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1. Introduction

The eigenvalue density (or spectral function) of the Dirperator
1
pA) =G (3 8A=A)) (L.1)

provides a probe of the spontaneous chiral symmetry brgaki@QCD through the Banks-Casher
relationp(0) = Z/m [fl]l, whereX denotes the chiral condensate- —(qq) in the thermodynamical
limit. The functional form ofp(A) at smallA is computed by one-loop chiral perturbation theory
in the p-regime [2] and in the mixed regim@] [3], but the value3ofs to be determined by non-
perturbative QCD calculations.

The most direct way of obtaining the eigenvalue density iticka QCD is to calculate the
individual low-lying eigenvalues and to count the numbettafm falling in a region suffciently
close to zero. This method was adopted in our previous warkxtract the chiral condensate in
2+1-flavor QCD [B[b] using the overlap-Dirac operator. Fogkr volumes, however, it becomes
computationally more demanding because of the cost and nyaemuirement of the Lanczos-type
algorithms.

An alternative way is to stochasitically estimate the nunddeigenvalues below some thresh-
old. It was first implemented iff][6] for this particular prebt. In this work we introduce a variant
of this method to calculate the spectral function. Namebly,utilize the Chebyshev filtering tech-
nique combined with a stochastic estimate of the mode nun#sedescribed in the next section,
the method is more flexible and can be used to calculate théevdpectrum at once. We use
the lattice ensembles generated with 2+1 flavors of the Motamain-wall fermion at a lattice
spacinga~ 0.08 fm.

2. Chebyshev filetering

One can evaluate the number of eigenvalues in an inteallof a hermitian matrixd, which
is supposed to bB'D of any lattice Dirac operatdd, as

1Y
n[a,b] = N, kzlfk h(A)ék (2.1)

with Gaussian random vectogg, which has a normalizatiofL/N,) 3, &/ & = 12V in the limit
of large Ny, the number of random vector$i(A) is a function of matrixA that works as a filter
of eigenvalues. Withouh(A), @.1) simply counts the total mode number. By prepatiix)
returning 1 in the rangfa, b] and 0 elsewhere, we may stochastically count the number demo
in that interval. The statistical error is given by a squaret of the mode number ifa,b]. When
the number of eigenvalues in the rangg| is sufficiently largeN, = 1 could already give a precise
estimate.

One can use the Chebyshev polynonigk) to approximate the filtefn(x):

p
h(x) = J;Q?VJ'T; (X)- (2.2)
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Figure 1: Step function approximation given by the Chebyshev polyiabat orderp = 8000. Typical
results for the intervgD, 6] = 0.01, 0.005, 0.002 and 0.001 are shown from right to left.

The coefficientsy, andgf are known numbers fixed once the inter{alb] is given. The conven-
tional Chebyshev minmax approximation is obtained wijthwhile the Jackson stabilization factor
gJp is introduced to suppress the oscillation typical in thel§fsdev expansior][7]. In order for the
Chebyshev approximation to work, the whole eigenvalues ludive to be in the rande-1, 1].

After the ensemble average (over gauge configurations) lotaéns
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An important observation is that once the stochastic eia‘hisnaf(fkT Tj(A)ék) are calculated for

each | the eigenvalue count in any intervil, b] can be obtained by combining them with the

corresponding coefficient;fyj. Namely, the interval can be adjusted afterwards, indeg@nof

the costly calculation of the polynomial of the matfix Details of the method are found ifj [7].
The Chebyshev polynomial can be easily constructed usimgetturrence formula

To(x) =1, Ti(X) =%, Tj(X) = 2XTj_1(x) — Tj—2(X). (2.4)

One can also use the relatiofig, 1(X) = 2Ty 1(X)Ta(X) — T1(X) and Tan(X) = 2T2(X) — To(X), in
order to reduce the numerical efforts. With infinitely lang¢he filtering functionh(x) is exactly
reproduced; at finitg@, the approximating function is smeared around the boralarslb, inducing
a systematic error.

For the four-dimensional effective Dirac operator of domaill fermion, the eigenvalues of
D'D are in the rangéd0,1]. In Figure[]L, we plot the step functions for the interf@ld] of the
eigenvalue of D| with & = 0.01, 0.005, 0.002 and 0.001. (For the correspondenceebatthe
eigenvalues oD™D and those ofD|, see below.) The polynomial order is fixed o= 8000. One
can see that the step function is well approximated away fr@rboundary. Near the boundary,
the edge is rounded off. Its effect is relatively more impaottfor smallerd. The error estimated
for the area, which has to &g is 0.8% ford = 0.01 and 1.5% fo® = 0.005, scaling as /5.
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3. Lattice calculation

The JLQCD collaboration has generated a new set of ensernblgsl-flavor QCD with
Mobius domain-wall fermion for sea quarks. It aims at acimig\wgood chiral symmetny,.e. the
residual mass is order 1 MeV or smaller. Three lattice spmcame chosen agd = 2.45, 3.61 and
4.50 GeV, which allow well controlled continuum extrap@at even including charm quarks as
valence quarks. The up and down quark masses correspongl potihmas$/,; of 230, 300, 400
and 500 MeV;, two strange quark masses are chosen such tgadahdwich the physical value.
Lattice volume is 32 x 64, 48 x 96 and 64 x 128, depending on the lattice spacing, and the
physical volume satisfies the nominal conditigiaL > 4. This set of ensembles have been used
for a variety of applicationg]§] 9, 1P,]1[] 12].

In this preliminary work, we use the coarse latticéd = 2.45 GeV) of size 32x 64, out of
the above mentioned ensembles. The number of configuratidtsfor each ensemble, taken out
of 10,000 HMC trajectories. The numbiy of the Gaussian noise vectéyris 1. The up and down
guark masses in the lattice unit e,y = 0.019, 0.012, 0.007 and 0.0035.

We calculate the eigenvalue density of the hermitian ope@t¥'D® made of the four-
dimensional (4D) effective operator

D@ = [P~1(D® (m=1))'D® (M= 0)P)us. (3.1)

Here,D(5)(m) represents the five-dimensional (5D) Mobius domain-wadirafor with massn. For
the eigenvalue count we took = 0, i.e. the massless Dirac operator. The 4D effective operator
is constructed by multiplying the inverse of the Pauli-&8loperatorri= 1) and taking the 4D
surfaces (represented by the subscript “11”) appropyigtebjected onto left- and right-handed
modes by a projection operatBr See, for instance] [[L3] for more details.

For each application ob® on 4D vectors, we have to calculate the inverse of the Pauli-
Villars operator, for which the conjugate gradient itevatof order 40-50 is involved. Although the
inversion is much less expensive than the calculation bf igiark propagator, the total numerical
cost is substantial because we have to multip{/TD® p-times. (p = 8000 in this analysis.)

The eigenvalues oD D@ are in the region0, 1], and we rescale the operator As=
2D™®TD® — 1 to match the region of the Chebyshev approximation. Siheeetfective 4D op-
erator satisfies the Gisparg-Wilson relation very pregjsee assume that eigenvaluesf lie
on a circle in the complex plane. In the following, the eiggdoe A stands for that projected onto
the imaginary axis a8 = \/Apupw /(1 — Ap@ip )-

Figure[2 shows the eigenvalue spectrum for the whole rangeithe lattice unit. Both axes
are in a logarithmic scale. For each bin[afb], it is constructed ap(A;d) = (1/2V)n[a,b]/d
with a bin sized. (Therefore, it satisfied = \/a/(1—a) andA +6 = y/b/(1—Db).)

One can clearly see that the number of eigenvalues incréasasd higherA and saturate at
some point 0fO(1) due to the discretization effect, which should otherwiskave like~ A3 for
asymptotically largel. There is no visible quark mass dependence in this regionth®towest
end, it approaches a constant correspondimg @, from which one extracts the chiral condensate.

The same data are plotted in Fig{ife 3 in a linear scale. Theidindl bin has a width ob =
0.005. With this binsize, the systematic error due to theb@bleev approximation is well below
the statistical error.
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Figure 2: Spectral function in a logarithmic scale. The lattice da& @lotted for four values of up and
down quark masses.
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Figure 3: Spectral function in a linear scale. The binsize is taked a9).005. The lattice data are plotted
for four values of up and down quark masses (histogram witin étifferent colors). Curves are those of
one-loop chiral perturbation theory.

4. Analysis usingxPT formula

Figure[B shows a clear dependencep@) on the sea up and down quark masg. Namely,
p(0) gets lower for smallem,q. Furthermore, a peak develops n@as 0 for heavier sea quarks.
Qualitatively, it is understood as the effect that the ferm@eterminant is no longer active below
A < my to suppress the near-zero modes. More near-zero eigesvalayethen survive for larger
Myg-

In order to obtain the chiral condensafe one has to take the thermodynamical limie.
the infinite volume limit and then the massless quark limitieTorder of the limits is crucial;
p(0) vanishes in the massless limit on any finite volumes. Fotalyasuch volume and mass
dependences are well understood in chiral perturbatioarghg¢PT), and we may identify the
volume beyond which the system is effectively in the larghuwee limit. All our lattices satisfy
that condition, and we use theregimexPT formula in the following analysis.

One-loop formula folN; = 2 is available in []. It is written in terms of the leading erd
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Figure 4: Chiral extrapolation of the partially integrated spectuaiction p[0, 8] with 6 = 0.01. The one-
loop xPT curve alN; = 2 is shown together with the lattice data (black square).

low-energy constants (LEQG) andF as well as the next-to-leading order LEG. The pion decay
constant controls the size of the next-to-leading orderections. In this preliminary analysis, we
fix it to a nominal valueg= = 90 MeV.

We fit the value ofp[0,d] = (1/9) f05 dAp(A) with the one-loopxPT expression withd =
0.01. Namely, both the lattice data and one-lgpPT are integrated in the same region. This
value ofd corresponds to the scale of pion mas$af/F2 ~ 300 MeV, for which one expects that
one-loopxPT converges reasonably well.

Chiral extrapolation 0p[0,0.01] is shown in Figurg]4. The one-loggPT curve shows a slight
curvature due to the chiral logarithm. The fit yielB%3 = 262.0(1.7) MeV and.g = 0.00031(7)
with x2/dof = 1.13. With these parameter values, we draw the curvps)of for each quark mass
in Figure[B. They explain the rise ne&r= 0 for larger quark masses, but the data beyahd-
0.015 cannot be explained by one-lopPT.

Renormalizing to th&S scheme at 2 GeV, we obta(2 GeV)]'/3 = 260.0(1.7) MeV, where
we use the renormalization factdg(2 GeV) determined from the analysis of short-distance current
correlator [2p].

Probably because the strange quark is too heavy to applyoopexPT, a fit with the 2+1-
flavor x PT formula failed to reproduce the lattice data.

5. Discussions

The Chebyshev filtering technique allows precise evalnaticthe eigenvalue count in a suf-
ficiently small bin to calculate the eigenvalue spectrume Tiethod is especially suitable for the
4D effective operator of the domain-wall fermion since tigeavalue ofD®TD® is limited in
[0,1]. For the Wilson fermion, the range 8,64 (in the free theory), and one needs much higher
order polynomial to obtain the same precision. This woulartyecompensate the numerical effort
to construct the (expensive) 4D effective Dirac operatomfidomain-wall fermion.

This preliminary analysis has been done using partial datafdhe full data set at three lattice
spacings and various sea quark masses. We plan to includiatihen finer lattices that allow us
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to extrapolate to the continuum limit.
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