
Learning Preferences for Manipulation Tasks
from Online Coactive Feedback
Ashesh Jain, Shikhar Sharma, Thorsten Joachims, Ashutosh Saxena

Department of Computer Science, Cornell University, USA.
{ashesh, ss2986, tj, asaxena}@cs.cornell.edu

Abstract—We consider the problem of learning preferences
over trajectories for mobile manipulators such as personal robots
and assembly line robots. The preferences we learn are more
intricate than simple geometric constraints on trajectories; they
are rather governed by the surrounding context of various
objects and human interactions in the environment. We propose
a coactive online learning framework for teaching preferences in
contextually rich environments. The key novelty of our approach
lies in the type of feedback expected from the user: the human
user does not need to demonstrate optimal trajectories as training
data, but merely needs to iteratively provide trajectories that
slightly improve over the trajectory currently proposed by the
system. We argue that this coactive preference feedback can be
more easily elicited than demonstrations of optimal trajectories.
Nevertheless, theoretical regret bounds of our algorithm match
the asymptotic rates of optimal trajectory algorithms.

We implement our algorithm on two high degree-of-freedom
robots, PR2 and Baxter, and present three intuitive mechanisms
for providing such incremental feedback. In our experimental
evaluation we consider two context rich settings – household
chores and grocery store checkout – and show that users are
able to train the robot with just a few feedbacks (taking only a
few minutes).1

I. INTRODUCTION

Recent advances in robotics have resulted in mobile manip-
ulators with high degree of freedom (DoF) arms. However, the
use of high DoF arms has so far been largely successful only
in structured environments such as manufacturing scenarios,
where they perform repetitive motions (e.g., recent deployment
of Baxter on assembly lines). One challenge in the deploy-
ment of these robots in unstructured environments (such as
a grocery checkout counter or at our homes) is their lack of
understanding of user preferences and thereby not producing
desirable motions. In this work we address the problem of
learning preferences over trajectories for high DoF robots such
as Baxter or PR2. We consider a variety of household chores
for PR2 and grocery checkout tasks for Baxter.

A key problem for high DoF manipulators lies in identifying
an appropriate trajectory for a task. An appropriate trajectory
not only needs to be valid from a geometric point (i.e., feasible
and obstacle-free, the criteria that most path planners focus
on), but it also needs to satisfy the user’s preferences. Such
users’ preferences over trajectories can be common across
users or they may vary between users, between tasks, and
between the environments the trajectory is performed in. For

1Parts of this work has been published at NIPS and ISRR conferences [22,
21]. This journal submission presents a consistent full paper, and also includes
the proof of regret bounds, more details of the robotic system, and a thorough
related work.

example, a household robot should move a glass of water
in an upright position without jerks while maintaining a safe
distance from nearby electronic devices. In another example,
a robot checking out a knife at a grocery store should strictly
move it at a safe distance from nearby humans. Furthermore,
straight-line trajectories in Euclidean space may no longer
be the preferred ones. For example, trajectories of heavy
items should not pass over fragile items but rather move
around them. These preferences are often hard to describe
and anticipate without knowing where and how the robot is
deployed. This makes it infeasible to manually encode them
in existing path planners (e.g., Zucker et al. [63], Sucan et
al. [57], Schulman et al. [50]) a priori.

In this work we propose an algorithm for learning user
preferences over trajectories through interactive feedback from
the user in a coactive learning setting [51]. In this setting
the robot learns through iterations of user feedback. At each
iteration robot receives a task and it predicts a trajectory.
The user responds by slightly improving the trajectory but
not necessarily revealing the optimal trajectory. The robot
use this feedback from user to improve its predictions for
future iterations. Unlike in other learning settings, where a
human first demonstrates optimal trajectories for a task to
the robot [4], our learning model does not rely on the user’s
ability to demonstrate optimal trajectories a priori. Instead, our
learning algorithm explicitly guides the learning process and
merely requires the user to incrementally improve the robot’s
trajectories, thereby learning preferences of user and not the
expert. From these interactive improvements the robot learns
a general model of the user’s preferences in an online fashion.
We realize this learning algorithm on PR2 and Baxter robots,
and also leverage robot-specific design to allow users to easily
give preference feedback.

Our experiments show that a robot trained using this ap-
proach can autonomously perform new tasks and if need be,
only a small number of interactions are sufficient to tune
the robot to the new task. Since the user does not have
to demonstrate a (near) optimal trajectory to the robot, the
feedback is easier to provide and more widely applicable.
Nevertheless, it leads to an online learning algorithm with
provable regret bounds that decay at the same rate as for
optimal demonstration algorithms (eg. Ratliff et al. [45]).

In our empirical evaluation we learn preferences for two
high DoF robots, PR2 and Baxter, on a variety of household
and grocery checkout tasks respectively. We design expressive
trajectory features and show how our algorithm learns pref-

ar
X

iv
:1

60
1.

00
74

1v
1 

 [
cs

.R
O

] 
 5

 J
an

 2
01

6



Fig. 1: Zero-G feedback: Learning trajectory preferences from suboptimal zero-G feedback. (Left) Robot plans a bad trajectory
(waypoints 1-2-4) with knife close to flower. As feedback, user corrects waypoint 2 and moves it to waypoint 3. (Right) User
providing zero-G feedback on waypoint 2.

erences from online user feedback on a broad range of tasks
for which object properties are of particular importance (e.g.,
manipulating sharp objects with humans in the vicinity). We
extensively evaluate our approach on a set of 35 household and
16 grocery checkout tasks, both in batch experiments as well
as through robotic experiments wherein users provide their
preferences to the robot. Our results show that our system not
only quickly learns good trajectories on individual tasks, but
also generalizes well to tasks that the algorithm has not seen
before. In summary, our key contributions are:

1) We present an approach for teaching robots which does
not rely on experts’ demonstrations but nevertheless
gives strong theoretical guarantees.

2) We design a robotic system with multiple easy to elicit
feedback mechanisms to improve the current trajectory.

3) We implement our algorithm on two robotic platforms,
PR2 and Baxter, and support it with a user study.

4) We consider preferences that go beyond simple geomet-
ric criteria to capture object and human interactions.

5) We design expressive trajectory features to capture con-
textual information. These features might also find use
in other robotic applications.

In the following section we discuss related works. In sec-
tion III we describe our system and feedback mechanisms.
Our learning algorithm and trajectory features are discussed
in sections IV and IV, respectively. Section VI gives our
experiments and results. We discuss future research directions
and conclude in section VII.

II. RELATED WORK

Path planning is one of the key problems in robotics. Here,
the objective is to find a collision free path from a start to goal
location. Over the last decade many planning algorithms have
been proposed, such as sampling based planners by Lavalle
and Kuffner [33], and Karaman and Frazzoli [26], search based
planners by Cohen et al. [10], trajectory optimizers by Schul-
man et al. [50], and Zucker et al. [63] and many more [27].
However, given the large space of possible trajectories in most
robotic applications simply a collision free trajectory might not
suffice, instead the trajectory should satisfy certain constraints

and obey the end user preferences. Such preferences are often
encoded as a cost which planners optimize [26, 50, 63].
We address the problem of learning a cost over trajectories
for context-rich environments, and from sub-optimal feedback
elicited from non-expert users. We now describe related work
in various aspects of this problem.
Learning from Demonstration (LfD): Teaching a robot
to produce desired motions has been a long standing goal
and several approaches have been studied. In LfD an expert
provides demonstrations of optimal trajectories and the
robot tries to mimic the expert. Examples of LfD includes,
autonomous helicopter flights [1], ball-in-a-cup game [30],
planning 2-D paths [43, 44], etc. Such settings assume that
kinesthetic demonstrations are intuitive to an end-user and
it is clear to an expert what constitutes a good trajectory. In
many scenarios, especially involving high DoF manipulators,
this is extremely challenging to do [2].2 This is because the
users have to give not only the end-effector’s location at
each time-step, but also the full configuration of the arm in
a spatially and temporally consistent manner. In Ratliff et
al. [45] the robot observes optimal user feedback but performs
approximate inference. On the other hand, in our setting,
the user never discloses the optimal trajectory or feedback,
but instead, the robot learns preferences from sub-optimal
suggestions for how the trajectory can be improved.

Noisy demonstrations and other forms of user feedback:
Some later works in LfD provided ways for handling noisy
demonstrations, under the assumption that demonstrations are
either near optimal, as in Ziebart et al. [62], or locally optimal,
as in Levine et al. [36]. Providing noisy demonstrations is
different from providing relative preferences, which are biased
and can be far from optimal. We compare with an algorithm
for noisy LfD learning in our experiments. Wilson et al. [60]
proposed a Bayesian framework for learning rewards of a
Markov decision process via trajectory preference queries.
Our approach advances over [60] and Calinon et. al. [9] in

2Consider the following analogy. In search engine results, it is much harder
for the user to provide the best web-pages for each query, but it is easier to
provide relative ranking on the search results by clicking.



Fig. 2: Re-rank feedback mechanism: (Left) Robot ranks trajectories using the score function and (Middle) displays top
three trajectories on a touch screen device (iPad here). (Right) As feedback, the user improves the ranking by selecting the
third trajectory.

that we model user as a utility maximizing agent. Further,
our score function theoretically converges to user’s hidden
function despite recieving sub-optimal feedback. In the past,
various interactive methods (e.g. human gestures) [8, 56] have
been employed to teach assembly line robots. However, these
methods required the user to interactively show the complete
sequence of actions, which the robot then remembered for
future use. Recent works by Nikolaidis et al. [39, 40] in
human-robot collaboration learns human preferences over
a sequence of sub-tasks in assembly line manufacturing.
However, these works are agnostic to the user preferences
over robot’s trajectories. Our work could complement theirs
to achieve better human-robot collaboration.

Learning preferences over trajectories: User preferences
over robot’s trajectories have been studied in human-robot
interaction. Sisbot et. al. [55, 54] and Mainprice et. al. [37]
planned trajectories satisfying user specified preferences in
form of constraints on the distance of the robot from the
user, the visibility of the robot and the user’s arm comfort.
Dragan et. al. [14] used functional gradients [47] to optimize
for legibility of robot trajectories. We differ from these in
that we take a data driven approach and learn score functions
reflecting user preferences from sub-optimal feedback.

Planning from a cost function: In many applications,
the goal is to find a trajectory that optimizes a cost function.
Several works build upon the sampling-based planner
RRT [33] to optimize various cost heuristics [17, 11, 20].
Additive cost functions with Lipschitz continuity can be
optimized using optimal planners such as RRT* [26].
Some approaches introduce sampling bias [35] to guide the
sampling based planner. Recent trajectory optimizers such
as CHOMP [47] and TrajOpt [50] provide optimization
based approaches to finding optimal trajectory. Our work is
complementary to these in that we learn a cost function while
the above approaches optimize a cost.

Our work is also complementary to few works in path
planning. Berenson et al. [5] and Phillips et al. [41]
consider the problem of trajectories for high-dimensional
manipulators. For computational reasons they create a
database of prior trajectories, which we could leverage to

train our system. Other recent works consider generating
human-like trajectories [15, 14, 58]. Humans-robot interaction
is an important aspect and our approach could incorporate
similar ideas.

Application domain: In addition to above mentioned
differences we also differ in the applications we address. We
capture the necessary contextual information for household
and grocery store robots, while such context is absent
in previous works. Our application scenario of learning
trajectories for high DoF manipulations performing tasks in
presence of different objects and environmental constraints
goes beyond the application scenarios that previous works
have considered. Some works in mobile robotics learn
context-rich perception-driven cost functions, such as Silver
et al. [53], Kretzschmar et al. [32] and Kitani et al. [28]. In
this work we use features that consider robot configurations,
object-object relations, and temporal behavior, and use them
to learn a score function representing the preferences over
trajectories.

III. COACTIVE LEARNING WITH INCREMENTAL FEEDBACK

We first give an overview of our robot learning setup and
then describe in detail three mechanisms of user feedback.

A. Robot learning setup

We propose an online algorithm for learning preferences
in trajectories from sub-optimal user feedback. At each step
the robot receives a task as input and outputs a trajectory
that maximizes its current estimate of some score function.
It then observes user feedback – an improved trajectory – and
updates the score function to better match the user preferences.
This procedure of learning via iterative improvement is known
as coactive learning. We implement the algorithm on PR2
and Baxter robots, both having two 7 DoF arms. In the
process of training, the initial trajectory proposed by the robot
can be far-off the desired behavior. Therefore, instead of
directly executing trajectories in human environments, users
first visualize them in the OpenRAVE simulator [13] and then
decide the kind of feedback they would like to provide.



Fig. 3: Re-ranking feedback: Shows three trajectories for
moving egg carton from left to right. Using the current
estimate of score function robot ranks them as red, green
and blue. As feedback user clicks the green trajectory. Pref-
erence: Eggs are fragile. They should be kept upright and
near the supporting surface.

Fig. 4: Interactive feedback. Task here is to move a bowl
filled with water. The robot presents a bad trajectory with
waypoints 1-2-4 to the user. As feedback user moves way-
point 2 (red) to waypoint 3 (green) using Rviz interactive
markers. The interactive markers guides the user to correct
the waypoint.

B. Feedback mechanisms

Our goal is to learn even from feedback given by
non-expert users. We therefore require the feedback only
to be incrementally better (as compared to being close
to optimal) in expectation, and will show that such
feedback is sufficient for the algorithm’s convergence.
This stands in contrast to learning from demonstration
(LfD) methods [1, 30, 43, 44] which require (near)
optimal demonstrations of the complete trajectory. Such
demonstrations can be extremely challenging and non-
intuitive to provide for many high DoF manipulators [2].
Instead, we found [21, 22] that it is more intuitive for
users to give incremental feedback on high DoF arms by
improving upon a proposed trajectory. We now summarize
three feedback mechanisms that enable the user to iteratively
provide improved trajectories.

(a) Re-ranking: We display the ranking of trajectories
using OpenRAVE [13] on a touch screen device and ask the
user to identify whether any of the lower-ranked trajectories
is better than the top-ranked one. The user sequentially
observes the trajectories in order of their current predicted
scores and clicks on the first trajectory which is better than
the top ranked trajectory. Figure 2 shows three trajectories for
moving a knife. As feedback, the user moves the trajectory
at rank 3 to the top position. Likewise, Figure 3 shows three
trajectories for moving an egg carton. Using the current
estimate of score function robot ranks them as red (1st),
green (2nd) and blue (3rd). Since eggs are fragile the user
selects the green trajectory.

(b) Zero-G: This is a kinesthetic feedback. It allows
the user to correct trajectory waypoints by physically
changing the robot’s arm configuration as shown in Figure 1.
High DoF arms such as the Barrett WAM and Baxter have
zero-force gravity-compensation (zero-G) mode, under which

the robot’s arms become light and the users can effortlessly
steer them to a desired configuration. On Baxter, this zero-G
mode is automatically activated when a user holds the
robot’s wrist (see Figure 1, right). We use this zero-G
mode as a feedback method for incrementally improving
the trajectory by correcting a waypoint. This feedback is
useful (i) for bootstrapping the robot, (ii) for avoiding
local maxima where the top trajectories in the ranked list
are all bad but ordered correctly, and (iii) when the user is
satisfied with the top ranked trajectory except for minor errors.

(c) Interactive: For the robots whose hardware does not
permit zero-G feedback, such as PR2, we built an alternative
interactive Rviz-ROS [18] interface for allowing the users
to improve the trajectories by waypoint correction. Figure 4
shows a robot moving a bowl with one bad waypoint (in
red), and the user provides a feedback by correcting it. This
feedback serves the same purpose as zero-G.

Note that, in all three kinds of feedback the user never
reveals the optimal trajectory to the algorithm, but only
provides a slightly improved trajectory (in expectation).

IV. LEARNING AND FEEDBACK MODEL

We model the learning problem in the following way. For
a given task, the robot is given a context x that describes
the environment, the objects, and any other input relevant
to the problem. The robot has to figure out what is a good
trajectory y for this context. Formally, we assume that
the user has a scoring function s∗(x, y) that reflects how
much he values each trajectory y for context x. The higher
the score, the better the trajectory. Note that this scoring
function cannot be observed directly, nor do we assume that
the user can actually provide cardinal valuations according
to this function. Instead, we merely assume that the user
can provide us with preferences that reflect this scoring
function. The robot’s goal is to learn a function s(x, y;w)



Fig. 5: (Left) An environment with a few objects where the robot was asked to move the cup on the left to the right. (Middle)
There are two ways of moving it, ‘a’ and ‘b’, both are suboptimal in that the arm is contorted in ‘a’ but it tilts the cup
in ‘b’. Given such constrained scenarios, we need to reason about such subtle preferences. (Right) We encode preferences
concerned with object-object interactions in a score function expressed over a graph. Here y1, . . . , yn are different waypoints
in a trajectory. The shaded nodes corresponds to environment (table node not shown here). Edges denotes interaction between
nodes.

(where w are the parameters to be learned) that approximates
the user’s true scoring function s∗(x, y) as closely as possible.

Interaction Model. The learning process proceeds through
the following repeated cycle of interactions.
• Step 1: The robot receives a context x and uses a planner

to sample a set of trajectories, and ranks them according
to its current approximate scoring function s(x, y;w).

• Step 2: The user either lets the robot execute the top-
ranked trajectory, or corrects the robot by providing an
improved trajectory ȳ. This provides feedback indicating
that s∗(x, ȳ) > s∗(x, y).

• Step 3: The robot now updates the parameter w of
s(x, y;w) based on this preference feedback and returns
to step 1.

Regret. The robot’s performance will be measured in terms
of regret, REGT = 1

T

∑T
t=1[s∗(xt, y

∗
t ) − s∗(xt, yt)], which

compares the robot’s trajectory yt at each time step t against
the optimal trajectory y∗t maximizing the user’s unknown
scoring function s∗(x, y), y∗t = argmaxys

∗(xt, y). Note that
the regret is expressed in terms of the user’s true scoring
function s∗, even though this function is never observed. Re-
gret characterizes the performance of the robot over its whole
lifetime, therefore reflecting how well it performs throughout
the learning process. We will employ learning algorithms with
theoretical bounds on the regret for scoring functions that are
linear in their parameters, making only minimal assumptions
about the difference in score between s∗(x, ȳ) and s∗(x, y) in
Step 2 of the learning process.
Expert Vs Non-expert user. We refer to an expert user as
someone who can demonstrate the optimal trajectory y∗ to
the robot. For example, robotics experts such as, the pilot
demonstrating helicopter maneuver in Abbeel et al. [1]. On the
other hand, our non-expert users never demonstrate y∗. They
can only provide feedback ȳ indicating s∗(x, ȳ) > s∗(x, y).
For example, users working with assistive robots on assembly
lines.

V. LEARNING ALGORITHM

For each task, we model the user’s scoring function s∗(x, y)
with the following parametrized family of functions.

s(x, y;w) = w · φ(x, y) (1)
w is a weight vector that needs to be learned, and φ(·) are
features describing trajectory y for context x. Such linear
representation of score functions have been previously used
for generating desired robot behaviors [1, 44, 62].

We further decompose the score function in two parts, one
only concerned with the objects the trajectory is interacting
with, and the other with the object being manipulated and the
environment

s(x, y;wO, wE) = sO(x, y;wO) + sE(x, y;wE)

= wO · φO(x, y) + wE · φE(x, y) (2)
We now describe the features for the two terms, φO(·) and

φE(·) in the following.

A. Features Describing Object-Object Interactions
This feature captures the interaction between objects in the

environment with the object being manipulated. We enumerate
waypoints of trajectory y as y1, .., yN and objects in the
environment as O = {o1, .., oK}. The robot manipulates the
object ō ∈ O. A few of the trajectory waypoints would be
affected by the other objects in the environment. For example
in Figure 5, o1 and o2 affect the waypoint y3 because of
proximity. Specifically, we connect an object ok to a trajectory
waypoint if the minimum distance to collision is less than a
threshold or if ok lies below ō. The edge connecting yj and
ok is denoted as (yj , ok) ∈ E .

Since it is the attributes [31] of the object that really
matter in determining the trajectory quality, we represent each
object with its attributes. Specifically, for every object ok, we
consider a vector of M binary variables [l1k, .., l

M
k ], with each

lmk = {0, 1} indicating whether object ok possesses property
m or not. For example, if the set of possible properties
are {heavy, fragile, sharp, hot, liquid, electronic}, then a



laptop and a glass table can have labels [0, 1, 0, 0, 0, 1] and
[0, 1, 0, 0, 0, 0] respectively. The binary variables lpk and lq

indicates whether ok and ō possess property p and q respec-
tively.3 Then, for every (yj , ok) edge, we extract following
four features φoo(yj , ok): projection of minimum distance to
collision along x, y and z (vertical) axis and a binary variable,
that is 1, if ok lies vertically below ō, 0 otherwise.

We now define the score sO(·) over this graph as follows:

sO(x, y;wO) =
∑

(yj ,ok)∈E

M∑
p,q=1

lpkl
q[wpq · φoo(yj , ok)] (3)

Here, the weight vector wpq captures interaction between
objects with properties p and q. We obtain wO in eq. (2)
by concatenating vectors wpq . More formally, if the vector
at position i of wO is wuv then the vector corresponding to
position i of φO(x, y) will be

∑
(yj ,ok)∈E l

u
k l

v[φoo(yj , ok)].

B. Trajectory Features
We now describe features, φE(x, y), obtained by performing

operations on a set of waypoints. They comprise the following
three types of the features:

1) Robot Arm Configurations: While a robot can reach
the same operational space configuration for its wrist with
different configurations of the arm, not all of them are pre-
ferred [61]. For example, the contorted way of holding the cup
shown in Figure 5 may be fine at that time instant, but would
present problems if our goal is to perform an activity with it,
e.g. doing the pouring activity. Furthermore, humans like to
anticipate robots move and to gain users’ confidence, robot
should produce predictable and legible robotic motions [14].

We compute features capturing robot’s arm configuration us-
ing the location of its elbow and wrist, w.r.t. to its shoulder, in
cylindrical coordinate system, (r, θ, z). We divide a trajectory
into three parts in time and compute 9 features for each of the
parts. These features encode the maximum and minimum r, θ
and z values for wrist and elbow in that part of the trajectory,
giving us 6 features. Since at the limits of the manipulator
configuration, joint locks may happen, therefore we also add
3 features for the location of robot’s elbow whenever the end-
effector attains its maximum r, θ and z values respectively.
Thus obtaining φrobot(·) ∈ R9 (3+3+3=9) features for each
one-third part and φrobot(·) ∈ R27 for the complete trajectory.

2) Orientation and Temporal Behaviour of the Object to
be Manipulated: Object orientation during the trajectory is
crucial in deciding its quality. For some tasks, the orientation
must be strictly maintained (e.g., moving a cup full of coffee);
and for some others, it may be necessary to change it in a
particular fashion (e.g., pouring activity). Different parts of
the trajectory may have different requirements over time. For
example, in the placing task, we may need to bring the object
closer to obstacles and be more careful.

We therefore divide trajectory into three parts in time.
For each part we store the cosine of the object’s maximum

3In this work, our goal is to relax the assumption of unbiased and
close to optimal feedback. We therefore assume complete knowledge of the
environment for our algorithm, and for the algorithms we compare against. In
practice, such knowledge can be extracted using an object attribute labeling
algorithms such as in [31].

Fig. 6: (Top) A good and bad trajectory for moving a mug.
The bad trajectory undergoes ups-and-downs. (Bottom) Spec-
trograms for movement in z-direction: (Left) Good trajectory,
(Right) Bad trajectory.

deviation, along the vertical axis, from its final orientation
at the goal location. To capture object’s oscillation along
trajectory, we obtain a spectrogram for each one-third part
for the movement of the object in x, y, z directions as well as
for the deviation along vertical axis (e.g. Figure 6). We then
compute the average power spectral density in the low and
high frequency part as eight additional features for each. This
gives us 9 (=1+4*2) features for each one-third part. Together
with one additional feature of object’s maximum deviation
along the whole trajectory, we get φobj(·) ∈ R28 (=9*3+1).

3) Object-Environment Interactions: This feature captures
temporal variation of vertical and horizontal distances of the
object ō from its surrounding surfaces. In detail, we divide the
trajectory into three equal parts, and for each part we compute
object’s: (i) minimum vertical distance from the nearest surface
below it. (ii) minimum horizontal distance from the surround-
ing surfaces; and (iii) minimum distance from the table, on
which the task is being performed, and (iv) minimum distance
from the goal location. We also take an average, over all the
waypoints, of the horizontal and vertical distances between the
object and the nearest surfaces around it.4 To capture temporal
variation of object’s distance from its surrounding we plot a
time-frequency spectrogram of the object’s vertical distance
from the nearest surface below it, from which we extract six
features by dividing it into grids. This feature is expressive
enough to differentiate whether an object just grazes over
table’s edge (steep change in vertical distance) versus, it first
goes up and over the table and then moves down (relatively
smoother change). Thus, the features obtained from object-
environment interaction are φobj−env(·) ∈ R20 (3*4+2+6=20).

Final feature vector is obtained by concatenating φobj−env ,
φobj and φrobot, giving us φE(·) ∈ R75.

4We query PQP collision checker plugin of OpenRave for these distances.



Algorithm 1 Trajectory Preference Perceptron. (TPP)

Initialize w(1)
O ← 0, w(1)

E ← 0
for t = 1 to T do

Sample trajectories {y(1), ..., y(n)}
yt = argmaxys(xt, y;w

(t)
O , w

(t)
E )

Obtain user feedback ȳt
w

(t+1)
O ← w

(t)
O + φO(xt, ȳt)− φO(xt, yt)

w
(t+1)
E ← w

(t)
E + φE(xt, ȳt)− φE(xt, yt)

end for

Fig. 7: Shows our system design, for grocery store settings, which provides users with three choices for iteratively improving
trajectories. In one type of feedback (zero-G or interactive feedback in case of PR2) user corrects a trajectory waypoint
directly on the robot while in the second (re-rank) user chooses the top trajectory out of 5 shown on the simulator.

C. Computing Trajectory Rankings

For obtaining the top trajectory (or a top few) for a given
task with context x, we would like to maximize the current
scoring function s(x, y;wO, wE).

y∗ = arg max
y

s(x, y;wO, wE). (4)

Second, for a given set {y(1), . . . , y(n)} of discrete trajectories,
we need to compute (4). Fortunately, the latter problem is
easy to solve and simply amounts to sorting the trajectories by
their trajectory scores s(x, y(i);wO, wE). Two effective ways
of solving the former problem are either discretizing the state
space [3, 7, 59] or directly sampling trajectories from the con-
tinuous space [6, 12]. Previously, both approaches have been
studied. However, for high DoF manipulators the sampling
based approach [6, 12] maintains tractability of the problem,
hence we take this approach. More precisely, similar to Berg
et al. [6], we sample trajectories using rapidly-exploring ran-
dom trees (RRT) [33].5 However, naively sampling trajectories
could return many similar trajectories. To get diverse samples
of trajectories we use various diversity introducing methods.
For example, we introduce obstacles in the environment which
forces the planner to sample different trajectories. Our methods
also introduce randomness in planning by initizaling goal-
sample bias of RRT planner randomly. To avoid sampling
similar trajectories multiple times, one of our diversity method
introduce obstacles to block waypoints of already sampled
trajectories. Recent work by Ross et al. [48] propose the use
of sub-modularity to achieve diversity. For more details on
sampling trajectories we refer interested readers to the work
by Erickson and LaValle [16], and Green and Kelly [19]. Since
our primary goal is to learn a score function on trajectories
we now describe our learning algorithm.

D. Learning the Scoring Function

The goal is to learn the parameters wO and wE of the
scoring function s(x, y;wO, wE) so that it can be used to
rank trajectories according to the user’s preferences. To do so,

5When RRT becomes too slow, we switch to a more efficient bidirectional-
RRT.The cost function (or its approximation) we learn can be fed to trajectory
optimizers like CHOMP [47] or optimal planners like RRT* [26] to produce
reasonably good trajectories.

we adapt the Preference Perceptron algorithm [51] as detailed
in Algorithm 1, and we call it the Trajectory Preference
Perceptron (TPP). Given a context xt, the top-ranked trajectory
yt under the current parameters wO and wE , and the user’s
feedback trajectory ȳt, the TPP updates the weights in the
direction φO(xt, ȳt)−φO(xt, yt) and φE(xt, ȳt)−φE(xt, yt)
respectively. Our update equation resembles to the weights
update equation in Ratliff et al. [44]. However, our update
does not depends on the availability of optimal demonstraions.
Figure 7 shows an overview of our system design.

Despite its simplicity and even though the algorithm
typically does not receive the optimal trajectory y∗t =
arg maxy s

∗(xt, y) as feedback, the TPP enjoys guarantees
on the regret [51]. We merely need to characterize by how
much the feedback improves on the presented ranking using
the following definition of expected α-informative feedback:
Et[s

∗(xt, ȳt)] ≥ s∗(xt, yt) + α(s∗(xt, y
∗
t )− s∗(xt, yt))− ξt

This definition states that the user feedback should have a
score of ȳt that is – in expectation over the users choices –
higher than that of yt by a fraction α ∈ (0, 1] of the maximum
possible range s∗(xt, ȳt) − s∗(xt, yt). It is important to note
that this condition only needs to be met in expectation and not
deterministically. This leaves room for noisy and imperfect
user feedback. If this condition is not fulfilled due to bias
in the feedback, the slack variable ξt captures the amount
of violation. In this way any feedback can be described by
an appropriate combination of α and ξt. Using these two
parameters, the proof by Shivaswamy and Joachims [51] can
be adapted (for proof see Appendix A & B) to show that
average regret of TPP is upper bounded by:

E[REGT ] ≤ O(
1

α
√
T

+
1

αT

T∑
t=1

ξt)

In practice, over feedback iterations the quality of trajectory
y proposed by robot improves. The α-informative criterion
only requires the user to improve y to ȳ in expectation.

VI. EXPERIMENTS AND RESULTS

We first describe our experimental setup, then present
quantitative results (Section VI-B) , and then present robotic
experiments on PR2 and Baxter (Section VI-D).



A. Experimental Setup

Task and Activity Set for Evaluation. We evaluate our
approach on 35 robotic tasks in a household setting and 16
pick-and-place tasks in a grocery store checkout setting. For
household activities we use PR2, and for the grocery store
setting we use Baxter. To assess the generalizability of our
approach, for each task we train and test on scenarios with
different objects being manipulated and/or with a different
environment. We evaluate the quality of trajectories after the
robot has grasped the item in question and while the robot
moves it for task completion. Our work complements previous
works on grasping items [49, 34], pick and place tasks [23],
and detecting bar codes for grocery checkout [29]. We consider
the following three most commonly occurring activities in
household and grocery stores:

1) Manipulation centric: These activities are primarily con-
cerned with the object being manipulated. Hence the
object’s properties and the way the robot moves it in
the environment are more relevant. Examples of such
household activities are pouring water into a cup or
inserting pen into a pen holder, as in Figure 8 (Left).
While in a grocery store, such activities could include
moving a flower vase or moving fruits and vegetables,
which could be damaged when dropped or pushed into
other items. We consider pick-and-place, pouring and
inserting activities with following objects: cup, bowl,
bottle, pen, cereal box, flower vase, and tomato. Further,
in every environment we place many objects, along with
the object to be manipulated, to restrict simple straight
line trajectories.

2) Environment centric: These activities are also concerned
with the interactions of the object being manipulated
with the surrounding objects. Our object-object interac-
tion features (Section V-A) allow the algorithm to learn
preferences on trajectories for moving fragile objects
like egg cartons or moving liquid near electronic devices,
as in Figure 8 (Middle). We consider moving fragile
items like egg carton, heavy metal boxes near a glass
table, water near laptop and other electronic devices.

3) Human centric: Sudden movements by the robot put the
human in danger of getting hurt. We consider activities
where a robot manipulates sharp objects such as knife,
as in Figure 8 (Right), moves a hot coffee cup or a bowl
of water with a human in vicinity.

Experiment setting. Through experiments we will study:

• Generalization: Performance of robot on tasks that it has
not seen before.

• No demonstrations: Comparison of TPP to algorithms
that also learn in absence of expert’s demonstrations.

• Feedback: Effectiveness of different kinds of user feed-
back in absence of expert’s demonstrations.

Baseline algorithms. We evaluate algorithms that learn prefer-
ences from online feedback under two settings: (a) untrained,
where the algorithms learn preferences for a new task from
scratch without observing any previous feedback; (b) pre-
trained, where the algorithms are pre-trained on other similar

tasks, and then adapt to a new task. We compare the following
algorithms:

• Geometric: The robot plans a path, independent of the
task, using a Bi-directional RRT (BiRRT) [33] planner.

• Manual: The robot plans a path following certain manu-
ally coded preferences.

• TPP: Our algorithm, evaluated under both untrained and
pre-trained settings.

• MMP-online: This is an online implementation of the
Maximum Margin Planning (MMP) [44, 46] algorithm.
MMP attempts to make an expert’s trajectory better than
any other trajectory by a margin. It can be interpreted
as a special case of our algorithm with 1-informative i.e.
optimal feedback. However, directly adapting MMP [44]
to our experiments poses two challenges: (i) we do not
have knowledge of the optimal trajectory; and (ii) the
state space of the manipulator we consider is too large,
discretizing which makes intractable to train MMP.
To ensure a fair comparison, we follow the MMP algo-
rithm from [44, 46] and train it under similar settings as
TPP. Algorithm 2 shows our implementation of MMP-
online. It is very similar to TPP (Algorithm 1) but with a
different parameter update step. Since both algorithms
only observe user feedback and not demonstrations,
MMP-online treats each feedback as a proxy for optimal
demonstration. At every iteration MMP-online trains a
structural support vector machine (SSVM) [25] using
all previous feedback as training examples, and use the
learned weights to predict trajectory scores in the next it-
eration. Since the argmax operation is performed on a set
of trajectories it remains tractable. We quantify closeness
of trajectories by the L2−norm of the difference in their
feature representations, and choose the regularization
parameter C for training SSVM in hindsight, giving an
unfair advantage to MMP-online.

Algorithm 2 MMP-online

Initialize w(1)
O ← 0, w(1)

E ← 0, T = {}
for t = 1 to T do

Sample trajectories {y(1), ..., y(n)}
yt = argmaxys(xt, y;w

(t)
O , w

(t)
E )

Obtain user feedback ȳt
T = T ∪ {(xt, ȳt)}
w

(t+1)
O , w

(t+1)
E = Train-SSVM(T ) (Joachims et al. [25])

end for

Evaluation metrics. In addition to performing a user study
(Section VI-D), we also designed two datasets to quantitatively
evaluate the performance of our online algorithm. We obtained
experts labels on 1300 trajectories in a grocery setting and
2100 trajectories in a household setting. Labels were on the
basis of subjective human preferences on a Likert scale of 1-
5 (where 5 is the best). Note that these absolute ratings are
never provided to our algorithms and are only used for the
quantitative evaluation of different algorithms.



Manipulation centric Environment centric Human centric

(a)Moving flower vase (b)Checking out eggs (c)Manipulating knife

Baxter in a grocery store setting.

(a)Pouring water (b)Moving liquid near laptop (c)Manipulating sharp object

PR2 in a household setting.

Fig. 8: Robot demonstrating different grocery store and household activities with various objects (Left) Manipulation centric:
while pouring water the tilt angle of bottle must change in a particular manner, similarly a flower vase should be kept upright.
(Middle) Environment centric: laptop is an electronic device so robot must carefully move water near it, similarly eggs are
fragile and should not be lifted too high. (Right) Human centric: knife is sharp and interacts with nearby soft items and
humans. It should strictly be kept at a safe distance from humans. (Best viewed in color)

We evaluate performance of algorithms by measuring how
well they rank trajectories, that is, trajectories with higher
Likert score should be ranked higher. To quantify the quality
of a ranked list of trajectories we report normalized discounted
cumulative gain (nDCG) [38] — criterion popularly used
in Information Retrieval for document ranking. In particular
we report nDCG at positions 1 and 3, equation (6). While
nDCG@1 is a suitable metric for autonomous robots that
execute the top ranked trajectory (e.g., grocery checkout),
nDCG@3 is suitable for scenarios where the robot is super-
vised by humans, (e.g., assembly lines). For a given ranked
list of items (trajectories here) nDCG at position k is defined
as:

DCG@k =

k∑
i=1

li
log2(i+ 1)

(5)

nDCG@k =
DCG@k

IDCG@k
, (6)

where li is the Likert score of the item at position i in the
ranked list. IDCG is the DCG value of the best possible
ranking of items. It is obtained by ranking items in decreasing
order of their Likert score.

B. Results and Discussion

We now present quantitative results where we compare TPP
against the baseline algorithms on our data set of labeled
trajectories.

How well does TPP generalize to new tasks? To
study generalization of preference feedback we evaluate
performance of TPP-pre-trained (i.e., TPP algorithm under
pre-trained setting) on a set of tasks the algorithm has not
seen before. We study generalization when: (a) only the
object being manipulated changes, e.g., a bowl replaced by
a cup or an egg carton replaced by tomatoes, (b) only the
surrounding environment changes, e.g., rearranging objects in
the environment or changing the start location of tasks, and (c)
when both change. Figure 9 shows nDCG@3 plots averaged
over tasks for all types of activities for both household and
grocery store settings.6 TPP-pre-trained starts-off with higher
nDCG@3 values than TPP-untrained in all three cases.
However, as more feedback is provided, the performance of
both algorithms improves, and they eventually give identical
performance. We further observe that generalizing to tasks
with both new environment and object is harder than when

6Similar results were obtained with nDCG@1 metric.



Same environment, different object. New Environment, same object. New Environment, different object.
nD

C
G

@
3

Results on Baxter in grocery store setting.

nD
C

G
@

3

Results on PR2 in household setting.

Fig. 9: Study of generalization with change in object, environment and both. Manual, Pre-trained MMP-online (—), Untrained
MMP-online (– –), Pre-trained TPP (—), Untrained TPP (– –).

only one of them changes.

How does TPP compare to MMP-online? MMP-online
while training assumes all user feedback is optimal, and
hence over time it accumulates many contradictory/sub-
optimal training examples. We empirically observe that
MMP-online generalizes better in grocery store setting
than the household setting (Figure 9), however under both
settings its performance remains much lower than TPP.
This also highlights the sensitivity of MMP to sub-optimal
demonstrations.

How does TPP compare to Manual? For the manual
baseline we encode some preferences into the planners, e.g.,
keep a glass of water upright. However, some preferences
are difficult to specify, e.g., not to move heavy objects
over fragile items. We empirically found (Figure 9) that
the resultant manual algorithm produces poor trajectories in
comparison with TPP, with an average nDCG@3 of 0.44 over
all types of household activities. Table I reports nDCG values
averaged over 20 feedback iterations in untrained setting. For
both household and grocery activities, TPP performs better
than other baseline algorithms.

How does TPP perform with weaker feedback? To
study the robustness of TPP to less informative feedback we
consider the following variants of re-rank feedback:
• Click-one-to-replace-top: User observes the trajectories

Fig. 10: Study of re-rank feedback on Baxter for grocery store
setting.

sequentially in order of their current predicted scores and
clicks on the first trajectory which is better than the top
ranked trajectory.

• Click-one-from-5: Top 5 trajectories are shown and user
clicks on the one he thinks is the best after watching all
5 of them.

• Approximate-argmax: This is a weaker feedback, here
instead of presenting top ranked trajectories, five random
trajectories are selected as candidate. The user selects the
best trajectory among these 5 candidates. This simulates



Fig. 11: Comparision with fully-supervised Oracle-svm on
Baxter for grocery store setting.

a situation when computing an argmax over trajectories
is prohibitive and therefore approximated.

Figure 10 shows the performance of TPP-untrained receiving
different kinds of feedback and averaged over three types of
activities in grocery store setting. When feedback is more α-
informative the algorithm requires fewer iterations to learn
preferences. In particular, click-one-to-replace-top and click-
one-from-5 are more informative than approximate-argmax
and therefore require less feedback to reach a given nDCG@1
value. Approximate-argmax improves slowly since it is least
informative. In all three cases the feedback is α-informative,
for some α > 0, therefore TPP-untrained eventually learns the
user’s preferences.

C. Comparison with fully-supervised algorithms

The algorithms discussed so far only observes ordinal
feedback where the users iteratively improves upon the pro-
posed trajectory. In this section we compare TPP to a fully-
supervised algorithm that observes expert’s labels while train-
ing. Eliciting such expert labels on the large space of tra-
jectories is not realizable in practice. However, empirically it
nonetheless provides an upper-bound on the generalization to
new tasks. We refer to this algorithm as Oracle-svm and it
learns to rank trajectories using SVM-rank [24]. Since expert
labels are not available while prediction, on test set Oracle-
svm predicts once and does not learn from user feedback.

Figure 11 compares TPP and Oracle-svm on new tasks.
Without observing any feedback on new tasks Oracle-svm
performs better than TPP. However, after few feedback iter-
ations TPP improves over Oracle-svm, which is not updated
since it requires expert’s labels on test set. On average, we
observe, it takes 5 feedback iterations for TPP to improve over
Oracle-svm. Furthermore, learning from demonstration (LfD)
can be seen as a special case of Oracle-svm where, instead
of providing an expert label for every sampled trajectory, the
expert directly demonstrates the optimal trajectory.

D. Robotic Experiment: User Study in learning trajectories

We perform a user study of our system on Baxter and PR2 on
a variety of tasks of varying difficulties in grocery store and

household settings, respectively. Thereby we show a proof-
of-concept of our approach in real world robotic scenarios,
and that the combination of re-ranking and zero-G/interactive
feedback allows users to train the robot in few feedback
iterations.

Experiment setup: In this study, users not associated
with this work, used our system to train PR2 and Baxter
on household and grocery checkout tasks, respectively. Five
users independently trained Baxter, by providing zero-G
feedback kinesthetically on the robot, and re-rank feedback in
a simulator. Two users participated in the study on PR2. On
PR2, in place of zero-G, users provided interactive waypoint
correction feedback in the Rviz simulator. The users were
undergraduate students. Further, both users training PR2 on
household tasks were familiar with Rviz-ROS.7 A set of
10 tasks of varying difficulty level was presented to users
one at a time, and they were instructed to provide feedback
until they were satisfied with the top ranked trajectory. To
quantify the quality of learning each user evaluated their own
trajectories (self score), the trajectories learned by the other
users (cross score), and those predicted by Oracle-svm, on a
Likert scale of 1-5. We also recorded the total time a user
spent on each task – from start of training till the user was
satisfied with the top ranked trajectory. This includes time
taken for both re-rank and zero-G feedback.

Is re-rank feedback easier to elicit from users than
zero-G or interactive? In our user study, on average a user
took 3 re-rank and 2 zero-G feedback per task to train a
robot (Table II). From this we conjecture, that for high DoF
manipulators re-rank feedback is easier to provide than zero-G
– which requires modifying the manipulator joint angles.
However, an increase in the count of zero-G (interactive)
feedback with task difficulty suggests (Figure 12 (Right)),
users rely more on zero-G feedback for difficult tasks since
it allows precisely rectifying erroneous waypoints. Figure 13
and Figure 14 show two example trajectories learned by a user.

How many feedback iterations a user takes to improve
over Oracle-svm? Figure 12 (Left) shows that the quality
of trajectory improves with feedback. On average, a user
took 5 feedback to improve over Oracle-svm, which is also
consistent with our quantitative analysis (Section VI-C).
In grocery setting, users 4 and 5 were critical towards
trajectories learned by Oracle-svm and gave them low scores.
This indicates a possible mismatch in preferences between
our expert (on whose labels Oracle-svm was trained) and
users 4 and 5.

How do users’ unobserved score functions vary? An
average difference of 0.6 between users’ self and cross score
(Table II) in the grocery checkout setting suggests preferences

7The smaller user size on PR2 is because it requires users with experience in
Rviz-ROS. Further, we also observed users found it harder to correct trajectory
waypoints in a simulator than providing zero-G feedback on the robot. For the
same reason we report training time only on Baxter for grocery store setting.



Grocery store setting on Baxter. Household setting on PR2.

Algorithms Manip. Environ. Human Mean Manip. Environ. Human Meancentric centric centric centric centric centric
Geometric .46 (.48) .45 (.39) .31 (.30) .40 (.39) .36 (.54) .43 (.38) .36 (.27) .38 (.40)

Manual .61 (.62) .77 (.77) .33 (.31) .57 (.57) .53 (.55) .39 (.53) .40 (.37) .44 (.48)
MMP-online .47 (.50) .54 (.56) .33 (.30) .45 (.46) .83 (.82) .42 (.51) .36 (.33) .54 (.55)

TPP .88 (.84) .90 (.85) .90 (.80) .89 (.83) .93 (.92) .85 (.75) .78 (.66) .85 (.78)

TABLE I: Comparison of different algorithms in untrained setting. Table contains nDCG@1(nDCG@3) values averaged
over 20 feedbacks.

Grocery store setting on Baxter.

Household setting on PR2.

Fig. 12: (Left) Average quality of the learned trajectory after every one-third of total feedback. (Right) Bar chart showing
the average number of feedback (re-ranking and zero-G) and time required (only for grocery store setting) for each task. Task
difficulty increases from 1 to 10.

User # Re-ranking # Zero-G Average Trajectory-Quality
feedback feedback time (min.) self cross

1 5.4 (4.1) 3.3 (3.4) 7.8 (4.9) 3.8 (0.6) 4.0 (1.4)
2 1.8 (1.0) 1.7 (1.3) 4.6 (1.7) 4.3 (1.2) 3.6 (1.2)
3 2.9 (0.8) 2.0 (2.0) 5.0 (2.9) 4.4 (0.7) 3.2 (1.2)
4 3.2 (2.0) 1.5 (0.9) 5.3 (1.9) 3.0 (1.2) 3.7 (1.0)
5 3.6 (1.0) 1.9 (2.1) 5.0 (2.3) 3.5 (1.3) 3.3 (0.6)

User # Re-ranking # Interactive Trajectory-Quality
feedbacks feedbacks self cross

1 3.1 (1.3) 2.4 (2.4) 3.5 (1.1) 3.6 (0.8)
2 2.3 (1.1) 1.8 (2.7) 4.1 (0.7) 4.1 (0.5)

TABLE II: Shows learning statistics for each user. Self and
cross scores of the final learned trajectories. The number inside
bracket is standard deviation. (Top) Results for grocery store
on Baxter. (Bottom) Household setting on PR2.

varied across users, but only marginally. In situations where
this difference is significant and a system is desired for

a user population, a future work might explore coactive
learning for satisfying user population, similar to Raman and
Joachims [42]. For household setting, the sample size is small
to draw a similar conclusion.

How long does it take for users to train a robot?
We report training time for only the grocery store setting,
because the interactive feedback in the household setting
requires users with experience in Rviz-ROS. Further, we
observed that users found it difficult to modify the robot’s
joint angles in a simulator to their desired configuration. In
the grocery checkout setting, among all the users, user 1
had the strictest preferences and also experienced some early
difficulties in using the system and therefore took longer
than others. On an average, a user took 5.5 minutes per task,
which we believe is acceptable for most applications. Future
research in human-computer interaction, visualization and



Fig. 13: Shows trajectories for moving a bowl of water in presence of human. Without learning robot plans an undesirable
trajectory and moves bowl over the human (waypoints 1-3-4). After six user feedback robot learns the desirable trajectory
(waypoints 1-2-4).

Fig. 14: Shows the learned trajectory for moving an egg carton. Since eggs are fragile robot moves the carton near the table
surface. (Left) Start of trajectory. (Middle) Intermediate waypoint with egg close to the table surface. (Right) End of trajectory.

better user interfaces [52] could further reduce this time. For
example, simultaneous visualization of top ranked trajectories
instead of sequentially showing them to users (the scheme
we currently adopt) could bring down the time for re-rank
feedback. Despite its limited size, through our user study we
show that our algorithm is realizable in practice on high DoF
manipulators. We hope this motivates researchers to build
robotic systems capable of learning from non-expert users.
For more details, videos and code, visit:

http://pr.cs.cornell.edu/coactive/

VII. CONCLUSION AND FUTURE WORK

When manipulating objects in human environments, it is
important for robots to plan motions that follow users’ prefer-
ences. In this work, we considered preferences that go beyond
simple geometric constraints and that considered surrounding
context of various objects and humans in the environment.
We presented a coactive learning approach for teaching robots
these preferences through iterative improvements from non-
expert users. Unlike in standard learning from demonstration
approaches, our approach does not require the user to pro-
vide optimal trajectories as training data. We evaluated our
approach on various household (with PR2) and grocery store
checkout (with Baxter) settings. Our experiments suggest that
it is indeed possible to train robots within a few minutes with
just a few incremental feedbacks from non-expert users.

Future research could extend coactive learning to situa-
tions with uncertainty in object pose and attributes. Under

uncertainty the trajectory preference perceptron will admit
a belief space update form, and theoretical guarantees will
also be different. Coactive feedback might also find use in
other interesting robotic applications such as assistive cars,
where a car learns from humans steering actions. Scaling
up coactive feedback by crowd-sourcing and exploring other
forms of easy-to-elicit learning signals are also potential future
directions.

ACKNOWLEDGEMENTS

This research was supported by ARO award W911NF-12-
1-0267, Microsoft Faculty fellowship and NSF Career award
(to Saxena).

APPENDIX A
PROOF FOR AVERAGE REGRET

This proof builds upon Shivaswamy & Joachims [51].
We assume the user hidden score function s∗(x, y) is

contained in the family of scoring functions s(x, y;w∗O, w
∗
E)

for some unknown w∗O and w∗E . Average regret for TPP over
T rounds of interactions can be written as:

REGT =
1

T

T∑
t=1

(s∗(xt, y
∗
t )− s∗(xt, yt))

=
1

T

T∑
t=1

(s(xt, y
∗
t ;w∗O, w

∗
E)− s(xt, yt;w∗O, w∗E))

http://pr.cs.cornell.edu/coactive/


We further assume the feedback provided by the user is
strictly α-informative and satisfy following inequality:

s(xt, ȳt;w
∗
O, w

∗
E) ≥s(xt, yt;w∗O, w∗E) + α[s(xt, y

∗
t ;w∗O, w

∗
E)

− s(xt, yt;w∗O, w∗E)]− ξt (7)

Later we relax this constraint and requires it to hold only
in expectation.

This definition states that the user feedback should
have a score of ȳt that is higher than that of yt by
a fraction α ∈ (0, 1] of the maximum possible range
s(xt, y

∗
t ;w∗O, w

∗
E)− s(xt, yt;w∗O, w∗E).

Theorem 1: The average regret of trajectory preference
perceptron receiving strictly α-informative feedback can be
upper bounded for any [w∗O;w∗E ] as follows:

REGT ≤
2C ‖[w∗O;w∗E ]‖

α
√
T

+
1

αT

T∑
t=1

ξt (8)

where C is constant such that ‖[φO(x, y);φE(x, y)]‖2 ≤ C.
Proof: After T rounds of feedback, using weight update
equations of wE and wO we can write:

w∗O · w
(T+1)
O = w∗O · w

(T )
O + w∗O · (φO(xT , ȳT )− φO(xT , yT ))

w∗E · w
(T+1)
E = w∗E · w

(T )
E + w∗E · (φE(xT , ȳT )− φE(xT , yT ))

Adding the two equations and recursively reducing the right
gives:

w∗O · w
(T+1)
O + w∗E · w

(T+1)
E =

T∑
t=1

(s(xt, ȳt;w
∗
O, w

∗
E)

− s(xt, yt;w∗O, w∗E)) (9)

Using Cauchy-Schwarz inequality the left hand side of
equation (9) can be bounded as:

w∗O ·w
(T+1)
O +w∗E ·w

(T+1)
E ≤ ‖[w∗O;w∗E ]‖

∥∥∥[w
(T+1)
O ;w

(T+1)
E ]

∥∥∥
(10)∥∥∥[w

(T+1)
O ;w

(T+1)
E ]

∥∥∥ can be bounded by using weight update
equations:

w
(T+1)
O · w(T+1)

O + w
(T+1)
E · w(T+1)

E = w
(T )
O · w(T )

O + w
(T )
E · w(T )

E

+ 2w
(T )
O · (φO(xT , ȳT )− φO(xT , yT ))

+ 2w
(T )
E · (φE(xT , ȳT )− φE(xT , yT ))

+ (φO(xT , ȳT )− φO(xT , yT )) · (φO(xT , ȳT )− φO(xT , yT ))

+ (φE(xT , ȳT )− φE(xT , yT )) · (φE(xT , ȳT )− φE(xT , yT ))

≤ w(T )
O · w(T )

O + w
(T )
E · w(T )

E + 4C2 ≤ 4C2T (11)

∴
∥∥∥[w

(T+1)
O ;w

(T+1)
E ]

∥∥∥ ≤ 2C
√
T (12)

Eq. (11) follows from the fact that s(xT , yT ;w
(T )
O , w

(T )
E ) >

s(xT , ȳT ;w
(T )
O , w

(T )
E ) and ‖[φO(x, y);φE(x, y)]‖2 ≤ C. Us-

ing equations (10) and (12) gives following bound on (9):
T∑

t=1

(s(xt, ȳt;w
∗
O, w

∗
E)− s(xt, yt;w∗O, w∗E))

≤ 2C
√
T ‖[w∗O;w∗E ]‖ (13)

Assuming strictly α-informative feedback and re-writing equa-
tion (7) as:

s(xt, y
∗
t ;w∗O, w

∗
E)− s(xt, yt;w∗O, w∗E)

≤ 1

α
((s(xt, ȳt;w

∗
O, w

∗
E)− s(xt, yt;w∗O, w∗E))− ξt) (14)

Combining equations (13) and (14) gives the bound on
average regret (8).

APPENDIX B
PROOF FOR EXPECTED REGRET

We now show the regret bounds for TPP under a weaker
feedback assumption – expected α-informative feedback:

Et[s(xt, ȳt;w
∗
O, w

∗
E)] ≥ s(xt, yt;w∗O, w∗E)

+ α[s(xt, y
∗
t ;w∗O, w

∗
E)− s(xt, yt;w∗O, w∗E)]− ξt

where the expectation is under choices ȳt when yt and xt are
known.

Corollary 2: The expected regret of trajectory preference
perceptron receiving expected α-informative feedback can be
upper bounded for any [w∗O;w∗E ] as follows:

E[REGT ] ≤ 2C ‖[w∗G;w∗O]‖
α
√
T

+
1

αT

T∑
t=1

ξ̄t (15)

Proof: Taking expectation on both sides of equation (9), (10)
and (11) yields following equations respectively:

E[w∗O · w
(T+1)
O + w∗E · w

(T+1)
E ] =

T∑
t=1

E[(s(xt, ȳt;w
∗
O, w

∗
E)

− s(xt, yt;w∗O, w∗E))] (16)

E[w∗O · w
(T+1)
O +w∗E · w

(T+1)
E ]

≤ ‖[w∗O;w∗E ]‖E
[∥∥∥[w

(T+1)
O ;w

(T+1)
E ]

∥∥∥]

E[w
(T+1)
O · w(T+1)

O + w
(T+1)
E · w(T+1)

E ] ≤ 4C2T

Applying Jensen’s inequality on the concave function
√
·

we get:

E[w∗O · w
(T+1)
O + w∗E · w

(T+1)
E ]

≤ ‖[w∗O;w∗E ]‖E
[∥∥∥[w

(T+1)
O ;w

(T+1)
E ]

∥∥∥]
≤ ‖[w∗O;w∗E ]‖

√
E[w

(T+1)
O · w(T+1)

O + w
(T+1)
E · w(T+1)

E ]

Using (16) gives the following bound:
T∑

t=1

E[s(xt, ȳt;w
∗
O, w

∗
E)− s(xt, yt;w∗O, w∗E)]

≤ 2C
√
T ‖[w∗O;w∗E ]‖

Now using the fact that the user feedback is expected α-
informative gives the regret bound (15).



REFERENCES

[1] P. Abbeel, A. Coates, and A. Y. Ng. Autonomous
helicopter aerobatics through apprenticeship learning. In-
ternational Journal of Robotics Research, 29(13), 2010.

[2] B. Akgun, M. Cakmak, K. Jiang, and A. L. Thomaz.
Keyframe-based learning from demonstration. Interna-
tional Journal of Social Robotics, 4(4):343–355, 2012.

[3] R. Alterovitz, T. Siméon, and K. Goldberg. The stochas-
tic motion roadmap: A sampling framework for planning
with markov motion uncertainty. In Proceedings of
Robotics: Science and Systems, 2007.

[4] B. D. Argall, S. Chernova, M. Veloso, and B. Browning.
A survey of robot learning from demonstration. Robotics
and Autonomous Systems, 57(5):469–483, 2009.

[5] D. Berenson, P. Abbeel, and K. Goldberg. A robot
path planning framework that learns from experience. In
Proceedings of the International Conference on Robotics
and Automation, 2012.

[6] J. V. D. Berg, P. Abbeel, and K. Goldberg. Lqg-mp:
Optimized path planning for robots with motion uncer-
tainty and imperfect state information. In Proceedings of
Robotics: Science and Systems, June 2010.

[7] S. Bhattacharya, M. Likhachev, and V. Kumar. Identifica-
tion and representation of homotopy classes of trajecto-
ries for search-based path planning in 3d. In Proceedings
of Robotics: Science and Systems, 2011.

[8] R. Bischoff, A. Kazi, and M. Seyfarth. The morpha style
guide for icon-based programming. In Proceedings. 11th
IEEE International Workshop on RHIC., 2002.

[9] S. Calinon, F. Guenter, and A. Billard. On learning,
representing, and generalizing a task in a humanoid
robot. Sys., Man, and Cybernetics, Part B: Cybernetics,
IEEE Trans. on, 2007.

[10] B. J. Cohen, S. Chitta, and M. Likhachev. Search-based
planning for manipulation with motion primitives. In
Proceedings of the International Conference on Robotics
and Automation, pages 2902–2908, 2010.

[11] Dave D. Ferguson and A. Stentz. Anytime rrts. In
Proceedings of the IEEE/RSJ Conference on Intelligent
Robots and Systems, 2006.

[12] D. Dey, T. Y. Liu, M. Hebert, and J. A. Bagnell. Con-
textual sequence prediction with application to control
library optimization. In Proceedings of Robotics: Science
and Systems, 2012.

[13] R. Diankov. Automated Construction of Robotic Manip-
ulation Programs. PhD thesis, CMU, RI, August 2010.

[14] A. Dragan and S. Srinivasa. Generating legible motion.
In Proceedings of Robotics: Science and Systems, 2013.

[15] A. Dragan, K. Lee, and S. Srinivasa. Legibility and pre-
dictability of robot motion. In Human Robot Interaction,
2013.

[16] L. H. Erickson and S. M. LaValle. Survivability: Mea-
suring and ensuring path diversity. In Proceedings of the
International Conference on Robotics and Automation,
2009.

[17] A. Ettlin and H. Bleuler. Randomised rough-terrain
robot motion planning. In Proceedings of the IEEE/RSJ

Conference on Intelligent Robots and Systems, 2006.
[18] D. Gossow, A. Leeperand D. Hershberger, and M. Cio-

carlie. Interactive markers: 3-d user interfaces for ros
applications [ros topics]. Robotics & Automation Maga-
zine, IEEE, 18(4):14–15, 2011.

[19] C. J. Green and A. Kelly. Toward optimal sampling in
the space of paths. In Robotics Research. 2011.

[20] L. Jaillet, J. Cortés, and T. Siméon. Sampling-based path
planning on configuration-space costmaps. 26(4), 2010.

[21] A. Jain, S. Sharma, and A. Saxena. Beyond geometric
path planning: Learning context-driven user preferences
via sub-optimal feedback. In Proceedings of the Inter-
national Symposium on Robotics Research, 2013.

[22] A. Jain, B. Wojcik, T. Joachims, and A. Saxena. Learn-
ing trajectory preferences for manipulators via iterative
improvement. In Advances in Neural Information Pro-
cessing Systems, 2013.

[23] Y. Jiang, M. Lim, C. Zheng, and A. Saxena. Learning
to place new objects in a scene. International Journal of
Robotics Research, 31(9):1021–1043, 2012.

[24] T. Joachims. Training linear svms in linear time. In
Proceedings of the ACM Special Interest Group on
Knowledge Discovery and Data Mining, 2006.

[25] T. Joachims, T. Finley, and C.-N. J. Yu. Cutting-plane
training of structural svms. Machine Learning, 77(1):
27–59, 2009.

[26] S. Karaman and E. Frazzoli. Incremental sampling-based
algorithms for optimal motion planning. In Proceedings
of Robotics: Science and Systems, 2010.

[27] S. Karaman and E. Frazzoli. Sampling-based algorithms
for optimal motion planning. International Journal of
Robotics Research, 30(7):846–894, 2011.

[28] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert.
Activity forecasting. In Proceedings of the European
Conference on Computer Vision. 2012.

[29] E. Klingbeil, D. Rao, B. Carpenter, V. Ganapathi, A. Y.
Ng, and O. Khatib. Grasping with application to an
autonomous checkout robot. In Proceedings of the
International Conference on Robotics and Automation,
2011.

[30] J. Kober and J. Peters. Policy search for motor primitives
in robotics. ML, 84(1), 2011.

[31] H.S. Koppula, A. Anand, T. Joachims, and A. Saxena.
Semantic labeling of 3d point clouds for indoor scenes.
In Advances in Neural Information Processing Systems,
2011.

[32] H. Kretzschmar, M. Kuderer, and W. Burgard. Learn-
ing to predict trajectories of cooperatively navigating
agents. In Proceedings of the International Conference
on Robotics and Automation, 2014.

[33] S. M. LaValle and J. J. Kuffner. Randomized kino-
dynamic planning. International Journal of Robotics
Research, 20(5), May 2001.

[34] I. Lenz, H. Lee, and A. Saxena. Deep learning for
detecting robotic grasps. In Proceedings of Robotics:
Science and Systems, 2013.

[35] P. Leven and S. Hutchinson. Using manipulability to



bias sampling during the construction of probabilistic
roadmaps. IEEE Trans. on Robotics and Automation,
19(6), 2003.

[36] S. Levine and V. Koltun. Continuous inverse optimal
control with locally optimal examples. In Proceedings
of the International Conference on Machine Learning,
2012.

[37] J. Mainprice, E. A. Sisbot, L. Jaillet, J. Cortés, R. Alami,
and T. Siméon. Planning human-aware motions using a
sampling-based costmap planner. In Proceedings of the
International Conference on Robotics and Automation,
2011.

[38] C. D. Manning, P. Raghavan, and H. Schütze. Intro-
duction to information retrieval, volume 1. Cambridge
University Press Cambridge, 2008.

[39] S. Nikolaidis and J. Shah. Human-robot teaming using
shared mental models. In HRI, Workshop on Human-
Agent-Robot Teamwork, 2012.

[40] S. Nikolaidis and J. Shah. Human-robot cross-training:
Computational formulation, modeling and evaluation of
a human team training strategy. In IEEE/ACM ICHRI,
2013.

[41] M. Phillips, B. Cohen, S. Chitta, and M. Likhachev. E-
graphs: Bootstrapping planning with experience graphs.
In Proceedings of Robotics: Science and Systems, 2012.

[42] K. Raman and T. Joachims. Learning socially optimal
information systems from egoistic users. In Proceedings
of the European Conference on Machine Learning, 2013.

[43] N. Ratliff. Learning to Search: Structured Prediction
Techniques for Imitation Learning. PhD thesis, CMU,
RI, 2009.

[44] N. Ratliff, J. A. Bagnell, and M. Zinkevich. Maximum
margin planning. In Proceedings of the International
Conference on Machine Learning, 2006.

[45] N. Ratliff, J. A. Bagnell, and M. Zinkevich. (online)
subgradient methods for structured prediction. In Pro-
ceedings of the International Conference on Artificial
Intelligence and Statistics, 2007.

[46] N. Ratliff, D. Silver, and J. A. Bagnell. Learning
to search: Functional gradient techniques for imitation
learning. Autonomous Robots, 27(1):25–53, 2009.

[47] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa.
Chomp: Gradient optimization techniques for efficient
motion planning. In Proceedings of the International
Conference on Robotics and Automation, 2009.

[48] S. Ross, J. Zhou, Y. Yue, D. Dey, and J. A. Bagnell.
Learning policies for contextual submodular prediction.
Proceedings of the International Conference on Machine
Learning, 2013.

[49] A. Saxena, J. Driemeyer, and A. Y. Ng. Robotic grasping
of novel objects using vision. International Journal of
Robotics Research, 27(2):157–173, 2008.

[50] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow,
and P. Abbeel. Finding locally optimal, collision-free
trajectories with sequential convex optimization. In
Proceedings of Robotics: Science and Systems, 2013.

[51] P. Shivaswamy and T. Joachims. Online structured

prediction via coactive learning. In Proceedings of the
International Conference on Machine Learning, 2012.

[52] B. Shneiderman and C. Plaisant. Designing The User
Interface: Strategies for Effective Human-Computer In-
teraction. Addison-Wesley Publication, 2010.

[53] D. Silver, J. A. Bagnell, and A. Stentz. Learning from
demonstration for autonomous navigation in complex
unstructured terrain. International Journal of Robotics
Research, 2010.

[54] E. A. Sisbot, L. F. Marin, and R. Alami. Spatial reasoning
for human robot interaction. In Proceedings of the
IEEE/RSJ Conference on Intelligent Robots and Systems,
2007.

[55] E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon.
A human aware mobile robot motion planner. IEEE
Transactions on Robotics, 2007.

[56] A. Stopp, S. Horstmann, S. Kristensen, and F. Lohnert.
Towards interactive learning for manufacturing assistants.
In Proceedings. 10th IEEE International Workshop on
RHIC., 2001.

[57] I. A. Sucan, M. Moll, and L. E. Kavraki. The Open
Motion Planning Library. IEEE Robotics & Automation
Magazine, 19(4):72–82, 2012. http://ompl.kavrakilab.org.

[58] K. Tamane, M. Revfi, and T. Asfour. Synthesizing
object receiving motions of humanoid robots with human
motion database. In Proceedings of the International
Conference on Robotics and Automation, 2013.

[59] P. Vernaza and J. A. Bagnell. Efficient high dimensional
maximum entropy modeling via symmetric partition
functions. In Advances in Neural Information Processing
Systems, 2012.

[60] A. Wilson, A. Fern, and P. Tadepalli. A bayesian
approach for policy learning from trajectory preference
queries. In Advances in Neural Information Processing
Systems, 2012.

[61] F. Zacharias, C. Schlette, F. Schmidt, C. Borst, J. Ross-
mann, and G. Hirzinger. Making planned paths look more
human-like in humanoid robot manipulation planning. In
Proceedings of the International Conference on Robotics
and Automation, 2011.

[62] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey.
Maximum entropy inverse reinforcement learning. In
AAAI, 2008.

[63] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko,
M. Klingensmith, C. M. Dellin, J. A. Bagnell, and S. .S.
Srinivasa. Chomp: Covariant hamiltonian optimization
for motion planning. International Journal of Robotics
Research, 32, 2013.

http://ompl.kavrakilab.org

	I Introduction
	II Related Work
	III Coactive learning with incremental feedback
	III-A Robot learning setup
	III-B Feedback mechanisms

	IV Learning and Feedback Model
	V Learning Algorithm
	V-A Features Describing Object-Object Interactions
	V-B Trajectory Features
	V-B1 Robot Arm Configurations
	V-B2 Orientation and Temporal Behaviour of the Object to be Manipulated
	V-B3 Object-Environment Interactions

	V-C Computing Trajectory Rankings
	V-D Learning the Scoring Function

	VI Experiments and Results
	VI-A Experimental Setup
	VI-B Results and Discussion
	VI-C Comparison with fully-supervised algorithms
	VI-D Robotic Experiment: User Study in learning trajectories

	VII Conclusion and Future work
	Appendix A: Proof for Average Regret
	Appendix B: Proof for Expected Regret

