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Abstract
We present high-contrast H-band polarized intensity images of the transitional disk around the
young solar-like star LkCa 15. By utilizing Subaru/HiCIAO for polarimetric differential imaging,
both the angular resolution and the inner working angle reach 0.07′′and r=0.1′′, respectively.
We obtained a clearly resolved gap (width <

∼ 27 AU) at ∼ 48 AU from the central star. This
gap is consistent with images reported in previous studies. We also confirmed the existence
of a bright inner disk with a misaligned position angle of 13±4◦ with respect to that of the outer
disk, i.e., the inner disk is possibly warped. The large gap and the warped inner disk both point
to the existence of a multiple planetary system with a mass of <∼1MJup.

Key words: circumstellar material — stars: individual (LkCa 15) — stars: pre-main-sequence — plane-
tary systems: protoplanetary disks

1 Introduction

The circumstellar disks around young stars are the main birth-

place of giant gas planets. Analysis of their spectral energy dis-

tribution (SED) and the results of interferometry at infrared to
millimeter wavelengths reveal the evidence of gap and cavity

structures in many circumstellar disks. Such disks have been

called transitional disks, and are thought to be an intermedi-

ate phase between gas-rich primordial disks and gas-poor de-

bris disks (e.g., Espaillat et al. 2014). When newly formed

planet(s) are embedded in the disks, a gap structure (i.e., op-

† Based on IRCS and HiCIAO data collected at Subaru Telescope, which is

operated by the National Astronomical Observatory of Japan.

tically thick inner and outer disks separated by an optically thin

gap) instead of a cavity (i.e., a complete lack of an inner disk)

is predicted to form by disk-planet interactions (Kley & Nelson

2012). Therefore, disks with a gap structure could indicatethe

birth of the giant gas planets. Hence, understanding the detailed

structures of the transitional disks could unveil the origin of our

planetary system.

The progress of high-contrast imaging in the last decade al-

lows us to see more details in the transitional disks. By direct

imaging, the incredible diversity of the disk morphology, such

as spiral and gap structures, has been revealed (e.g., Hashimoto

et al. 2012). LkCa 15 (K5, 0.97M⊙, 2−5 Myr old; Simon et
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al. 2000), a young solar-like star located in the Taurus-Auriga

region (∼140 pc), is one of the most intensively studied tran-

sitional disk systems around the T Tauri star. Espaillat et al.

(2007) conducted a detailed analysis of SED in LkCa 15 and

suggested the existence of a gap structure at∼46AU. Such a

gap structure has been confirmed by millimeter (mm) interfer-

ometry (Piétu et al. 2006) and near-infrared (NIR) high-contrast

direct imaging (Thalmann et al. 2010).

Subsequently, protoplanet candidates LkCa 15 b and c
(<
∼

5∼10MJup) were discovered (Kraus & Ireland 2012; Sallum

et al. 2015). More recently, the inner disk was newly discov-

ered by Thalmann et al. (2015) at optical wavelengths (590-890

nm). Therefore, LkCa 15 may serve an excellent laboratory for

studying the interaction between infant planets and the proto-

planetary disk structure they sculp.

Here, we present the results of new high-contrast NIR

(1.6µm) polarization imaging carried out on the LkCa15 disk.

The combination of the High Contrast Instrument for the Subaru

Next Generation Adaptive Optics(HiCIAO; Tamura et al. 2006)

and Polarimetric Differential Imaging (PDI) provides a high-

contrast image that is unprecedented in quality at infraredwave-

lengths and enables us to both clearly confirm and quantitatively

analyze the wide gap structure and the inner disk. We report the
warped inner disk and discuss the potential origin of a gapped

and warped disk around LkCa 15. The gapped and warped disk

suggests the existence of a multiple planetary system.

2 OBSERVATIONS AND DATA REDUCTION

The PDI observations of LkCa 15 were performed in theH-

band on 2013 Nov 22 with HiCIAO on the Subaru Telescope

combined with AO188 (Hayano et al. 2010). Each image has a

5′′
×5′′ field of view (FOV) with a pixel scale of 9.5 mas/pixel.

We obtained 17 data sets with 30 s exposure. The total integra-

tion time on the source of the polarization intensity image was

2040 s. All of our observations were conducted under the pro-

gram of the SEEDS (Strategic Explorations of Exoplanets and

Disks with Subaru; Tamura et al. 2009) project.
The polarimetric data were reduced in the standard manner

of infrared image reduction that uses the custom IRAF1 pipeline

designed by Hashimoto et al. (2011). The StokesQ andU im-

ages were obtained by the standard method for differential po-

larimetry (Hinkley et al. 2009). The polarized intensity (PI)

image was obtained as(Q2 +U 2)1/2. Because the convolved

point spread function (PSF) cannot be perfectly removed by

standard procedures, a residual stellar halo was sometimesob-

served in the obtained PI images. To remove the effect of this

polarized halo, we constructed the polarization halo modelby

1 The IRAF software is distributed by the National Optical Astronomy

Observatory, which is operated by the Association of Universities for

Research in Astronomy (AURA) under a cooperative agreement with the

National Science Foundation.
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Fig. 1. Top: PI and overlapped polarization vector map images (2.0′′ ×

2.0′′) before (a) and after (b) halo subtraction. The saturated region is oc-

culted by a software mask (r∼0.1′′), the vectors are binned with spatial res-

olution, and the lengths are arbitrary for presentation purposes. (a): The

effect of a polarized halo appears to have a tendency toward the minor axis

of the disk. (b): The polarization tendency to the minor axis was removed,

and the disk-origin polarization along the disk surface was revealed. Bottom:

The radial Stokes Qr (c) and Ur (d) images. In the Qr image, both the outer

and inner disks are significantly detected as expected from the PI image. On

the other hand, the Ur image shows no disk-like component.

using the derived average polarization strength (0.67±0.03%)

and average polarization angle (149.1±0.5◦), and subtracted

this from the StokesQ andU images. From the halo-subtracted

StokesQsub andUsub images, the final halo-subtracted PIsub

image were generated (Figure 1b). To verify this result, we

converted the coordinate system of StokesQ andU to the radial

StokesQr andUr (Avenhaus et al. 2014), because the Stokes

Qr image must show scattering polarization similar to the PIsub

image, while the StokesUr image should contain less or no

scattered light from the disk.

The disk components are clearly visible in the StokesQr

image, whereas the StokesUr image does not show any circular

structures and its signals are faint and noisy (Figure 1c andd).

Therefore, we concluded that the final PIsub image is robust.

3 RESULTS

The final PI image of the LkCA 15 disk with a software mask

(r∼0.1′′) is shown in the right panel of Figure 1b and 2, and two

elliptical disk structures are clearly resolved. The brightness

of the northwest side is significantly brighter than that of the

southeast side, and this characteristic crescent of brightness is

consistent with the optical imaging results of Thalmann et al.

(2015).

The elliptical shape could be due to the system’s inclination
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Fig. 2. Elliptical fitting results of the inner disk (purple), the gap (yellow), and

the outer disk (red). The image has been smoothed by a gaussian with r=2

pixels to reduce the effects of speckles on the inferred structure of the disk.

The central region is also shown in the right top panel. White star indicates

the location of LkCa 15. Green and orange stars indicate where the planet

candidates LkCa 15 b and c were detected in 2014, respectively (Sallum et

al. 2015). Empty green and orange circles indicate the locations of two infrared

sources seen in 2009-2010 (Kraus & Ireland 2012), which are assumed as

LkCa 15 b and c, respectively.

(i). Thus, we fitted elliptical isophotes on a resulting image in

order to measure the inclinations and position angles (PAs)of

each disk. The elliptical fitting results are shown in Figure2 and

Table 1. We discovered new significant misalignments from

major axis PAs of the two disks and gap (13±4◦). The cen-

ter of all three disk components appear on southeast side from

the central star. The inclinations of the two disks are similar

(∼44◦), but that of the gap shows larger angle (∼52◦). Note that

Thalmann et al. (2014) reported eccentricities from the shape of

the gap associated with LkCa 15, thus the inclination based on

the ellipse fit only could be biased.

Figure 3 shows the radial surface brightness profiles on the
major and minor axes with a power-law fit at each slope. In

the profiles of major axes (top two profiles in Figure 3), the

gap appears as a depletion in the middle of each profile. The

slopes of the gap regions in profiles show a significant change

between northeast and southwest axes (power indicesr=2.0 and

1.2, respectively), and the slopes of the disk regions also show

a change between inner and outer disks (r=-2.5 for inner disks,

r=-3.1 and -3.6 for outer disks).
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Fig. 3. Radial surface brightness profiles with 1σ error bars at major and

minor axes. The values were measured at each axis within the range of

±10◦ (Yellow regions in left bottom panel), and were binned with a width of

dr=4 pixels. The typical error of of power index is ∼0.05.

Table 1. Elliptical fitting results of two disks and gapa.
Parameter Outer Disk Gap Inner Disk

rmajor (AU) 59.0±1.4 48.3±0.7 29.8±2.0

PAmajor (◦)b 59±2 67±3 72±2

i (◦)c 44±1 51±2 44±2

Center (mas)d (-37±4,-83±6) (-24±6,-42±6) (-13±2,-8±2)
a The peak, bottom, and half maximum positions (for the outer disk, gap, and inner

disk, respectively) were obtained first from the radial profile at position angles

every 10◦. Then we conducted an elliptical fit by using the non-leaner least-squares

Gauss-Newton algorithm with five free geometric parameters.
b Counterclockwise from north axis.
c Derived from the ellipticity. The inclination of a face-on disk is 0◦, and that of an

edge-on disk is 90◦.
d (∆R.A.,∆Dec.). The origin of the coordinate corresponds to the position of the

central star.

4 DISCUSSION

4.1 Disk Geometry: Which side is near to us?

We revisited the question of which side of the disk faces us.

The brightness asymmetry of the disk could be a clue, but two

explanations can be provided for that. The first is backward

illumination of the gap wall; backward illumination indicates

that the bright side is the wall of the far side of the gap (Quanz
et al. 2011). The second is forward scattering, which indicates

that the bright side is the surface of the disk’s near side (e.g.,

Fukagawa et al. 2006). If backward illumination is the true ex-

planation, the outer disk’s inner edge would be optically thick

and vertically high enough to conceal and reflect backward the

light from the star. On the other hand, if forward scatteringis

the true explanation for this asymmetry, the inner edge of the

outer disk would have a relatively low vertical height; there-
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fore, more star light would arrive on the disk surface over the

gap wall and more scattered light would come toward the ob-

server. Therefore, both explanations are still under debate.

To try to elucidate which side faces us, we utilized the star-

disk offset along the minor axis. On the projection of inclined

disk, the central star comes to near side of the disk’s minor axis

(Dong et al. 2012). In Figure 2, the central star is roughly on

the northwest minor axes of three disk components, therefore

we can conclude that the northwest side of the disk of LkCa
15 could be the one facing us. This supports forward scatter-

ing as the explanation of the brightness asymmetry and is also

consistent with 3D radiative transfer modeling (Thalmann et al.

2014).

4.2 Surface brightness behavior

We found the slope changes between northeast and southwest

gaps, and between inner and outer disks. Furthermore, bright-

ness slopes are not consistent with those of SPHERE/ZIMPOL
results (power indices of inner disk, gap, and outer disk∼ -2.4,

3.2 and -3.5 for northeast axis, -1.9, 2.1, and -4.1 for south-

west axis, respectively, with typical error∼ 0.1; Thalmann et

al. 2015, private communication).

A number of reasons have been suggested to explain the

change in brightness slopes, such as different extinction levels,

surface densities, flaring angles or dust properties. The geolog-

ical properties of inner disk could change the extinction level

between the star and outer region and affect the brightness of

outer disk (e.g., Krist et al. 2000); an actual change in the sur-

face density slope can be translated into a change in the sur-

face brightness slope, and a change of the flaring angle cause

a change in the scattering of the disk’s surface (e.g., Apai et al.

2004); a radial distribution of small dust particles and dust prop-
erties can affect the brightness slope (e.g., Akiyama et al.2015).

Although the brightness behavior could provide some physical

properties of the disks, a detailed analysis on the reason ofthe

brightness behavior is out of the scope of this letter, and itwill

be discussed elsewhere.

4.3 The origin of large gapped and warped disk

In the PIsub image and radial profiles, LkCa 15 has a large

gapped (width∼27 AU) disk. Among some mechanisms (e.g.,

grain growth, photoevaporation, disk-planet interaction; see
Espaillat et al. 2014) that have been proposed to explain the

clearing of the gaps in transitional disks, only gravitational in-

teraction between disks and orbitingmultiple planets can clear

a large inner gap of>
∼

15 AU or more (Zhu et al. 2011) and pre-

serve optically thick inner disk. Furthermore, de Juan Ovelar

et al. (2013) suggested a 1MJup planet would create a simi-

lar size of outer gap edge at NIR and (sub-)mm wavelengths;

conversely planets more massive than 1MJup make different

radial grain-size distribution in the dusty disk, and observations

at different wavelengths capture different parts of grain-size dis-

tribution. Since the sizes of the outer gap edge of LkCa 15 are

∼50 AU in sub-mm (Piétu et al. 2006) and 48 AU at NIR (this

work), a 1MJup planet might create a gap around LkCa 15. By

combining the upper mass limits of LkCa 15 companions, as

Thalmann et al. 2010 suggested based on their imaging result,

we concluded that assuming multiple planets with a mass of
<
∼

1MJup could account for LkCa 15’s large gapped disk with
an outer gap edge similar in size at both NIR and (sub-)mm

wavelengths.

We found a significant misalignment between two position

angles of inner and outer disks (=13±4◦) which indicates that

the inner disk is possibly warped along the disk major axis. If

inner disk was also warped along the minor axis, we would see

misaligned inclination. However, the inclination of innerdisk is

consistent with that of outer disk (∼44◦). Warped disks, such as

β Pictoris (e.g., Mouillet et al. 1997), AB Aurigae (Hashimoto

et al. 2011) and HD 142527 (e.g., Marino, Perez, and Casassus

2015), have been reported on several stars surrounded by transi-

tional disks and debris disks. These warped inner disks may be

explained by the gravitational perturbation from planets (e.g.,

Mouillet et al. 1997).β Pictoris, whose planetary mass com-

panionβ Pictoris b has a similar inclination to and possibly re-

sponsible for the inner warped disk (e.g., Lagrange et al. 2012),
is a possible evidence for this scenario. Additionally, Ahmic,

Croll and Artymowicz (2009) also suggested the possibilityof

multiple planets inβ Pictoris to explain warped disks.

To summarise, since LkCa 15 may possess multiple planets

with a mass of<
∼

1MJup in the large gap, the warped inner disk
could be the result of potential planets around LkCa 15.

5 CONCLUSION

We have presented a warped inner component beyond the large

gap from the LkCa 15 disk system revealed by angular differen-
tial imaging in theH-band with HiCIAO installed on a Subaru

Telescope. We derived 13±4◦ as the PA offset between the

outer disk and the warped inner disk. This unique gap plus

the warped disk configuration of the LkCa 15 system combined

with the previous observations at mm and optical wavelengths

indicates the existence of a multiple planetary system possibly

composed of<
∼

1MJup planets on the solar system scale. To di-

rectly observe and reveal the origin and evolution of possible

multiple planetary systems, future ground-based observations

with the Extreme Adaptive Optics (ExAO) system such as the

Subaru Coronagraphic ExAO (SCExAO; Jovanovic et al. 2015)

are required.
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