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1. Introduction

The eigenvalue density (or spectral function) of the Dirac operator

ρ(λ ) =
1
V
〈∑

i

δ (λ −λi)〉 (1.1)

provides a probe of the spontaneous chiral symmetry breaking in QCD through the Banks-Casher
relationρ(0) = Σ/π [1], whereΣ denotes the chiral condensateΣ =−〈q̄q〉 in the thermodynamical
limit. The functional form ofρ(λ ) at smallλ is computed by one-loop chiral perturbation theory
in the p-regime [2] and in the mixed regime [3], but the value ofΣ is to be determined by non-
perturbative QCD calculations.

The most direct way of obtaining the eigenvalue density in lattice QCD is to calculate the
individual low-lying eigenvalues and to count the number ofthem falling in a region suffciently
close to zero. This method was adopted in our previous works to extract the chiral condensate in
2+1-flavor QCD [4, 5] using the overlap-Dirac operator. For larger volumes, however, it becomes
computationally more demanding because of the cost and memory requirement of the Lanczos-type
algorithms.

An alternative way is to stochasitically estimate the number of eigenvalues below some thresh-
old. It was first implemented in [6] for this particular problem. In this work we introduce a variant
of this method to calculate the spectral function. Namely, we utilize the Chebyshev filtering tech-
nique combined with a stochastic estimate of the mode number. As described in the next section,
the method is more flexible and can be used to calculate the whole spectrum at once. We use
the lattice ensembles generated with 2+1 flavors of the Mobius domain-wall fermion at a lattice
spacinga ≃ 0.08 fm.

2. Chebyshev filetering

One can evaluate the number of eigenvalues in an interval[a,b] of a hermitian matrixA, which
is supposed to beD†D of any lattice Dirac operatorD, as

n[a,b] =
1

Nv

Nv

∑
k=1

ξ †
k h(A)ξk (2.1)

with Gaussian random vectorsξk, which has a normalization(1/Nv)∑Nv
k=1 ξ †

k ξk = 12V in the limit
of largeNv, the number of random vectors.h(A) is a function of matrixA that works as a filter
of eigenvalues. Withouth(A), (2.1) simply counts the total mode number. By preparingh(x)
returning 1 in the range[a,b] and 0 elsewhere, we may stochastically count the number of modes
in that interval. The statistical error is given by a square-root of the mode number in[a,b]. When
the number of eigenvalues in the range[a,b] is sufficiently large,Nv = 1 could already give a precise
estimate.

One can use the Chebyshev polynomialTj(x) to approximate the filterh(x):

h(x) =
p

∑
j=0

gp
j γ jTj(x). (2.2)
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Figure 1: Step function approximation given by the Chebyshev polynomial at orderp = 8000. Typical
results for the interval[0,δ ] = 0.01, 0.005, 0.002 and 0.001 are shown from right to left.

The coefficientsγ j andgp
j are known numbers fixed once the interval[a,b] is given. The conven-

tional Chebyshev minmax approximation is obtained withγ j, while the Jackson stabilization factor
gp

j is introduced to suppress the oscillation typical in the Chebyshev expansion [7]. In order for the
Chebyshev approximation to work, the whole eigenvalues ofA have to be in the range[−1,1].

After the ensemble average (over gauge configurations) one obtains

n̄[a,b] =
1

Nv

Nv

∑
k=1

[

p

∑
j=0

gp
j γ j〈ξ †

k Tj(A)ξk〉

]

. (2.3)

An important observation is that once the stochastic estimates of 〈ξ †
k Tj(A)ξk〉 are calculated for

each j the eigenvalue count in any interval[a,b] can be obtained by combining them with the
corresponding coefficientsgp

j γ j. Namely, the interval can be adjusted afterwards, independent of
the costly calculation of the polynomial of the matrixA. Details of the method are found in [7].

The Chebyshev polynomial can be easily constructed using the recurrence formula

T0(x) = 1, T1(x) = x, Tj(x) = 2xTj−1(x)−Tj−2(x). (2.4)

One can also use the relationsT2n−1(x) = 2Tn−1(x)Tn(x)− T1(x) andT2n(x) = 2T 2
n (x)− T0(x), in

order to reduce the numerical efforts. With infinitely largep the filtering functionh(x) is exactly
reproduced; at finitep, the approximating function is smeared around the bordersa andb, inducing
a systematic error.

For the four-dimensional effective Dirac operator of domain-wall fermion, the eigenvalues of
D†D are in the range[0,1]. In Figure 1, we plot the step functions for the interval[0,δ ] of the
eigenvalue of|D| with δ = 0.01, 0.005, 0.002 and 0.001. (For the correspondence between the
eigenvalues ofD†D and those of|D|, see below.) The polynomial order is fixed top = 8000. One
can see that the step function is well approximated away fromthe boundary. Near the boundary,
the edge is rounded off. Its effect is relatively more important for smallerδ . The error estimated
for the area, which has to beδ , is 0.8% forδ = 0.01 and 1.5% forδ = 0.005, scaling as 1/δ .
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3. Lattice calculation

The JLQCD collaboration has generated a new set of ensemblesof 2+1-flavor QCD with
Mobius domain-wall fermion for sea quarks. It aims at achieving good chiral symmetry,i.e. the
residual mass is order 1 MeV or smaller. Three lattice spacings are chosen as 1/a = 2.45, 3.61 and
4.50 GeV, which allow well controlled continuum extrapolation even including charm quarks as
valence quarks. The up and down quark masses correspond to the pion massMπ of 230, 300, 400
and 500 MeV; two strange quark masses are chosen such that they sandwich the physical value.
Lattice volume is 323 × 64, 483 × 96 and 643 × 128, depending on the lattice spacing, and the
physical volume satisfies the nominal conditionMπL & 4. This set of ensembles have been used
for a variety of applications [8, 9, 10, 11, 12].

In this preliminary work, we use the coarse lattice (1/a = 2.45 GeV) of size 323×64, out of
the above mentioned ensembles. The number of configurationsis 50 for each ensemble, taken out
of 10,000 HMC trajectories. The numberNv of the Gaussian noise vectorξk is 1. The up and down
quark masses in the lattice unit areamud = 0.019, 0.012, 0.007 and 0.0035.

We calculate the eigenvalue density of the hermitian operator D(4)†D(4) made of the four-
dimensional (4D) effective operator

D(4) = [P−1(D(5)(m = 1))−1D(5)(m = 0)P]11. (3.1)

Here,D(5)(m) represents the five-dimensional (5D) Mobius domain-wall operator with massm. For
the eigenvalue count we tookm = 0, i.e. the massless Dirac operator. The 4D effective operator
is constructed by multiplying the inverse of the Pauli-Villas operator (m = 1) and taking the 4D
surfaces (represented by the subscript “11”) appropriately projected onto left- and right-handed
modes by a projection operatorP. See, for instance, [13] for more details.

For each application ofD(4) on 4D vectors, we have to calculate the inverse of the Pauli-
Villars operator, for which the conjugate gradient iteration of order 40–50 is involved. Although the
inversion is much less expensive than the calculation of light quark propagator, the total numerical
cost is substantial because we have to multiplyD(4)†D(4) p-times. (p = 8000 in this analysis.)

The eigenvalues ofD(4)†D(4) are in the region[0,1], and we rescale the operator asA =

2D(4)†D(4)− 1 to match the region of the Chebyshev approximation. Since the effective 4D op-
erator satisfies the Gisparg-Wilson relation very precisely, we assume that eigenvalues ofD(4) lie
on a circle in the complex plane. In the following, the eigenvalueλ stands for that projected onto
the imaginary axis asλ =

√

λD(4)†D(4)/(1−λD(4)†D(4)).
Figure 2 shows the eigenvalue spectrum for the whole range ofλ in the lattice unit. Both axes

are in a logarithmic scale. For each bin of[a,b], it is constructed asρ(λ ;δ ) = (1/2V )n̄[a,b]/δ
with a bin sizeδ . (Therefore, it satisfiesλ =

√

a/(1−a) andλ +δ =
√

b/(1−b).)
One can clearly see that the number of eigenvalues increasestoward higherλ and saturate at

some point ofO(1) due to the discretization effect, which should otherwise behave like∼ λ 3 for
asymptotically largeλ . There is no visible quark mass dependence in this region. Onthe lowest
end, it approaches a constant corresponding toρ(0), from which one extracts the chiral condensate.

The same data are plotted in Figure 3 in a linear scale. The individual bin has a width ofδ =
0.005. With this binsize, the systematic error due to the Chebyshev approximation is well below
the statistical error.
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Figure 2: Spectral function in a logarithmic scale. The lattice data are plotted for four values of up and
down quark masses.
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Figure 3: Spectral function in a linear scale. The binsize is taken asδ = 0.005. The lattice data are plotted
for four values of up and down quark masses (histogram with four different colors). Curves are those of
one-loop chiral perturbation theory.

4. Analysis usingχPT formula

Figure 3 shows a clear dependence ofρ(0) on the sea up and down quark massmud . Namely,
ρ(0) gets lower for smallermud . Furthermore, a peak develops nearλ = 0 for heavier sea quarks.
Qualitatively, it is understood as the effect that the fermion determinant is no longer active below
λ . mud to suppress the near-zero modes. More near-zero eigenvalues may then survive for larger
mud .

In order to obtain the chiral condensateΣ, one has to take the thermodynamical limit,i.e.
the infinite volume limit and then the massless quark limit. The order of the limits is crucial;
ρ(0) vanishes in the massless limit on any finite volumes. Fortunately, such volume and mass
dependences are well understood in chiral perturbation theory (χPT), and we may identify the
volume beyond which the system is effectively in the large volume limit. All our lattices satisfy
that condition, and we use thep-regimeχPT formula in the following analysis.

One-loop formula forN f = 2 is available in [2]. It is written in terms of the leading order
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Figure 4: Chiral extrapolation of the partially integrated spectralfunctionρ [0,δ ] with δ = 0.01. The one-
loop χPT curve atN f = 2 is shown together with the lattice data (black square).

low-energy constants (LEC)Σ andF as well as the next-to-leading order LECL6. The pion decay
constant controls the size of the next-to-leading order corrections. In this preliminary analysis, we
fix it to a nominal valueF = 90 MeV.

We fit the value ofρ̄ [0,δ ] = (1/δ )
∫ δ

0 dλρ(λ ) with the one-loopχPT expression withδ =

0.01. Namely, both the lattice data and one-loopχPT are integrated in the same region. This
value ofδ corresponds to the scale of pion mass ofδΣ/F2 ≃ 300 MeV, for which one expects that
one-loopχPT converges reasonably well.

Chiral extrapolation ofρ [0,0.01] is shown in Figure 4. The one-loopχPT curve shows a slight
curvature due to the chiral logarithm. The fit yieldsΣ1/3 = 262.0(1.7) MeV andL6 = 0.00031(7)
with χ2/dof = 1.13. With these parameter values, we draw the curves ofρ(λ ) for each quark mass
in Figure 3. They explain the rise nearλ = 0 for larger quark masses, but the data beyondaλ ∼

0.015 cannot be explained by one-loopχPT.
Renormalizing to theMS scheme at 2 GeV, we obtain[Σ(2 GeV)]1/3 = 260.0(1.7) MeV, where

we use the renormalization factorZS(2 GeV) determined from the analysis of short-distance current
correlator [10].

Probably because the strange quark is too heavy to apply one-loop χPT, a fit with the 2+1-
flavor χPT formula failed to reproduce the lattice data.

5. Discussions

The Chebyshev filtering technique allows precise evaluation of the eigenvalue count in a suf-
ficiently small bin to calculate the eigenvalue spectrum. The method is especially suitable for the
4D effective operator of the domain-wall fermion since the eigenvalue ofD(4)†D(4) is limited in
[0,1]. For the Wilson fermion, the range is[0,64] (in the free theory), and one needs much higher
order polynomial to obtain the same precision. This would nearly compensate the numerical effort
to construct the (expensive) 4D effective Dirac operator from domain-wall fermion.

This preliminary analysis has been done using partial data out of the full data set at three lattice
spacings and various sea quark masses. We plan to include thedata on finer lattices that allow us
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to extrapolate to the continuum limit.

We are grateful to Julius Kuti for private communications onthe technique employed in this
work. Their own work was also presented at this conference. Numerical calculation was performed
on the Blue Gene/Q supercomputer at High Energy AcceleratorResearch Organization (KEK)
under a support of its Large Scale Simulation Program (No. 14/15-10). The code set Iroiro++
[14], which is highly optimized for Blue Gene/Q, is used. This work is supported in part by JSPS
KAKENHI Grant Number 25800147, 26247043 and 15K05065.
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