditions are developed. We define “near ideal” rotors as rotors with ideal twist and chord up to a point from
where the pitch flattens and the chord is curved inwards. By considering manufacturing of the ideal blades imposed
by physical constraints on chord and pitch and the considerable H force generated when ∣Vh∣ ≠ 0, we will propose
for there to be some geometric variation on pitch and chord from the hyperbolic geometry of the rotor around
the hub. This leads to a trade-off between optimal thrust generation and the H-force. This trade-off is a design
requirement based on the desired flight envelope.

Taking another look at the Reynolds number at a blade section r and azimuth ψ

Re(r,ψ) = ($r + (Vh + vih) sinψ)ctipR/r
ν

,

= $R (1 + R
r µ sinψ) ctip
ν

.
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Figure 12: A near ideal rotor used on the ANU X4-Flyer. Rotor with optimum twist and chord with non-ideal geometry
close to the hub [15, 16].

Any nonzero value of µ results in a very large Re as r → 0 near the hub. The angle of attack of the blade section
then becomes

α(r,ψ) = θ(r) − Uz(r,ψ)
Uh(r,ψ) .

Hence at every section, α is no longer constant and therefore there is no guarantee that ∣α(r,ψ)∣ ≤ αs. Therefore
the linear relationship between Cl(r,ψ) and α(r,ψ) given by (37) is not guaranteed to hold. For a practical rotor,
we know that θ(r), c(r) have meaningful dimensional limits and therefore the Reynolds number Re has an upper
bound. We remodel the angle of attack by

α(r,ψ) = tan−1 ( θtip
r/R − uz(r,ψ)

uh(r,ψ)) .
This is the original α(r,ψ) model as at low angles, tanα(r,ψ) = α(r,ψ). An example of a “near ideal” rotor blade
is that shown in Figure 12 developed for and used on the ANU X4-Flyer [15, 16].

We use the Cl model for high angles of attack proposed by Pucci [18, 19]. This is validated by the fact that the
obtained Re = 3.2 × 104 and Mach number M = 0.15 ensure that the flow is both laminar and incompressible and
satisfies the conditions Re < 160 × 104 and M < 0.3. The models for Cl(r,ψ) and Cd(r,ψ) in relation to α(r,ψ)
are given by [18, 19]

Cl(r,ψ) = Cl0 +Clαα(r,ψ), ∣α(r,ψ)∣ ≤ αs, (81)

Cl(r,ψ) = C2 sin 2α(r,ψ), ∣α(r,ψ)∣ > αs, (82)

Cd(r,ψ) = Cd0 +KC2
l (r,ψ). (83)

where C2 is some positive constant. This model is based on experimental results from which it has been observed
that at angles of attack beyond the stall angle αs, every aerofoil behaves like a flat plate with the boundary
layer thickness increasing and the flow is detached from the rotor. From (81),(82) and (83), the elemental thrust
therefore becomes

dT (r,ψ) = 1

2
ρU2

h(r,ψ)ctip (C2 sin 2α) R
r

drdψ,

dT (r,ψ) = 1

2
ρctip

R

r
($r + (Vh + vih) sinψ)2C2 sin [2 tan−1 ( θtip

r/R − uz(r,ψ)
uh(r,ψ))]drdψ,

dT (r,ψ) = 1

2
ρctip$

2R3 ( r

R2
+ 2

1

R
µ sinψ + 1

r
µ2 sin2ψ)C2 sin [2 tan−1 ( θtip

r/R − uz(r,ψ)
uh(r,ψ))]drdψ. (84)

Irrespective of the lift coefficient ((81) or (82)) model used, the thrust force becomes very large for any nonzero
value of µ. However, with the possibility of very high angles of attack around the hub, it is likely for the thrust to
become zero depending on the ratio at which the rate of r → 0 and α(r,ψ) → 90○.
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Figure 13: Scaled thrust and H-force spanwise distribution for ideal rotors. For more than 70% of the outer section of the
blade, these forces can be approximated by constant forces.

In the determination of the H-force, first consider the profile drag contribution

dHp(r,ψ) = 1

2
ρUh(r,ψ)2Cd(r,ψ)c(r) sinψdrdψ,

= 1

2
ρctip

R

r
Uh(r,ψ)2 (Cd0 +KC2

l (r,ψ)) sinψdrdψ. (85)

As r → 0, implicit with (85), dHp(r,ψ) becomes very large or dHp(r,ψ) → 0 if µ = 0 similar to the hover analysis.
Consider now the torque which was shown before to consist of profile and torque as a result of the generation of T
and H. With H becoming very large implies that the torque and hence power requirement for translation becomes
too high. This also confirms optimality for maximum thrust generation (theoretically unbounded) at hover when
µ = 0 as the required power is upper bounded with H = 0. Hence the above set of equations reduce to that for the
optimum hovering rotor at hover. If we set all the constants to 1 including sinψ and ignoring the small flapping
terms, Figure 13 shows T and H distributions across the span of an ideal rotor.

From Figure 13, it becomes obvious that a trade-off has to be made between H and T to produce a “near
ideal/optimum” quadrotor rotor. The trade-off leads to a slight variation in geometry from the optimal rotor;
one that is easily manufactured with significant reduction in H. Figure 14 shows an ideal rotor chord distribution
along with a possible trade-off geometry which is similar to that shown in Figure 12 that was designed for the
X4-Flyer [15, 16]. In addition, many other quadrotors have variations of these “near ideal” blades. Century Neo
860C is one such example [7].

Figure 13 shows that for more than 70% of the rotor, T and H (hence τ) are almost constant. By modifying the
section of the rotor around the hub, it is possible to generate a total thrust and horizontal force that will have an
effective total as that of a constant thrust or H-force extending to the hub. The T /H ratio from (84) and (85) for
this region is a function of the mechanical connection to the hub, the mechanical properties such as aeroelasticity
of the blade material and a specified value that is a performance criteria. This specified ratio depends on whether
the quadrotor is designed for heavy lifting and near hovering flights or high speed and fast manoeuvring flights.
In addition, it also depends on whether the vehicle will be flying in confined spaces such as near walls that can
result in difficulty in control due to the significant changes in the generated H-force. From this discussion, we can
make the following assumptions.

Assumption 6.1 We assume that the elemental forces and torque (dT (r,ψ),dH(r,ψ),dτ(r,ψ)) have a constant
value across the outter 70% region of the rotor. We also assume that the blade is designed such that for the
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Figure 14: Geometry of an ideal (red) and a possible “near ideal” chord (black) length distribution.

remaining 30% around the hub, the net effect can be modelled by the same constant elemental dT (r,ψ),dH(r,ψ)
and dτ(r,ψ) extending to the hub at r = 0.

The validity of the assumption is the fact that dT (r,ψ),dH(r,ψ) and therefore dτ(r,ψ) are constant for more
than 70% of the rotor as shown in Figure 13. A consequence of Assumption 6.1 is that ∣α(r,ψ)∣ ≤ αs and therefore
the linear lift coefficient relationship (37) can be used. With this assumption, models for T,H and τ are developed
for the “near ideal” quadrotor blade in the next subsections. These models are based on equations presented in
Section 4 and 5

6.2.1 The Thrust T Model for “Near Ideal” Rotors

From the dT (r,ψ) model presented in Section 4, the thrust is given by

dT (r,ψ) = 1

2
ρU2

h(r,ψ)Cl(r,ψ)ctipRr drdψ,

= 1

2
ρctip ($r + (Vh + vih) sinψ)2 (Cl0 +Clαα(r,ψ)) R

r
drdψ,

= 1

2
ρctip$

2R2 ( r
R
+ µ sinψ)2 (Cl0 +Clα (θtipR

r
− uz
r/R + µ sinψ

)) R
r

drdψ,

= 1

2
ρctip$

2R2

(1 + µ sinψ)2 (Cl0 +Clα (θtip − λ + (a1 sinψ − b1 cosψ) + µ(a0 − a1 cosψ − b1 sinψ) cosψ

1 + µ sinψ
))drdψ, r = R,

T = 1

4
NbρctipR

3$2 (Cl0 [2 + µ2] +Clα [θtip(2 + µ2) − 2λ]) .
6.2.2 H-Force for “Near Ideal” Rotors

We start our modelling by looking at the profile contribution which was defined by (54) and is given by

dHp(r,ψ) = 1

2
ρU2

h(r,ψ)Cd(r,ψ)c(r) sinψdrdψ,

= 1

2
ρctipU

2
h(r,ψ) ((Cd0 +KC2

l0) +K (2Cl0Clαα(r,ψ) +C2
lαα

2(r,ψ))) R
r

sinψdrdψ,

= 1

2
ρctip$

2R2(1 + µ sinψ)2 ((Cd0 +KC2
l0) +K (2Cl0Clαα(r,ψ) +C2

lαα
2(r,ψ))) sinψdψ, r = R.

Hence,

Hp = 1

2
Nbρctip$

2R3µ ((Cd0 +KC2
l0) +KCl0Clα(8µθtip − 4a1 − 4λµ)+

KC2
lα (4λa1 − 4a1θtip + 4µθ2tip − 4µθtip)) .
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For the lift induced component

dHi(r,ψ) = 1

2
ρU2

h(r,ψ)Cl(r,ψ)c(r) (β(ψ) cosψ + φ(r,ψ) sinψ)drdψ,

= 1

2
ρU2

h(r,ψ)ctip (Cl0 +Clαα(r,ψ)) (β(ψ) cosψ + φ(r,ψ) sinψ)drdψ, r = R.
Hence,

Hi = 1

4
Nbρctip$

2R3 [Cl0µλ +Clα (θtipµλ − a1λ)] ,
Hi = 1

4
Nbρctip$

2R3µ [Cl0λ +Clα (θtipλ − 2λ(4θtip

3
− λ))] .

Therefore the H-force is given by

H = 1

2
Nbρctip$

2R3µ [(Cd0 +KC2
l0) +KCl0Clα(8µθtip − 4a1 − 4λµ) +KC2

lα (4λa1 − 4a1θtip + 4µθ2tip − 4µθtip) + 1

2
X] ,

where

X = Cl0λ +Clα (θtipλ − 2λ(4θ0
3

− λ)) .
6.2.3 Torque (τ) and Power (P ) for “Near Ideal” Rotors

The profile torque defined earlier is given by

dτp(r,ψ) = 1

2
ρU2

h(r,ψ)⎛⎜⎜⎝Cd0°
τpcd0

+K ⎛⎜⎜⎝C
2
l0 + 2Cl0Clαα(r,ψ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

τpclocl

+C2
lαα

2(r,ψ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
τpcla2

⎞⎟⎟⎠
⎞⎟⎟⎠ ctip

R

r
rdrdψ.

The Cd0 component

dτpcd0(r,ψ) = 1

2
ρU2

h(r,ψ)Cd0ctipRdrdψ,

τpcd0 = 1

4
NbρctipCd0R

4$2 (2 + µ2) ,
which is similar to the KC2

l0 component. For the KCl0Clα component,

dτpclocla(r,ψ) = ρctipKCl0ClαU2
h(r,ψ)(θtip − Uz(r,ψ)Uh(r,ψ))Rdrdψ,

dτpclocla(r,ψ) = ρctipKCl0ClαR (θtipU2
h(r,ψ) −Uz(r,ψ)Uh(r,ψ))drdψ,

τpclocla = 1

2
ρNbctipKCl0Clα$

2R4 (θtip (2 + µ2) − 2λ) .
In the preceding calculations the fact that µa0, µa1, µ

2b1 are negligible was used. For the C2
lα component,

dτpcla2(r,ψ) = 1

2
ρKU2

h(r,ψ)C2
lαα

2c(r)rdrdψ,
dτpcla2(r,ψ) = 1

2
ρKctipRC

2
lαU

2
h(r,ψ)(θtip − Uz(r,ψ)Uh(r,ψ))

2

drdψ,

dτpcla2(r,ψ) = 1

2
ρKctipRC

2
lα (θtipUh(r,ψ) −Uz(r,ψ))2 drdψ,

dτpcla2(ψ) = 1

2
ρKctipC

2
lα$

2R3 (θ2tip(1 + µ sinψ)2 − 2θtipuz(r,ψ)(1 + µ sinψ) + uz(r,ψ)2)drdψ, r = R,
τcla2 = 1

2
ρKNbctipRC

2
lα$

2R4 (2θ2tip (1 + µ2) − 4θtipλ + 2λ2) .
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Hence the total profile torque is given by

τp = τpcd0 + τpclocla + τpcla2,
τp = 1

4
NbρctipR

4$2 ((Cd0 +KC2
l0) (2 + µ2) + 2KCl0Clα (θtip (2 + µ2) − 2λ) + 2KC2

lα (2θ2tip (1 + µ2) − 4θtipλ + 2λ2)) .
Similar to Section 4.3, it can be shown that τi = (Tλ −Hiµ)R. Hence,

τ = 1

8
Nbρctip$

2R4Z + (Tλ −Hµ)R,
where

Z = 2
⎛⎝(Cd0 +KC2

l0) (2 + 3µ2) + 2KCl0Clα ((2θtip − λ)µ2 + (θtip (2 + µ2) − 2λ))
+ 2KC2

lα (2θtip(θtip − λ)µ2 + 2θ2tip(1 + µ2) − 4θtipλ + 2λ2)⎞⎠ + 2∆τ ,

and

∆τ = µ2 ((Cd0 +KC2
l0) +KCl0Clα(8µθtip − 4a1 − 4λµ)+

KC2
lα (4λa1 − 4a1θtip + 4µθ2tip − 4µθtip)) .

In summary the models for T,H and P for a “near-ideal” rotor and from Remark 8 with

Assumptions

• Nonzero Cl0 such as cambered NACA aerofoils,

• “Near ideal/optimum” chord and twist to a point near the hub,

• Finite aspect ratio and

Forces and Power Relationships

T = 1

4
NbρctipR

3$2 (Cl0 [2 + µ2] +Clα [θtip(2 + µ2) − 2λ]) , (86)

H = −1

2
Nbρctip$

2R3µ [ζ + 1

2
X] , (87)

P = 1

8
ρNbc$

3R4Z + (T (κλi − λz) −H(κµi + µh))$R, (88)

where

ζ = [(Cd0 +KC2
l0) +KCl0Clα(8µθtip − 4a1 − 4λµ) +KC2

lα (4λa1 − 4a1θtip + 4µθ2tip − 4µθtip)] ,
X = [Cl0λ +Clα (θtipλ − 2λ(4θ0

3
− λ))] ,

Z = 2
⎛⎝(Cd0 +KC2

l0) (2 + 3µ2) + 2KCl0Clα ((2θtip − λ)µ2 + (θtip (2 + µ2) − 2λ))
+ 2KC2

lα (2θtip(θtip − λ)µ2 + 2θ2tip(1 + µ2) − 4θtipλ + 2λ2)⎞⎠ + 2∆τ ,

∆τ = µ2 ((Cd0 +KC2
l0) +KCl0Clα(8µθtip − 4a1 − 4λµ)+

KC2
lα (4λa1 − 4a1θtip + 4µθ2tip − 4µθtip)) .
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If we design a rotor such that ctip = c, θtip = θtip, then the “near ideal” rotor produces far more T,H and as such
requires more P due to the added twisted material than the rotors studied in Section 4 and 5.

7 Conclusion

In this report, we have developed models for the aerodynamic forces (thrust and H-force) and torque and hence
power using momentum and blade element theories for quadrotor rotor blades from a robotics perspective. By
choosing to model in the body fixed frame, we proposed and model the horizontal or H-force using momentum
theory. By looking at the different vortex states in axial flights and the inability of momentum theory to account
for the non-constant elemental velocities and forces lead to the use of blade element theory. Using blade element
methods, we developed models for different blade geometries and aerodynamic properties of the aerofoils of rotor
blades used on quadrotors. Finally, in the case of the ideal hovering rotor with hyperbolic geometry used on the
majority of quadrotors, we showed that these rotors are only practical with geometric modifications that can make
them meet the desired flight envelope and enhance manufacturing of the blades.

A Origin of the Constant Thrust and Torque Model

No theoretical development of the aerodynamics of quadrotor rotor blades is complete without a discussion on the
currently used explicit constant thrust and torque to rotor speed free air models. These models have been used in
performing some of the most impressive quadrotor manoeuvres which include flying through hoops [12], multiple
flips [10] and ball catching [20]. From momentum theory, the static relationships between thrust, torque and
power to rotor speed $ can be derived. The so-called static models are based on the hover condition assumption.
Starting with the momentum theory model for thrust and power using (11) and (13) and setting the velocity of
the vehicle V = 0,

T = 2ρA(viz)2,
P = 2ρA(viz)3.

From Definition 2, viz = λi$R, substituting into the above,

T = 2ρAR2(λi)2$2,

P = 2ρAR3(λi)3$3.

Setting CT = 2ρAR2(λi)2, CP = 2ρAR3(λi)3, the static free air model for thrust, torque and therefore power are

T = CT$2, (89)

τ = CQ$2, (90)

P = CP$3. (91)

Noting that P = τ$, thus CQ = CP . From experimental results, the thrust equation (89) has been modified to fit
experimental data. The modified equation is [5]

T = CT0$ +CT1$2,

where CT0 and CT1 are constants.
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