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ABSTRACT

A class of exact conformastatic solutions of the Einstein-Maxwell field equations is
presented in which the gravitational and electromagnetic potentials are completely
determined by a harmonic function. We derive the equations of motion for neutral
and charged particles in a spacetime background characterized by this class of solu-
tions. As an example, we focus on the analysis of a particular harmonic function which
generates a singularity-free and asymptotically flat spacetime and, therefore, describes
the gravitational field of a punctual mass endowed with a magnetic field. In this par-
ticular case, we investigate the main physical properties of equatorial circular orbits.
We show that due to the electromagnetic interaction, it is possible to have charged
test particles which stay at rest with respect to a static observer located at infinity.
Additionally, we obtain an analytic expression for the perihelion advance of test parti-
cles. Our theoretical predictions are compared with the observational data calibrated
with the ephemerides of the planets of the Solar system and the Moon (EPM2011). We
show that, in general, the magnetic punctual mass predicts values that are in better
agreement with observations than the values predicted in Einstein gravity alone.

Key words: Einstein-Maxwell equations – Exact solutions – Circular orbits – Peri-
helion advance.

1 INTRODUCTION

In recent years, the interest in studying magnetic fields
has increased in both astrophysical and cosmological scales.
In astrophysical dynamics, for instance, the study of disk
sources for stationary axially symmetric spacetimes with
magnetic fields is of special relevance mainly for the in-
vestigation of neutron stars, white dwarfs, and galaxy for-
mation. In this context, usually, it is believed that electric
fields do not have a clear astrophysical importance; never-
theless, there is a possibility that some galaxies are pos-
itively charged (González, Gutiérrez-Piñeres and Ospina,
2008; Bally and Harrison, 1978). On the other hand, mag-
netic fields are very common in astrophysical objects, and
can drastically affect other physical properties (e.g, H-alpha
emission, density mass, local shocks, etc.). For instance,
magnetic fields in a galaxy can be measured from the non-
thermal radio emission under the assumption of equiparti-
tion between the energies of the magnetic field and the rel-
ativistic particles (the so-called energy equipartition); this
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interaction can play an important role in the formation of
arms in spiral galaxies (Krause, 2003). For nearby galaxies,
one can use other effects such as optical polarization, po-
larized emission of clouds and dust grains, maser emissions,
diffuse radio polarized emission and rotation measures of
background polarization sources as well. In the case of the
Milky Way, e.g., the magnetic field has been actively studied
in its three main regions (central bulge, halo and accretion
disk). Moreover, magnetic fields seem to play an important
role in the formation of jets (resulting from collimated bipo-
lar out flows of relativistic particles) and accretion disks near
supermassive black holes (Zamaninasab et al., 2014).

It is important to stress that magnetic fields are
found mainly in interstellar medium, remarkably, in spiral
galaxies ( Han, 2012) which can be described with a good
approximation by means of thin disks. The magnetic and
gravitational field of such objects can reach very high
values, implying that a relativistic approach is necessary.
In a series of recent works (Gutiérrez-Piñeres, 2015;
Gutiérrez-Piñeres, Lopez-Monsalvo and Quevedo 2015;
Gutiérrez-Piñeres and Capistrano, 2015 (a)), several classes
of static and stationary axisymmetric exact solutions of the
Einstein-Maxwell equations were derived which can be in-
terpreted as describing the gravitational and magnetic fields
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of static and rotating thin disks. Although these solutions
satisfy the main theoretical conditions to be considered
as physically meaningful, additional tests are necessary in
order to establish their applicability in realistic scenarios.
For instance, the study of the motion of test particles
and the comparison of the resulting theoretical predictions
with observations are essential to understand the physical
properties of the solutions and the free parameters entering
them. This is the main goal of the present work.

In this work, we follow the original terminology intro-
duced by Synge (Synge, 1960), according to which confor-
mastationary spacetimes are stationary spacetimes with a
conformally flat space of orbits, and conformastatic space-
times comprises the static subset. In a previous work
(Gutiérrez-Piñeres and Capistrano, 2015 (b)), a static con-
formastatic solution of Einstein-Maxwell equations was pre-
sented and, in particular, the corresponding geodesic equa-
tions were derived explicitly. In the present work, we per-
form a detailed analysis of the equations of motion of test
particles moving in a conformastatic spacetime which de-
scribes the gravitational and magnetic fields of a punctual
source. In particular, we analyze the physical properties of
circular orbits on the equatorial plane of the gravitational
source. Additionally, we find an expression for the perihelion
advance in a general magnetized conformastatic spacetime,
and confront our theoretical results with the observational
data calibrated with the EPM2011 ephemerides of the Solar
System planets and the Moon.

This work is inspired on the approach presented in
references (Pugliese, Quevedo and Ruffini (a), 2011) and
(Pugliese, Quevedo and Ruffini (b), 2011). The analysis pre-
sented here serves as a “proof of principle” that gives a solid
footing for a fuller study of particles motion in the field of
relativistic disks and for a later study of in an ever more
realistic astrophysical context.

This work is organized as follows. In Section 2, we
present the Einstein-Maxwell equations for a conformastatic
metric and show that there exists a class of solutions gener-
ated by harmonic functions. We derive the complete set of
differential equations and first integrals that govern the dy-
namics of charged test particles moving in a conformastatic
spacetime. In addition, we show that, due to the spacetime
symmetries, the geodesic equations on the equatorial plane
can be reduced to one single ordinary differential equation,
describing the motion of a particle in an affective potential
which depends on the radial coordinate only. In Section 3,
we derive the explicit expressions for the energy and angu-
lar momentum of a particle moving along a circular orbit.
In Section 4, we focus on the particular case of a punctual
source. We analyze all the physical and stability properties of
circular orbits along which charged test particles are moving.
In Section 5, we obtain an expression for the perihelion ad-
vance of a charged test particle in a generic conformastatic
spacetime in the presence of a magnetic field. In this sec-
tion, we also illustrate our results by considering the case of
a punctual source, and perform a comparison between our
results, the results obtained in Einstein gravity alone, and
the values observed for the secular perihelion precession of
some inner planets and minor objects of the Solar System.
Finally, in Section 6, we present the conclusions.

2 BASIC FRAMEWORK

In Einstein-Maxwell gravity theory, the background
of a symmetric body can be described by the
conformastatic metric in cylindrical coordinates
((Gutiérrez-Piñeres, González and Quevedo, 2013))

dS2 = −c2e2φdt2 + e−2φ(dr2 + dz2 + r2dϕ2), (1)

where c is the speed of light in vacuum and the metric po-
tential φ depends only on the variables r and z. The field
equations are the Einstein-Maxwell equations

Rαβ − 1

2
gαβR = k

0
Eαβ, ∇βF

αβ = 0, (2)

where k
0
= 8π G c−4. 1 The energy-momentum tensor Eαβ

is given by

Eαβ =
1

4π

{

FαγF
γ

β − 1

4
gαβFγδF

γδ

}

,

where the electromagnetic tensor is denoted by Fαβ =
Aβ,α − Aαβ, being Aα = (At,A) the electromagnetic four-
potential. The components of the electromagnetic four-
potential depend on r and z only.

To restrict ourselves to the case of an axially symmet-
ric distribution on a magnetized background, we suppose
that the only nonzero component of the four-potential is Aϕ.
Accordingly, Einstein-Maxwell equations (2) can be equiva-
lently written as

∇2φ = ∇φ · ∇φ, (3)

φ 2
,r =

G

c4r2
e2φA2

ϕ,z, (4)

φ 2
,z =

G

c4r2
e2φA2

ϕ,r, (5)

φ,rφ,z = − G

c4r2
e2φAϕ,rAϕ,z, (6)

∇ · (r−2e2φ∇Aϕ) = 0, (7)

where ∇ denotes the usual gradient operator in cylindrical
coordinates, and a comma indicates partial differentiation
with respect to the corresponding variable. The symmetry
properties of the above differential equations allows us to re-
duce them to a single equation. In fact, by supposing a solu-
tion in the functional form φ = φ[U(r, z)], where U(r, z) is an
arbitrary harmonic function restricted by the condition U <
1 for all r and z (Gutiérrez-Piñeres, González and Quevedo,
(2013), Gutiérrez-Piñeres, (2015)), it is not difficult to prove
that

φ = − ln (1− U), Aϕ(r, z) =
c2

G1/2

∫ r

0

r̃U(r̃, z)dr̃, (8)

represent a solution of the system (3).
The electromagnetic field is pure magnetic which can

be demonstrated by analyzing the electromagnetic invariant
F = FαβFαβ, which in this case has the form

F ≡ FαβFαβ =
2c4(U2

,r + U2
,z)

G(1− U)4
> 0. (9)

1 Along this work we use the CGS units such that k
0

=
8π Gc−4 = 2, 07 × 10−48 s 2cm−1g−1, G = 6.674 ×
10−8cm3g−1s−2 and c = 2.998 × 1010 cm s−1. Greek indices run
from 1 to 4.
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In fact, the nonzero components of the electromagnetic field
are

Br =
c2

G1/2
rU,r and Bz =

c2

G1/2
rU,z . (10)

We conclude that any harmonic function U(r, z) < 1 can
be used to construct an exact conformastatic solution of
the Einstein-Maxwell equations. This is an interesting re-
sult which allows us to investigate the physical properties of
concrete conformastatic spacetimes. Indeed, in the sections
below we will investigate, as a particular example, one of the
simplest harmonic solutions which turns out to describe the
gravitational field of a punctual mass.

We now analyze the geodesic equations for a general
case. The motion of a test particle of mass m and charge
q moving in a conformastatic spacetime given by the line
element (1) is described by the Lagrangian

L =
1

2
mgαβẋ

αẋβ +
q

c
Aαẋ

α, (11)

where a dot represents differentiation with respect to the
proper time. The equations of motion of the test particle can
be derived from the Lagrangian (11) by using the Hamilton
equations

ṗα = − ∂H
∂xα

, ẋα =
∂H
∂pα

,

H = ẋαpα − L , pα =
∂L
∂ẋα

, (12)

where pα and H are the momentum and Hamiltonian of the
particle, respectively. The coupled differential equations (12)
for the Lagrangian (11) are very difficult to solve directly
by using an analytic approach. However, we can use the
symmetry properties of the conformastatic field to find first
integrals of the motion equations which reduce the number
of independent equations. This is the approach we will use
below.

Since the Lagrangian (11) does not depend explicitly
on the variables t and ϕ, one can obtain the following two
conserved quantities

pt = −mce2φṫ ≡ −E
c
, (13)

and

pϕ = mr2e−2φϕ̇+
q

c
Aϕ ≡ L, (14)

where E and L are, respectively, the energy and the angular
momentum of the particle as measured by an observer at rest
at infinity. Furthermore, the momentum pα of the particle
can be normalized so that gαβẋ

αẋβ = −Σ. Accordingly, for
the metric (1) we have

−c2e2φṫ2 + e−2φ(ṙ2 + ż2 + r2ϕ̇2) = −Σ, (15)

where Σ = 0, c2,−c2 for null, time-like and space-like curves,
respectively.

The relations (13), (14) and (15) give us three linear
differential equations, involving the four unknowns ẋα. It is
possible to study the motion of test particles with only these
relations, if we limit ourselves to the particular case of equa-
torial trajectories, i. e. z = 0. Indeed, since the gravitational
configuration is symmetric with respect to the equatorial
plane, a particle with initial state z = 0 and ż = 0 will

remain confined to the equatorial plane which is, therefore,
a geodesic plane. Substituting the conserved quantities (13)
and (14) into Eq.(15), we find

ṙ2 + Φ =
E2

m2c2
, (16)

where

Φ(r) ≡ L2

m2r2

(

1− qAϕ

Lc

)2

e4φ +Σe2φ (17)

is an effective potential. We assume the convention that the
positive value of the energy corresponds to the positivity of
the solution E± = ±mcΦ1/2. Consequently, E+ = −E− =
mcΦ1/2.

3 CIRCULAR ORBITS

The motion of charged test particles is governed by the be-
havior of the effective potential (17). The radius of circular
orbits and the corresponding values of the energy E and an-
gular momentum L are given by the extrema of the function
Φ. Therefore, the conditions for the occurrence of circular
orbits are

dΦ

dr
= 0, Φ =

E2

m2c2
. (18)

Thus, by calculating the condition (18) for the effective po-
tential (17), we find the angular momentum of the particle
in circular motion

Lc± =
qAϕ

c
+
qrAϕ,re

φ ±
√

(qrAϕ,reφ)
2 − 4Σc2m2r3 (2rφ,r − 1)

2ceφ (2rφ,r − 1)
.

(19)

Conventionally, we can associate the plus and minus signs
in the subscript of the notation Lc± to dextrorotation and
levorotation, respectively.

Furthermore, by inserting the value of the angular mo-
mentum (19) into the second equation of Eq.(18), we obtain

the energy E
(±)

c± of the particle in a circular orbit as

E
(±)

c± = ±mceφ
(

Σ + ξ(±)
c

)1/2

, (20)

where

ξ(±)
c =

[

qrAϕ,re
φ ±

√

(qrAϕ,reφ)
2 − 4Σc2m2r3φ,r (2rφ,r − 1)

]2

4m2c2r2 (2rφ,r − 1)2
.

(21)

Therefore, each sign of the value of the energy corresponds
to two kind of motions (dextrorotation and levorotation)
indicated in (20) and (21) by the superscripts (±).

An interesting particular orbit is that one in which the
particle is located at rest (rr) as seen by an observer at
infinity, i.e. L = 0. These orbits are therefore characterized
by the conditions

L = 0,
dΦ

dr
= 0. (22)

For the metric (1) these conditions give us the following

MNRAS 000, 1–10 (2015)



4 Antonio C. Gutiérrez-Piñeres, Abraão J. S. Capistrano and Hernando Quevedo

equation for the rest radius

2e2φ

m2c2r3

[

q2Aϕ (2rAϕφ,r + rAϕ,r −Aϕ) e
2φ +Σm2c2r3φ,r

]

= 0 .

(23)

To find the value of the rest radius rr, we must solve Eq.(23).

Notice that from Eqs. (23) and (20) it follows that if
e2φ = 0 for an orbit with a rest radius r = rr, the energy of
the particle is Er = 0. In the case e2φ 6= 0, we have

E
(±)

r± = ±mceφ
(

Σ + ξ(±)
r

)1/2

, (24)

where

ξ(±)
r =

q2e2φ [rAϕ,r ± (rAϕ,r + 2Aϕ (2rφ,r − 1))]2

4m2c2r2 (2rφ,r − 1)2
. (25)

This analysis indicates that it is possible to have a test par-
ticle at rest with zero angular momentum (L = 0) and non-
zero energy (Er 6= 0). This is a non-trivial effect that in the
case of vanishing magnetic field has been associated with the
existence of repulsive gravitational effects in Einstein gravity
(Pugliese, Quevedo and Ruffini (a), 2011).

The minimum radius for a stable circular orbit corre-
sponds to an inflection point of the effective potential func-
tion. Thus, we must solve the equation

d2Φ

dr2
= 0, (26)

under the condition that the angular momentum is given
by Eq.(19). From Eqs.(18) and (26), we find that the radius
and angular momentum of the last stable circular orbit are
related by the following equations

2e4φ

m2c2r4

[

(Lc− qAϕ)
2
(

8r2φ2
,r + 2r2φ,rr − 8rφ,r + 3

)

+(Lc− qAϕ)
(

−8qr2Aϕ,rφ,r − qr2Aϕ,rr + 4qrAϕ,r

)

+q2r2A2
ϕ,re

2φ + 2c2Σm2r4φ2
,r + c2Σm2r4φ,rr

]

= 0, (27)

and

2e2φ

m2c2r3

[

e2φ(Lc− qAϕ)
(

(Lc− qAϕ)(2rφ,r − 1) − qrAϕ,r

)

+ Σm2c2r3φ,r

]

= 0. (28)

It is possible to solve Eq.(28) with respect to the stable
circular orbit radius which then becomes a function of the
free parameter L. Alternatively, from Eq. (27 ) we find the
expression

L±
lsco =

qAϕ

c
+

{

qeφ
(

8r2Aϕ,rφ
2
,r + r2Aϕ,rr − 4rAϕ,r

)

±
[

q2e2φ
(

8r2Aϕ,rφ
2
,r + r2Aϕ,rr − 4rAϕ,r

)2

−4(q2r2A2
ϕ,re

2φ + 2c2Σm2r4φ2
,r + c2Σm2r4φ,rr)

×(8r2φ2
,r + 2r2φ,rr − 8rφ,r + 3)

]1/2}

×
[

2ceφ(8r2φ2
,r + 2r2φ,rr − 8rφ,r + 3)

]−1

(29)

for the angular momentum of the last stable circular orbit.

Equation (29) can then be substituted in Eq. (28) to find
the radius of the last stable circular orbit.

In this section, we found the expressions for the physi-
cal quantities which characterize the behavior of a charged
test particle, moving along a circular trajectory in the gravi-
tational field of a conformastatic mass distribution endowed
with a magnetic field. These results are completely general,
and can be applied to any solution of the corresponding
Einstein-Maxwell equations.

4 THE FIELD OF A PUNCTUAL MASS IN

EINSTEIN-MAXWELL GRAVITY

We now illustrate the results obtained in the precedent sec-
tion, focusing on the main physical properties of test parti-
cles moving along circular orbits. As shown before, the class
of harmonic conformastatic solutions is of particular inter-
est, because all the metric components and the magnetic
field are defined in terms of a single harmonic function. Let
us consider one of the simplest harmonic functions which in
Newtonian gravity would describe the gravitational field of
a punctual mass, namely,

U(r, z) = −GM
c2R

, R2 = r2 + z2 , (30)

where M is a real constant. According to Eq.(8), for the
metric and electromagnetic potentials we have

φ(r, z) = − ln

(

1 +
GM

c2R

)

, (31)

and

Aϕ(r, z) =
√
GM

(

1− z

R

)

, (32)

respectively. At spatial infinity, the magnetic potential is
non-zero and constant, except at the symmetry axis where
it vanishes. Notice also that on the equatorial plane the mag-
netic potential is constant everywhere. As for the metric po-
tential, its physical significance can be investigated by con-
sidering the asymptotic behavior of the metric component
gtt for which we obtain

lim
R→∞

gtt(r, z) ≈ −1 +
2GM

c2R
− 3G2M2

c4R2
+O

(

1

R3

)

. (33)

Accordingly, this particular solution can be interpreted as
describing the gravitational field of a punctual mass on
the background of a magnetic field. In the limiting case
M → 0, we obtain the Minkowski spacetime, indicating that
M is the source of the gravitational and the magnetic field
as well. This result can be corroborated by analyzing the
Kretschmann scalar K = RαβγδR

αβγδ and the electromag-
netic invariant F (see Eq.(9)) which in this case have the
following expressions

K =
8M2c8G2(G2M2 + 6c4R2)

(c2R+GM)8
, (34)

and

F =
2GM2c8

(c2R +GM)4
, (35)

MNRAS 000, 1–10 (2015)
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Figure 1. Illustration of the spatial distribution of the magnetic
lines of force of a punctual conformastatic source located at the
origin of coordinates.

respectively. In addition, from the expressions (33), ( 34)
and (35), we conclude that the gravitational field is asymp-
totically Schwarzschild-like and singularity-free.

The field lines of the magnetic field are given by the
ordinary differential equation drBz = dzBr. Moreover,
the nonzero components of the magnetic field are Br =
G1/2Mr2R−3 and Bz = G1/2MrzR−3 . Thus, we see that
the equation

z2 =
(1− α)2

α(2− α)
r2 , (36)

where 0 < α < 2, represents the lines of force of the magnetic
field. The components of the magnetic field vanish at spatial
infinity, and diverge at the origin R = 0. This, however, is
not a true singularity as can be seen from the expression for
the electromagnetic invariant (35). In Fig.1, we illustrate
the spatial behavior of the lines of force of this magnetic
configuration. It shows that the source of the magnetic field
coincides with the punctual mass, in accordance with the
analytic expressions for the gravitational and magnetic po-
tentials.

4.1 Circular motion of a charged test particle

Consider the case of a charged particle moving in the confor-
mastatic field of a punctual mass given by Eqs. (31) and (32).
This means that we are considering the motion described by
the following effective potential

Φ(r) =
c6r2(Lc− q

√
GM)2

m2(c2r +GM)4
+

Σc4r2

(c2r +GM)2
. (37)

We note that

eφ(r) =
c2r

c2r +GM
(38)

c /r

L
M m

c+

M 

L
Mm

c
_

Figure 2. Angular momentum of a neutral test particle in terms
of the radius orbit rc/M .

on the equatorial plane.
According to the general results of the previous section,

the angular momentum and the energy for a circular orbit
with radius rc are given by

Lc ± =
q
√
GM

c
∓ (c2rc +GM)m

c2

√

ΣGM

c2rc −GM
(39)

and

Ec ± = ± mc4

(c2rc +GM)

√

Σr3c
c2rc −GM

(40)

respectively. From Eqs.(39) and (40), we conclude that in
order to have a time-like circular orbit the charged parti-
cle must be placed at a radius rc > GM/c2. In Fig.2, we
illustrate the behavior of the angular momentum for the
particular case of a neutral (q = 0) particle. We see that
Lc+ (Lc−) is always negative (positive) for all allowed values
rc > GM/c2, and diverges in the limiting case rc = GM/c2.
Since the charge q enters the angular momentum (39) as an
additive constant, it does not affect the essential behavior
of Lc±, but it only moves the curve along the vertical axis.
However, the value of the effective charge q/m can always
be chosen in such a way that either Lc+ or Lc− become
zero at a particular radius rr. For instance, for Lc+ to be-
come zero, the charge q must be positive and greater than
a certain value. This is the first indication that a circular
orbit with zero angular momentum occurs as the result of
the electromagnetic interaction.

As for the energy of circular orbits, we see from Eq.(40)
that it does not depend explicitly on the value of the charge,
but only on the radial distance from the central punctual
mass. This, however, does not mean that the energy does
not depend on the charge at all. Indeed, from Eq.(39) we
see that, for a given angular momentum, the charge q influ-
ences the value of the circular orbit radius which, in turn,
enters the expression for the energy. The behavior of the en-

MNRAS 000, 1–10 (2015)
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rc M/

Ec
m

Figure 3. Energy of a charged test particle in terms of the radius
orbit rc/M .

ergy in terms of the radial distance is depicted in Fig.3. As
the radius approaches the limiting value rc = GM/c2, the
energy diverges indicating that a test particle cannot be sit-
uated on the minimum radius. The energy has an extremal
located at the radius rc = 3GM/c2. We will see below that it
corresponds to a particular orbit at which the particle stays
at rest. At spatial infinity, we see that Ec+ → mc2 which
corresponds to the rest energy of the particle outside the
influence of the magnetic and gravitational fields.

Let us now consider the conditions under the particle
can remain at rest (L = 0) with respect to an observer at
infinity. From Eq.(23) for q 6= 0 we find the trivial rest radius
rr = 0 for which the energy of the particle is Er = 0. In
addition, the non-trivial solution is given by the rest radii

rr ±
M

=
c2q2 − 2ΣGm2 ±

√

c2q2 (c2q2 − 8ΣGm2)

2Σm2c2
. (41)

The behavior of these radii is depicted in Fig.4. We can see
that these solutions are physically realizable in the sense
that the radii are always positive for all the allowed values
of q/m. Indeed, the existence of a rest radius is restricted
by the discriminant q2−8m2G in Eq.(41). For time-like test
particles with q2/m2 > 8G, there exist an inner radius rr−
and an outer radius rr+ at which the particle can remain at
rest. For the limiting value q2/m2 = 8G, the two radii co-
incide with rr+ = rr− = 3GM/c2. Instead, if q2/m2 < 8G,
no radius exists at which the particle could stay at rest.
Clearly, the existence of a rest radius is determined by the
value of the test particle effective charge, indicating that a
zero angular momentum orbit is the consequence of an elec-
tromagnetic effect due to the interaction of the test charge
and the magnetic background.

For the outer radius rr+ we have two possible positive

r
r+
/M r

r+
/M

r
 r
 _ /M r

 r
 _ /M

q/m

Figure 4. Radii of the time-like orbits characterized by the con-
ditions L = 0 and dΦ/dr = 0 (see Eq.41). In this graphic the
radii rr+/M (solid curve) and rr−/M (dashed curve) are plotted
as functions of q/m.

values of the corresponding energy, namely,

E
(±)
r+ = +

mc2
√

2q2
[

q2 − 2Gm2 ±
√

q2(q2 − 8Gm2)2
]3

[

q2 ±
√

q2(q2 − 8Gm2)2
]2

,

(42)

whereas for the inner radius rr− we two possible energies
are always negative

E
(±)
r− = −E(±)

r+ . (43)

In Fig.(5), we show the behavior of the energy at the outer
rest radius. The minimum value of ±(3

√
6/8)mc2 is reached

for q2 = 8Gm2, i.e., when the inner and outer radii coincide.
We now investigate the properties of the last stable cir-

cular orbit. According to Eq.(29), the angular momentum
for this particular orbit must satisfy the relationship

Llsco ± =
q
√
GM

c
± (c2r +GM)m

c2

√

ΣGM(2c2r −GM)

G2M2 − 6c2GMr + 3c4r2
.

(44)

On the other hand, the angular momentum for any circular
orbit is given by Eq.(39). Then, the comparison of Eqs.(44)
and (39) yields the condition r(c2r− 3GM) = 0. Therefore,
the radius of the last stable circular orbit is given by

rlsco =
3GM

c2
, (45)

which, remarkably, does not depend on the value of the
charge q. The corresponding angular momentum can be ex-
pressed as

Llsco ± =
q
√
GM

c
± 2

√
2ΣGMm

c2
, (46)

MNRAS 000, 1–10 (2015)



Test particles in a magnetized conformastatic spacetime 7

E
r+

(+)
/m E

r+

(+)
/m

 

E
r+

(-)
/m E

r+

(-)
/m

q/m

Figure 5. Energy of the charged particles for the time-like or-
bits characterized by the conditions L = 0 and dΦ/dr = 0 (see
Eqs.(42) and (43)). In this graphic the energy Er+/m for the
radius rr+(solid curve) and Er+/m for the radius rr−(dashed
curve) are plotted as functions of q/m.

rc /M

 Lc

Mm

+

Figure 6. The angular momentum of the charged particles in
a time-like circular orbit (see Eq. (39)). In this graphic the an-
gular momentum L+

c /Mm is plotted as a function of the radius
rc/M for some values of q/m is plotted. The continuous curve
corresponds to the value q/m = 2

√
2G.

Figure 7. The energy of a particle with charge-to-mass-ratio
q/m = 2

√
2G is plotted as a function of r/M and the angular mo-

mentum L/Mm. Time-like circular orbits exist for r/M > G/c2.
The last stable circular orbit is represented by a black point
(r/M = 3G/c2, Llsco+ = 4

√
2GMm/c). The orbit with the same

radius (r/M = 3G/c2), but zero angular momentum (Llsco− = 0)
is represented by a white point.

and the energy reduces to

Elsco ± = ±3

4

√

3Σ

2
mc . (47)

As we can see, the angular momentum depends explicitly on
the value of the mass m and charge q of the test particle.
Additionally, for space-like curves the angular momentum of
the last stable circular orbit is not defined, whereas for a null
curve it is Llsco ± = q

√
GM/c, and for a time-like particle it

is Llsco ± = (q
√
G±2

√
2Gm)M/c. Accordingly, if the charge

of the particle is q = 2
√
2Gm, then Llsco− = Lc+ = Lr = 0.

Analogously, if q = −2
√
2Gm, then Llsco+ = Lc− = Lr = 0.

Thus, we conclude that the last stable circular orbit
occurs at the radius r = 3GM/c2, independently of the value
of the charge. Moreover, on the last stable orbit the particle
is at rest, if the value of the charge is q = ±2

√
2Gm (see

Fig. 6).
In Fig. 7, we present the general behavior of the en-

ergy function E = ±mc
√
Φ in terms of the effective po-

tential Φ given by Eq.(37). The branch corresponding to
the positive energy of a particle with charge-to-masss-ratio
q/m = 2

√
2G is plotted as a function of r/M and the angu-

lar momentum L/Mm. We see that the effective potential
(energy) tends to a constant at infinity. Since the radius for
the last stable circular orbit is rlsco = 3GM/c2, for a particle
with charge q/m = 2

√
2G it is possible to stay at rest with

Llsco− = 0 (white point in Fig.7) or with angular momen-
tum Llsco+ = 4

√
2GMm/c (black point in Fig.7). A similar

result is obtained if the charge is negative, corresponding to
the angular momentum −4

√
2G/c which indicates rotation

in the counterclockwise direction.
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It is worth noticing that a neutral particle cannot stay
at rest with zero angular momentum. This can be deduced
by replacing q = 0 in Eqs.(41), (42) and (43). In fact, with
a zero value of q we obtain a negative rest radius. Finally,
from Eqs.(45) and (46) we see that the last time-like stable
circular orbit for neutral test particles can be placed at r =
3GM/c2 with angular momentum Llsco ± = ±2

√
2GMm/c.

Moreover, a neutral massless test particle can get L = 0 only
at r = 0, as expected.

5 PERIHELION ADVANCE IN A

CONFORMASTATIC MAGNETIZED

SPACETIME

One of the most important tests of general relativity in as-
trophysics is the perihelion advance of celestial objects. In
this section, we present the analytic expressions which deter-
mine the perihelion advance of charged test particle, moving
in a conformastatic spacetime under the presence of a mag-
netic field. Starting from the first integral (15), we restrict
the analysis to the motion of a particle on the plane with
z = 0. Then, we have

(

dr

dϕ

)2

= −r2
[

1+
m2r2

(

L− q
c
Aϕ

)2

(

Σ(1−U)2− E2

m2c2
(1−U)4

)]

,

(48)

where all the quantities are evaluated at z = 0 and we have
used the expressions for the energy and angular momentum
of the particle given by Eqs.(13) and (14), respectively. With
the change of variable u = 1/r, Eq.(48) can be transformed
into

d2u

dϕ2
+ u2 = F (u) (49)

where

F (u) ≡ 1

2

dG

du
, (50)

and

G(u) ≡ 1
(

1− qAϕ

cL

)2

[

E2

c2L2
(1− U)4 − Σm2

L2
(1− U)2

]

.

(51)

Accordingly, by following the procedure proposed in
(Harko, Kovács and Lobo, 2011), we have for the resulting
perihelion advance

δϕ = π

(

dF

du

)

u=u0

, (52)

where u0 is the radius of a nearly circular orbit, which is
given by the roots of the equation F (u0) = u0.

5.1 Perihelion advance in the field of a punctual

magnetized mass

In the previous subsection, we obtained an expression for the
perihelion advance of a charged test particle in a generic con-
formastatic spacetime wiht a magnetic field. We now illus-
trate the results by considering a particular conformastatic

spacetime generated from the harmonic potential of a punc-
tual mass

U(r, z) = −GM
c2R

, R2 = r2 + z2. (53)

Thus, by inserting Eq.(53) into Eq.(50) we obtain for F (u)

F (u) =

[

2E2GM
c4L2

(

1 + GM
c2
u
)3 − Σm2GM

c2L2

(

1 + GM
c2
u
)

]

(

1− q
√

GM
cL

)2
. (54)

Accordingly, the perihelion advance of a particle in this
spacetime is given by

δϕ = π

[

6E2G2M2

c6L2 x2
0 − Σm2G2M2

c4L2

]

(

1− q
√

GM
cL

)2 , (55)

where the term

x0 ≡ 1 +
GM

c2
u0 (56)

satisfies the equation

2E2G2M2x3
0 −

[

Σm2G2M2c2 + c6L2

(

1− q
√
GM

cL

)2
]

x0

+c6L2

(

1− q
√
GM

cL

)2

= 0. (57)

Thus, by inserting the real solution of Eq.(57) into Eq.(54),
we find that the perihelion advance of the test particle orbit
is given by

δϕ = π
ψ0 − k22
Q2

, (58)

where

ψ0 ≡



6
(

Q2 + k22
)

+

[

54Q2k1

(

−1 +

√

1− 6(Q2+k2

2)
3

81Q4k2

1

)]2/3




2

6

[

54Q2k1

(

−1 +

√

1− 6(Q2+k2
2)

3

81Q4k2
1

)]2/3
,

with

k21 =
E2G2M2

c6L2
, k22 =

Σm2G2M2

c4L2
,

and also

Q2 =

(

1− q
√
GM

cL

)2

.

Notice that when q = 0 (and, consequently Q = 1) we get
the case in which Eq.(55) describes the perihelion advance
of a neutral particle.

In order to get a real use of Eq.(58), we follow the pro-
cedure presented in (Harko, Kovács and Lobo, 2011). First,
we rewrite both the angular momentum (19) and the energy
(20), which depend on the radial distance r, in terms of the
parameters that describe the orbit of rotating test particles.
For the radial distance, one can use the ellipse formula in
the Euclidean plane as

r =
s(1− ǫ2)

1 + ǫ cosϕ
, (59)

where s is the semimajor axis and ǫ the eccentricity of the

MNRAS 000, 1–10 (2015)



Test particles in a magnetized conformastatic spacetime 9

orbit. Moreover, we can rewrite Eq.(58) in terms of units
related to observations as

δϕ⋆ = πγ⋆

(

ψ0 − k22
)

s2

Q2M⊙T 2
, (60)

where we have introduced the solar mass M⊙ and the pe-
riod T of the rotating body. The parameter γ⋆ = 180/π

3600
T

allows us to transform units from radians to (secular) de-
grees. Since we have angular momentum and energy related
to circular orbits, Eq.(60) still does not provide the observed
secular drift of the perihelion. In order to obtain the real ef-
fective drift δϕeff and to alleviate the error propagation, we
need to perturb Eq.(60) adding a “weighted”parameter that
can measure the tiny shift of the orbit through time, which
means, of course, that the perihelion δϕ advance has a time
dependence. Thus, one can write the following variation to
the secular time as

˙(δϕeff ) =
˙(

δϕ⋆

n

)

,

where n is the “weighted” parameter. As a result, one can
take a direct integration and obtain the effective drift δϕeff

as

δϕeff =
δϕ⋆

n
+ n. (61)

where the integration constant was conveniently set as the
n parameter. Moreover, the values of n can be constrained
by the observations from the solution of a simple squared
polynomial equation such as

n = ±1

2

(

δϕobs ±
√

δϕobs
2 − 4δϕ⋆

)

. (62)

where δϕobs is the observed secular shift.

When applied to the observational data based given
in (Nambuya, 2010) and adding to it the supplementary
precession corrections from EPM2011 (Pitjeva and Pitjev,
2013; Pitjev and Pitjeva, 2013), one can test Eq.(61).
Thus, we obtain the results presented in table 1 for
the perihelion precession of inner planets of the So-
lar system and two NEO’s asteroids, 433 Eros and
3200 Phaethon. The data for the astrophysics parame-
ters like semi-major axis, eccentricity, period and mass,
can be found for planets in JPL solar system dynamics
(http://ssd.jpl.nasa.gov/?planets) and for asteroids, in JPL
small body database (http://ssd.jpl.nasa.gov/sbdb.cgi). The
orbital periods used are in units of years.

As shown in table 1, the theoretical results match the
observations. In fact, we see that the values predicted by
the metric of the magnetized punctual mass match (in most
cases) better the observational data than the values pre-
dicted in Einstein gravity. We conclude that the gravita-
tional interaction generated by the magnetic field of the
central body can play an important role in astrophysical
observations.

In addition, some considerations must be noted. The
constant Σ enters explicitly the expression for the perihelion
advance (15), and it represents null, time-like and space-
like curves. For Σ = 0, we do not have a solution since
Eq.(61) diverges. For space-like trajectories, Σ = −c2 no
physical results are obtained, because in the corresponding
Newtonian limit a differential equation is obtained, whose
solution implies that r is negative. Moreover, no significant

Table 1. Comparison between the values for secular precession of
inner planets in units of arcsec/century of the standard (Einstein)
perihelion precession δφeins (Wilhelm and Dwivedi, 2014) for neu-
tral test particles (planets and asteroids) in the conformastatic mag-
netized spacetime of a punctual mass δφmodel . The data for δφobs

stands for the secular observed perihelion precession in units of arc-
sec/century adapted from (Nambuya, 2010) by adding a supplemen-
tary precession correction from EPM2011 (Pitjeva and Pitjev, 2013;
Pitjev and Pitjeva, 2013). In addition, the results for the NEOS 433
Eros and 3200 Phaethon are also presented.

Object δφobs (′′.cy−1) δφeins(′′.cy−1) δφmodel(
′′.cy−1)

Mercury 43.098 ± 0.503 42.97817 43.10

Venus 8.026 ± 5.016 8.62409 8.040

Earth 5.00019 ± 1.00038 3.83848 5.044

Mars 1.36238 ± 0.000537 1.35086 1.730

433 Eros 1.60 1.57317 1.886

3200 Phaethon 10.1 10.1201 10.130

differences were found for different values of the charge of
the order q/m ∼ 10−3, which is the value where the behavior
of the energy and angular momentum becomes affected by
the presence of the effective charge. In the same sense, no
differences could be found when using both solutions for the
angular momentum Lc ± and energy Ec ±, indicating that
the n parameter takes into account the differences between
those solutions.

6 CONCLUSIONS

In this work we have shortly shown the characteristics of
the motion of a charged particle along circular orbits in
a spacetime described by a conformastatic solution of the
Einstein-Maxwell equations. As a particular example we
have considered the case of a charged particle moving in
the gravitational field of a punctual source placed at the
origin of coordinates. Our analysis is based on the study
of the behavior of an effective potential that determines
the position and stability properties of circular orbits. We
have found that a classical radius r = 3GMc2 of circu-
lar orbits exists with zero angular momentum. This phe-
nomenon is interpreted as a consequence of the repulsive
force generated by the charge distribution. Interestingly, we
have found a spacetime with singularity-free which is not ex-
clusive to the case of naked singularities. Moreover, we have
obtained a region of stability determined by the angular mo-
mentum L±

lsco/Mm = q
√
G/(mc) + 2

√
2G/c and the radius

r = 3GMc2. It is worth noticing that a neutral particle can
not be located at rest with angular momentum zero. We also
notice that the last time-like stable circular orbit for neutral
test particles with m 6= 0 can be placed at r = 3GM/c2

with angular momentum Llsco ± = ±2
√
2GMm/c, and that

neutral test particle massless only can get L = 0 when are
placed at r = 0, as expected.

In addition, we have also calculated an expression for
the perihelion advance of a test particle in a general magne-
tized conformastatic spacetime obtaining a good agreement
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with the observed values for the perihelion of inner Solar
planets and some selected NEO asteroids. It is worth noting
that all results presented were obtained with the initial as-
sumption of a neutral particle, in accordance with the fact
that planets are largely neutral. Specifically, in the perihe-
lion drift, we find that the differences between a neutral
charge and a charged particle are sightly small, when realis-
tic values for the effective charge are used. This means that
the electromagnetic interaction between the charge and the
central magnetized body does not seriously affect the value
of the perihelion advance. Nevertheless, the magnetic field
enters explicitly the metric components and, consequently,
affects the motion of neutral test particles through the grav-
itational interaction. This explains why the numerical pre-
dictions of the perihelion advance generated by a punctual
magnetized mass are (in most cases) in better agreement
with observations than the predictions of Einstein’s theory
alone.
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Gutiérrez-Piñeres A.C. and Capistrano, Abraão J. S., 2015,
arXiv:1510.05400.
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