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Jiaan Zeng

RESOURCE SHARING FOR MULTI-TENANT NOSQL DATA STORE IN CLOUD

Multi-tenancy hosting of users in cloud NoSQL data storgawered by cloud providers
because it enables resource sharing at low operating costi-téhhancy takes several forms
depending on whether the back-end file system is a local fiesy(LFS) or a parallel file
system (PFS), and on whether tenants are independent erddtaracross tenants. In this
thesis | focus on and propose solutions to two cases: indigm¢mata-local file system,
and shared data-parallel file system.

In the independent data-local file system case, resourdertion occurs under certain
conditions in Cassandra and HBase, two state-of-the-aBostores, causing perfor-
mance degradation for one tenant by another. We investigateterference and propose
two approaches. The first provides a scheduling scheme éimaagproximate resource
consumption, adapt to workload dynamics and work in a dhisted fashion. The second
introduces a workload-aware resource reservation apprimaprevent interference. The
approach relies on a performance model obtained offline ks phe reservation accord-
ing to different workload resource demands. Results sh@nagiproaches together can
prevent interference and adapt to dynamic workloads undédi-tenancy.

In the shared data-parallel file system case, it has beensthatrunning a distributed
NoSQL store over PFS for shared data across tenants is ricftaxgive. Overheads are
introduced due to the unawareness of the NoSQL store of RS dissertation targets
the key-value store (KVS), a specific form of NoSQL stores, proposes a lightweight

KVS over a parallel file system to improve efficiency. The sioluis built on an

Vil



embedded KVS for high performance but uses novel data stesto support concurrent
writes, giving capability that embedded KVSs are not desigior. Results show the

proposed system outperforms Cassandra and Voldemortenadelifferent workloads.
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Chapter 1

Introduction

1.1 Emerging Characteristics for Big Data Storage

Science and business today are facing data sets that arsgrasamatically in both com-
plexity and volume. In its informal definition, big data c@sts of large, diverse, and struc-
tured or unstructured data. The sheer volume of data ineriegzredicted to grow expo-
nentially by a factor of 300 from 130 exabytes in 2005 to 40,8Rabytes in 2020 [37].
Big data applications, whose data and request go beyondgée sinde’s capacity, have
begun to revolutionize the underlying storage system. thteh, high availability grows
increasingly important as businesses rely on online datéces. Furthermore, data are in-
creasingly dynamically generated, coming from variougcesiwith diverse formats and
schemas. All these factors taken together suggest distdistiorage and flexible data mod-
els are the future.

Experience has shown that traditional systems like the¢ioelal databases (RDBMS)
struggle to handle big data applications as they are diffexudl expensive to scale across
multiple nodes and have I/O performance that does not mg®icapon requirements
[15, 83]. In contrast, NoSQL data store (called Not Only SQ@k}s emerged as an al-

ternate solution to big data storage. NoSQL store disefaind replicates data across



multiple nodes. Requests are served by every node in a @geer fashion, not only in-
creasing overall storage capacity but also the bandwitithnbde goes down, other nodes
can still serve requests for high availability and minimizga loss. Additionally, NoSQL
data stores do not impose a rigid structured schema uporathe ttius providing greater
flexibility to store the unstructured data. Because of tlagacting features, NoSQL data
stores have seen a great deal of uptake in both industry§1108] and academia [33,49].

With the advent of cloud computing, cloud hosted NoSQL stdrave grown in use.
Users (called tenants) are willing to move their data infragures to the cloud [18]. Fol-
lowing the spirit of infrastructure-as-a-service, tersaset up NoSQL stores across a set
of virtual machines (VMs) that are rented from a cloud previdnd billed by a flexi-
ble price model, i.e. “pay-as-you-go” model. Additionalipany cloud providers offer
database-as-a-service to tenants. Such services easefrtfusicluster management bur-
dens from tenants. Typical examples include Amazon Dyna®¢9)28], Google Cloud
Datastore [19] and Microsoft DocumentDB [30].

For economic reasons though, a cloud hosted NoSQL storei@lysised by multiple
tenants simultaneously. For example, a database-as4daesanstance like Dynamo DB
may be shared by different companies (i.e. tenants). Riffedepartments (i.e. tenants) of
an organization may be joint tenants of a single NoSQL st@enerally, there are several
advantages of adopting multi-tenancy in various storagecss [53]. First, multi-tenancy
makes management tasks easier. For example, to upgradethgesservice, instead of
upgrading multiple service instances, a system admin cdataghe configurations or code
base in a single instance and have the changes immediatelgtde to all tenants. Sec-
ond, multi-tenancy can yield better resource utilizatisrilae storage service can support

dynamic resource allocation which avoids provisioningre@mant with its maximum re-



sources statically. Finally, data sharing is facilitatgdnulti-tenancy. For these reasons,

support for multi-tenancy in cloud hosted NoSQL data ste@ni important problem.

1.2 Multi-tenant NoSQL Data Store

A NoSQL data store in a cloud environment can be viewed angavR-layer architecture:
logical view layer and storage layer. The logical view lagegsents to tenants a view of
the store and a set of APIs for them to interact with the stdhe storage layer represents

the underlying infrastructure that physically stores amdas the data.

1.2.1 Logical View Layer

The logical view layer determines how tenants see the datd@es the complexities of
underlying infrastructures from them. Each tenant has &destl view of the store with
non-shared data sets. From a tenant’s point of view, its lwatkis run against dedicated
resources and is not aware of other tenants’ existence. D provider in reality is
consolidating each tenant’s data into as small an infrettra as possible to maximize
resource utilization. Tenants’ data and requests end Upaaiing with each other in the
underlying infrastructure. Performance interferenceob@es a concern as isolation of cur-
rent solutions are flawed.

On the other hand, tenants may share the same data sets tortheenants may be
represented by different components in a pipeline thatgeees the data. For example,
the HathiTrust Research Center (HTRC) [49], which servedysical access to nearly 14
million digitized volumes from the HathiTrust digital liary, has an ingest component that
loads data from remotesyncpoints into Cassandra; a data APl component used to read

data from Cassandra and serve it to external users and ad@oponent indexed data in

3



Cloud Hosted Store

(loud Hosted Store

(a) Non-shared data. (b) Shared data.

Figure 1.1: Multi-tenancy in the logical view layer.

Cassandra. All these components can be interpreted adsemaich share the same data
set stored in Cassandra to form the data infrastructure &EIT
It is important to efficiently support the shared data mode& imulti-tenancy cloud
setting because of the attractiveness of its pay-as-youagtel and ability to bear elasticity.
Chapter 2 further describes the models used in multi-tgnlaynanost data management

systems.

1.2.2 Storage Layer

While the logical view layer serves as the front-end to tésahe storage layer describes
the mechanisms for storing data and handling requestsrd-ig@a shows a NoSQL data
store deployed across multiple nodes. Data is stored tatta file system on each node.
Because a local file system on a single node may suffer frokfalisire and is not scalable,

the NoSQL store usually replicates data in a few nodes inltrstar. A persistent daemon

service runs on each node in the cluster and communicatbowier daemon services to



provide a unified view over the local file systems. Varioug@cols among daemons exist

to coordinate daemons’ behaviors to support tasks likerggiecation, failover and so on.

. Tenant2 |+ Tenantk . Tenant2 v Tenantk

[ : 491 [ AP ]

VM‘ VM‘

VM
M WM WM
[ Daemon ] [ Daemon ] . [ Daemon
Daemon Daemon Daemon W
N == EEEEEEEEE
. Data Local File System . Data Parallel File System
(&) NoSQL over local file system. (b) NoSQL over parallel file system.

Figure 1.2: Different storage layers for NoSQL data store.

While the local file system has prevailed in the cloud platfdor quite some time,
the parallel file system (PFS) has begun seeing usage indhd ad both industry [68]
and academia [2, 79]. Originating from the high performacmeputing (HPC) platform,
PFS is a type of clustered file system that partitions datasaca dedicated storage node
cluster [81]. PFS provides good scalability, high bandiwidtcess, and failover, all of
which are missing in a local file system solution. PFS seraxurrent access from a
number of clients and operates over high-speed networksanltbe mounted to multiple
nodes and allows files to be accessed using the same integfadesemantics as local file
systems. Behind the scene, PFS transparently hides thelexatigs of accessing across
different storage nodes, data replication, and fail ovemfiend users. Figure 1.2b depicts

the scenario of a NoSQL store which is set up over PFS. Theaasearvice per node gives



the illusion that data is stored in local file system whilegality data is transferred to/from
PFS transparently. PFS can take over the responsibilitgl@fie data storage which is

important in the NoSQL storage system.

1.2.3 Layer Mapping

Either of the logical views in Figure 1.1 can be mapped to drtb@ physical implemen-

tations in Figure 1.2. Usually the NoSQL store relies on dual file system to store data.
Thus this dissertation studies the performance interéer@mthe multi-tenancy case using
a local file system (non-shared data-LFS). The unawareri¢iss NoSQL store to the fea-

tures PFS offers makes it inefficient to run a NoSQL store BN« today. This dissertation
explores the viability of using PFS to support data sharicrgss tenants in NoSQL data
store (shared data-PFS). We leave the investigation obpeance interference in NoSQL

over PFS for future work.

1.3 Research Problems

The cloud hosted NoSQL data store has seen a great deal &f nseguse of its scalability
and high availability. Because cloud environments enamisharing, resource sharing and
data reuse across tenants is a growing use case. Multidgmasuch a shared environment
imposes significant performance challenges on the use ofQNoSore, however. The
following are the problems addressed in this dissertation.

e Performance interference prevention across tenants imaheshared data-LFS case

e Cost Effective multi-tenant access in the shared data-RES ¢



1.3.1 Performance Interference Prevention

Tenant data and requests may be consolidated in a singletendint NoSQL store. Due to
the co-location, there will be performance interferenc@agitenants caused by resource
contention. Interference prevention can be realized froendient perspective when a
service level agreement (SLA) is enforced, or can be rehldhe server side when fair
share is enforced across tenants. This dissertation fecumsproviding a non-client centric
solution to enforce fair share on the server side. A misbethéenant may consume a well-
behaved tenant’s resources by its workloads, thus degyaldénlatter’s performance. This
interference behavior in the multi-tenancy setting is wirddle. The resource reservation
approach in Chapter 5 can potentially be used to enforce SA&dch tenant. We leave
the SLA enforcement for future work.

Real world scenarios provide evidence of performancefetence. Although Amazon
DynamoDB imposes a throughput limit to tenants to preveattiore deing dominated by
a few tenants [5], it does not guarantee throughput pravjsior provides fair share among
tenants [31, 95]. People from BloomReach Inc. report backveorkloads have a negative
impact on front-end workloads’ performance in the same &ad= cluster [10]. They also
report that back-end workloads from different teams (e@ants) may interfere with each
other as well [10]. Itis straightforward to address therf@ence issue by running different
tenants’ workloads on separate infrastructures, whiclesapproach BloomReach has
taken [10]. Dedicated hardware provides strong isolatinl@vers resource utilization
and thus increases cost. Effort is occurring in open soum®@L projects e.g. Cassandra
[14] and HBase [1], the base of the prototyped systems indisisertation, to support
multi-tenancy [13, 44]. However, both are still a work-imegress. Current effort simply

schedules requests for tenants in a round robin fashion ssaara (the tenant-oriented
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request scheduling is planned but not implemented yet ingdBand does not attempt
to identify the resource demands of tenants. There is no krevformance modeling
in the multi-tenant setting. In addition, many of the miéirancy features only became
available recently and some of them are not merged to th& {8] as of the writing of

this dissertation.

1.3.2 Cost Effective Multi-tenant Access

Running a distributed NoSQL store over PFS may introduceh@azls owning to the un-
awareness of the former to the PFS. For example, data mayriexessarily replicated;
extra network trips may be needed to access the PFS becaudasiimon service delegates
all the requests to the back-end file system; and additiorerhead may also arise from
the data replication and failover protocols, which are wessary in the presence of PFS.
In addition, the store provider may hold the resources (&M even if no request comes,
which is not cost effective. That is because if the VMs aretébwin or repurposed, the
data stored in the VM’s is not accessible anymore. Rece@tlyenberg et al. point out the
burden and inefficiency of running persistent daemon sesvior a key-value store in the
HPC environment [40]. We envision PFS will be widely usedha tloud and thus there

will be a pressing need to accommodate the features it peeu@NoSQL data store.

1.4 Contributions

This dissertation proposes several approaches to addeesaiti-tenancy issues discussed

in Section 1.3 for the shared and non-shared settings in€-lyd. They are discussed here:



Non-shared data-LFS setting | investigate the performance interference in the setting o
local file system for storage and no data sharing. An expertahstudy carried out on Cas-
sandra, a state-of-the-art NoSQL store, shows that a tevidrexperience unpredictable
performance in terms of throughput when multiple tenantess the store independently.
Chapter 4 proposes a throughput regulation framework #rgets system-wide fairness.
Specifically, we adapt and extend the deficit round robin rilgm [71] with linear pro-
gramming as the scheduler to regulate throughput. Theisonladaptively changes the
scheduling parameters to achieve system-wide fairnesdsdtprotects the throughput of
reads in face of scans by splitting a scan operation intolgredes and scheduling them
along with reads.

Throughput regulation can be viewed as a form of resouresvason because through-
put represents the underlying resource consumption. Uinass every byte delivered to or
from the store consumes the same amount of resources. Swadsamption is also used
by [95, 106]. But this assumption does not always hold, @afigdor workloads having
different access patterns and demanding different ressurd workload with a hotspot
access pattern may require more cache than a workload wathceom access pattern. An
equal reservation of cache and disk usage for all tenantsnofyield the best result or
even fail to provide performance isolation. Chapter 5 mgtle impact of various resource
demands and proposes a resource reservation frameworkaseHi® enforce the perfor-
mance isolation among tenants. The reservation is alsticelaghe sense that if a tenant
does not use up its reservation, the system is able to re&ddts redundant reservation
to tenants in need. Chapter 5 experimentally evaluatesrdiit fair sharing algorithms
and tries to quantify the trade-offs between fairness afidaicy. It also quantifies the

overhead introduced by the isolation mechanisms as too ouarhead can undermine the



benefit of fairness.

Shared data-PFS setting | explore the feasibility of using PFS for NoSQL data store in
a shared data setting. Chapter 6 proposes a lightweighvden- store (KVS), a special
form of NoSQL data store, that makes use of PFS as the backtermbje and does not
require daemon services running in front. Such a featuoevalthe KVS to be accessed
on demand and avoids holding resources when no tenant medpessts. A VM hosting
a tenant can be revoked or repurposed once the tenant hasetedngending requests. In
addition, the responsibility of data reliability is shiftéo PFS. The KVS only cares about
data organization and serving request which is more ligigiwtehan a traditional KVS.
Internally, the proposed KVS is built on an embedded KVS, Berkeley DB [75], to en-
able direct file system access for high performance and stufipono persistent daemon
service feature. Embedded KVS solutions, including Bek&B, do not support concur-
rent writes due to file system locking. The proposed KVS fe#idhe spirit of log structure
merge tree [76] to organize the data in PFS to support coeicuwrrites in a distributed
environment. To remedy the read deterioration caused kgsyiit uses a novel tree-based

structure and parallel compaction to efficiently supportaorent reads.

1.5 Dissertation Outline

The remainder of this dissertation is as follows. Chapterezgnts the background infor-
mation about multi-tenancy model and NoSQL data store. @nhd&summaries related
work. Chapter 4 investigates the performance interferanceproposes a throughput reg-
ulation mechanism targeting system-wide fairness. Chdpfarther studies the perfor-

mance interference based on the results from Chapter 4, esutides a workload-aware

10



resource reservation mechanism for performance isolafibapter 6 focuses on building a
lightweight key-value store, which is called KVLight, oweparallel file system with novel

data structures. Chapter 7 concludes with future work.
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Chapter 2

Background

Supporting multi-tenancy is important in a storage senlikkea NoSQL data store. We
first present the background of multi-tenancy includinglginition and different models.
A cloud hosted NoSQL data store usually runs as middlewatngd®sn user applications
and file systems. It consists of a set of service processesngiover a raw file system
and provides richer data management features than a rdiglgystem. There are many
NoSQL systems nowadays with different APIs, data modeld,anhitectures. Thus we
present an overview of NoSQL data store from several petispséncluding architecture,
data distribution, data replication, and resource managenwith a focus on three popular
NoSQL systems, i.e. Cassandra, HBase, and Berkeley DB J[8wHich our prototyped

systems are based on.

2.1 Multi-tenancy Model

Multi-tenancy, in its most basic definition, refers to anhaiecture in which a single soft-
ware instance serves multiple users, customers, or tefr@jtdviulti-tenancy can be found
in several different places: network multiplexing [58]rtuial machine management [92],

file system sharing [104], job runtime framework [54], datarmagement system [53] and
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so on. This dissertation focuses on multi-tenancy in tha detnagement system, particu-
larly NoSQL data store.

Generally, in a data management system, the multi-tenaantypoe supported in three
different models: shared machine, shared table, and spavedss [53]. Each has different
advantages and disadvantages, shown in Figure 2.1. In #tiedsmachine model, virtu-
alization technologies like virtual machines are used tst lnifferent tenants in a shared
machine. It provides the strongest isolation among terastenants are separated by dif-
ferent VMs. On the contrary, the shared table model, whitbwal different tenants to
share the same table, provides the weakest isolation. Batedifferent tenants are mixed

together in the same place, as are the requests.

b

Shared
Table

Shared
Procass

Resource Ltilization

Shared
Machine

Tenant lsolation

Figure 2.1: Different multi-tenancy models on storage ise.

From the system utilization perspective, the shared maadmodel sacrifices the most
because each tenant is allocated with a VM which holds up gmoni@on of dedicated
system resources. The shared table model, however, ashisgehighest utilization by
aggregating tenant data into a single location and servitigput dedicated resources.

The shared process model stays in the middle of aforemettiovo models from both
the isolation and resource utilization perspective. Indh&red process model, each tenant

has its own table and enjoys a dedicated view of the storagdetthe hood, the storage
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service is shared by multiple tenants. Tenants have to iireemory, CPU, 1/O, network
bandwidth and all other resources allocated to the paati@ibrage service process. Com-
pared with the shared machine model and the shared tabld rttuelshared process model
trades a little bit of tenant isolation for better perforro@amnd scale. On one hand, it solely
relies on throttling and reservation to isolate resour@gascross tenants within the same
process, which may not be as strong as the shared machind. naixdéhe other hand, it
improves resource utilization in the sense that resour@gstra reused by different tenants
and reallocated among tenants. For instance, if a tenastradeise up the memory given,
the management system may reallocate the memory to othemtteim need. The shared
process model is also superior to the shared table modainstef flexibility because the
shared table model has to provide a unified schema to staadrdat all different tenants
with different formats, which is very difficult and inflexil

Most research work about interference prevention targestiared process model in
regard to provide isolation across tenants because of trentatjes mentioned above [24,
84,104,106,113,115]. Similarly, in this dissertation,faeus on the shared process model
for isolation among independent tenants. For tenant categ@n over a shared data set,
we use the shared table model as tenants expect to see théakdensructure and data in

this case.

2.2 Overview of NoSQL Data Store

To deal with the rapid growth of data, NoSQL data stores asggded as modern web-
scale databases in mind and the characteristics of schremaldta model, easy replication
support, distributed access, simple APIs and eventualistensy [74]. According to the

CAP-theorem [39], conflicts arise among different aspettsdistributed system in terms
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of three factors: consistency, availability and partittoterance. The relationship between

factors is shown in Figure 2.2.

Consistency Availability
All clents see The system continues to
cument data CA operale as expected aven
regardiess with node
of updates failures
of deletes 3

CP - AP

The system continues
1o operate as expected
despite network or
message failures

Partition
Tolerance

Figure 2.2: Characteristics of NoSQL store. Souraetp://blog.nosqltips.com/

2011/04/cap-diagram-for-distribution.html

The CAP-theorem postulates that only two of the three faotan be achieved at the
same time. For the traditional SQL database, which strékseSCID properties (Atomic,
Consistency, Isolation, and Durability) [39], partitibmlerance or availability is usually
sacrificed to honor the consistency. However, for NoSQL dtiee, because it is designed
to be distributed in nature, availability and partitionei@nce become critical. Thus most
of NoSQL data stores trade in consistency with availabditgl partition-tolerance. This
results in the BASE properties (Basically Available, Sstfite, Eventually consistent) [39].

Next, we investigate NoSQL stores in terms of four aspecthitecture, data distribu-

tion, data replication and consistency, and resource neanegt.
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2.2.1 Architecture

Generally speaking, a NoSQL store can fall in one of the twegmaies: single node ori-
ented and multi-node oriented. Single node oriented NoS@Qile $s designed to work in
a single node environment and usually implemented as aYilerabedded into the appli-
cation. Unlike multi-node NoSQL stores, which have peesistunning daemon services
delegate the access to file system through network, single N@SQL store allows ap-
plications to access the file system directly and read oewddta without going through a
network. In addition, no persistent daemon service is requiThus it is lighter-weight and
performs better than multi-node NoSQL store. ExamplesitheBerkeley DB (BDB) [75]
and Level DB [62]. Figure 2.3 displays the architecture inBBBDB embeds as a library
to an application. It provides a set of APIs for applicati®msaccess the data store and
carry out transactions. Lock, buffer pool and log are the¢lmain components in BDB.
They all run in an application process space. BDB interadtis thie file system to store

data through standard file system APISs.

/ Apglication \
I

......................

Berkeley DB Library

ALCEss

Mathody | | TS|

Pk e i File System

Figure 2.3: The architecture of Berkeley DB, a single nod&@Qhb data store.
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However, single node NoSQL store suffers from data loss amdt scalable because
all its data is stored in the file system local to the node. d&siit only allows exclusive
writes due to file system locking. Applications in differgmbcesses have to take turns to
write to the store. In contrast, multi-node NoSQL store (stributed NoSQL) is designed
to work across multiple nodes or even multiple data centirgartitions and distributes
data across nodes with replications, and provides not alighle data storage but also
scalable access as requests are distributed in the clést@mples of multi-node NoSQL
include HBase, Cassandra, and CouchDB [21].

Most of the distributed NoSQL stores draw heavily from eitthe master-slave archi-
tecture or the peer-to-peer architecture, shown in FiguteThe master-slave architecture
is used in Google BigTable [16], and its open source impldatemse.g. HBase, Hy-
perTable [50]. The master is responsible for bookkeepintpdata, request routing and
coordinating among slaves while the slave is responsibledoying out the actual work-
load and responding to clients directly. The peer-to-peehitecture used by Amazon
Dynamo [28] treats each node as an equal peer. There is n@lceontrol point in such
architecture and thus it can avoid single point of failur@dis usually communicate and
propagate messages through a gossip protocol. Howeveto thee peer-to-peer character-
istic, it is usually hard to coordinate activities among esdCassandra is an open source
implementation of Dynamo. Voldemort and Riak [86] are alsawily influenced by Dy-
namo’s design.

In practice, distributed NoSQL store is preferred over glsgimode NoSQL because
of the aforementioned advantages. The main use of single NOGQL is to serve as a
building block for a larger system. For example, BerkeleyiBBsed as the back-end store

in each individual node in Voldemort [100] and Riak [86]. Beley DB also sees usage in
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(a) The master-slave architecture of HBase. HMastermonitors and coordi-
nate differenHRegionServes, which responde to client for read/write requests

directly.
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(b) The peer-to-peer architecture of Cassandra. Theredemiwal control point

coordinator

int the system. A client can connect to any node in the clu3tee connected
node serves as a coordinator that forwards the request twthes hosting the

replicas.

Figure 2.4: Two main architectures for distributed NoSQireas.
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many other systems [6].

2.2.2 Data Distribution

The data distribution scheme describes how data is orgamzée underlying file system
and distributed across nodes. It determines the way datssaeorks. Different distri-
bution schemes may be suited to different data access patt&enerally, there are two
main distribution approaches for most of the systems: ke based distribution and
hash based distribution. The key-range based distribtsrthe entire data set sorted ac-
cording to the order of the key and divides the data set inteawerlapped partitions. A
partition represents a range of keys between a minimum kieyexand a maximum key
value. Keys falling within that range go to the correspogdoartition. Because keys are
sorted, scan queries can be answered very easily and quidldgse uses the key-range
based distribution to distribute data. Figure 2.5 showss#&ildution scenario. In HBase,
data is stored in a table as rows and sorted by the.keyhe row key. As the data grows,
the table will be split into several pieces callBggiors. HBase sysadmin can specify
what the splitting policy may be for the store. After the &pig, each region consists of
a bunch of sorted rows and is the basic unit of data distobutRegions are distributed
acrossRegionServey running in each node in the cluster. The HMaster holds aestqu
routing table which describes the mapping between a key &gi@am and its server. The
client interacts with the HMaster first to figure out which Regservers to connect for its
key requests. Then the client communicates to the Regivatedirectly for data access.
Although HBase can support efficient scan operations, it sudfer from load imbalance
situation as some key ranges may be accessed more freqtiemtlgther key ranges.

The hash based distribution uses a hash function to randbadly keys to different
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Figure 2.5: Key-range based data distribution in HBase.

servers. The randomness may avoid the load imbalance oogurkey-range distribution.
In practice, consistent hashing is usually preferred bee#umakes adding and removing
machines in the system easy [56]. Specifically, the outpluegof the hash function form
a ring. The same hash function is applied to all data and nthfgppositions in the ring.
Each individual node in the cluster maps itself to a positiothe ring as well and has
knowledge about other nodes’ positions. A node is resptafib storing all the keys that
fall in the range between this node and its predecessor #odkent can send requests to
any of the nodes. A node receiving a request acts as a cotodthat either reads or writes
data to its local storage, or forwards the request to angitogrer node based on the output
value of the hash function. To deal with various node capcéind data skew, a node may
be mapped to multiple positions in the ring to take more datehias a larger capacity or
further randomize the mapping in the case of data skew. €igur shows an example of 4
nodes mapped into multiple positions in the ring. Each pmsis responsible for a range
of keys. Although hash based distribution can avoid loackilafice, it makes serving scan
operation very difficult as data is not sorted in the backend.

Cassandra by default uses consistent hashing to partiteoddta. It uses a MD5 hash-

ing algorithm to hash the row key to a big integer. The outguvi®5 is guaranteed to
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Figure 2.6: The principal of consistent hashing. It is usétkly in the peer-to-peer archi-
tecturee.g. Dynamo, Cassandra, Riak, and so on. Soulgyp://www.paperplanes.

de/2011/12/9/the-magic-of-consistent-hashing.html

follow balanced distribution even if the input keys do nabwtan even distribution. It fol-
lows the steps described above to handle requests. VoldambRiak also use consistent
hashing to distribute data and follow similar request hisugdéteps.

Finally, Berkeley DB supports both the key-range basedh@form of a B-Tree [75])
and the hash based data organization. But it does not disdriata across nodes as itis a

single node oriented NoSQL data store. It simply stores idédedifferent files.

2.2.3 Data Replication and Consistency

Distributed NoSQL data store usually replicates data taigeohighly reliable and con-
current data access. Different replication policies maypplied and lead to different
consistency levels. Notice that Berkeley DB is not conceérwéh data replication and

consistency as it only stores data locally.
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HBase’s replication policy and consistency inherit frore tHadoop Distributed File
System (HDFS) which is the underlying storage for HBase. BDéplicates a block, its
basic data unit, into two other nodes in the cluster by defdlubne of the three nodes is
down, the other replicas can still serve the requests. HD&&tains strong consistency for
the data access. A write to HDFS returns only when all theaaphre written successfully.
Thus any reads after the write can get the latest value. Tatamrecord, the new value
will be appended to the write-ahead log file stored in HDFSsawd in thdVlemStorgan
in-memory structure). Reads which follow can queryMemStordo get the latest value.

In contrast to HBase’s rigid and singular model of replieatand consistency, Cassan-
dra, the representative of a peer-to-peer system, has hllesaheme. Similar to HBase, it
replicates a piece of data to two other nodes. Cassandrasadlpplications to pick repli-
cation policies such as “Rack Unaware” which randomly pabe replicas in the cluster,
“Rack Aware” which tries to place replicas in different radk the same data center and
“Datacenter Aware” which intends to place replicas in ddfe data centers for greater reli-
ability. Cassandra by default follows eventual consisgdnd allows different consistency
levels to exist in the system. It uses the quorum to manageetiicas. The application
can specify the condition of a successful operation as thaew of replicas responds. For
example, a quorum with value “ONE” can have a write return nvbaly one replica is
written successfully and other replicas are still beingten. A quorum with value “ALL"

requires a read to return only when all the replicas respond.

2.2.4 Resource Management

NoSQL data store usually has multiple resources involvestoe requests. For example,

CPU for serialization and de-serialization, memory forleag and buffering, disk for
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reading and writing, network for transferring, and etc. @guration about how resources
are allocated plays an important role in performance in scases.

Single node NoSQL functions as an embedded library and negrtag memory as well
as disk usage all by itself. Berkeley DB manages the memas s reads caching and
writes buffering. It also controls the way to generate thiadides on disk, e.g. how big a
file is, when to flush a file, and etc.

Compared with the monotonic resource management of siogle NoSQL, distributed
NoSQL store usually separates the management into layetsBase, HDFS stores data
and manages the disk resource, while the HBase daemoneseoritrols the CPU, cache
and network resources. In Cassandra,RRlayer controls the request scheduling while

the StorageProxyayer takes care of the actual reading and writing.
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Chapter 3

Related Work

Multi-tenancy hosting of users in cloud NoSQL data stordawered by cloud providers
because it enables resource sharing at lower operatingAesiscussed in Chapter 2, the
models of multi-tenancy can be realized in three differdrdti@ctions: shared machine,
shared table and shared process [53]. Xiong et al. [110\vakmants to set up database
instances within VMs that share a single host. The usage obyRk&nants uses the shared
machine model where tenants share the same set of hostsfoBadecom [109], provided
as software-as-a-service (SaaS), uses the shared tabé winele different tenants share
the same set of database tables. Amazon EC2 [32] providessinicture-as-a-service
(laaS) by allowing tenants to create virtual machines (Vivi3hared hosts. Amazon Dy-
namoDB service [5] and Relational Cloud [23] expose thewesehs platform-as-a-service
(PaaS), and follow the shared process model where tenaants e same data store pro-
cess. Next, we discuss the multi-tenancy in the sharedcgeoase and the shared data

case.
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3.1 Storage Service Sharing

The shared process model is usually preferred to servettendih non-shared data [53],
because it provides reasonable isolation without imposingnuch overhead as discussed
in Section 2.1. Therefore, a majority of work [24,72,84, 8%, 106] about storage service
sharing targets the shared process model. This sectiosdimatnarizes multi-tenancy sup-
port in different storage services classified as file systetational database and NoSQL
store. Then it surveys the literature of resource schegdwdpproaches used for perfor-

mance isolation.

3.1.1 Storage Services

File system Wachs et al. use a time-quanta-based disk scheduling agpvath cache
space partitioning for performance insulation among apgilbns running on a single file
server [104]. We adopt the idea of partitioning cache ankifdistenants but coordinate the
partitioning over these two resources through a constogtitnization model rather than
treating the resource independently. In addition, we fanus distributed store which is
more complicated than a single node server. Due to the caipldhe underlying storage
system is sometimes treated as a black box as responsegyammiinom it vary in several
aspects e.g. latency, size, etc. Gulati et al. use a feedimsad approach on a black-box
storage system to dynamically adjust the number of I0s tstméhe storage system with
observed latency as feedback [41]. We employ the idea obBesddbased scheduling, but
model all the tenant behaviors in a unified constraint o#ation problem and globally

adjust the scheduling parameters instead of having sepadaistments per tenant.
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Relational Database Narasayya et al. propose an abstract of resource reseratied
SQLVMon resources such as CPU, I/0O and memory for tenant perfaeriaalation and
focus on I/O scheduling [72]. Das et al. present a CPU scheglapproach in SQLVM
to reserve CPU usage for CPU interference prevention [24jilédur approach uses re-
source reservation as well, we target multiple resourcesndwle instead of treating them
individually, because various resources may not be entinelependent. With regard to
multiple resources, Soundararajan et al. propose a nagdtiurce allocator to dynamically
partition the database’s cache and its storage bandwidtls 8w minimize request latency
for all the tenants [97]. However, different from [97], weend to provide fairness across
tenants. Additionally, we attempt the partitioning in atdisited NoSQL store with hi-
erarchical architecture instead of a monolithic RDBMS. \atn et al. utilize a central
scheduler to dispatch requests to different back-end RDBMSmulti-tier web applica-
tion [105]. Our work relies on each node to enforce the respueservation instead of a

central scheduler.

NoSQL Data Store Pisces [95] uses partition placement, replica selectiothfar queu-
ing to provide multi-tenant fair share in terms of throughiplMembase, a memory-based
NoSQL store with hash partitioning. Like Pisces, our workoalargets system-wide fair
share. In addition, we also adapt the deficit round robinralym [93] for scheduling.
Unlike Pisces, our target storage abstraction has disk,aneand network resources in-
volved, and is much more complicated than the memory-based Risces uses. Also
unlike Pisces, our approach distinguishes different nesodemands from different work-
loads. Besides, our approach does not assume a static kigtution. It can dynamically

adjust tenant weights to achieve system-wide fairness. aéh€ [84] divides the block
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cache space in HBase and limits a tenant’s cache activitigbérmthe cache space it is
assigned to resolve the cache interference among tenantseexPeriments show that the
cache partition by itself does not resolve interferenceomes cases.

The open source community has made efforts on supportifigrp@nce isolation for
multi-tenancy in HBase and Cassandra [13, 44], although limi#ed way. In HBase,
to prevent a tenant from taking over the entire store, quaaagement is used [44]. It
enforces the maximum number of tables and the maximum nuaflbegions a namespace
i.e. atenant can create in the store. Furthermore, to prévemterference caused by data
and request co-location, HBase uses the concept of regiearggouping [43]. It instructs
the load balancer to assign regions such that a region semieiserves a particular set
of regions from a particular set of tenants. Despite theiSagmt amount of efforts on
supporting multi-tenancy in HBase, it is still a work-inggrress. Many of the multi-tenancy
features only became available recently and some of themadnmerged to the trunk yet
[43]. In addition, the current multi-tenancy support does econsider resource utilization
of workloads and uses a static way to dispatch data and regeigs the region server
grouping approach. As our experiments show in chapter Jrigg resource demands
from workloads may lead to low utilization or even failureigdlation. Our work in HBase
can shed some light of the future development of multi-tegaupport.

Compared with HBase, the support of multi-tenancy in Catisais lessened [13]. Cas-
sandra uses a simple weighted round robin algorithm to steedquests from different
tenants. Such a scheduler fails to prevent the dominaticawse it keeps looking for pend-
ing requests. An ill-behaved tenant can use a large numbiaredds to send requests and
take up most of the scheduling chances easily. Thus muléirtey support in Cassandra is

an on-going effort — there are still many open tickets [13lir @ork in chapter 4 extends
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Cassandra in terms of multi-tenancy support in a schedapproach with a feedback

control loop and some adaptive control mechanisms.

3.1.2 Resource Scheduling

Resource scheduling can regulate the resource usage tbdamination i.e. some tenants
dominate the use of resources. These kinds of resourcesl®€PU, cache, disk, network
bandwidth, etc. We use resource scheduling in this didsmrteo enforce fair share. We
adapt the deficit round robin algorithm [93] because of ita@icity and effectiveness.
However, we present related work of resource schedulingae ©f it could strengthen
the results in future work. We first present the general saleglalgorithms classified as
the virtual-time-based approach and the quanta-basedagprThen we discuss the usage
of scheduling algorithms in two typical scenarios: resgoveand proportional share. Most
work on resource scheduling focus on either enforcing nesoteservation [24,42,84], or

providing proportional share [17,41, 95, 104].

Scheduling Algorithms Generalized processor sharing (GPS) is an idealized skdredu
and achieves perfect fairness with the assumption thahtenaaffic is fluid [80]. How-
ever, in real world scenarios, resource schedulers canappyoximate the behavior of
GPS due to the discretionary nature of computer [80]. Thexdveo categories of approx-
imation: virtual-time-based approximation and quantagobapproximation. The virtual-
time-based approximation estimates a request’s startamdefinish time as virtual time,
and uses them as scheduling criterions. Fair queuing stdrdéi@) assumes request time
is linear to the size of data delivered [29]. Weighted faieging scheduler (WFQ) extends
FQ by considering weights in the estimation of finish time][8Both FQ and WFQ pick
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a task with the smallest finish time as the next task to run2][pdesents a comparison
of different fair queuing algorithms. The quanta based exipration does round robin
scheduling to schedule tasks according to the resourceajalacated. Weighted round
robin (WRR) scheduler allocates quanta based on tenanthwgeidf works for fixed size
tasks but struggles with variable size tasks because itresgan estimation of mean task
size [57]. Deficit round robin (DRR) is a variation of WRR ireteense that it approximates
GPS without knowing the mean size of tasks [93]. In each adivegiround, DRR sched-
ules tasks according to a tenant’s quanta. Remaining qualtbe accumulated to the
next scheduling round. Due to its simplicity and low time gexity as shown in [24, 95],
we use DRR in our resource scheduling. We also empiricallypare DRR with WFQ, a

virtual-time-based scheduler, in Chapter 5.

Reservation mClock uses reservation and limitation to mitigate 1/O ifégeence across
VMs running on the same hypervisor [42]. Its virtual-timasked scheduling approach
statically allocates 1/O resources, which may cause thrag#ocapacity to be under utilized.
In contrast, our reservation is elastic and adaptively gharaccording to workloads. A-
Cache reserves the block cache space for tenants to protspohoriented workload [84].
Our experiments show that our framework proposed is ablesolve interference in some
cases where A-Cache fails because it only considers bladtiecdDas et al. calculate the
deficit of CPU reservation and propose a variant of deficincbrobin algorithm (DRR)
[93] for elastic CPU reservation [24]. However, the elastpproach simply boosts the
reservation to a fixed percentage and is not flexible enougiwéokloads with dynamic
resource demands. Our elastic approach adjusts the reésarpeoportionally according

to the actual throughput a tenant yields, and is able toaeate resources when a tenant’s
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workload changes its resource demands. SQLVM reserves [(@PBperations/second)
for each tenant [72]. It employs the virtual-time-basedesithing approach in [42] and
translates the IOPS to a deadline for each tenant to guidectiexluling. Narasayya et al.
study a page replacement algorithm for fair sharing thegoydfool memory in a RDBMS

[73]. The deadline oriented approach and memory sharifgntqae can potentially be

used in our framework to enforce service-level objectiyedied by tenants.

Proportional Share Pisces [95] adapts the deficit round robin algorithm [93}fwough-
put regulation and intends to achieve Dominant Resouraaéss (DRF) [38]. We argue
that the physical resources reflected from bytes read amd byitten are not independent
and violate a fundamental assumption of DRF. Unlike Pismasapproach asynchronously
updates tenant credit account per request instead of symaolrsly because the disk-based
NoSQL store may have a longer delay than a memory-basedrRismes uses. Wachs et al.
use a time-quanta-based scheduling for fair sharing the[ti®]. A tenant withholds the
disk until the given time expires even though the tenant nayfully use the disk at that
time frame, which leads to low disk utilization. Gulati et ake the FAST-TCP algorithm
to detect congestion and provide fair share on a black boageosystem [41]. Our frame-
work in HBase could adapt this approach in the HDFS scheglléivel. Our schedulers
use credits to represent the chances of scheduling. Thalzation hypervisor Xen [17]
also uses the notion of credit to schedule VCPU, a virtual @Ripped to a physical core.
However, unlike our schedulers where credits are only amoeqpation of the requests’
resource consumption, the CPU usage of a VCPU is represkntind credits in the Xen
scheduler directly. Additionally, a VCPU can yield its usagf the host CPU due to I/O

blocking. A request in DRR cannot yield itself once it is sthied.

30



3.2 Data Sharing

This dissertation targets the key-value store (KVS), aifipdorm of NoSQL data store,
in the shared data case. KVLight, the proposed system, beeshtired table model for
multi-tenancy, which is the most efficient way of sharingedatth the same format among

tenants as discussed above.

3.2.1 File System and Key-Value Store

There have been efforts on integrating parallel file systeR8) in the cloud [2,52,68, 79].
We focus on building a storage layer over parallel file systetmetter utilize its features.
Yin et al. compare the performance between a parallel filkegysnd a KVS in terms
of throughput [111]. Ren et al. propose a file system thaizeslan embedded KVS to
manage the file system metadata [85]. KVLight is a KVS thauigt on top of a PFS and

realizes its data reliability and high scalability feature

3.2.2 Key-Value Store As A Library

Single node KVS (S-KVS) usually embeds itself as a libraryhte application for high
performance access in a single node environment. Berkelleydes B-Tree or Hash to
organize the key-value pairs [75], while LevelDB storesadatfiles in a logical tree level
[62]. RocksDB [87] extends LevelDB in terms of multi-coreimation, multi-threaded
compaction, and so on. Systems like NVMKYV [69], FlushStd2é][focus on building
S-KVS over flash storage with suitable data structures. KWt extends the usability of
S-KVS for concurrent writes in a distributed environmentandtraditional S-KVS does

not support.
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A distributed KVS over multiple nodes (M-KVS) is usually gated in real world sce-
narios to handle concurrent access. Several M-KVSs use S-#Svthe building block be-
cause it is lightweight and has high performance. Both Dym§8] and Voldemort [100]
use Berkeley DB as their default back-end storage. Riakibuiisé own S-KVS called Bit-
cask [9] but allows LevelDB as one of its back-end optiong.[880st M-KVS require
persistent running servers and assume the underlying Blkemsyis not reliable. KVLight
is designed to support concurrent access workloads butecaodessed on-demand without
persistently running servers. MDHIM [40] is a recently deyped KVS that also provides
on-demand access without running persistent servers istigbdited environment through
MPI and a S-KVS i.e. LevelDB. However, unlike MDHIM, KVLighdoes not require
applications to run a MPI cluster with fixed number of proessdue to the static data
partition.

The idea of running a storage system as a library or “sers®rlystem is also employed
in file systems. PLFS is a library file system which optimizesapplication’s data layout
for the underlying file system [7]. DeltaFS embeds the fildeysmetadata server as a
library in an application to remove the centralized metadatrver bottleneck [120]. They

are both orthogonal and complementary to KVLight.

3.2.3 Compaction Management

Most KVS achieve high write throughput through log-basedevr The proposed KVS
in chapter 6 also follows the same spirit. Updates are apzetal log files rather than
applied in-place. As a result, a read has to consult sevéaldgenerated by writes to get
the data. A background procedure called compaction runsgieally to remedy the read

deterioration caused by writes [3,45,46]. BigTable’s cactpn merges a fixed number of
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data files whose sizes are the smallest into one single file (J&ssandra and HBase also
adopt such an approach. This can reduce the number of filasl a@guest needs to consult.
Although the number of data files decreases, a read requgsititidave to linearly scan
several data files because the key range of each file overidpsthers. LevelDB uses a
level compaction to compact files level by level [63]. It digs the key space into disjoint
key ranges in separate files. Files in the same level will lthspint key ranges. In a
compaction, a file in level-L and files in level-(L+1) with olepped keys are merged into
anew file in level-(L+1). Therefore, a read request can bevared without linear scanning
multiple files. The disjoint partitioning is not directly plicable in our system because we
need to accommodate concurrent writes from different mee® Instead, we propose a
tree-based compaction strategy to approximate the lewabaotion. Additionally, we also
allow several compactions to run in parallel to speed up titeeeremedy process. This is
similar to the multi-threaded compaction in RocksDB [87]igthonly applies in S-KVS.
Ahmad et al. propose a compaction management frameworlotth@dds the compaction
on a dedicated server to lower the impact on actual worklaadsises a cache pre-fetching
scheme to avoid the performance penalty from offloading|&.adopt the offloading idea

and leave the cache usage in future work.
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Chapter 4

Multi-Tenant Fair Share in NoSQL Stores

As discussed in Section 1, often for economic reasons, a Nafa€a store will be shared
by multiple tenants. The independent tenants may be fromglesorganization or from
different organizations. Tenant workloads operate orodispata sets and a tenant should
not see the impact of the workloads of other users. In a clonde@ment, tenants often
want to treat the entire storage system as a black box thataae on demand, while in
reality their data sets are usually co-located and causeires contentions [95]. Thus a
critical goal of multi-tenancy is fair sharing across tetsain a fair-shared system, fairness
is achieved in the sense that a tenant gets her share of tteerspe matter what other
tenants do, i.e., a well-behaved tenant should not experiany impact from misbehaved
tenants. Fair share is also the foundation of providingedsht service level agreements to
different tenants. Especially in a cloud environment, stemants are willing to pay more
for a larger share of system resources.

Fair share can be realized at two different levels: 1) at tifi@structure level where
fairness is guaranteed by directly scheduling physicaluess (disk, CPU, network, etc.)
or 2) at the application level where fairness is guarantgedpplication level scheduling

e.g, Hadoop fair scheduler [35] schedules based on task slatdverab scheduler [98]
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schedules based on compute nodes. For traditional stoyatgnss, fair share is usually
provided at the infrastructure level and involves a singigsical resource on a single ma-
chine [97],e.g, disk bandwidth, CPU, network bandwidth, etc. Ensuring$aaring in a
distributed NoSQL data store is more challenging becausilodata stores engage mul-
tiple types of resources: cache memory, CPU, disk. It isatiffito maintain a scheduler
and queues for each type of physical resource because tlesgusers need to cooperate
to serve requests. In addition, the use of a coordinator modgnamo style NoSQL stores,
e.g, Cassandra, involves multiple nodes to handle one reqtiestcoordinator node takes
requests and forwards the requests to the nodes where thésdatated. Such features
require the fair scheduling algorithms to coordinate ammodes. Therefore, our proposed
scheduling approach for ensuring fair share in a multithegdNoSQL store is done at the
application level.

In this chapter, we propose a novel approach to providelairesacross multiple tenants
for NoSQL data stores, especially for Cassandra [14,608.afproach is designed to work
in a distributed manner — cooperation among nodes is takemaatount to provide system-
wide fairness (global fairness) instead of single nodeé&ss (local fairness). Furthermore,
the system provides fair share for read operations by ptigethe head-of-line blocking
impact of scan operations. In summary, this chapter malkefotlowing contributions:

¢ A framework that employs a feedback control loop to monitad achedule requests;

e A scheduler based on the adaption and extension of deficitrmabin algorithm [71]

with linear programming;

e Adaptive control approaches to provide global fairnestesns of local fairness and

protect reads from scans;

e Experimental results show effectiveness of our system.
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4.1 Fairness Experiments in Cassandra
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Figure 4.1: Throughputs of different workloads in a sharetsandra. Each tenant’s
throughput is represented by a line of a different color. Twend shows the number
of threads a tenant uses and what requests it is sending5€.d. means the tenant uses
50 threads to send read requests, “50 s” means the tenarbQuse®ads to send scan re-
guests. (a) Tenants using the same number of threads cah&ae. (b) Unfairness occurs
when tenants use different # threads. (c) Unfairness oaghies read operations coexist

with scan operations.

We motivate the need of fair share support in Cassandra ksvil We use Yahoo
Cloud Storage Benchmark (YCSB) [20] to generate the woddand simulate multiple
tenant access. We set up a 9-node Cassandra cluster arateaBoadditional nodes to run
the YCSB benchmark clients. Each tenant owns 1,000,000, r&eh row size is 1.2 KB,
the row is pre-loaded by YCSB in a table that is independemh fother tenants. A YCSB
client connects to multiple nodes in a Cassandra clusteutfirmultiple TCP connections.
Each TCP connection is managed by one thread which can bevedsieom the server
side as well because Cassandra launches one thread pectiomrie handle requests.

Like [22, 95, 105], we measum@peration throughpuite. operations per second (op/s) for
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each tenant to represent a tenant’s share on the system.ofedetails of the experiment
setup, please see section 4.4. Figure 4.1 plots the throtigb@ function of time.

In the first experiment, Figure 4.1a demonstrates that médlrits see roughly the same
throughput at 17,000 op/s which we interpret to mean thatrteneach receive a fair share
of Cassandra under this scenario. In the second experifagntte 4.1b shows tenants
with 50 threads see throughput of about 6,000 op/s whilegharit with 300 threads sees
throughput that is 7 times higher (about 40,000 op/s). Caatpto the first experiment,
throughput for the tenants with 50 threads drops 60%. Oupasipon is that the large
drop in performance to the 50-thread tenant is because Q#ssmaresource allocation is
done based on the size of the workload that the client gesger@ihis test clearly shows that
in a shared Cassandra cluster, a tenant’s throughput carfllbericed by other tenants’ de-
mands, i.e., the number of threads. Figure 4.1c delindlaga®sult of the third experiment.
The read-only tenants’ throughput oscillates dramafaaild is worse than the one in Fig-
ure 4.1b. Even with the same number of threads, the readtenénts do not get similar
throughput to each other. We attribute the difference tanigact of the scan operation
because it makes the system suffer from head-of-line bhgckin summary, the fair share
among tenants of Cassandra depends on tenant’s workloald tiBonumber of threads a
tenant uses and types of requests a tenant sends can ledditaass in Cassandra when
multiple tenants were present.

In the first experiment, Figure 4.1a, all tenants run a redgworkload that reads one
row per request. Tenants are configured at 50 threads eaath sdturates the throughput
of our Cassandra cluster. We can tell from Figure 4.1a tHaeabnts see roughly the
same throughput at 17,000 op/s which we interpret to mednedhants each receive a fair

share of Cassandra under this scenario. In the second mgueriwe configure a unique
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number of threads for each tenant: 50, 50, 100, 200, and 368dk for the five tenants.
We rerun the read-only workload to see if tenants again sa#asithroughput. Figure
4.1b shows that tenants with 50 threads see throughput at &@00 op/s while the tenant
with 300 threads sees throughput that is 7 times higher (ad@@00 op/s). Compared
to the first experiment, throughput for the tenants with 5@als drops 60%. Our hunch
is that the large drop in performance is because Cassamndsmsirce allocation is done
based on the size of the workload that the client generate¥)0Athread client generates
requests faster than a 50 thread client; Cassandra seeanthiadjusts resources. This
test clearly shows that in a shared Cassandra cluster, at®ti@oughput is influenced
by other tenants’ demands. Tenants with more threads defgmants with fewer threads’
share of the cluster and thus lead to unfairness from th@eetise of the smaller tenant.
In the third experiment, we configure 50 threads per tenahted of the tenants run the
same read-only workload as in the first experiment (reag-tamlant), while the other two
tenants run a scan-only workload that scans 200 rows peesé(gcan-only tenant). Figure
4.1c delineates the result. The read-only tenants’ thrputgoscillate dramatically and are
worse than the ones in Figure 4.1b.

In summary, the fair share among tenants of Cassandra depangnant workloads.
We demonstrate that both number of threads and request &péad to unfairness in
Cassandra when multiple tenants were present. Our faicoe$sol approach targets these

two factors to provide fair share for multi-tenancy.

4.2 Request Scheduling

Two architectural components of Cassandra are involveedoest handling: aRPCser-

vice that exchanges information across the network, aBtbeageProxyservice for read-
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ing and writing data from all replicas, maintaining certa@msistency levels, detecting and
handling failures. This is shown in Figure 4.2. Our propaagproach adds a third compo-
nent that resides between RPC and StorageProxy and tredgtdr as a black box. Such
a design decouples our scheduler from the underlying stdesdhnology, making it easier
to adapt to different situations e.g., using solid statesdnstead of hard disk as the storage
media.

Our proposed fairness control scheduler, working at théicadjon level, uses feedback
collected from responses returned from the StorageProgyitte scheduling. As such, it
does not track the number of physical resources a requesticts, a solution that is more
modular. The fairness control scheduler is designed with feajor pieces: 1) Queues that
hold tenants’ requests; 2) Request Scheduler that sclerhdeests to the StorageProxy,
3) Request Models that collect different metrics from a cese as feedbacks to support
scheduling; 4) Adaptive Controller that adaptively chageme of the scheduling parame-
ters e.g., weights. Each tenant has its own queue and reqadst. When a request arrives
at a coordinator node, the RPC service puts it into the cporeding tenant’s queue. The
scheduler schedules a request from queues to the StorageBrqgrocessing. When a
response is returned, the fairness control scheduleratslieetrics, e.g., number of bytes
read, number of requests in last second, etc., as feedl@okrésponses and serves them
as input to the Request Model.

The intuition behind request scheduling for fair share is:tif a tenant has consumed
more resources in the past, its upcoming requests will gegf@pportunities to be sched-
uled This draws from the Moab scheduler [98] where future jobs&Hawer chances to be
scheduled if past jobs consume more resources. We use thit drfnd robin (DRR) [93]

algorithm to schedule requests because of its simplicityeffectiveness, and linear pro-
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gramming to model the aforementioned intuition. DRR createcredit account giving
some number of initial credits to each tenant. Upon a reqi#®R removes credits from
the tenant’s credit account based on the size of the rescortumption of the request.
A request will not be scheduled if the tenant’s credit ac¢dwas insufficient credits. The
scheduler then does round robin scheduling among the ®nArtenant’s credit account
is refilled when it is its turn to be scheduled again in the tbrobin circuit. We adapt and
extend DRR for request scheduling as follows.

First, the scheduler uses bytes read and written as daliisréhe StorageProxy as an
indirect means to measure the physical resource consumplicassumes the existence
of a linear function that could combine bytes read from ank$®wvritten to the Storage-
Proxy, which allows us to estimate and quantify underlyihggical resources consump-
tion. Dominant resource fairness (DRF) [38] could be use@,hend this is what Pisces
does [95]. However, we argue that the physical resourcesctetl from bytes read and

bytes written are not independent which violates a fundaate@ssumption of DRF. We
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thus leave the usefulness of DRF for future work. Second, Dd&RfRires that the resource
consumption of a request is known in advance. This is imptes$or a read operation
because Cassandra does not know how many bytes a read opeeatiiests before it pro-
cesses the request. Thus we will predict the size of an upgpneiad operation using a
simple averaging of bytes in a sliding window of bytes of poex read operations. Other
approaches could be used here, for example linear regnesiiird, to provide fair share
within a certain time frame, we refill a tenant’s credit acabonly when all tenants’ credit
accounts run dry. The number of credits a tenant has indi¢tete big its chance is to be
scheduled in in the current round of DRR and should be relatdubr previous resource
consumptions, i.e., the more resources she consumes,sthepeortunities her requests
will get scheduled. We use linear programming to implemaéig idea and describe it

below.

Table 4.1: Notations.

Notations | Description

n Number of tenants

b; Resources consumed by tenasince last refill

B; Resources estimated to be consumed by tehant
T Credits assigned to tenant

™m; Scalar to translate credits to resources for tenant
w; Weight for tenant

M Total credits for all tenants

Notations in Table 4.1 are used for discussibnis the sum of bytes read and written
in current implementation. We expreBsin a linear equation in equation 4.1; x x; is

the resource tenantcan have ifr; credits are assigned to her. Notice thas collected as
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feedbacks and; is a positive constant.

The optimization objective is to achieve max-min fairne$saolv is expressed in equa-
tion 4.2 where{x; } are control variables. By solving equation 4.2, we can Hayé that
enforce max-min fairness among tenants. Meanwhilg, ig large, then; will be small

because of the optimization objective and constraints uaggn 4.2.

s.t. Z Tz, =M (4.2)

To convert equation 4.2 to the standard form in linear pnognéng, we introduce an

auxiliary variablez and rewrite equation 4.2 to equation 4.3.

4.3)

We show that equation 4.3 has optimal solutions. First, egu&.3 has at least one
feasible solution, e.gx; = M, x; = 0,7 = 2,...,n. Secondy is bounded as shown in
equation 4.4. Since is a convex function and bounded, and feasible solutiorst &

constraints, an optimal solution exists for equation 4&eating to [99].
0 <z <max{b;+m; x x;} <max{b; +m; x M} (4.4)
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Besides even tenant share, our system allows a system adrs@t weights for each
tenant to have weighted tenant share. Each tenant is givightue. A tenant with a larger
weight gets more share of the system. We extend our modeluatieq 4.3 to consider
different weights for different tenants. To avoid confuspwe use variable and rewrite
the linear model in equation 4.5. The proof of existence dino@l solution is similar to

the one for equation 4.3.

max u
L1,y Ty
st —(bi+m; X x;) < —u X w;
> a=
1sizn (4.5)

We present the scheduling algorithm in Algorithm 1.

4.3 Adaptive Control Mechanisms

The adaptive control mechanisms include the local weigjutstishent approach to provide
system-wide fair share and scan operation splitting todakead-of-line blocking for read

operation.

Local weight adjustment The scheduling approach presented above focuses on provid-
ing fair share in a single node. We call such fairnesal fairnessand system-wide fairness

asglobal fairness|t is easy to show local fairness results in global fairnéksvever, in a
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Algorithm 1 Request Scheduling Algorithm

1: credit; is the credits in tenants credit account.
2: est; is the estimation of a request resource demand for tenant
3: procedure SCHEDULE

4 for each tenantdo

5: est; «+ RequestRcEstimation(tenait

6: while m; x credit; > est; do

7: Take a request if tenaliis queue is not empty.
8: credit; < credit; — est;/m;

o: end while

10: end for

11: if RefillCredits() is trughen

12: {JZ‘Z} = LPMOdel({bZ}, {wl}), 1 =1, 2, o, n
13: Assign creditr; to tenant, i = 1,2,...,n
14: end if

15: end procedure

16: procedure REFILLCREDITS

17: if all tenants’ credit accounts run dityen Return True
18: elseReturn False

19: end if

20: end procedure
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distributed environment, local fairness is not a sufficemdition for global fairness and
can lead to inefficiency. We demonstrate this through exanipt the experiment in Figure
4.1a, we plot the distribution of cumulative throughputionedes for each tenant within a
certain time frame in Figure 4.3a. It shows that althouglames have global fairness, i.e.,
their throughputs are about the same as Figure 4.1a shasysathually receive different

throughputs on different nodes. For instance, tenant #1hHeakwwest throughput in node
#9 and the highest throughput in node #3, while tenant #3 liagotvest throughput in

node #3 and the highest throughput in node #5. If we enforca fairness for tenant #1
in node #9, then throughputs of other tenants are constraineecessarily.

To investigate the causes, we plot the distribution of nurobthreads each tenant uses
to connect over nodes in Figure 4.3b. We see that a tenantislative throughput on a
node is proportional to its number of threads connecteddcstime node. This matches
our expectation that the number of threads is related taugirput. In summary, Figure
4.3 suggests that 1) global fairness can be achieved witlvaal fairness; 2) number of
threads can be used as a hint to regulate throughput.

We thus propose a local weight adjustment approach to aelgieal fairness. Algo-
rithm 2 presents the approach. The idea is to recalculatevélight a tenant should have
on a particular node based on the ratio of its thread counhannode to its total thread
count on all the nodes (line 10 to 15). Then for each node, weakbktulate the new weight
assignment based on the tenants’ new credits (line 16 tolAGhis step, the maximum
credits a node has would be changed and different from e&eh, @though the total cred-
its a tenant has within the system is not changed. Finaléyatgorithm disseminates the

new weight assignment along with the new maximum credit é&mhenode (line 21 to 24).
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Algorithm 2 Local Weight Adjustment Algorithm

1: total is the total credits for the entire system.

2: n is the number of tenants; is the number of nodes.

3: ¢ Is the total credits for tenatit c; ; is credit for tenant on node;.

4: d,; is the total thread count for tenantd, ; is the thread count for tenainbn node;.
5. w; ; IS the weight for tenanton nodej. I is the weight for tenantinitially.

6: procedure LOCALWEIGHTADJUSTMENT

7: for each tenantdo

8: ci.. < total x W;

o: for each nodg do

10: Cijj ¢ X (dij/d;)
11: end for

12: end for

13: for each node do

14: for each tenantdo
15 wij < cij/ Z1§ign Ci,j
16: end for

17: end for

18: for each node do

19: Disseminatey; j,« = 1,...,n and
20: Y 1<i<n Ci,j 0 NOdE].

21: end for

22: end procedure
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Figure 4.3: Distributions of cumulative throughput ancetiat count over Cassandra nodes.

Interference between read and scan We have demonstrated that the presence of scan
operations will influence throughput of read operationst i®ad operations and scan op-
erations often coexist in the same systéhapReducetyle workloads frequently use scan
operations while front-end workloads perform read opereti The read operations have
to wait for physical resources held by the scan operatiopsmlaiem known as head-of-line
blocking.

One solution is to use preemption to allow waiting operaitmdeprive physical re-
sources from current operation temporarily. However, figblaysical resources are pre-
emptable, e.g.,network bandwidth and disk I/O. In Cassgraiice an operation is sched-
uled to process, it is difficult to suspend that operatioralise it may trigger operations on
other nodes. Instead of exploring how to suspend an onggeagtion temporarily, we use
a simple approach, which is used in other systems as well{&j, That is to split a scan
operation into small pieces such that each piece does ribtddeead-of-line blocking. The

scheduler then schedules small pieces of scan operatmmg with read operations so that
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a read operation can get more chances to be scheduled. Titts fesm these small pieces
need to be merged before handing back to the client. Thisaphprtrades performance of
scan with performance of read because the execution of apemation is interleaved with

the execution of read operation and the number of disk seekslieased due to multiple
small pieces. The size of a piece is negatively correlateddgerformance of read, and
positively correlated to the performance of scan. As the Bizreases, the throughput of
scan goes up and the throughput of read goes down, vice veasamatically tuning the

number of pieces a scan operation is chopped, based orediffeorkload scenarios, is an

ongoing work.

4.4 Evaluation

We use computation resources of FutureGrid [36] in the etado of our system. Each
node has 2 Intel(R) Xeon(R) 2.93 GHz CPUs, 25 GB memory anddaGi® local disk.
Nodes are connected with InfiniBand. Using a 9-node clusteinstall a modified version
of Cassandra 1.2.4 equipped with the fairness control sdeeith every node retaining the
default Cassandra settings. On the client side, we use YZ@Rd generate the workloads
and use 5 additional nodes to run the clients to simulate &ntsraccessing Cassandra.
Each tenant stays in a separate node, so interference offigheside is avoided. Each
tenant has its owKeyspacevith oneColumnFamily We pre-load 1,000,000 rows into each
tenant'skeyspaceThe row size is 1.2 KB and replication factor is set to 3. Ttvesistency
level is set to 1. The tests are run with a read-only worklaadl @ read-write workload.
For the former, all tenants send read operations only. Ferahd-write workload, some
tenants send read operations while other tenants send anrexef read operations and

write operations. We configure the target throughput of gedronly workload to be a
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large number so that a tenant can send as many read operasigussible. The target
throughput of the read-write workload is configured to bed@B6,0p/s so as to avoid disk
saturation and dramatic increase of data size.

We use operation throughput, ops/second (op/s), to raprestenant’s share of the

system. We compute min-max ratio of throughput as follows.
rateminmaz = min {throughput;}/ max {throughput;},i =1,2,...,n, (4.6)

wherethroughput; is the throughput of tenarit among all tenants as the fairness metric.
To get a stable throughput, we report the results after a+a@prtpne of 20 seconds. We first
evaluate the overall performance of our system by runnifigréint workloads on different
data sets. Then we study the effectiveness of local weighstadent. Finally, we test the

system with read and scan mixed workload.

4.4.1 Overall Performance

We begin by assessing whether our system can provide fag sheen tenants use different
numbers of threads. Then we test if the system can diffetentenants based on their
weight configurations. To test the system thoroughly, intamluto the fixed size data set,
we use YCSB to pre-load 1,000,000 rows, whose row size vénoes 100B to 1.2 KB
uniformly for each tenant. Figure 4.4 and 4.5 plot the thiqugs as a function of time.
The letter in the legend stands for the workload a tenant rBosinstance, “50 r” means
the tenant uses 50 threads to send read operations, while/"58eans the tenant uses 50
threads to send read as well as write operations. The pageiaf throughput decrease
measures the performance degradation comparing with thibavsystem. The throughput

represents the system throughput and is measured as atggregarage throughput from
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all tenants. Table 4.2 summarizes the min-max ratio foedsffit runs.
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Figure 4.4: Fair share for read-only workload on data setis different tenant share con-

figurations.

We run the read-only workload for even tenant share i.e gld.2 for each tenant in
this case. We configure the number of threads as 50, 50, 100ag€@ 300 for each tenant

respectively. Figure 4.4a and 4.4b show the results. Astegpdrom Table 4.2, the mean
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min-max ratio is close to 1, i.e., 0.95 (std. 0.02) for fixezestlata and 0.94 (std. 0.02)
for various size data. Therefore, our system can providesfare in either fixed size or
variable size data given that one tenant demands moret{egne with 300 threads) than

another tenant does (e.g., the one with 50 threads).

Table 4.2: Fairness of workloads on across data sets.

Workload | Data Size| Mean rateinmaz | Std. rateminmaz
Read-Only | Fixed 0.95 0.02
Read-Only | Variable | 0.94 0.02
Read-Write| Fixed 0.90 0.04
Read-Write| Variable | 0.91 0.03

Additionally, we run the same read-only workload with thengathreads setting as
above, but configure weighted tenant share. Specificalgy,whight for each tenant is
configured as 0.3, 0.1, 0.2, 0.1, and 0.3. The correspondintpar of threads is 50, 50,
100, 200, and 300 for each tenant. The purpose is threefaldt, e test if tenants’
throughputs could be differentiated based on their weigl@scond, we evaluate if the
number of threads has an impact on the differentiation byigornng tenants with 50 and
300 threads to both have weight 0.3. Third, we want to seeeitéhant with weight 0.2
will see similar throughput compared to the one in even teshare. Figure 4.4c and 4.4d
depict the results. It is clear that 5 tenants are classifieal 3 categories and tenants’
throughputs are roughly proportional to 3:2:1 which is dédadheir weights ratio. Note
that the tenant with 50 threads gets similar throughput@seihant with 300 threads does,
showing that the fairness control scheduler can eliminaempact of a tenant’s thread
count in differentiation. In addition, the tenant with wietd.2 gets similar throughput

compared to the one in even tenant share. That verifies tiensysn preserve a tenant’s
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throughput in either even or weighted tenant share.
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Figure 4.5: Fair share for read-write workload on data seth different tenant share

configurations.

Next we rerun the tests with the read-write workload. Thesehts are configured to
send read requests with 50, 100, and 200 threads respg¢te@d-only tenants). The other

two tenants are configured to send an evenly mixed workloadaufs and writes with 50
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and 100 threads respectively (read-write tenants). Figir@ and 4.5b report the through-
puts of even tenant share, while figure 4.5¢c and 4.5d displayhroughputs of weighted
tenant share. The percentage of throughput decrease dogpath vanilla Cassandra is
also reported in each case. Compared to throughputs ind-#gdr the throughputs in Fig-
ure 4.5 are similar in the sense that tenants get propotttbr@ughputs to their weights
no matter how many threads they have. However, the perfaendagrades in terms of
throughput decreases, min-max ratio also drops and dssllaWe attribute the perfor-
mance degradation to the inability of isolating the perfante of read operations from
the performance of write operations. Write operations isSaadra have read operations
to read mordMemTablesand SSTablesor the same tenant. This triggers tbempaction
procedure [60], which requires many disk 1/0 and influendéemotenants’ throughputs.
Similar situation also happens to Bigtable like system$.[I6 isolate writes from reads, a
performance model that can predict the impact of internébwis required. That is given
a set of writes, the model should be able to predict the ammitinternal writes. We leave
such a performance modeling and the isolation between rehddte for future work.
Finally, we quantify the throughput degradation causedHhsy fair share scheduler.
Throughput degradation is measured from the client sidas Wobrk does not extend to
server side profiling to discern the precise location ané tyfighroughput degradation. We
first measure degradation in scenarios having interferemcehe scenes in Figure 4.4 and
4.5. The percentage of aggregated throughput decreass Wgrscenarios. The read-only
workloads experience about 16% degradation while the va#&d-workloads have about
25% degradation. We think the reason is the inaccurate atgiof resources consumed in
read-write mixed workloads imposes unnecessary consmanrequests. We further study

the degradation in a fair share scenario by having all tenant the read-only workload
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and the read-write workload respectively with 50 threadstpeant. We observe about
9% throughput decrease for both workloads. We think theoreafor smaller degradation
compared with interference scenarios are two folds. Rinst50-threads workloads do not
fully utilize the system as evidenced by smaller aggregttexlighput generated. Second,
smaller thread count incurs fewer contentions to the sdbedu

The main reason behind these degradations, we believes mutimber of credits used
in the scheduling. Intuitively, the number of credits iseditly proportional to throughput,
but inversely proportional to fairness. The more crediesgven, the fewer constraints the
scheduler will impose, which results in higher throughpgdeanwhile, however, fairness
decreases because the scheduler has less control ovagtthudwegulation. We speculate
that increasing 15% of the credits given might help to lower dverhead without hurting
too much of fairness based on the observations that regdamrkloads experience about
15% overhead and fairness (i.e. the min-max ratio) is vaygecto 1. We experimentally
study the impact of the number of credits on overhead anddag in the follow-up work in
Chapter 5, and present a near-optimal setting of the cre@waid high overhead without
sacrificing too much fairness. It is an open problem to prdfike server side system to

better tune the credit parameter.

4.4.2 Effectiveness of Adaptive Control Mechanisms

Local weight adjustment We compare the throughputs of the read-only workload as
well as the read-write workload with local weight adjustrinenthe ones without it. Two

thread distributions are tested. The first one is randomiliigion where each tenant thread
randomly picks a server node to connect to, while the secaedgaussian distribution

where each tenant thread picks a server node based on afpreddgaussian distribution.
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Figure 4.6 presents the normalized throughputs. When tted l@eight adjustment is in

place, the bars with red and blue colors have similar heightfixed size data and variable
size data. Therefore, the local weight adjustment can leahtferent thread distributions.
When there is no local weight adjustment present, the greisliagher than the green bar
which means the random distribution gets more throughjmats the gaussian distribution
does in our system. Additionally, the throughput with thedloweight adjustment is up
to 8% higher for random distribution and 15% higher for gaarsgistribution than the

throughput without it respectively. We attribute the thygbput improvement to the ability
that the local weight adjustment can redistribute the wisidgfased on a global view of

tenants’ demands and avoid unnecessary constraints.
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Figure 4.6: Improvement in throughput through local weigtifustment. “local-random”

and “local-gaussian” mean the local weight adjustment dia@ to random and gaussian

thread distribution while “random” and “gaussian” mean ocdl weight adjustment.
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Figure 4.7: Fair share protects the throughput of the redgworkload from scan opera-

tions.

Interference between read and scan We test the effectiveness of our approach under
read + scan workloads. The test uses 3 tenants who send reeatiops (read tenants)
while the 2 remaining tenants send scan operations (scant&®n A scan operation scans
200 rows per request. All tenants run 50 threads. The scegplits a scan request into 5
rows per request. The results, summarized in Figure 4.7y sh@ughput of read tenants
at close to 15,000 op/s which is similar to the throughputigufe 4.4a. In addition, the
throughput oscillation is much smaller than shown in Figlukc. This demonstrates that
our approach can preserve the read tenant’s throughput amdixed load of read tenants

and scan tenants.

4.5 Summary

In this chapter, we examined the fairness in NoSQL datastander multi-tenancy, with a
focus on the Cassandra NoSQL store. We propose extensmthanigthodologically and

through a prototype implementation, of ensuring fairnbas ¢mploys a deficit round robin
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algorithm with linear programming to schedule tenants’'uesis. We adaptively adjust
tenants’ weights on each node to improve throughput. Bined protect the throughput of
read operations in face of scan operations by splitting caa speration into small pieces
and scheduling them along with read operations.

Future study is of the impact of writes on reads so as to isokdd and write perfor-
mance. Besides, statistical machine learning may be eféeict predicting future resource
consumption and detect slow tenants. Additionally, défgrresource models that either
combine resource types in a non-linear function or use tieirknt resource fairness ap-
proach may improve fairness further. Finally, it appeansefieial to extend Cassandra’s
gossip protocol to integrate a more robust leader selealigorithm for local weight ad-

justment.
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Chapter 5

Workload-Aware Resource Reservation for Multi-Tenant NoSQL Stores

Resource reservation is a common approach to avoidingrpeaface interference among
tenants. The basic idea is to dedicate a portion of a restaicéenant for its use. Chapter
4 uses throughput regulation to provide fair access amarants. Such an approach can
be viewed as a special case of resource reservation — ttpatigdpresents the underlying
actual resource consumptions and is treated as a “resdiaroedch tenant.

As workloads usually have multiple resources involved emgmory for caching, CPU
for serialization or deserialization, disk for reading oitiag data, a tenant needs to acquire
a reservation on each resource. But reservations are nalilal a workload that has a
hotspot access pattern may require more cache than doe&laagbwith a random access
pattern. An equal reservation of cache and disk usage fdr Wwotkloads will not yield
the best result. So reservations have to be based on worklaadcteristics, also called
workload-aware reservation.

A workload-aware reservation becomes more complicateddr&load bears dynamics
i.e. a workload changes its access pattern during the gagbish requires the system to
be able to adjust accordingly. In addition, the distributedure of NoSQL stores makes

the workload-aware reservation more difficult. For a typlaSQL store, a request is sent
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to one node which may contact several other nodes to fetctidtae It is complicated to
have a coordination among different resources and nodes.

Previous research on preventing performance interferdoes so by simplifying the
scenario, either by considering a single resource [24,49,@5] €.9. CPU, cache), or
representing multiple resources consumption as a singteu& resource” consumption
[95, 113]. Similarly, work in Chapter 4 uses throughput t@m@ximate the underlying
resource consumption of each tenant and regulates thegtipatito provide fair access.
Ignoring various resource demands that workloads haveldeatl to low resource utiliza-
tion as the system imposes unnecessary constraints tdsearaheven failure of preventing
interference.

Therefore, we propose Argus (the 100-eyed watchman in Gngéhology), a workload-
aware resource reservation framework that targets meltgdource reservations and aims
to prevent performance interference, in terms of fair tigfqaut violation, in NoSQL stores.
Specifically, Argus focuses on cache and disk reservatibremforces the cache reserva-
tion by splitting the cache space among tenants. It appratdmthe disk usage by the
throughput of a distributed file system and uses a requestisitdr to enforce throughput
reservation. Argus models the workload-aware reservatsoa constrained optimization
and uses the stochastic hill climbing algorithm to find theper reservation according to
various workloads’ resource demands. We applied the idéagfs to HBase [1], a state-
of-art NoSQL data store. In summary, this chapter makesaif@Afing contributions:

e Quantitative evidences for existence of interference irastB

e Mechanisms to enforce reservation on both cache and diskines under multi-

tenancy;

¢ Offline performance model and stochastic hill climbing aition to discover a near-
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optimal resource reservation plan;
e Experimental results that show our system successfullyepits interference across

tenants.

5.1 Analysis of Interference

NoSQL data stores are typically deployed across multipiesdor enhanced availability
and performance. Data are represented as rows and distfibatoss nodes. We motivate
our approach by showing that NoSQL data stores can suffer frerformance interfer-

ence when multiple tenants access simultaneously; andtkaea reservation for a single

resource can fail to prevent interference in some cases.

5.1.1 Setup

As [84,95,113] show, multi-tenant performance interfeezoould occur in various NoSQL
stores. In this chapter, we study HBase [1], a popular NoS®Qtes HBase is an open
source implementation of Google BigTable [16]. It absisabe data partition and distri-
bution to a distributed file system i.e. HDFS [96] and runsamdf it. HBase follows the
master-slave design: th#Masteron the master node is responsible for coordinating and
monitoring slaves nodes activities; thHRegionServersn the slave nodes handle client
requests directly. The HRegionServer exchanges data vidthSHin the unit of a block
and implements a block cache equipped with a LRU replaceatgotithm to avoid HDFS
access. Thus HBase can be viewed as a two-level hieraraagsteystem and provides a
clean separation between different resource managenmediffarent levels: HDFS man-

ages the disk resource while HBase itself takes care of itl@rgpand CPU usage.
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We use the Yahoo Cloud Storage Benchmark (YCSB) [20] to steumulti-tenant
access. We set up a 28-node HBase cluster with block caahsetizro 1,200 MB per node.
We preload 80,000,000 rows for each tenant, where a row igtah@ KB. Additional
details on the experiment setup are given in Section 5.4. Wetwo YCSB clients to
simulate two tenant access. The clients are run on 2 additrmues to avoid interference
on the client side.

We define and name several workloads with different acceterpa below to test

HBase in a multi-tenant setting. Each Get request fetchesam per request.

1. Uniform: Series of Get requests that retrieve any data with equagibty from the

table.

2. Extreme Hotspot (ExHat)Series of Get requests that retrieve a small portion of the

data in the table. The requested data is small enough toditatthe entirely.

3. Regular Hotspot (Hot) Shows hotspot pattern but the data requested cannot fit into

cache entirely.

5.1.2 Interference Experiments

We define several metrics by which performance is measupstaton throughput, through-
put violation, cache occupancy, and HDFS throughput. @imad [22, 95, 105, 113], we
measure theperation throughpuyti.e. operation per second (ops/sec), from the client side
to reflect each client’s share of the system. Similar to [R#fuantify the interference, we
calculate thehroughput violatiorasviolation; = (baseline; — throughput;)/baseline;,
wherebaseline; andthroughput; are the baseline throughput and actual throughput of

tenant; respectively. The baseline throughput is observed wherrltister is dedicated
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for such a workload while the actual throughput is recordéxnvthe cluster is shared
by multi-tenant workloads. To investigate the underlyingaurce consumptions, we take
advantage of HBase’s level design and break down a requiestsirce consumption into
the usage of cache and disk since simple key-value pair acce®t CPU intensive. The
cache usage is measured as the cache occupancy i.e. tHeetateen current cache size a
tenant takes to the total cache size. The disk usage is dliffecdirectly measure because
a request may involve the disks in a few other nodes. Thus weapnate the disk usage
as HDFS throughput from the abstract of disk access on neihipdes which HDFS pro-
vides. The implementation details of tracking the cachaipancy and HDFS throughput

are discussed in Section 5.2.

Baseline To measure interference, we first establish the baselinthéselected work-

loads. Table 5.1 summarizes the different parameters nséd$B for the workloads. The
records column is the range of the records that will be aecksBor hotspot workloads,
there will be lots of repeated records access as there ayedéhbnd 3 million out of 80

million records accessed. To get a stable throughput, wertrége results in Table 5.2 after
a ramp-up time of 300 seconds, after which the throughput terstay stable especially
for workloads with hotspot. The throughput as well as the BDRroughput is averaged

over a 800 seconds period.

Table 5.1: Workload parameters.

Workload Key Distribution | Records
Uniform Get Uniform 80 million
Extreme Hotspot Get Zipfian 0.2 million
Regular Hotspot Get Zipfian 3 million
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Table 5.2: Baseline throughput for different workloads.

Workload Throughput (ops/sec)
Uniform Get 892.32

Extreme Hotspot Get 19853.53

Regular Hotspot Get 2030.76

Interference on different resources We next conduct several experiments that mix the
workloads shown in Table 5.1 to investigate the interfeeenEor each experiment, we
measure throughput violation, normalized HDFS througlamat cache occupancy. Figure
5.1 plots the results.

In Figure 5.1a, two tenants run the uniform workload with Bi@ads. They see similar
throughput violation which we interpret as fair access leetwthese tenants. They also
have similar HDFS throughput as well as cache occupancies$:iglure 5.1b, tenant #1
uses 200 threads to run the Uniform workload while tenantt#2uses 50 threads. We
observe that the throughput violation of tenant #2 is abduhés higher than tenant #1’s.
Similarly, tenant #1’s HDFS throughput and cache occupaneybout 4 times higher than
tenant#2’s. We believe tenant #1 is able to take resourcastEnant #2 by launching more
threads to send requestdBase does not prevent throughput interference among tenan
which use different thread number.

In Figure 5.1c, tenant #1 runs the regular hotspot worklaadl t@nant #2 runs the
uniform workload. Both use 50 threads. Throughput violatbtenant #1 goes above 60%
while tenant #2’s is only 50%. Furthermore, tenant #1 rexesimilar HDFS throughput
as tenant #2 and tenant #1's cache occupancy is only 10%rhiggdue tenant #2’s. This

indicates tenant #2 may take some cache space from tenanhigh vauses tenant #1
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to read from HDFS and thus degrades its performamtBase fails to isolate resources
among workloads with different resource demands.

Figure 5.1d shows the results where tenant #1 runs the extnetspot workload with
50 threads and tenant #2 runs the uniform workload with 20@atls. The throughput
violation of tenant #1 exceeds 90%. Its cache occupancylysatiout 20% which explains
why its throughput drops significantly. In contrast, ten@tonly suffers 10% throughput
violation because its HDFS throughput and cache occupaecteut 5 times higher than
tenant #1’s. Compared with Figure 5.1c, tenant #1’s thrpugls less even it is supposed
to read more data from the caché¢Base’s incapability of isolating resources is magnified
when different resource demands and thread number coexiaidrkloads.

We conclude from the experiments above that 1) the numbéirreatls a tenant uses
to connect to HBase and the data access pattern e.g. hotpdéad to performance
interference; 2) interference could occur in differenorgses in HBase, e.g., cache, disk,
or both. 3) cache occupancy and HDFS throughput can indéledtrevorkload’s resource

demands.

Single resource reservation A common way to prevent interference is to reserve re-
sources so that a tenant is guaranteed a certain amountooirces. Owning to its sim-
plicity, single resource reservation e.g. bytes delive@dU usage, and cache usage, has
been used by many people [24, 84,95, 113]. In this sectiorstuay two single resource
reservation approaches.

Similar to [95, 113], we use the bytes delivered from HBasa &srtual resource” to
represent the underlying resource consumption. Such amagpimposes a maximum

number of bytes HBase can deliver to a tenant over a certaindoeThis approach is
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Figure 5.2: Single resource reservation fails to prevetariarence for workloads with

different resource demands.

able to provide fair access in the case of Figure 5.1b. Inek®riment, tenant #2 runs a
uniform workload with 200 threads and tenant #1 runs an exreotspot workload with 50
threads. Figure 5.2a shows the result. Although both terse# similar throughput, tenant
#1 suffers more than 90% throughput decrease when compatiedsbaseline. Tenant
#2 also has less HDFS throughput and cache occupancy due tiorttughput regulation.
Therefore, resource approximation using bytes deliveregis tenant #2’s share but fails
to increase tenant #1's because it cannot identify the castielisk consumption.

In the second experiment, we divide up the block cache spacdalf for two tenants
S0 as to provide strong isolation in the cache space as fegdge$84]. Tenant #1 uses 200
threads and tenant #2 uses 50 threads to run the uniform eaatldimultaneously. Figure
5.2b displays the results. Although both tenants sharedbhkecspace equally, tenant #2
experiences about 80% throughput violation because tétianses more threads to send

requests faster and thus deprives tenant #2’s HDFS thramgfjmerefore for workloads
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that are not cache sensitive, cache space isolation dogsaweant interference.

In summary, single resource reservation e.g. bytes deliver the first experiment
and cache in the second experiment did not prevent inteiferacross tenants because it
ignored the actual resource demands of workloads. Thetsasuitivate us to develop a

workload-aware reservation approach that targets meltggources.

5.2 Resource Reservation

We design and implement Argus, a workload-aware resourservation framework, to
prevent performance interference across tenants. Arghogilison HBase’s master-slave
architecture (see Figure 5.3 for details). The Master ctdlthe resource info from different
slave nodes and makes wise resource reservation decisibesRegionServer serves as
an executer to enforce any reservation plans decided by tmtavl The disk access to
HDFS is controlled by the request scheduler in the Regioreselhe cache access in the
RegionServer is enhanced with multi-tenancy support.

Inside a RegionServer, the workload monitor module calleatrkloads’ performance
metrics, and the resource reservation module describesntuesource reservation policy.
Disk reservation is approximated by HDFS throughput restésa as discussed in 5.1. The
request scheduler is used to enforce the HDFS throughpervedson given. The block
cache shipped with vanilla HBase is made resource resenvatvare to support cache
reservation as well. The Master has three pieces: 1) Resouonitor that aggregates
the workload information from all the RegionServers; 2)f®enance model that takes
workload information and estimates performance; 3) Denisnaker that takes advantage
of the performance model to find an optimum resource reservablicy and sends it to

all the RegionServers. The performance model relies onflineoprofiler that uses linear
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interpolation to predict the performance.

Given a resource reservation policy, it is critical to enfresource reservation in each
individual node as it provides the basis for cluster-widsorece reservation. As discussed
in Section 5.1, we focus on two resources: block cache ard dath of which will be

discussed in the following sections.

5.2.1 Block Cache Reservation

The cache reservation is used to provide strong isolatidghencache space for tenants.
In our current prototype, we divide up the entire block caspace into partitions and
limit a tenant’s cache activities to the cache partition tach it is assigned. Unlike A-
Cache [84] that replaces HBase’s default cache replacemenapply the built-in LRU
cache replacement in HBase to the cache partition of ea@ntdrecause the cache re-

placement in HBase has been improved to prioritize the iewidiased on the times the
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blocks are reused. Although strict cache reservation cawigie strong isolation, it can
result in poor cache utilization if some tenants may not ystheir reservations. We clas-
sify such situations into two categories: some tenantsghémeir access patterns e.g. they
change from hotspot access to random access; some termmtdosin their request rates.

We discuss the details and present the solutions in Sect?8.5

5.2.2 Disk Reservation

Owing to the reasons mentioned in Section 5.1, we use HDFBighiput to approximate
the disk usage. We design the request scheduler in the Remyieer instead of in the
Hadoop Distributed File System (HDFS) because many of tasyitems including HDFS
are not designed with multi-tenancy in mind: multi-tenaeayorcement is carried out by
the application built on top of the file system.

As stated in Chapter 3, there are two types of schedulingoagpes that approximate
the generalized processor sharing (GPS) model [80] to gediair sharing. One is virtual
time based approximation and the other one is quanta baggdxapation. To under-
stand which approach may work well in the context of multiatecy in HBase, we study
weighted fair queuing (WFQ) [80], which is a virtual time lkdsscheduler, and deficit
round robin (DRR) [93], which is a quanta based scheduler.eMyeerimentally compare

these scheduling approaches in terms of fairness and afficie

A. Approaches for Request Scheduling

Each tenant is assigned a queue to hold its requests. WFQ@udebeequests among queues
according to their finish time. To lower the computation adststimating request time, the

notion of virtual time is used to order requests. Each reggdagged with a virtual start
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time and a virtual finish time. Equations 5.1 and 5.2 show hiey aire calculated [34,108],
whereS!" and F" are the virtual start time and the virtual finish time for #ié request of
tenanti respectivelyyp(t) is the virtual time for real time, L is the size of the:’ request

andr; is the share of tenant

S = maz(v(t), F" ) (5.1)

(2

Fr =S+ L xr (5.2)

The virtual start time is the maximum of current virtual tigred the virtual finish time
of the last request. The virtual finish time is based on amegé of how long the request
will take. The estimate assumes a linear relationship betwequest length and virtual
time. The complexity of WFQ in each scheduling roun@igog(n)) as it needs to select
the request with the smallest virtual finish time frangueues in a min-heap.

DRR is a variant of weighted round robin [57] that uses quéumetimes called tokens
or credits) to throttle requests. DRR associates each tem#m a credit account. To
schedule a request, the scheduler takes some creditsioftiietenant’s account according
to the size of the request. Eventually a tenant’s credit aacwill exhaust and need to be
refilled. There are two refill strategies: refill the accoypgsiodically; refill when tenants
are either exhausted i.e. not enough credits or inactivenbgpending requests. Periodic
refill can improve utilization as it does not need to wait Lather tenants meet the refill

criterions.
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B. Comparison

The goal of the evaluation is to assess the fairness andeefigiof various scheduling
approaches in the context of throughput reservation. Wéemented WFQ and DRR as
the request scheduling approach in HBase respectively. BR&res some adaptions and
extensions in the context of HBase. First, we have the sdbemterpret the credits as the
bytes read from or written to HDFS. It assumes there is alie®ction that translates the
credits to the underlying resources usage, mainly disksscee HDFS. Second, upon the
arrival of a read request, the scheduler does not know hovwhrdata will be read from
HDFS. The scheduler simply uses an average size over agldimdow, which has the
bytes read of 10 previous requests, as the bytes neededdomimg requests. We also use
this as a prediction in WFQ. Krebs et al. discuss more advhprediction options [59].
The evaluation environment is the same as the one in Sectlonf%28-node HBase
cluster is used. Two YCSB clients run on two additional nagesend uniform read-only
workloads. One uses 50 threads while the other one uses &ith Target throughput
is set as a large number to allow the client to send as manyestgjas possible. Since
we focus on disk throughput, we disable the block cache inddBa eliminate its impact.
Similar to [24], to quantify fairness, we use thain index(J-indeX defined in equation 5.3
wherev; is the throughput violation of tenantand can be expressed@s= (b; — t;)/b;;
b; is the baseline throughput; ands the observed throughput. The baseline is established
when the workload is run delicately in the cluster. [64] alseasures fairness through
comparing the actual throughput to the baseline throughihé value of/ varies between
1, where the violation of each tenant is the samd,/te, where one tenant gets the largest
v; While other tenantsi); = 0. The denominator of equation 5.3 will never be zero as long

as there are competitions among tenants. If all tenantdowresthan they should be, there
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is no need to impose constraints through the scheduling.

(Z1gign v;)?
2

n X Zlgign v;

(5.3)

J(Ul,'Ug,...,Un) =

Besides fairness, we also consider efficiency which is defasdhe average of through-
put violation for all tenants in equation 5.4. The largerueabf J-index and E indicates

better fairness and higher efficiency respectively.

B Z1§zgn Ui

E o,y =1
(U17U27 7U) n

(5.4)

Table 5.3 summaries the values of the J-index and E for WFQR BRI a no schedul-
ing approach. For fairness, the no scheduling approachsyible worst fairness (lowest
J-index) in face of tenants running workloads with diffdrémread numbers. DRR out-
performs WFQ. We think it is because WFQ assumes requesighetsame size take the
same time to be processed which does not hold in our expetsmienfact, we observed a
large time variant for requests with the same size. [97] alsdences that such a variant
in a single node file system setting leads to failure of fasnenforcement. For efficiency,
the no scheduling approach has the highest value while DRRhgalowest number. We
attribute that to the constraints the scheduler imposestid®es.4.1 presents more details
about the tradeoff of fairness and efficiency for DRR. Wité #bove results, we can con-
clude that DRR is able to provide stronger resource isalatihich results in better fair

access than WFQ does. In the rest of this paper, we focus arsttge of DRR.

Table 5.3: Comparison of different scheduling approaches.

Metric | NoSchedule| WFQ | DRR
J-Index 0.708 0.874| 0.996
Efficiency 0.513 0.493| 0.481
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Algorithm 3 Request Scheduling Algorithm

1: credit; is the current credits in tenaii$ credit account.

2: est; is the estimation of bytes a request reads from or written& 8l for tenant.
3: actual; is the actual bytes a request reads from or written to HDF $efwaint;.

4: procedure SCHEDULE

5: for each tenantdo

6: est; < BytesEstimation(tenarj

7: while credit; > est; and tenani’s queue is hot emptgio
8: credit; < credit; — est;

o: est; < BytesEstimation(tenarj

10: end while

11: end for
12: end procedure

13: procedure REFUND

14: if request is served from cactieen

15: credits; < credit; + est;

16: else

17: credits; < credit; + (est; — actual;)
18: end if

19: end procedure
20: procedure REFILL
21: Redistribute credits assignment if slow tenants exist.

22: end procedure
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To integrate the block cache into DRR, we introduce a refurndgdure that refunds
credits later if the request can be served from cache. Thadgirocedure can also refund
positive credits if the amount of bytes is overestimatedegative credits if it is underes-
timated. Algorithm 3 describes the adaption of DRR. Bubedulgrocedure runs in the
background to schedule requests from different tenantstigsi in a round robin fashion.
TheRefundprocedure is invoked when a request finishes. Rbéll procedure refills ten-
ants’ credit accounts periodically and boosts some of tharts’ credits if necessary. The

details of it will be discussed in Section 5.2.3.

5.2.3 Elastic Reservation

Neither the cache reservation or disk reservation wouldfi@ent if some tenants did not
use up their resources reserved, because both resenatsoagplied statically without any
elasticity. Static resource holding will lead to inefficayras some of them may be idle and
cannot be used by other tenants in need.

There are two cases when a tenant does not use up its resen@tie is when its access
pattern does not need much of the resource reserved. Fopexarandom access work-
load does not need cache very much, neither does a hotspkibameed disk resource.
Therefore, reservation has to consider workload resoueceadds, i.e. workload-aware.
We will present the solution of workload-aware reservatio8ection 5.3. The other one is
when a tenant slows down its throughput (called slow tepaitsdeal with such a situa-
tion, we redistribute the resources. Specifically, redahdasources from the slow tenants
will be taken away and distributed evenly among tenantsatein need.

We establish an expected throughput as a reference to dietetgnant slows down.

We obtain the baseline throughput by running the workload dedicated manner. Then
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the expected throughput is calculated by dividing the asé¢hroughput with the number
of tenants. We assume both the size of cache and the numbedisaeserved are linear
to the throughput. In the current prototype, a tenant witegaway 10% of its cache and
credits to other tenants in need if it slows down every 10%syBenants will share evenly
the cache and credits given away. TRefill procedure in Algorithm 3 implements the
aforementioned reallocation. In the prototype, it runsrg&seconds to refill the credit
accounts and determines if cache and credit adjustmentsemaed. If there are slow
tenants, it will adjust the credits and notify the cache meér cache resizing accordingly.
To deal with the case where a slow tenant may bump up its thimutdater, we allow slow

tenants to retain the same credit amount they had beforedldé cedistribution even they
may not need them. The cache reservation is reset perityd{Baminutes in the current

prototype) and runs with equal reservation for a short pe(8D seconds in the current
prototype) so as to give slow tenants a chance to increagbhrihgghput. A more accurate
way of detecting slow tenants as well as reallocating caodeceedits among tenants is in

the future work.

5.3 Reservation Planning

We have described the mechanisms used to reserve resoiMe@éso described the cases
where some tenants may not use up their reservations. Thtcelaservation approach
mentioned in Section 5.2.3 adjusts reservation in a momotway and is not suitable to
handle the case where tenants have different resource demBrcause resource usages
are not independeng.g. increasing cache allocation may decrease the disk usage and
vice versa, reservation of this kind requires a model thiéects the dependency between

different resources. In this section, we discuss the rasiervplanning used to decide how
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much resource to reserve for each tenant according to ital@sdynamically.

5.3.1 Problem Formalization

10.0

FS Throughput Percentage
avg. req. throughput (kop/s)
FS Throughput Percentage
avg. req. throughput (kop/s)
FS Throughput Percentage
avg. req. throughput (kop/s)

Cache Percentage Cache Percentage Cache Percentage

(a) Uniform workload. (b) Regular hotspot workload. (c) Extreme hotspot workload.

Figure 5.4: Throughput varies with different resource resgons. Each heat map shows
experiments on a range of cache reservation percentagasixaamd HDFS throughput
reservation percentage (y-axis). The magnitude of theré®lshown in the legend on the

right.

Setting the reservation evenly among tenants may not fuilizel the resources. We
experimentally demonstrate that the same reservatiordgoeld a different throughput
when used for different workloads. We run the three worksodeffined in Section 5.1. We
vary the percentage of cache reservation and HDFS througegervation in a range from
0.125to 1.0 in interval of 0.125. For example, 0.5 of cache @25 of HDFS throughput
means we reserve 50% total cache space and 25% total creHIBFS. Each experiment
only runs one workload in the cluster. Figure 5.4 plots tiseilts.

In Figure 5.4a, the uniform workload is disk sensitive. Basing HDFS throughput
reservation increases its throughput significantly whmieréasing cache reservation does

not. In Figure 5.4b, the regular hotspot workload needs btk and cache. It achieves
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maximum throughput when the reservations of HDFS throughpd cache are close to
1. In Figure 5.4c, the extreme hotspot workload is cacheitbensincreasing cache reser-
vation significantly improves throughput. In summary, fesin Figure 5.4 not only val-
idate the reservation mechanisms presented in Sectionub.2ldp motivate the need of
workload-aware reservation planning. For example, in geeof multiple uniform work-
loads, it is better to reserve resources equally among tend@fhile in the case of uniform
workloads mixed with extreme hotspot workloads, it is bettbereserve more cache space
for extreme hotspot workloads and more HDFS throughputhdfioom workloads.

The resource reservation planning in Argus is done by thise&cmaker in the master
node. In the following discussion, we first formalize theidem problem, and then present
a solution based on the hill climbing algorithm with offlimaihing models. Notations in

Table 5.4 are used for discussion.

Table 5.4: Notations.

Notations | Description

n The number of tenants

m The number of resources

b; The baseline throughput for tenant

t; The actual throughput for tenait

v; The throughput violation for tenant

Tij The amount of resourcgreserved for tenarit
M; The total amount of resourge

The goal of the reservation planning is to let tenants hawvedas in terms of through-
put violation and keep the efficiency as much as possible. $&#esquation 5.3 to describe

fairness and equation 5.4 to represent efficiency. We nemdkimize.J to achieve similar
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throughput violation among tenants as wellfaso improve efficiency. Combining equa-
tion 5.3 and 5.4, we can express the optimization objectivie. The definitions of and

FE are also reminded here.

D(vi,vg,...;0p) =axJ+(1—a)x FE (5.5)
(Zl<i<n Ui)Q
J(Ul, Vo, ... ,Un) = % Zlgign UZ.Q
_ Zlgignvi

E o0y =1
(Ula'UZv 7U) n

« is avariable between 0 and 1. Itindicates how much impgautd £ have in the decision
procedure. In the current prototype, we set it to 0.5. Fonck is the objective that the
decision maker needs to maximize.

With the baseline throughput and resources reserved, wesxthe resource reserva-

tion planning problem as a constrained optimization below.

max D(vy,...,v,)
(Tlly---yrn'm)

(5.6)
v = (bi —fi(ril,---,rim))/bz'
1=1,2,....n
17=12....m

fi is the performance function that represents the througloptgnant;'s workload, given

a set of resource reservatiofis,, . . ., 7, ). Figure 5.4 indicates that different workloads
will have different performance functions. The solutiom the above problem is a list
of resource reservatioris;;, . . ., 7, ) for each tenant that maximizes the valuelaf In
this chapter, we only consider cache and HDFS throughputh&e are two resources in

equation 5.6, i.em = 2.
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5.3.2 Solution

Solving the problem above requires the knowledge of varpmréormance functions. In-
stead of inferring to an analytic form of the function, whisHifficult and error prone [97],
we simply use regression to interpolate the function on ssaneple data collected by run-
ning the workload offline with different cache and HDFS thgbput reservation percent-
ages. Figure 5.4 shows the mapping between resource @lesaind throughput demon-
strates linearity thus we use linear regression for thepotation. The profiler in Figure
5.3 conducts the interpolation and generates the perfarenfumction. The key repeat ra-
tio is used to characterise a workload and is calculatedeasumber of keys repeatedly
accessed divided by the total keys accessed within a cgraiod. For an incoming work-
load, Argus associates it with a performance function whizgbithe closest key repeat ratio
to the workload. If a workload changes its access patteynfrem uniform to hotspot, the
decision maker is able to detect the change and adjust therpance function associated
to the workload accordingly. The resource reservation neaghanged consequently.

In more complicated scenarios, a workload may be charaetbiby more than one
attribute e.g. read/write/scan percentages, priority, dhe corresponding performance
function may also have more resources involved BlgmStoresize in memory, write ahead
log size, etc. In this chapter, we focus on the hotspot aquatssrn and use the key repeat
ratio to characterise a workload and utilize block cacheelkag HDFS throughput as input
resources for the performance function. The modeling ofklead and its performance
function in more complicated scenarios are left for futuceky

To find an optimum solution for equation 5.6, we use the stsiwhaill climbing algo-
rithm to search the feasible space. The basic idea is todetglrrching algorithm start from

a potential solution point and pick a neighbor accordinght® pirobability distribution of
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all the neighbors. The distribution is based on the valueacheneighbor state. Since the
search space is infinite as both cache size and HDFS throtigigoaontinuous variables,
we discretize them into 20 equal pieces, i.e. the basic disihare is 0.05 given the entire
share is 1.0. Notice the number of pieces must be larger tteanumber of tenants in the
current prototype to guarantee each tenant can get its siahe resources. Generally
speaking, the finer the discretization is, the better rékalsearching algorithm can yield,
but the longer it takes to search. Dynamically adjustinggtenularity of discretization

according to tenant number and accuracy is an ongoing wohe algorithm starts the

searching from(ry;, ..., m,;),j = 1,...,m wherer;; = r;,7 # k. That is equal reserva-

tion. In addition, during the search, we only change oneatdeii.e., either cache size or
HDFS throughput. This limits the number of neighbors to expland makes the search

tractable.

5.3.3 Limitations

To simplify the scenario, the current prototype makes thieiong assumptions. First, we
do not consider data locality and assume every byte read HDIRS consumes the same
amount of resources. Reading from local disk is faster amdwmes less resources than
from remote nodes. Second, we do not address the read-mtetéarence and assume both
read and write consume the same amount of resources. HBlasesfthe LSM [76] design
which periodically flushes data froMemStorean in-memory structure, to fixed size files
in HDFS and merges those files later in t@mpactiornprocedure which incurs extra I/0
in the background. Third, we assume both the data and theseqte evenly distributed.
Last but not least, we assume the access pattern does ngfechmaa short time which

allows sufficient time for Argus to detect and react.
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5.4 Evaluation

Argus is prototyped in HBase 0.94.21. We evaluate it in a @8ercluster. Each node has
a 2.0 GHz dual-core CPU with 4 GB memory and a 40 GB disk. Thoeles are setup as
a Zookeeper ensemble, 1 node is setup up with both HDFS naasldfiBase master, and
the other 24 nodes are setup as HRegion servers and HDFSaitgs. iThe block cache
size is configured to be 1200 MB and the number of RPC handieadls in HBase is set
to 30. The HDFS replication factor is set to 1 to conserve digkce. We use the YCSB
benchmark [20] to populate the data and generate the watklatier all the data is pre-
loaded, we run major compactions to compact the store filesh&Ve HBase to balance
the number of regions across nodes. The YCSB clients arenraaditional nodes to
simulate multiple tenants accessing the system simultastgdRrunning YCSB clients on
separated nodes can avoid interference on the client satd tEnant has its own data set in
HBase. We use both micro-benchmark and macro-benchmavaboate the performance
of Argus. The throughput on the client side, i.e., operatiper second (ops/sec), is used as
a measurement to reflect a tenant’s performance on the sy$verfirst present the micro
evaluation which mainly focuses on the reservation enfosrd, then present the macro

evaluation which studies the overall performance in vaistenarios.

5.4.1 Micro Evaluation

This section presents micro-benchmark results of resenf@mcement as it is the funda-
tion of resource reservation. Specifically, we conduct addpth analysis of disk reserva-
tion to study its impact on fairness and efficiency. Then, tuel\sthe stability of resource

enforcement in complex scenarios. In addition, we evaltlaeeffectiveness of elastic
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reservation. Finally, we assess the overhead introducégeognforcement approaches.

A. Disk Reservation

We adapt the deficit round robin algorithm as the requestdidbeto enforce disk reser-
vation. The total number of credits per node is a parametdrysthe system admin and
has an impact on the performance of the scheduler. We stastuolying its impact on

throughput as well latency, and on fairness as well as efiitgieThe block cache in HBase

is disabled so that we can concentrate on HDFS usage.

Impact on throughput and latency: We have two tenants with 50 threads to carry out
uniform read-only workloads respectively. We report thetighput as well as latency.
Throughput is measured as aggregated throughput of teandttatency is measured as
average latency. Figure 5.5a shows the result. The x axisates the number of credits
allocated to tenants in every refill period (2 seconds in tineent prototype) for each
node. The ideal throughput and ideal latency are obtainedrnying the workloads against
vanilla HBase. The throughput increases as the numberditsiacreases from 30 million
to 50 million. Afterwards, the throughput gets close to ttheal throughput. Latency has
a similar trend. As the number of credits increases, latelecyeases until it gets close to
the ideal one. In DRR, the number of credits is used to tleofitjuests sent to HDFS.

On one hand, the larger the number of credits is, the clogethitoughput can get to
the ideal one. On the other hand, the smaller it is, the monstcaints are added to the
scheduling. As a result, tenants’ throughput degrade dieall. From Figure 5.5a we
can see that both the throughput and latency tend to be stéigle the number of credits

exceeds 50 million.
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Figure 5.5: Impacts of #credits on disk reservation. Theig-eepresents the number of

credits allocated in every refill period.

Fairness and efficiency tradeoff: To study the impact of the number of credits on fair-
ness and efficiency, we have two tenants run the uniform oedworkload. One uses 50
threads while the other one uses 200 threads. Figure 5.plagssthe result. The fairness
is quantified with the throughput violation in equation 5a8d the efficiency is measured
as the average throughput violation in equation 5.4. Thygetdairness and efficiency are
observed by running vanilla HBase and having both tenam$Q0ghreads. On one hand,
when the amount of credits is small (e.g. less than 50 mjllitre scheduler can achieve
target fairness. But at the same time the efficiency is sméidbn the target one. On the
other hand, when the credits go above 50 million, fairnespsibut efficiency increases
because the constraints the number of credits imposes ledess In a word, fewer credits
tend to have better fairness but lower efficiency, while nweglits have worse fairness but
higher efficiency. Thus setting the amount of credits is ddodf between fairness and ef-

ficiency. In the current prototype, we set it as 50 million e¥hsacrifices efficiency a little
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bit but gives good fairness as the experiments shown aboweor& advanced option is to
dynamically adjust the credits according to the workloaarahteristics suggested in [104].

We leave that in the future work.

B. Stability of Reservation Enforcement

Figure 5.4 in Section 5.3 already shows that the resoureevat$on is able to reserve given
HDFS throughput and cache size. To take this one step fustleeevaluate its stability in
more complex scenarios. We have 3 groups of workloads: imjfextreme hotspot, and
mixed. There are 1, 2, 5 and 8 tenants respectively to run thkleads. Tenants run the
same workload in the uniform and extreme hotspot groupsaevdaime tenants run uniform
workload and others run extreme hotspot workload in the chox@up. In the cases of 1
and 2 tenants, each tenant uses 50 threads. In the casestb Searants, the thread counts
are 50, 50, 100, 200, and 300, and 50, 50, 100, 100, 200, 200280 300 respectively.
The reservation planning is turned off in this evaluatioratoid resource re-allocation.
We measure tenant #1's throughput (represented; pso see how much it changes in
different settings.7; runs the extreme hotspot workload in the mixed workload grou
Ty's HDFS throughput and cache occupancy percentages are 86t t The remaining
HDFS throughput and cache occupancy percentage, i.e. r@.8jsributed evenly across
other tenants. Figure 5.6 displays the results. Noticeftirathe mixed group, we only
report7;’s throughput when the number of tenants is at least 2. Eachelpaesents the
throughput of7;. Bars with different stripe patterns mean the throughpseoled under
different tenant number settings. We can see that for diémdint workload groupsl;
achieves consistent performance even when the number ariteemcreases from 1 to 8

and7; is mixed with different workloads. Thus Argus is able to gme® throughput in a
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multi-tenant environment by enforcing resource reseovati

7 2 Tenants Y 5 Tenants E= 8 Tenants

1 Tenant B

-
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Figure 5.6:77’s throughput under different workloads and different namdf tenants.

C. Elastic Reservation

Real world workloads usually have dynamics and require tbheage system to be able
to automatically adapt. The kinds of dynamics include thenge of requesting rate and
access pattern e.g. hotspot, uniform, etc. The elasticvatsen approach is applied to
block cache and disk reservation to dynamically adjust éisemvation when some tenants
decrease their throughput. The reservation planning id tselan the reservation when
tenants’ workload have different resource demands.

We evaluate the elastic reservation by having two tenamtghe uniform workloads
and one of them depresses its request rate. They both useeddshFigure 5.7a shows the
throughput as a function of time. Both tenants fair sharesytstem in the first 200 seconds.
Between the 200th second and the 400th second, tenant #2adesrits throughput to

200 ops/sec. During that period, Argus is able to raise theutthput of tenant #1 to
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about 600 ops/sec. Then tenant #2 further decreases itggtiwat to 100 ops/sec in the
next 200 seconds. Because of the elastic reservation, Augurther increases tenant
#1's throughput to about 700 ops/sec. Finally, tenant #&emes its throughput and both
tenants start seeing similar throughput after the 600tbrs®cThere are three throughput

changes.
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(a) Tenant#1 is allowed to have higher througfb) Argus reacts when workload changes its ac-

put when tenant #2 slows down. cess pattern over time.

Figure 5.7: Argus dynamically adjusts its reservations.

Next, we examine Argus’ capability of dealing with workl@adhanging access pat-
terns. Two tenants switch their access patterns at some feogimulate access pattern
change in Figure 5.7b. Tenant #1 starts with an extreme bowgprkload and tenant #2
runs an uniform workload. At the 180th second, they switahdhcess pattern i.e., ten-
ant #1 now runs uniform workload and tenant #2 runs extrentgplod workload. It takes
the decision maker about 60 seconds to realize the changeis®@ operates every 60
seconds. Once the decision maker adjusts the resourceatserfor both tenants, tenant
#2's throughput increases gradually. Finally at about B&@cond, tenant #2 achieves its

maximum throughput. Tenant #2 takes around 300 seconds to tjee maximum because
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it needs to replace most of the cache items in the block cathe.reservation planning
plays an important role to adjust the reservation accorttigorkloads’ demands. The re-
sults above show that Argus can handle workloads varyingroughput and access pattern

efficiently.

D. Overhead

Finally, we study the overhead introduced by resource vasien. For the disk reservation,
there are two sources where overhead comes from. One is fenmantation of the DRR
algorithm and the queues associated with it. Figure 5.5&sHhbat when the number
of credits per node is 70 million, which does not impose anyst@ints to the request
scheduling, about 2% overhead is observed for throughpltbout 1% for latency. We
attribute that to the implementation of DRR and queues. Thersource of overhead is
the number of credits used in the DRR algorithm. For 50 mnmlkoedits in Figure 5.5a, we
observe around 3% overhead for throughput and 2% for latéfcgtudy the overhead of
the cache reservation, we disable the disk reservation aveltivo tenant run the uniform,
hotspot and extreme hotspot workloads respectively wigtsime number of threads. The
overhead is ignorable for all three workloads (less than.1%)

To get the total overhead of a fully functioning system, wal#a both the cache and
the disk reservations in Argus. We have two tenants run theesaorkloads above with
50 threads, and compare the aggregated throughput withng= generated from vanilla
HBase. We observe approximately a 5% throughput decreasleefainiform workload, a
4% drop for the hotspot workload, and ignorable overheadHerextreme hotspot work-
load. Compared with the overhead obtained solely from dgisknvation, the overhead from

cache and disk reservation increases. We think the usageloé enagnifies the throughput
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overhead.

5.4.2 Macro Evaluation

We study the overall performance of Argus in more complexades in this section.
We first present the performance of Argus by running the thveskloads used in our
interference analysis in Section 5.1. Then we further @s8egus in versatile workloads
with scan operations as well as write operations. Next, westigate the effectiveness of
reservation planning and its capability of dynamic worklbandling. Finally, we compare

Argus with A-Cache [84], a HBase based system that aims aéptieg cache interference.

A. Overall Performance

Uniform-200 &8 Unifon

Hot-50 B Unifon

Normalized Metric
° o o o

(&) Two uniform workloads (b) Regular hotspot workload(c) Extreme hotspot workload
with different number of mixed with uniform work- mixed with uniform work-

threads. load. load.

Figure 5.8: Overall performance of different workloads.

The throughput (ops/sec) is measured as an average ovedaed&ind period. We use
the J-index in equation 5.3 to measure the fairness in tefitmsaughput violation and the

value of D (D-score) in equation 5.5 to measure the improvement. Ta gédble output,

88



we report the results after a ramp-up time of 300 seconds.|&¥e the file system cache af-
ter each run. We evaluate whether Argus can prevent inegréerin cases where workloads
with different access patterns are mixed together. We ramtierference experiments de-
scribed in Section 5.1. The purpose is threefold. First, @t if Argus is able to handle
tenants with different thread numbers. Second, we wantdadfs&rgus can differentiate
cache and disk demands from different workloads. Third, vaduate how Argus reacts
when tenants with various number of threads and resourcanigsicoexist. The workload
is labeled with the same convention used in Figure 5.1. Wdqgae 80,000,000 rows to
each tenant. Each row is about 1.2 KB. Figure 5.8 plots theutffiput violation, normal-
ized HDFS throughput and cache occupancy. Table 5.5 suresndré J-index, D-score

and compares them with the ones obtained from vanilla HBase.

Table 5.5: Performance interference compared with vahiBase. Values in parentheses

are the performance numbers from vanilla HBase.

Workload J-index D-score

Uniform-50 and Uniform-200 0.999 (0.746) 0.715 (0.620)
Hot-50 and Uniform-50 0.997 (0.968) 0.741 (0.704)
ExHot-50 and Uniform-200 | 0.995 (0.662) 0.909 (0.656)

For throughput violation, both tenants see roughly the semadl experiments which
indicates that Argus is able to prevent interference by @ropsource reservations. The
extreme hotspot workload mixed with the uniform workloadFigure 5.8c experiences
the least violation because the two workloads do not comipetthe same resource i.e.,
tenant #1 mainly needs cache and tenant #2 mainly wants Hekscheduler realizes the

resource demands and reallocates resources based on @eddDFS throughput and
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cache occupancy, both tenants have similar share in Fig8ee BAs tenant #1 becomes
more hotspot oriented (i.e. Hot-50 and ExHot-50), tenarru#iding the uniform workload
takes a larger share of HDFS throughput and gives away mare & cache occupancy
to tenant #1. This further verifies Argus’s capability of mi€/ing workloads’ resource
demands and adjusting resource reservation. In Figurean8ls.8c, the regular hotspot
workload takes a larger share of HDFS throughput and lessbéee of cache occupancy
than the extreme hotspot workload does which matches owcexoon because the regular
hotspot workload demands more disk accesses and less daithe from Table 5.5, it is
clear that Argus outperforms vanilla HBase in terms of kiand D-score. Notice that for
regular hotspot workload mixed with the uniform worklodtk tl-index from vanilla HBase
is close to the one in Argus. We think it is because the blockeaeplacement algorithm
with priority in vanilla HBase is able to identify populartdaand avoid evicting them too
early, which protects the hotspot workload. But due to tlok laf resource reservation,
the throughput violation from vanilla HBase is larger (si@aD-score) than Argus’ as the
D-score indicates.

We next evaluate Argus in versatile workloads by running awditional workloads
with 200 threads: scan and read/write workloads, agairsteéhd workload. The scan
workload reads 100 rows per request while read/write waiklsends read and write re-
guests together. The keys accessed in scan and read/writéaab follow the uniform
distribution. Notice that Argus is the most effective inadegperations because it deals with
the cache and disk usage, and the write operation does natim@ncache in HBase. Table
5.6 summarizes the results.

Similar to Table??, Argus achieves better interference isolation than vanilBase

does. However, the values of J-index and D-score drop fdr &cdan mixed and read/write
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mixed scenarios. This is especially true for scan mixed Woaidks, where the J-index values
drop over 20%, implying that throughput violation becomes@serious. We attribute the
decrease to the inability of system to isolate tenant resodemands in HDFS. First, a
scan request holds resources in HDFS for a relatively longpgef time and prevents
Getrequests’ access. Because Argus works on top of HDFS, it ialrect control of
the resource in HDFS. [106] suggests a two-level schedoégntorks both at the HBase
level and HDFS level to deal with get and scan mixed worklo&#xond, writes increase
the size oMemTableas well as the number &STablevhich force reads to consult more
SSTable. Additionally, writes will trigger a backgroundpedure calledompactiorthat
merges multiple SSTables into a single one. Thus the conmpgatocedure may compete
HDFS resources with reads and writes from clients.

It is challenging to deal with the interferences incurregkiinally e.g. the increase of
SSTables and compaction discussed above. It requires a thatlean represent the 1/0
behavior of the system with background procedures runmihg:h is very difficult to infer
even in a single node storage system [94]. Similar to oumefftnodeling approach, [94]
derives a non-linear function that transforms a requesnttetlying 1/0 cost by running
workload offline. In a word, we feel Argus can be extended ®the approaches in [94,
106] although there are challenges from aggregating aaditiresources in the workload

model. We leave such extensions for future work.

B. Resource Reservation Planning

Argus relies on the reservation planning to decide how masburce to reserve for each
tenant. We investigate the effectiveness of planning bymeing the interference exper-

iments in 5.4.2 with the planning turned off (i.e. even rgagon for HDFS throughput
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Table 5.6: Evaluate Argus in versatile workloads. Valuepanentheses are the perfor-

mance numbers from vanilla HBase.

Workload J-index D-score

Uniform-50 and Scan-2000.750 (0.513) 0.651 (0.589)
ExHot-50 and Scan-200 | 0.686 (0.650) 0.544 (0.447)
Uniform-50 and RW-200 | 0.926 (0.894) 0.592 (0.469)
ExHot-50 and RW-200 | 0.995 (0.698) 0.654 (0.507)

and cache occupancy) We compare the throughput with thesgmnding run where the
planning is on. Figure 5.9 displays the normalized res@gerall, without planning, the
throughput in the uniform workload experiment is similarth@ one with planning but it
falls behind in the other two experiments. We think it is hesmaboth tenants run uniform
workloads and the planning does not need to reallocate cauthéiDFS throughput. So

tenants see similar throughput with the planning turned off

Tenant

Normalized Throughput

Uniform Hot + Uniform ExHot + Uniform

Figure 5.9: Throughput without planning normalized to tighput with planning.

In the Hot+Uniform and ExHot+Uniform experiments, the tigbput of uniform work-
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loads i.e. tenant #2’s workloads, drops when compared wélohe in the Uniform exper-
iment. We attribute that to the lack of reservation plannifignant #2 is not able to use
some of the HDFS throughput reservation of tenant #1. Idstéa@nly relies on the re-
allocation approach described in Section 5.2 to “steal” ISRDRroughput from tenant #1,
which is very limited in such cases. On the other hand, te#aris not able to use the
redundant cache space held by tenant #2. In summary, Argssurce reservation plan-
ning is necessary and effective when workloads with differesource demands coexist in

a shared system.

C. Comparison with A-Cache

Lastly, we compare Argus with A-Cache [84] in terms of faga@nd efficiency. A-Cache
is also developed on top of HBase to prevent performancef@néamce among workloads.
It focuses on preventing the cache interference. It usesdblee reuse ratio to represent
the cache utilization for each tenant. The reuse ratio @uiaied as the ratio of the number
of cache blocks visited at least twice to the total numberagshe blocks. It estimates how
much cache space this workload may need because a cacheodblyckecomes useful
when it is visited at least twice. The intuition is a tenantdld only have what is needed.
Workloads with large reuse ratios deserve more cache sphibe workloads with small
reuse ratios need less.

We implemented the A-Cache approach and evaluate its siasewell as improvement
with the three workloads used in Section 5.1. Table 5.7 shtbesesults. From the J-
index and D-score values, it is clear that A-Cache is not tibfgovide the same fairness
and efficiency as Argus does. For the extreme hotspot andramimix workload and

uniform workload with different threads, the J-index vausd A-Cache are close to the
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Table 5.7: Comparison with A-Cache. Values in parenthesethe performance numbers

from A-Cache.

Workload J-index D-score

Uniform-50 and Uniform-20Q 0.999 (0.733) 0.715 (0.691)
Hot-50 and Uniform-50 0.997 (0.963) 0.741 (0.745)
ExHot-50 and Uniform-200 | 0.995 (0.691) 0.909 (0.667)

ones of vanilla HBase in table 5.5, which means A-Cache faifgrevent interference. It
is because A-Cache only focuses on cache interference asdndd take disk usage into
account. Therefore, compared with A-Cache, Argus can ptaagerference by providing

stronger performance isolation.

5.5 Real World Applications

To see how Argus could work for real world applications, wavdon big data text mining
of the HathiTrust Research Center (HTRC) [49, 116]. HTRCv@ions for community
research text mining of the nearly 14 million digital docurtee(books, serials, government
documents) of the HathiTrust digital repository [48]. HTR@nages different types of
data objects: raw text data, metadata about the books, anvedldatae.g.term frequency
count. This is managed through a single key-value storeofAllese data objects are slow
changing so workloads against all three are largely redg-omatching the observation
in [4] capturing realistic workloads in NoSQL stores.

The access patterns are different amongst workloads ard ttwus result in perfor-
mance interference. Reading from raw text and metadatavidsneed locality as parts

of the corpus are more interesting than other parts. Reddngderived data, however,
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is likely done using a linear scan, which may interfere with tache contents and access
patterns used by workloads over raw text and metadata. idddity, some of the text
analysis may run on the same data set repeatdlytopic modeling analysis, advanced
machine learning for classification [65, 89, 90], while soofi¢he others may just run for
one time,e.g. a tag cloud generator may fetch the term frequency from thisetbdata
set. The cache in the topic modeling workload may be inteddry the other one-time
workloads where requests are mostly random. Argus cangirtite cache by enforcing
reservation and allocating more disk resource to the randorkload accordingly. An-
other interference scenario is the number of requests noettie tmetadata is a lot higher
than the number made to the raw text as users may want to ig@esenough metadata
before studying the text. Argus can prevent the interfexdrnmm high volume of requests

on metadata to workloads on raw text.

5.6 Summary

In this chapter, we characterize multi-tenancy interfeeeim the context of NoSQL data
stores. We present Argus, a workload-aware resource egganframework that prevents
interference by enforcing reservation on cache and disgeusBurthermore, the resource
reservation technique is workload-aware. Empirical rissshow that Argus is able to pre-
vent interference across tenants and adapt to dynamic eam&laccordingly.

Future work can go in several directions. We intend to qdyatitie impact of writes
on reads and model the I/O behavior through offline samplwg want to investigate
another resource reservation, i.e. the memory usage fegsvincreasing the size of write
buffer will boost the write performance but harms read penance as the size of block

cache decreases. It is beneficial to set the sizes of cachwr@edbuffer according to
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different workload characteristics. Furthermore, we wargxtend Argus to other NoSQL
solutions beyone HBase. Last but not least, itis intergstirstudy Argus in a heterogenous

environment.
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Chapter 6

A Lightweight Key-Value Store for Distributed Access

Previous chapters present the performance isolation mexha we propose for the non-
shared data on local file system case. In this chapter, wg studti-tenancy in the case
where tenants share the same data set through a paralleisiiars Specifically, we study
the key-value store (KVS), a special form of NoSQL data st&éS offers flexible data
model, high scalability, as well as many other attractingtdees, and thus becomes in-
creasingly popular. Various key-value stores [27, 60, 120 been developed to facilitate
analysis on social media feeds, web logs, and etc. With thieradf cloud computing,
users are willing to move their data infrastructures to tloeid. They set up the KVS
across a set of virtual machines (VMSs) billed by a flexibleepnmodel, i.e. “pay-as-you-
go” model.

KVS is usually architected as a layer over local file systemgl® node KVS (S-KVS),
such as Berkeley DB [75] and Level DB [62], targets a singldenenvironment. It al-
lows direct access to the local file system by embedding t@ppdications. In contrast,
multi-node KVS (M-KVS), constructs network connected nods a cluster and provides
a unified interface for applications through the networkaiples include Cassandra [60],

HBase [1], and etc. It usually stores the data on the locakjitem in a cluster of VMs
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and runs daemon services on each individual node to delagptieation access. In gen-
eral, S-KVS is much more lighter-weight and has better perémce in the sense that it is
embedded as a library in applications and allows direct jitesn access without going
through daemon services. However, S-KVS suffers from dzda &nd scalability issues
due to the limit of a local file system. Besides, it does naivalkkoncurrent writes because
of file system locking, which is not desirable in a cloud eomiment where the store may
be accessed concurrently. On the contrary, M-KVS distebudiata across different nodes,
supports concurrent access, and provides data replicagiorell as fail over. In this chap-
ter, we intend to retain the high performance access of S;KuSextend its capability in
a distributed environmeng.g. cloud, which M-KVS is good at, with the help of a parallel
file system.

Parallel file system (PFS) has begun seeing usage in the oidookh industry [68]
and academia [2,52, 79]. Originating from the high perfaroeacomputing (HPC) plat-
form, PFS is a type of clustered file system that spreads datadedicated storage node
cluster [81]. PFS can be mounted to multiple VMs and provitiessame interfaces and
semantics as local file systems. Essentially, PFS decodptesstoring from VM's local
disk to a dedicate storage system and provides a hybridgg@@ution along with the lo-
cal file system in the cloud. However, there are some chadtetmrun KVS over PFS. On
one hand, although PFS can resolve the data reliability ealdlsility issues, S-KVS over
PFS is still subject to the exclusive writes constraint. @adther hand, M-KVS over PFS
introduces overheads owing to its unawareness of PFS. bon@e, data may be unneces-
sarily replicated; extra network trips may be needed tosgtiee PFS because the daemon
service delegates all the requests to the back-end filersysteerheads may also come

from the data replication and failover protocols, both ofiehhare taken care of by PFS.
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Additionally, most M-KVS withhold resources to have petsig running services even if
no request comes, which is not cost effective. Recentlye@rerg et al. also point out the
burden and inefficiency of running persistent KVS servictnenHPC environment [40].
Therefore, we propose a lightweight and distributed KVS,Lkt, over a PFS to
better utilize the sharing and reliability nature of PFSeTdesign, presented in a poster
[114], is further developed in this chapter. Similar to S&WVLight is implemented as
a library embedded in applications for high performancendkes use of the log structure
merge tree (LSM) [76] structure to support concurrent vgraaed uses a novel tree based
compaction strategy to support concurrent reads effigielmlksummary, this chapter makes
the following contributions:
e ALSM based framework with asynchronous mechanisms to stippocurrent writes
and reads;
e A tree based compaction equipped with parallel processingnprove read perfor-
mance;
e Experimental results that show KVLight has better perfaragathan other M-KVS
including Cassandra and Voldemort [100] in several difiensorkloads including

two real world applications.

6.1 Background and Motivation

6.1.1 Background

Parallel file system (PFS) is designed for parallel and higiigpmance access. It allows
concurrent access from a number of clients and operate@lesspeed networks. Below

we summarize several PFSs, mainly from the architecturelateddistribution prospects.
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The Parallel Virtual File System (PVFS) [12] runs its seqercesses, i.qvfs2-server
over a cluster of nodes. The pvfs2-server process storasatatlly. Data is stored in files
and metadata is stored in Berkeley DB. PVFS provides twodeAdls: the UNIX API
backed by thepvfs2-client a user-space process, and the MPI-IO APl which can bypass
the pvfs2-client and be more efficient. File is striped asm@savailable servers in a round
robin fashion. The striping can be tuned with various patansd82] according to data size
and access patterns. As its development continues, PVFESvikmown as OrangeFS [77].
Some company has provided OrangeFS as a service throughofAnd&¥S [78]. How-
ever, PVFS does not support locking which prevents its A@nficonforming to POSIX
semantics.

The General Purpose File System (GPFS) [88], developedhh ligars a similar ar-
chitecture with PVFS. It runs the servers on a number of @eeitstorage nodes called
file system nodes. The file system nodes are connected to adisk® through switching
fabric. The disks are set up in RAID to provide reliable stgraA file in GPFS is divided
into blocks (256 KB by default) and distributed evenly asrti®e disks. Reads and writes
can be served in parallel by multiple file system nodes arkkdignlike the Hadoop File
System [96] which stores all the metadata in a single se@RFS distributes the metadata
e.g. directory tree in its servers. Due to this kind of disition, GPFS does not have limits
on the number of files a directory could have, which is ofteB3&bin many file systems.
Additionally, GPFS introduces a distributed locking meaken which allows it to support
full POSIX file system semantics.

Among various PFS e.g. PVFS, GPFS, and etc., Lustre [L0REisnost widely used
PFS nowadays. Figure 6.1 displays its architecture. It It af metadata servers (MDS)

to host file system metadata and a set of object storage sgi@&S) to interact with
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clients. Behind each OSS, there are many object storaget$a(@ST) that store the data
in a redundant fashion. A file is striped into several piecebsiored across different OST
so that read/write operations can be performed in parallelread/write from/to Lustre,

a client will first consult the MDSs to get the locations of @SSAfterwards, the data
transfer is between the client and OSSs. With the separanoong MDSs, OSSs and
OSTs, Lustre is able to provide highly reliable and scaldll@ access. Lustre also uses a
distributed locking mechanism and is able to support fulBPOfilesystem semantics. In
practice, Lustre is often mounted to other compute noddgtiozide computation power.
The access to Lustre in compute nodes is just like it is a lideadystem. The complexities

are completely hidden from users.

Management Matadata Cbject Storage  Object Storage
Servars (MGSs) Servers (MDSs) Servers (055s)  Targets (05Ts)
s N o, T
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Enterprise-Class Storage

= InfiniBand network Arrays and SAN Fabric

Figure 6.1: Lustre Architecture. Sourdettp://lustre.org/about/

We prototype KVLight over Lustre. Next, we motivate the dgsof KVLight by com-
paring a single node KVS (S-KVS) against a multi-node KVSKMS) on Lustre.
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6.1.2 KVS on Parallel File System

We run the experiments on Lustre 2.1.6 in Data Capacitor 2adittha University [25].

We use Berkeley DB Java Edition (BDB) version 6.2.3 [8] as$hKVS and Cassandra
version 2.0.14 [14] as the M-KVS. Yahoo Cloud Storage BeratkndY CSB) [20] is used

to generate the workloads. For more details about the selegise refer to Section 6.5. We
run write-only and read-only workloads. There are two searmants for Cassandra: single
node Cassandra instance (S-Cassandra) and 15-node Gasdaster (M-Cassandra). We
use one client and six clients to access the BDB and Cassamtemces respectively.
A client runs on a separate node to carry out the workloads.rafert the aggregated
throughput i.e. operations per second (ops/sec) on clidat sFigure 6.2 displays the

results.

fo2]
o
1

BDB, 1 Client

N BDB, 6 Clients
S-Cassandra, 1 Client
M-Cassandra, 1 Client T
I s-Cassandra, 6 Clients
[ M-Cassandra, 6 Clients

a
o
1

Throughput (kops/sec)
3 8 8

=
o
1

Figure 6.2: Read/write performance for different KVS infeliént setup. “S-Cassandra”
means a single node Cassandra instance while “M-Cassamegr&sents a multi-node Cas-
sandra instance. We do not report the throughput of 6-clieité workload in BDB as it

does not support concurrent write.
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In the one client case, BDB outperforms S-Cassandra and $8aDara. It is because
the access to BDB is lightweight — direct file system acces$s¢hvavoids the overheads
Cassandra imposes. When there are 6 clients, the aggregededhput of Cassandra is
much higher than the one of BDB with one client access. M-@adim delivers the highest
throughput among all KVSs in Figure 6.2. Although BDB does$ swpport concurrent
writes from different clients, it does allow multiple cliesto read from and yields a higher
throughput than S-Cassandra does.

We conclude from the above discussions that 1) S-KVS hastbeérformance than
M-KVS in a single node due to its lightweight access, but SSdbes not support concur-
rent writes; 2) M-KVS is much better than S-KVS when it is dg@d and accessed in a
distributed environment because it well supports concaikseites and reads. Motivated by
such experiments, we extend S-KVS to support concurremg¢svand reads in a distributed

environment while retaining its lightweight access as magpossible.

6.2 The KVLight Structure

6.2.1 System Model

In a large scale compute environment, e.g. HPC and cloudsytbem can usually be
organized into a 2-layer architecture, consisting of aygpion and storage layer. The ap-
plication layer generates queries to the storage layer eowkpses the query results, while
the storage layer stores the data and handles queries. Vga #a4_ight as a middleware
that stays between the application and storage layers urd-§.3. The KVLight library
provides basic key-value store APIs includiGgt(key) Put(key, value)andDelete(key)

The KVLight store is a list of files in Lustre. The files contairetadatee.g. KVLight
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status and data i.e. the key-value pairs. Lustre is usecasitterlying storage system and

a communication media among nodes.
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Figure 6.3: KVLight architecture.

6.2.2 Design Choices

We address the problem of building a lightweight KVS in arstted environment. The
heavyweight mechanisnesg. data replication, fail over, nodes coordination and ete. ar
shifted from KVS itself to the underlying file system i.e. lttes We explore the design
space in Figure 6.4. A S-KVS has low concurrent write perfamge as it only supports
exclusive writes. A simple solution is to have multiple peeses write to independent S-
KVSs and let a read search all the existing S-KVSs. Howelerréad performance will
deteriorate as the number of S-KVS grows because a read ltansolt more BDBs to
get the data. To remedy the read deterioration, compacéinrbe used to merge multiple
S-KVSs into one to reduce the number in the system. Thereforsupport concurrent
writes without sacrificing too much read performance, wegirekVLight in the “Multiple

S-KVS + Compaction” category.
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Figure 6.4: Design space of KVLight. The arrow points to hpgifformance.

6.3 Design Details

KVLight uses Berkeley DB (BDB), a widely used S-KVS, to stdey-value pairs. In
this section, we present the log structure merge tree (LStg)oth that allows KVLight
to support concurrent writes and the asynchronous meahartisat hide the overheads
introduced by LSM. Then we describe two different compactpproaches i.e. size based
compaction and tree based compaction, and their paralij@ementations. Finally, we

present the consistency model used in KVLight.

6.3.1 Concurrent Write

To support concurrent writes, KVLight has each applicatiaite to a dedicated BDB
(called write BDB) which is not shared with other applicaso Figure 6.5 shows the
details. All the writes of an application go to one write BDBraultiple write BDBs. A

write BDB is flushed as an immutable BDB and shared by otheliGgijwns according to
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a certain policy. Sample policies are when the size of theeWBDB exceeds a threshold
or when the application wants to. After a write BDB is flushiédhecomes accessible by
other applications. Any new write requests will be added t®a write BDB. To read a
key-value pair, KVLight consults the write BDB first and thére immutable BDBs. To
delete a key-value pair, it marks the key as deleted by upgl#tie key with a special value.
KVLight will report “key not found” if an application interglto read the key marked as

deleted. The key-value pair will be removed during the coctipa.

Figure 6.5: The structure supports concurrent write.

To further improve performance, we introduce an asynchusmoechanism that runs
the flushing in the background as a separate thread and kedeyiisiag new write requests
at the same time. When a write BDB is closed for flushing, if woke a number of
procedures such as syncing buffer to disk, reclaiming whdssk space, and etc. These
procedures result in blocking for coming writes. The asyaobus mechanism can overlap
the flushing with write admission and thus hides the flushivgrloead from applications
as much as possible.

Organizing BDBs in this way has some advantages. Usingrdiite‘types” of BDB
allows KVLight to support both concurrent write and conewmtrread. Thus we enact

dedicated BDB for write and immutable BDB for read. Havinffatent applications to
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write to different BDBs can better utilize the parallelismdtre provides.

However, there are some caveats about such an organizaticst, the read perfor-
mance will degrade as the system keeps admitting new wigieeists. Figure 6.6 shows
the read throughput degradation as a result of the numbeD& iBcreases. That is be-
cause the number of immutable BDBs keeps increasing ands@cead to consult more
BDBs than before. Second, there will be some versioningesas different values associ-
ated with the same key may exist in different BDBs. Third,¢basistency is weakened as
a write BDB is visible to other applications until it is flughand becomes immutable. We
address the read performance degradation and versiorsngsigshrough the compaction

procedure discussed in Section 6.3.2. We present the temsysmodel used for KVLight
in Section 6.3.3.
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Figure 6.6: The aggregated throughput of read decreasks asiinber of BDBs increases.

6.3.2 Compaction

To serve reads, all the immutable BDBs have to be searched so r@turn the values

associated with the given key. The lookup costig: x k) wheren is the number of
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BDBs, k is the cost of fetching data from BDB, ankeeps increasing as the system admits
new writes and flushes write BDBs. Compaction is a backgrqurodedure that merges
multiple BDBs into one to reduce the number of BDBs. Once aBBB is generated, old
BDBs will be deleted. If there are multiple values associatéh the same key, KVLight
only returns the one with the latest timestamp during readdsscards other values during
compaction. We first present a straightforward approaclotopact BDBs based on their

sizes. Then we propose a tree based compaction approach.

Size Based Compaction

A compaction will be triggered if the number of immutable B®Bxceeds a threshold.
The compaction picks a subset of BDBs with the smallest s@zeserge. This is to avoid
merging large BDBs repeatedly, which is similar to the tiempaction used in HBase
and Cassandra. To better utilize the parallism of Lustrespsed up the compaction, we
introduce parallel compaction to KVLight. Specifically, K\ght launches several proce-
dures that compact BDBs in parallel. Each of these proceduerges a separated set of
BDBs. Algorithm 4 describes the details. TBempactiorprocedure monitors the number
of BDBs and dispatches them to different workers for compadh a round robin fashion
if needed. Workers may be run on different nodes insteadeodties KVLight applications
run to avoid I/0O competition. Th€ompactionWorkeprocedure merges the set of BDBs
assigned.

To further boost the read performance, KVLight uses blootarfian in-memory hash
structure, to quickly locate the BDBs that may have the datadloom filter can test if a
given key is in a BDB inO(1) with some false positive. This is much faster than using the

indices of BDB to test. Every BDB is associated with a bloontefigenerated during the
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Algorithm 4 Size Based Compaction Algorithm

1: worker_list is a list of workers where compaction can be performed.
2: bdb is a set of BDBs to be compacted.
3: procedure COMPACTION

4 if #BDBs > thresholdhen

5: if worker_list is not emptythen
6: bdb < Pick (#BDBs — threshold + 2) BDBs
7: Update #BDBs
8: Removeworker; from worker_list
9: Schedulevorker; to work onbdb
10: end if
11: end if

12: end procedure

13: procedure COMPACTIONWORKER(bdb, worker;)
14: Compactkdb) onworker;

15: Add worker; back toworker_list

16: end procedure
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flush of a write BDB. Given a key, KVLight tests the key agaitt& bloom filters and finds
a subset of the BDBs that might have the associated valuésrwifrds, KVLight linearly

searches the subset of the BDBs with their indices.

Tree Based Compaction

The problem of the size based compaction is a read may stélteelookup a large number
of BDBs even after a compaction. Consider the following eglknin Figure 6.7aKeyl

spreads across 3 BDBs. After the first compaction, it isist BDBs. Only after a second
compaction it stays in 1 BDB. It is worse if the threshold igjkr than 3 because there will

not be a second compaction akeylstays across three BDBs.
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Figure 6.7: Different key range organizations across BDBsblue stripe represents a
BDB. The number in the key range is used as illustrationsOfarlapped key ranges; (b)
Non-overlapped key ranges; (c) Non-overlapped key rangessa partition, overlapped

key ranges within the same partition.

The cause of the scenario described above is the key rangéteirent BDBs overlap
with each other. Ideally, if the key ranges of all the BDBs digointed, then a read
request only needs to lookup one BDB as shown in Figure 6.dweer, implementing

such a model will be very inefficient in KVLight because correat writes from different
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applications may write to the same BDB which only supportdwesive write. Therefore,
we propose another model that approximates the ideal oreefitire key space is divided
into a few partitions. A partition has a disjoint key rangedas associated with a list
of BDBs. BDBs falling into different partitions will have meoverlapped key ranges but
BDBs in the same partition may have overlapped ones. A cotigpamay only be applied
within a partition. Figure 6.7c shows an examdeylspreads across 3 BDBs in the same
partition. After a compactionKeyl stays in 1 BDB instead of 3 compared with Figure
6.7a. Thus after one compaction, KVLight is able to réay1 by searching only one
BDB. BDBs in the same partition can be further partitionetd imultiple sub-partitions
during the compaction, which makes the organization simila tree.

Motivated by the example in Figure 6.7c, we organize BDBs @safor read. Figure
6.8 describes the design. A node in the tree has a key rangis asdociated with a list
of BDBs whose keys fall within the node’s key range. Its cléldnodes further partition
the parent node’s key range into disjoint ranges. BDBs lgpianto different nodes have
non-overlapped ranges while BDBs within the same node haedapped key ranges. The
root of the tree is a node with the entire key range and an ehspiyf BDBs. Writes will
go the children of the root node. There are two types of cotigraover the tree: one is
to push the key-value pairs down to the next level by readieg®DBs in the parent node
and writing into its children nodes; the other one is to mesgveral BDBs under the same
node into one. The former one further divides the key randatewhe latter one reduces
the number of BDBs. In addition, the height of the tree andrtmber of children of
a node can be dynamically adjusted. These two parametezsrdeé the granularity of
the key range partition. This is especially helpful whenlisgawith skew data. If a node

has much more data than other nodes have, we may increaseighée énd the number of
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children nodes to refine the partition of the key range.
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Figure 6.8: Tree based compaction design.

In the current prototype of KVLight, the maximum level of ttiee and the maximum
number of children of a node, i.e. the fan out, are set as fixedbers. We leave the
dynamical adjustment of the parameters in future work. TNe&ikht library maintains
an index that describes the tree structure of BDBs. The kayerdés decided by hashing.
A portion of the key is extracted for hashing in differentéés: Specifically, we have two
levels (the root is not counted in the level hierarchy). la 8md level, we hash the last 16
bytes of the key to decide which child it goes to. In the 3retlewe hash the first 16 bytes.
The compaction procedure is triggered when the number of 8liéler a node exceeds a
threshold. BDBs in a non-leaf node will be pushed down to ¢fa¢ hode and the BDBs in
the leaf node are merged together. Figure 6.9 shows a ruesergple of compaction in
the tree structure.

To parallelize tree based compaction, we allow multiple paations to run on different

branches of the tree independently. Algorithm 5 descrihesptocedure. Th€ompact
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Figure 6.9: Compactions run in nodes from different levdishe tree. For the node in

the top, the compaction pushes keys down to the next levaltblgdr partitioning the key
range. For the nodes in the bottom, the compaction mergessBidBhe same node into

one.

procedure dispatches nodes to compaction workers. Uljhgte function traverses the
tree level by level and updates a list of nodes to be compadied CompactionWorker

procedure either pushes the BDBs to the next level for nahAedes or merges the BDBs
for leaf nodes.

To read a key-value pair, KVLight searches down the tree andtés the node con-
taining the key. Then it linearly searches all the BDBs urtlernode to get the values.
Bloom filter is also used here to quickly detect if a BDB congahe key or not. Compared
with the size based compaction, the tree based compactioguiekly focus on a subset
of BDBs containing the key and provides a flexible structineg tan dynamically adjust

according to different key distribution.
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Algorithm 5 Tree Based Compaction Algorithm

1: node_list is a list of nodes to be compacted.

2: worker_list is a list of workers where compaction can be performed.
3: procedure COMPACTION

4: Updatefiode_list)

5: for eachnode; in node_list do

6: if worker_list is not emptythen

7: Removeworker; from worker list
8: Schedulevorker; to work onnode;
o: end if

10: end for

11: end procedure

12: procedure COMPACTIONWORKER(node;, worker;)
13: Compactfode;) onworker;

14: Add worker; back toworker_list

15: end procedure
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6.3.3 Consistency

Although Lustre, where KVLight is built, provides strongrsistency for concurrent ac-
cess, KVLightintroduces data inconsistency because dsygesupport concurrent writes.
There are two scenarios related to consistency: consisteiticin a process and consis-
tency among processes. For consistency within a processydicg to [101], KVLight
follows the read-your-write consistency. The effect of atevcan always be seen by fol-
lowing reads in the same process. That is because a writeeithikr stay in the write
BDB or one of the immutable BDBs. Successive reads in the sgpkcation can read
the value of write from either the write BDB or immutable BDiBsmediately. For consis-
tency among processes, a process might not read the laigstwugten by another process
in advance, but it will eventually. The reason is that a kejug pair is admitted to the
write BDB which only becomes visible to other applicatiomgiuflushed. The time took
for the key-value pair becomes visible depends on the flgghaticy discussed in Section
6.3.1. To support strong consistency in the inter-proceasse, the KVLight library can
search all the existing BDBs to serve reads. Such an opengtiery expensive in terms
of performance because KVLight has to reopen the write BDEsyetime it tries to read
a key-value pair in order to get the newly admitted data. Kjhtifollows an eventual con-
sistency model by default, but allows a client to specifgisty consistency as an option in

the API.

6.3.4 Limitations

To simplify the situations, the current KVLight prototydimited to simple key-value pair

lookup. It does not support transaction and atomic operaBoth require a central mech-
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anism that can coordinate among applications. Additignaltioes not support advanced
operations like scan and join. The scan operation requigstaal order of keys across
different BDBs while the join requires extra indices. Femmore, it assumes the back-end
PFS can accommodate reads and writes from both applicatrahsternal procedures i.e.

compaction without creating contentions.

6.3.5 Applications

The aforementioned consistency model and limitations sepoonstraints to the appli-
cations that can use KVLight. For applications that invobgerations across multiple
processes, KVLight is not suitable. Examples include thengt consistency case where a
process reads from the writes made by another process atsattion case where a pro-
cess wants to commit a series of operations as a transaatidrihe atomic operation case
where a counter is maintained among applications. Desfikese constraints, KVLightis
suitable to a wide range of applications. KVLight can be usesituations where eventual
consistency can be tolerated. An example is the advertiseliséng application. Many
users (applications) post advertisements. It is OK thatesadvertisements do not get to
the reader immediately. KVLight can also be used in situestiwhere write and read are
separate. An example is log processing [112]. Log data exiagl as key-value pairs to
KVLight by multiple processes (potentially distributed)nce the injection is done, sev-
eral other processes read from KVLight to process the log.dAnother usage scenario
is to persistently store data in HPC environment. The admessmpute nodes is granted
as the job is scheduled and revoked as the job is terminat@dhwnakes traditional M-
KVS like Cassandra unable to persist data as it requires @ famning service on each

compute node [40]. KVLight does not require persistent mgrservices and thus allows

116



on-demand access.

6.4 Implementation

We implemented KVLight in Java 1.7 with Berkeley DB Java kxhit6.2.3. The KV-
Light library shown in Figure 6.10 consists of a write managed a read manager. The
write manager dispatches the key-value pairs to differ@B8based on the hash partition.
It also implements an asynchronous mechanism to avoid isigakhen flushing a write
BDB. The read manager maintains the tree structure of vaB@Bs and is responsible for
handling reads. The compaction manager is a separate priogggered by the library. It
launches serval compactions to compact BDBs in parallely @me compaction manager
is allowed to run at a time. Both the compaction manager aaavtirkers are run through
sshon additional nodes. KVLight has to maintain system statysimplement the system
status e.g. paths of the immutable BDBs in several metadbhtas backed by a BDB in
Lustre. Retry logic is applied to update operation on theacteta table in case of failure
caused by concurrent write. The read manager updates thentsdel every 1 second by

reading the paths from the metadata table.
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Figure 6.10: KVLight implementation and deployment.
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6.5 Evaluation

We evaluate the performance of KVLight in a cluster envirentnand compare against
Cassandra version 2.0.14 and Voldemort version 1.9.1%, dfothich are state-of-the-art
KVS. Woldemort is a KVS using Berkeley DB Java Edition as teédlt backend store and
used widely in LinkedIn [100]. The experiments are carriatio a distribute environment.
Each node has 2 Intel Xeon E5-2650 v2 8-core processors ar@B3themory. Both
Cassandra and Voldemort are setup as a 15-nodes clustesé/Bata Capacitor 1l (DC2)
as the parallel file system [25]. DC2 runs Lustre 2.1.6 withs&Gage nodes connected
with 56-Gb FDR InfiniBand and provides 3.5 PB storage capaditis mounted to all
the nodes as a shared file system. The client uses YCSB [2@tergte the data as well
as workloads and runs on additional nodes. To use YCSB withig, we develop a
KVLight plugin for it.

For KVLight, it uses the tree based compaction by default.rAaedBDB will be flushed
when its size exceeds 256 MB. The maximum level is set to 2.mdamum children per
node is 4. The compaction threshold for each node is set tch8refore, the maximum
number of BDBs is 484 x 4 x 3). The maximum number of compaction procedures
running in parallel is 6. For Cassandra, we keep its defatting)s, and configure the Java
heap size to 4GB so as to leave most of the memory to OS as rezodeth in [45]. The
consistency level defaults to one which enables eventusaistency. We configure BDB
with 5 GB cache size and 256 MB log file size for both KVLight araldemort according
to the suggestions from [103]. For the data stored in Lusteeset the stripe count to 1
and stripe size to 4 MB. An evaluation of impacts of differstiipe counts and sizes is left

in future work. The workloads used in evaluation includetgonly, read-only and write-
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read mixed. Requests are drawn from 2,500,000 randomly gieakkey-value pairs. Each
pair is about 1.2 KB. The write-only workload sends writeuests, while the read-only
workload sends read requests. 50% of the requests in the-rgatl workload is writes
while the other 50% is reads. We use throughput, i.e. omeratper second (ops/sec),
as the performance measurement. We report the aggregabediput from all clients to
reflect the throughput of a KVS.

We first evaluate the overall performance of KVLight and difgthe impact of com-
paction to workloads. Then we investigate the effectiverdslifferent compaction strate-

gies. Finally, we examine KVLight’'s performance under twalrworld applications.
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Figure 6.11: Aggregated throughput for various workloadlslifferent KVS.

6.5.1 Overall Performance

We start by running the workloads against KVLight, Cassaraird Voldemort. The write
workload tests if KVLight can handle concurrent writes. Tkead workload evaluates if

the organization of BDBs can serve concurrent reads eftigiefihe write-read workload
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Figure 6.12: Impact of compaction on different workloadgenms of throughput. (a)
There is no observable impact for the write-only workloald) Throughput improves as
compaction goes on for the read-only workload. (c) Througipops during compaction

and improves afterwards for the write-read workload.

assesses the impact of compaction when writes and readsesenp To thoroughly test
the KVS, Cassandra and Voldemort are set up on two differentfistems: a parallel
file system i.e. Lustre and a local file system backed by thal ldisk in the compute
node. We have 8 clients run simultaneously on separate nédéepreload 2,500,000 key-
value pairs for the read-only workload and the write-readkioad. Both the read-only
and write-read workloads are launched after the store hais t@mpacted for Cassandra
and KVLight. Cassandra and Voldemort are restarted to ¢learcache before serving
reads. Figure 6.11 displays aggregated throughput ofrdiffeKVS. We first compare
three KVSs when they store data in Lustre. For the write vaa#t| KVVLight outperforms
Cassandra and Voldemort by 23% and 62% respectively. Wk this because KVLight
avoids the protocol overhead and redundant network trigtioregd in Section 6.1. For the
read workload, KVLight's throughput is about 26% highentl@2assandra’s which reflects
the effectiveness of tree organization of BDBs in KVLightor@pared with Voldemort,

KVLight's throughput is about 5% less. We attribute thatle bverhead of locating the
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BDBs. To serve a read request, KVLight searches down thddrieeate the node whose
key range contains the target key. Then it linearly seartme®8DBs that belong to the
node to find the value. In contrast, Voldemort divides the &esce into non-overlapped
partitions (one BDB per partition) through consistent hiagland serves a read request by
just looking up one BDB. For the write-read workload, KVLigthroughput is about 5%
and 16% higher than the ones of Cassandra and Voldemorttesghe Such results show
KVLight is able to run compaction efficiently to mitigate theite impact. Compared with
Cassandra, KVLight runs multiple compactions in paralsteéad of one compaction at a
time. Furthermore, KVLight runs compactions on additionadles rather than the nodes
hosting the applications to avoid I/O contentions.

When the data is stored in the local disk, both Cassandra aldeort perform worse,
evidenced by the throughput drop in Figure 6.11. After cttimsyito the system admin of
DC 2, we conclude that itis because the local file system wgesithan Lustre in the kind of
workloads generated by KVS. The local disk is a 7200 RPM SAiivedvhile a OST i.e. a
Lustre data node is composed from (10) 7200 RPM SATA drivedigored in Raid-6. The
nodes running the Cassandra and Voldemort instances h&te Ehernet connectivity to
Lustre nodes. A 7200 RPM SATA drive typically yields aboutM8/s bandwidth while
an OST yields about 300 MB/s. Because the network bandwsdtt?iGB/s which is larger
than an OST can sustain, data transferred to or from Lusselgcted to the bandwidth
of OSTs rather than to the network.

We run an I/O benchmark, lozone [51] to report writes and seadoughput with re-
spect to sequential and random patterns on the local filesyanhd on Lustre. The size
of data written and read is set to 30 GB. Figure 6.13 plots Yezage throughput of 10

runs. For sequential write, Lustre outperforms the local difstem about 2 times, which
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Figure 6.13: I/O performance from lozone.

matches the expectation based on the hardware spec mehtidhat also explains why
Cassandra and Voldemort are worse in local file system bedzath systems append data
to log files which are sequential writes. However, Lustrebisua 15% worse than the local
file system in the random write workload. For sequential r@adl random read, both local
file system and Lustre obtain higher throughput than the diskgenerate. We think it
is due to the impact of cache including Linux VFS cache, dasghe, and Lustre cache.
lozone does not support direct I/O and we do not have thelggeito reset the cache in
the system. For reads, Lustre’s throughput is about 20%ehitifan the local file system in
the sequential read and 8% higher in the random read. In a,\Wwasedre outperforms the
local file system in sequential write as well as read and rana@ad, all of which are main
workloads Cassandra and Voldemort impose to the file system.

Next, we investigate the impact of compaction on aforenoeetil workloads. We use a
YCSB client to carry out the workloads and plot the througtgsuwell as compaction span

as functions of time in Figure 6.12. We preload the data ferrdad-only and write-read
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workloads. We disable the compaction when preloading datshe read-only workload
so that compaction will be triggered during reads. Figufe &hows the result. For the
write-only workload, although the compaction lasts abd@@ deconds, there is no observ-
able impact to the throughput as displayed in Figure 6.18awfites, a compaction is just
another batch of writes and the reads in compaction do netfere with writes from ap-
plications. For the read-only workload in Figure 6.12b, tbenpaction starts shortly after
the workload begins and lasts about 400 seconds. The thpatighadually improves dur-
ing the compaction which shows the compaction indeed canaveread performance by
reducing the number of BDBs and organizing them in a treecttra. For the write-read
workload in Figure 6.12c, its throughput stays about 10,00€'sec but drops to around
5,500 ops/sec when the compaction runs. There are sevesane behind that. First,
some of the slowdown may come from the frequent update ofréeestructure of BDBs
because obsolete BDBs are deleted and new BDBs are genefsdednd, a BDB being
read by a KVLight library may be deleted by the compactiorcpoure which cause excep-
tion. The KVLight library ignores such types of exceptionpdates its view of available
BDBs and retries. All these steps contribute to the slowdown

Finally, we evaluate the overhead KVLight adds to BDB by lingri-client workloads
against them. Table 6.1 shows the results. The overheadtefvim KVLight is ignorable
owning to the asynchronous write mechanism in Section 6\3Li¢tht suffers about 5%
degradation in the read workload and 9% degradation in titeanead workload. The over-
head mainly comes from the tree based organization of BDEsampaction. However,

KVLight stands out in concurrent access situation where BDBggles.
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Table 6.1: Overhead evaluation of KVLight.

Workload | Berkeley DB (ops/sec) KVLight (ops/sec)
Write 11763 11045
Read 10323 9832
Write-read 9425 8545

6.5.2 Effectiveness of Compaction

In this section, we investigate the effectiveness of déifercompaction strategies and the

speedup of parallel compaction.

Compaction Strategies

To study different compaction strategies in KVLight, we uke size based compaction
and the tree based compaction to merge the data respecavelyafterwards run work-
loads against KVLight. The compaction threshold for the $iased compaction is set to
48 which is the same as the maximum number of BDBs in tree besexgbaction. We
use a read-only workload and a write-read workload in thjgeexnent. Throughputs are
normalized to the one obtained without any compaction apdrted in Figure 6.14. With
compaction, throughput is improved by around 40% and 65%ernr¢ad-only workload,
and around 30% and 50% in the write-read workload. That iadmEwithout compaction,
KVLight has to consult many BDBs with overlapping key rangeget a key-value pair,
which is time consuming. The tree based compaction is b#ttar the size based com-
paction because it further reduces the number of BDBs sedrdhring reads by parti-
tioning the key space into disjoin sets. To verify such atest&nt, we report the average

number of BDBs read per request for the read-only workloalde ffee based approach
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visited 1.3 BDBs in average while the size based approaotsaed 8.7 BDBs in average
which is about 7 times higher. Therefore we can conclude ttmrabove results that com-
paction can improve read performance significantly andréettased compaction strategy

can further boost performance by efficiently organizingBinBs.
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Figure 6.14: Throughput comparison among different cormipastrategies.

Parallel Compaction

KVLight runs multiple compactions in parallel to reduce tlmal time spent on com-
paction. We evaluate the speedup by varying the total nuiotmmpaction workers that
run in parallel. We have a YCSB client to inject 2,500,000 &@D0,000 key-value pairs
respectively. Figure 6.15 displays the time spent in corigacorresponding to different
numbers of compaction workers. In the 2,500,000 case, wienumber of workers in-
creases from 1 to 3, we obtain near ideal speedup. The spbeduys to deteriorate when
the number of workers goes beyond 6. We think it is becausedhmpaction rate has al-

ready matched the write BDB flush rate. In the 5,000,000 cas@bserve a similar trend.

125



In addition, the performance gain in terms of time saved@Bj900,000 case is much more
significant than the one in the 2,500,000 case. That imphkeallel compaction becomes

more effective when the size of data increases.
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1000 —e— 5 million keys

100

Time (minutes)

# Compaction Workers

Figure 6.15: Speedup tests over various data sizes. Tinepasted in log scale.

6.5.3 Real World Applications

To further evaluate KVLight's performance, we apply twolrapplications. The first one
is a Facebook key-value pair access application i.e. ETC/[#&] generate 25 million key-
values pairs based on the key-size and value-size distitsuspecified in [4]. We use the
power law distribution with the shape parameter set as 3@ppwoximate the key access
sequence in [4]. There are three workloads on this data seitexonly workload (W) that
loads the data into the store; a read-write workload (R) whead-write ratio is 30:1; a
read-write-delete workload (R/W/D) whose read-writeedielratio is 30:1:15. These ratios
are also specified in [4]. The second application is from tleelf© trace of Los Alamos

national laboratory Anonymous Appl application (LANL) [6Xin et al. interpret each
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write in the trace as a key-value pair whose key size is fixglvatue size is the number of
bytes written [111]. We adopt the same interpretation bpéa¢ the trace 5 times to have
a larger data set with 860390 key-value pairs. We only evaltlee write-only (W) and

read-only (R) workloads for the LANL data set as the tracesdus reveal the read-write
ratio. To generate aforementioned workloads, we extendB'toSupport customized key
size and value size distribution, as well as the delete tipataEight clients are used to

carry out each workload. We report the aggregated throughpu
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Figure 6.16: Performance comparison in real world appboast

Figure 6.16a displays the results of the Facebook applicatMe can observe that
KVLight yields 38% and 70% higher throughput than CassaadthVoldemort do respec-
tively. In the R/W workload, KVLight's throughput is 49% Higr than Cassandra’s but is
8% less than Voldemort's. In the R/W/D workload, KVLight aebes about 13% higher
throughput than the other two systems. Figure 6.16b shosveethults of the LANL Appl

application. KVLight outperforms both Cassandra and Voidd in the write-only work-
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load, although the improvement is not as significant as tleeiiothe Facebook workload.
However, KVLight is the worst in the read-only workload. ®elmort is also worse than
Cassandra in the read-only workload. It is probably bec&eskeley DB does not handle
key-value pairs with large value size well. About 2/3 of tleyalue pairs in the LANL

Appl application have value size over 100 KB which is sigatffity larger than the value

size in the synthetic experiments and the Facebook apiplicat

6.6 Summary

This chapter describes KVLight, a lightweight key-valuarstin a distributed environment.
KVLight uses Berkeley DB for the lightweight access and egteit with a parallel file
system for data reliability, fail over and concurrent asc&e core design behind KVLight
is a novel tree based organization of data with parallel amtipn. Empirical results show
that KVLight is able to outperform Cassandra and Voldemorhbst of the workloads.
There are a number of future directions for this work. Fitsg useful to adjust the tree
structure (i.e. height and fan out) dynamically to handféedent data distributions. For
key ranges with many keys, it is better to further partitiontsranges to avoid consulting
too many BDBs in read, which results in the increase of heiglidn out. For key ranges
with few keys, it is reasonable to keep the height as well a®id low to avoid overheads
in compaction. Second, we plan to further optimize the megtdtructure. Right now,
KVLight has to maintain a bloom filter for each BDB, which ppi®ssures on the use of
memory. Last but not least, we intend to investigate the shphstrip count and strip size

setting of Lustre on the BDB performance.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Multi-tenancy in cloud hosted NoSQL data stores is favonegdroviders as it allows effec-
tive resource sharing amongst different tenants and thwsroperating cost. For tenants
working on non-shared data sets, performance isolatioorbes critical as it provides pre-
dictable performance and prevents interference. For tersdnaring the same data set, cost
effectiveness is the main concern. As we describe and erpatally show in chapter 4, 5,
and 6, traditional distributed NoSQL stores do not suppertqggmance isolation well and
are not cost effective while running over parallel file systeThis dissertation proposes
several approaches in an attempt to address the isolatbeféioiency issues. Empiri-
cal results show that our system allows tenants to sharemytstroughputs fairly and the
performance of read operations is protected.

In chapter 4, we propose a system that targets fair sharesatgpnants by throughput
regulation. We first show that interference can occur wheartts use different thread num-
bers to run workloads against Cassandra. Then we propogeldteature based on feed-
back control to enforce fair share. Essentially the systets pequests into queues and has

a scheduler to schedule them. When a response returns,dfeensgollects some metrics
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as feedbacks to the scheduler for adaptive control. Thedsitdreadapts the deficit round
robin algorithm with a linear programming model for cre@ifil. The system is further en-

hanced with several adaptive control approaches. We fipgrarentally demonstrate that
single node fairness (called local fairness) is unnecgdsachieve system-wide fairness
(called global fairness) and lower throughput. Then we psepa mechanism to dynam-
ically adjust the credit allocation of tenants for each ntml@ccomplish global fairness
without achieving local fairness. Additionally, the systsplits a scan operation into small
chunks to avoid head-of-line blocking and allows the oygylag of processing between
scan operations and get operations.

The aforementioned approach uses the number of bytes alifr®@m the store to rep-
resent the actual resource consumption in the system. ksamorsituations where work-
loads have the same access patterns but fails in cases véyeahatihhot. For example, bytes
of a workload with random access pattern mainly come fronodoglisk while the ones of
a workload with a hotspot pattern rely on cache heavily, asudised in chapter 5. There-
fore, we propose a workload-aware resource reservatioroapip which targets multiple
resources to prevent interference in chapter 5. We first wctral set of experiments on a
state-of-the-art NoSQL store, i.e. HBase, and reveal titatference could be triggered
by tenants using different thread numbers and accessmati#lso, interference could oc-
cur in block cache (a cache layer maintained by HBase), diskoth. We present Argus,
a workload-aware resource reservation framework thatgmtsvinterference by enforcing
reservation on cache and disk usage. We divide the bloclecgighce into partitions and
limit a tenant’s activities to the cache partition it is ggsd. We approximate the disk
usage by the HDFS throughput and design a scheduler in HBdiseittthe number of re-

guests sent to HDFS. The reservation is elastic that it captad workload changes on the
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fly. Furthermore, the resource reservation technique iglvad-aware. We have a reserva-
tion planning engine that decides how much resource tovesarcording to the resource
demands of workloads. The engine models the problem as &amesl optimization and
relies on the performance functions of various workloadse performance function of a
workload is approximated by using linear interpolationros@mple date collected offline.
Evaluation results show that Argus is able to prevent ieterice across tenants and adapt
to dynamic workloads accordingly.

Chapter 6 investigates the multi-tenancy in the case timants share the same data
set over a parallel file system. We patrticularly target thegwaue store (KVS), a special
instance of NoSQL, over parallel file system (PFS). TraddldkVS is inefficient in the
sense that it requires long running daemon services whighilpits resource reuse or re-
purpose and also introduces overheads while it runs over WE®xplore the opportunity
of building a lightweight, high performant and distribut€dl'S, called KVLight, on PFS.
KVLight uses an embedded KVS, i.e. Berkeley DB, for the Mgbight access but extends
it with a parallel file system for data reliability, fail ovand concurrent access. To over-
come the limit of exclusive writes in most embedded KVS, Kyhi proposes a novel tree
based organization of data with parallel compaction. K\Wtigmploys the log structure
merge tree design and has each application write to a dedi&idB to support concurrent
writes. The dedicated BDB for write does not become visiglether applications until it
is flushed as an immutable BDB. To improve the read performak¥Light divides the
key space into disjoint partitions and employs the treectiine to organize BDBs. The
operation of reading a key-value pair only needs to searabrtgop of the BDBs. Com-
paction, a procedure that merges different BDBs into a singk to reduce the number of

BDBs, is used to further improve performance. A parallel hagtsm is used to run multi-
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ple compactions in parallel to speed up the process. Emapiasults show that KVLight is
able to outperform Cassandra and Voldemort in most of théhvads, including two real

world application workloads.

7.2 Future Directions

There are several directions for future work.

For performance isolation in the non-shared data with |dgalsystem setting, it is
important to isolate reads and writes. Most of the NoSQLest@re log-structured stores
which append writes in log files and have internal data stirestto organize the log files.
Our evaluations [113, 115] show that writes from client resfs may trigger extra writes
to the internal data structures and influence reads. Maglglie extra 1/0O cost from writes
is non-trivial and requires further study. In addition, asntioned in chapter 5, there are
multiple resources involved beyond just block cache ankl idiserving requests, e.g. the
memory used to buffer writes. It is beneficial to incorpotadeitional resources to extend
the capability of reservation. Incorporating additioredaurces requires extensions of the
resource model in chapter 5. For example, the increase té wuiffer size may decrease
the block cache size whose impact needs to be consideredaAmatkload needs to be
identified by multiple factors including the read/writeicatkey repeat ratio, etc. It is also
interesting to apply the NoSQL store equipped with multiatet support in the MapReduce
framework [66, 67] to support multi-tenancy. Another dtren for exploration is to apply
the isolation mechanisms to cloud environments with sgcteguirements [47,117-119].
We envision the performance isolation can further imprdwe $ecurity by eliminating
possible covert channels.

For cost effective access in the shared data with parakesyistem setting, the proto-
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type of KVLight organizes all the immutable Berkeley DBs astatic tree structure and
can be extended to a dynamic one. A dynamic tree structurad@mess uneven data dis-
tribution i.e. data skew. For a tree node with many keys,beiger to push down the BDBs
to the next level through compaction so as to further partithe key range. Such an oper-
ation results in the increase of tree height. For a tree natttefew keys, it is reasonable to
keep the height as well as fan out small to avoid overheadsocovepaction. Additionally,
KVLight is built over a parallel file system without fine tumgnts parameters. The strip
count and strip size play an important role in data accedenpeance. It is worthwhile
to quantify the impact of those two factors and has the cotigraprocedure dynamically
change the two factors according to the workload. Last buieast, it is interesting to
apply the performance isolation mechanisms in Chapter do&VLight to support the
case where tenants are independent. It is also interestiegpiore the application space
for KVLight in a digital library setting [116] and a financetsag [91].

Systems proposed in this dissertation assume the envirdrimmkomogeneous. Such
assumptions limit the applicability of our results as thestér environment may be hetero-
geneous. Handling the uneven distribution and heterogenenvironment requires each
node in the cluster has its own policy to deal with multi-tereccess. A more complicated
global coordination among nodes than the one used in ch&jdgereeded.

Finally, this dissertation only considers simple key-eghair query. Advanced queries
like join, filter, and etc. have not been investigated. Défe queries may demand different
resources from the NoSQL data store. Some of them may hotesloerces for a long time
like the scan query. We plan to categorize the queries amkerefi propose new resource

models to accommodate advanced queries.
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