
ar
X

iv
:1

60
1.

00
74

8v
1 

 [
m

at
h.

R
A

] 
 5

 J
an

 2
01

6

ON THE FLATNESS AND THE PROJECTIVITY OVER HOPF SUBALGEBRAS OF HOPF
ALGEBRAS OVER DISCRETE VALUATION RINGS

NGUYÊN DAI DUONG, PHÙNG HÔ HAI, AND NGUYÊN HUY HUNG

ABSTRACT. We study the flatness and the projectivity of Hopf algebras, defined over a Dedekind

ring, over their Hopf subalgebras. We give a criterion for the faithful flatness and use it to show

the faithful flatness of an arbitrary flat Hopf algebra upon its finite normal Hopf subalgebra.
For the projectivity of a projective Hopf algebras we need some finiteness condition in terms of

the module of integral. In particular we show the the module of integral has rank one.

1. INTRODUCTION

For Hopf algebras defined over a field, a conjecture of Kaplansky states that “a Hopf algebra
is free as a module over any Hopf subalgebra”. Although this was quickly shown to be false
in the infinite dimensional case, the finite dimensional case is true and was proven by Nichols
and Zoeller [10]. Schneider [18] showed that any Hopf algebra is free over its finite normal
Hopf subalgebras.

This work is devoted to the study of the same questions for Hopf algebras defined over
a DVR: when a Hopf algebra, defined over a DVR, is faithfully flat/projective over a Hopf
subalgebra. There are already many works devoted to Hopf algebras defined over a ring
base. For instance Schneider [16] generalized Nichols-Zoeller’s result to Hopf algebras over
a local ring. One of our aims is to generalize to the case of Hopf algebras over a DVR
Schneider’s result: a Hopf algebra is projective over a normal Hopf subalgebra. We haven’t
proved the complete generalization but still need an extra-condition on the finiteness of the
Hopf algebra: the existence of integrals. We show that the module of integrals on a projective
(over the base DVR) Hopf algebra is free of rank one. Further we show that a projective Hopf
algebra possesses a (left) integral if and only if it is projective as a (right) comodule over
itself. These results are used to proved the projectivity of a projective Hopf algebra over a
finite normal Hopf subalgebra.

Our approach is to rely on existing results for Hopf algebra over field and to lift information
on fibers to the global base. This method has been utilized for the study of Hopf algebras over
rings. For instance Pareigis [12] has used this method to show the uniqueness of integrals
on finite flat Hopf algebras over a Dedekind ring. Our new input is a cohomological lemma
(Lemma 3.1) relating the flatness over the global base with the flatness on the fibers. We also
make use of the correspondence between normal Hopf subalgebras and co-normal quotient
Hopf algebras, due originally to Takeuchi and Schneider as well as various equivalences of
the category of Hopf modules.
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The paper is organized as follows. In Section 2 we recall the Takeuchi-Schneider cor-
respondence between normal Hopf subalgebras and co-normal quotients Hopf algebas of a
given flat Hopf algebra over a Dedekind ring. This correspondence seems to be well-known
by experts but we cannot find any reference suitable to our aim. In Section 2 we provide the
key technical lemma.

Proposition 3.2. Let B be a flat Hopf algebras over R and A be a special Hopf subalgebra of B.
Suppose that A is R-finite. Then B is left faithfully flat over A if and only if Bk is left faithfully
flat over Ak for k being the fraction field and any residue field of R.

As a consequence we show that a flat Hopf algebra over a Dedekind ring is flat over any
normal Hopf subalgebra (Theorem 3.6). To prove the projectivity over normal Hopf subalge-
bras we will need some supplementary results.

In Section 4 we study Hopf algebras equipped with an integral. The base ring here is
assume to be a DVR. First we notice that the module of integrals is free of rank one over R.

Proposition 4.2. Suppose H possesses a nonzero integral on H. Then space of integrals on H is
a free R-module of rank one.

The proof is a simple utilization of the theory of rational modules as developed in [21] and
[3]. Next we show that if H is moreover R-projective then H possesses an integral if and
only if it decomposes into direct sum of its R-finite comodules hence is itself a projective
comodule.

Proposition 4.6. Let H be an R-projective Hopf algebra. Then H possesses a left integral if
and only if it is a direct sum of its R-finite subcomodules.

Theorem 4.8. Let H be an R-projective Hopf algebra. Then H possesses an integral if and only
if H is projective in MH .

At the end of this section we discuss the divisible ideal in a Hopf algebra. In particular we
show that the projectivity assumption is quite natural when study integrals, at least when the
base ring is a complete DVR.

In Section 5 we show that an R-projective Hopf with bijective antipode and possessing
integrals is projective over any of its R-finite normal Hopf subalgebras.

Theorem 5.7. Let B be a Hopf over R with bijective antipode and A be an R-finite normal Hopf
subalgebra of B. Assume that C = B/A+B is projective in MC . Then B is right projective over
A. This is the case if B is R-projective an possesses an integral.

The proof is similar to that of [15, Theorem 3.1], we use several equivalences of module-,
comodule- and Hopf module categories to provide a splitting to the multiplication map B ⊗
A → B. This technique was utilized in [4, Section 2].

2. FLATNESS AND CO-FLATNESS

In this section we recall the Takeuchi-Schneider correspondence between normal Hopf
subalgebras and conormal quotient Hopf algebras.
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Let R be a Dedekind ring with fraction field K. In what follows, the tensor product, when
not indicated, is understood as the tensor product over R. We shall frequently make use of
the following facts: a torsion-free R-module is flat, a finite R-flat module is R-projective. For
an R-module M , the torsion submodule is denoted by Mtor, it consists of elements, each is
annihilated by a non-zero element of R. The quotient M/Mtor is torsion-free, hence flat. The
saturation of a submodule N of M is the preimage in M of the torsion submodule of M/N ,
i.e. the miminal pure submodule of M , which contains N . N is called saturated if it is equal
to its saturation, this is the same as being a pure submodule.

A coalgebra (resp. Hopf algebra) over R is called R-flat (resp. R-projective, R-finite) if it
is flat (resp. projective, finitely generated) as R-module.

Definition 2.1. Let A,B be R-flat coalgebras, and f : A → B a homomorphism of coalgebras.

(i) If f is injective, we shall say that A is a Hopf subalgebra of B and usually identify A
with a subset of B by means of f . Notice that the map f ⊗ f : A ⊗ A → B ⊗ B is
injective (as f is injective, A is R-torsion free, hence flat), thus the coproduct of A is
the restriction of that of B.

(ii) f is called pure if it is pure as a homomorphism of R-modules (in our case, this is
equivalent to requiring that B/f(A) is R-flat).

(iii) If f is injective and pure, we shall say that A is a pure or saturated subcoalgebra of
B.

Definition 2.2. Let f : A −→ B be a homomorphism of R-flat Hopf algebras.

(i) f is called normal if f is pure and for all a ∈ A, b ∈ B we have
∑

b1f(a)S(b2) ∈ f(A) and
∑

S(b1)f(a)b2 ∈ f(A).

(ii) f is called conormal if for all a ∈ Ker(f), we have
∑

a2 ⊗ S(a1)a3,
∑

a2 ⊗ a1S(a3) ∈ Ker(f)⊗ A.

(iii) A Hopf subalgebra is called normal if the inclusion map is normal (in particular, it
is pure), a Hopf ideal is called normal if the induced quotient map is conormal (in
particular, the Hopf ideal is saturated as an R-submodule).

Let f : A −→ B be a homomorphism of flat Hopf algebras. Let

Aco(B) := {a ∈ A|
∑

a1 ⊗ f(a2) = a⊗ 1},

co(B)A := {a ∈ A|
∑

f(a1)⊗ a2 = 1⊗ a}.

These are saturated R-submodules of A.

For a Hopf algebra of A, we denote A+ := kerεA, the augmented Hopf ideal of A. The proof
of the following lemma is similar to that of [18, Lemma 1.3, p. 3342].

Lemma 2.3. Let f : A −→ B be a homomorphism of R-flat Hopf algebras.

(i) If f normal then I := Bf(A)+B = Bf(A)+ = f(A)+B is a normal Hopf ideal in B and
B −→ B/I is conormal.

(ii) If f is conormal then Aco(B) = co(B)A is normal Hopf subalgebra of A.
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2.1. Let C be an R-flat coalgebra. Then the category MC of right C-comodules is abelian.
Similarly, the category CM of left C-comodules is abelian. Let M ∈ MC and N ∈ CM. The
co-tensor product M✷CN is defined as an equalizer:

(1) 0 // M✷CN // M ⊗N
ρM⊗N−M⊗ρN

// M ⊗ C ⊗N,

where ρM , ρN are respectively the coactions of C on M and N . We say that M is (left) co-flat
over C if the functor M✷− : CM → MR is exact (this functor is left exact if M is R-flat).

The special case of importance is when an R-flat coalgebra B is a left and right C-comodule
by means of a coalgebra map B → C. Then for any M ∈ MC , M✷CB is a right B-comodule
in the natural way. In fact, by the R-flatness of B we have the following commutative diagram
with exact rows:

0 // M✷CB //

��

M ⊗ B
ρM⊗B−M⊗ρB

//

M⊗∆
��

M ⊗ C ⊗B

M⊗C⊗∆
��

0 // (M✷CB)⊗B // M ⊗B ⊗B // M ⊗ C ⊗B ⊗B,

where ρM is the coaction of C on M and ρB is the left coaction of C on B given by

ρB : B
∆

// B ⊗ B // C ⊗ B.

Hence we have left exact functor −✷B : MC → MB, called the induced functor. This functor
is left adjoint to the restriction functor MB → MC:

(2) HomC(M,N) ∼= HomB(M,N✷CB), for M ∈ MB, N ∈ MC.

The isomorphism is given by composing a morphism on the left hand side with the map
ρM : M → M✷CB ⊂ M ⊗B:

f 7→ g := (f ⊗ id)ρM .

2.2. Let A be an algebra flat over R and C be an R-flat coalgebra. A right (C,A)-bimodule
is an R-module M equipped with a left action of A, say r, and a right coaction of C, say ρ,
such that

ρ(a ·m) = aρ(m), for a ∈ A,m ∈ M.

We define left (C,A)-module by switching the left and the right actions.

Let M be a right (C,A)-bimodule. The for any left C-comodule N , there exists a natural
action of A on M✷CN given by the action of A on M . Dually, for any right A-module P , C
coacts on P ⊗A M through the coation on M .

Assume now that P is A-flat. Then we have a canonical isomorphism

(3) P ⊗A (M✷CN)
∼
−→ (P ⊗A M)✷CN,

obtained by tensoring the exact sequence (1) with P over A. We notice that, by the flatness
of P over A, these two spaces are subspaces of P ⊗A M ⊗N .

Dually, if N is co-flat over C, then (3) holds for any A-module P . Indeed, let P1 → P0 →
P → 0 be an A-free resolution of P , then by means of the co-flatness of N over C we
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have the exactness of the lower sequence in the diagram below forcing the rightmost vertical
morphism to be bijective:

P1 ⊗A (M✷CN) //

∼=
��

P0 ⊗A (M✷CN) //

∼=
��

P ⊗A (M✷CN) //

��

0

(P1 ⊗A M)✷CN // (P0 ⊗A M)✷CN // (P ⊗A M)✷CN // 0

2.3. There is a mirrored version of all claims in 2.2, in which “left” and “right” are inter-
changed. We shall frequently use them later on. For instance, we have

(4) (N✷CM)⊗A P
∼
−→ N✷C(M ⊗A P ).

2.4. Let f : A → B be a homomorphism of R-flat Hopf algebras. A right Hopf (B,A)-
module is an R-module M equipped with a right B-comodule structure and a right A-module
structure, such that the comodule structure map ρM : M −→ M ⊗B is A-linear, where A acts
diagonally on M ⊗B. Explicitly we have

ρ(ma) =
∑

m,a

m0a1 ⊗m1f(a2), m ∈ M, a ∈ A.

Morphisms of Hopf modules are those maps of the underlying R-modules which are both
A-linear and B-colinear. Denote by MB

A the category of Hopf (B,A)-modules.

We shall be interested in two cases: either f is a normal inclusion of Hopf algebras or f is
a conormal quotient map of Hopf algebras.

2.5. Assume that A is a normal Hopf subalgebra of a flat Hopf algebra B (recall that we
assume A be saturated in B as an R- module). Then C := B/A+B is R-flat Hopf algebra,
and the quotient map π : B → C is conormal (Lemma 2.3(i)). The normality of A in B also
ensures that B is a left (C,A)- bimodule with respect to the natural (co)actions.

For N ∈ MC , there is a Hopf (B,A)-module structure on N✷CB, where the coaction of B
is the induced coation, as in 2.1, and the action of A is induced from the action on B, as in
2.3. Thus we have functor

Ψ : MC −→ MB
A, Ψ(N) = N✷CB.

We construct the left adjoint to Ψ as follows:

Φ(M) := M ⊗A R, M ∈ MB
A.

Lemma 2.4. The functor Ψ is right adjoint to the functor Φ:

HomC(M ⊗A R,N) ∼= HomB
A(M,N✷CB).

The adjunctions are ρM : M → M✷CB and εB : N✷CB → N.

Proof. According to 2.1 we have a functorial isomorphism

HomC(M,N) ∼= HomB(M,N✷CB),

given by composing a morphism on the right hand side with the map ρM : M → M✷CB:
f 7→ g := (f ⊗ B)ρM . Thus we see that if g is A-linear, i.e., for a ∈ A, m ∈ M we have

∑
f(m1a1)⊗m2a2 =

∑
f(m1)⊗m2a,
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then, applying ε on the second tensor factor, we get

f(ma) = ε(a)f(m).

That is, f : M → N factors a the composition of f̄ : M ⊗A R → N and the quotient map
qM : M → M ⊗A R. The converse also holds by the same reason. Thus the two maps g and f̄
are related by the following diagram

M
qM

//

g

�� f
&&▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

M ⊗A R

f̄
��

N✷CB εB
// N.

�

The following proposition generalizes [11, Theorem 1].

Proposition 2.5. Suppose that B faithfully flat over A. Then the functors Φ and Ψ establish an
equivalence between categories MB

A and MC.

Proof. For each M ∈ MB, we have an isomorphism

γM : M ⊗ B ∼= M ⊗B, γM(m⊗ b) =
∑

m(0) ⊗m(1)b,

with inverse m⊗ b 7−→
∑

m(0) ⊗ S(m(1))b.

If M ∈ MB
A, consider M ⊗ A as a B-comodule by the diagonal coaction, we have the

following diagram:

(5) M ⊗A⊗B

γM⊗A

��

rM⊗B−M⊗lB
// M ⊗ B

γM
��

// M ⊗A B

γA,M

��

// 0

(M ⊗A)⊗ B
rM⊗B−M⊗εA⊗B

// M ⊗ B
qM⊗B

// (M ⊗A R)⊗ B // 0,

where, rM , lB denote the actions of A and εA denotes the counit of A. Consequently we get
an isomorphism

γA,M : M ⊗A B
∼
−→ (M ⊗A R)⊗B = Φ(M)⊗ B.

In particular, for M = B we have

(6) γA,B : B ⊗A B
∼
−→ C ⊗B.

Therefore, for M ∈ MB
A and N ∈ MC , since B is flat over R and over A, and using (3), we

have

(7) Ψ(N)⊗A B = (N✷CB)⊗A B
(3)
= N✷C(B ⊗A B)

γA,B

∼= N✷C(C ⊗B) ∼= N ⊗B,

∑

i

ni ⊗ bi ⊗ b 7−→
∑

i

ni ⊗ bi(1) ⊗ bi(2)b 7−→
∑

i

ni ⊗ bib.

Suppose that f̄ : M ⊗AR −→ N in MC corresponds to g : M −→ N✷CB in MB
A. As shown

in the proof of Lemma 2.4, both morphisms come from a morphism f : M → N in MC .
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Tensoring the diagram there with B and compose it with γ we get the following commutative
diagram:

M ⊗ B
γM

//

g⊗idB

��

M ⊗ B
qM⊗b

//

g⊗idB

��

(M ⊗A R)⊗ B

f̄⊗idB

��

(N✷CB)⊗ B γN✷CB

// (N✷CB)⊗ B
N⊗εB⊗B

// N ⊗B.

By means of the right commutative diagram in (5) we obtain the following commutative
diagram:

M ⊗A B
γA

//

g⊗idB

��

(M ⊗A R)⊗ B

f̄⊗idB

��

(N✷CB)⊗A B
≃

// N ⊗ B,

where the lower horizontal map is nothing but the isomorphism in (7). Since B faithfully flat
over A and R, f̄ is an isomorphism iff g is. Consequently, the adjunctions M −→ ΨΦ(M) =
(M ⊗A R)✷CB, and ΦΨ(N) = (N✷CB) ⊗A R −→ N , are isomorphisms. Thus Φ and Ψ are
equivalences. �

2.6. Consider now the dual situation. Let B → C, b 7→ b, be a conormal quotient map of
flat Hopf algebras over R. Let

A := Bco(C).

If T ∈ MA, then T ⊗A B is in MC
B, where the C-comodule structure is given by that on B:

t⊗ b 7→
∑

b

t⊗ b1 ⊗ b2, for b ∈ B, t ∈ T .

This yields a functor −⊗A B : MA −→ MC
B.

Lemma 2.6. The functor (−)co(C) : MC
B −→ MA, Q 7−→ Qco(C) is right adjoint to −⊗A B:

HomC
B(T ⊗A B,Q) ∼= HomA(T,Q

co(C)).

The adjunctions are given by

η : T −→ (T ⊗A B)co(C), t 7→ t⊗ 1,

ζ : Qco(C) ⊗A B −→ Q, q ⊗ b 7→ qb.

Proof. Let T ∈ MA and Q ∈ MC
B. Then f : T −→ Qco(C) in MA corresponds to g : T ⊗AB −→

Q in MB
A by means of the following commutative diagram:

(8) T

f
��

// T ⊗A B

g

��

Qco(C) � � // Q,

where the upper horizontal map is given explicitly by t 7→ t ⊗ 1. In fact, the C-colinearity of
g forces the image of f to be in Qco(C) and vice-versa. �

Proposition 2.7. [11, Theorem 2] Suppose that B faithfully co-flat over C. The above functors
establish an equivalence between categories MA andMC

B .
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Proof. For any P ∈ MC
B we have an isomorphism

θP : P ⊗B
∼
−→ P ⊗ B, p⊗ b 7→

∑

b

pb1 ⊗ b2,

with the converse map given by p⊗b 7→
∑

b pS(b1)⊗b2. Since B is R-flat we have the following
commutative diagram with exact rows:

0 // Qco(C) ⊗ B

θC,Q

��

// Q⊗B
(ρQ−Q⊗u)⊗B

//

θQ
��

(Q⊗ C)⊗ B

θQ⊗C

��

0 // Q✷CB // Q⊗B
ρQ−ρB

// Q⊗ C ⊗B,

where u : R → C denotes the unit map for C and in the definition of θQ⊗C the action of B on
Q⊗ C is diagonal. This forces the first vertical map to be an isomorphism. Thus we have an
isomorphism

θC,Q : Qco(C) ⊗ B
∼
−→ Q✷CB, q ⊗ b 7→

∑

b

qb1 ⊗ b2,

for any C-comodule Q. In particular we have

θC,B : A⊗B
∼
−→ B✷CB, a⊗ b 7→

∑

b

ab1 ⊗ b2.

The inverse map is given by b⊗ b′ 7→
∑

b′ bS(b
′

1)⊗ b′2.

Tensoring (8) with B and twist it with the map θ we have commutative diagram

T ⊗B

f⊗B
��

// (T ⊗A B)⊗B

g⊗B

��

Qco(C) ⊗ B � � // Q⊗ B,

where the upper and lower horizontal map are given explicitly by t⊗ b 7→
∑

b(t⊗ b1)⊗ b2 and
q ⊗ b 7→

∑
b qb1 ⊗ b2, respectively. By means of the equality (3), we have

(9) T ⊗B = T ⊗A (A⊗ B) ∼= T ⊗A (B✷CB) = (T ⊗A B)✷CB ⊂ (T ⊗A B)⊗ B,

with the composed map given by t⊗ b 7→
∑

b t⊗ b1 ⊗ b2. Thus the above diagram reduces to
the following commutative diagram with horizontal morphisms being isomorphisms:

T ⊗ B

f⊗B
��

// (T ⊗A B)✷CB

g✷CB

��

Qco(C) ⊗B
θC,Q

// Q✷CB.

Consequently, f is an isomorphism iff g is, as B is faithfully co-flat over C. This implies
the adjunctions T −→ (T ⊗A B)coC , t 7→ t ⊗ 1 ; and Qco(C) ⊗A B −→ Q, q ⊗ b 7→ qb are
isomorphisms, where t ∈ T, q ∈ Q and b ∈ B. Thus the functors are equivalences. �

The faithful flatness of B over A implies the faithful co-flatness of B over C [14, Lemma
2.4.1]. We show here the converse.
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Proposition 2.8. Let B be a Hopf algebra. Let S(B) be the set of all normal Hopf subalgebras
A such that B faithfully flat over A and I(B) be the set of all normal Hopf ideals I such that B
is right faithfully co-flat over B/I. Then

Φ : S(B) −→ I(B), A 7→ BA+

and

Ψ : I(B) −→ S(B), I 7→ Bco(B/I)

are mutually inverse maps.

Proof. Let A ∈ S(B). Set C := B ⊗A R then C is a conormal quotient Hopf algebra of B,
by Lemma 2.3(i). By means of the isomorphisms in (7), the functor −✷CB is faithfully flat,
i.e., B is co-flat over C. Moreover, setting N = R in (7) and noticing that A ⊂ Bco(C), we
conclude that A = Bco(C).

Conversely, assume that I ∈ I(B) and let B → C = B/I be the corresponding conomal
quotient map. Then A := Bco(C) is a normal Hopf subalgebra of B, by Lemma 2.3(ii). As B
is co-flat over C, the isomorphism in (9) shows that the functor − ⊗A B is faithfully exact,
i.e. B is faithfully flat over A. Moreover, setting T = R in (9) and noticing that the map
R⊗A B → C is surjective as A+ ⊂ I, we conclude that R⊗A B ∼= C. �

3. THE FAITHFULLY FLATNESS OVER HOPF SUBALGEBRAS

We continue to use the assumptions of the last section. The proof of the following lemma
is similar to that of [5, Thm 4.1.1].

Lemma 3.1. Let B be a flat Hopf algebras over R and A be a Hopf subalgebra of B. Then B is
left flat over A if and only if Bk is left flat over Ak for the fraction field and any residue field of
R.

Proof. We prove the “only if” claim. To show that B is left flat over A, it suffices to check
that TorA1 (M,B) = 0 for any right A-module M (see [20, Exer. 3.2.1, p.69]). Choose a left
projective resolution P∗ of B over A. Since A is R-flat, so are the terms of P ∗ and since a
submodule of an R-flat module is again flat, the resolution P∗ → B remains a resolution after
base change. On the other hand, the projectivity is preserved by base change, therefore, for
any residue field k := kp, p ∈ Spec(R), P∗⊗k is a left projective resolution of B⊗k over A⊗k.
We have

(M ⊗ k)⊗(A⊗k) (P∗ ⊗ k) ∼= (M ⊗A P∗)⊗ k,

implying

Hi((M ⊗A P∗)⊗ k) ∼= TorA⊗k
i (M ⊗ k, B ⊗ k), for all i ≥ 0.

First assume that M is R-flat. Since M ⊗A P∗ is flat over R, we can apply the universal
coefficient theorem, (see, e.g., [20, Thm 3.6.1]). Thus, for each i ≥ 1, we have an exact
sequence

0 → Hi(M ⊗A P∗)⊗ k → Hi((M ⊗A P∗)⊗ k) → TorR1 (Hi−1(M ⊗A P∗), k) → 0.

That is, for all i ≥ 1,

0 → TorAi (M,B)⊗ k → TorA⊗k
i (M ⊗ k, B ⊗ k) → TorR1 (Tor

A
i−1(M,B), k) → 0.

By assumption A⊗k −→ B⊗k is flat. So TorA⊗k
i (M⊗k, B⊗k) = 0, for all i ≥ 1. Consequently

TorR1 (Tor
A
i−1(M,B), k) = TorAi (M,B)⊗ k = 0, for all i ≥ 1.
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This holds for any residue field and the fraction field of R, hence TorAi (M,B) is flat over R
for i ≥ 0 and we conclude that TorAi (M,B) = 0 for all i ≥ 1.

Let now M be an arbitrary right A-module. Note that R-torsion submodule Mτ of M is also
a right A-submodule. Then the quotient module M/Mτ is R-flat and from the exact sequence

TorA1 (Mτ , B) → TorA1 (M,B) → TorA1 (M/Mτ , B) → . . .

it suffices to show TorA1 (M,B) = 0 for M being R-torsion.

For each non-zero ideal p ⊂ R, the submodule Mp of elements annihilated by elements
of p, is also an A-submodule. As M is torsion, it is the direct limit of Mp. Since the Tor-
functor commutes with direct limits, one can replace M by some Mp. Since each non- zero
ideal p ⊂ R is a product of finitely many prime ideals, each Mp has a filtration, each grade
module of which is annihilated by a certain non-zero prime ideal. Thus using induction we
can reduce to the case M is annihilated by a prime ideal p. In this case M = M ⊗ kp is an
A⊗ kp- module, where kp := R/p and we have

M ⊗A P∗ = M ⊗A⊗kp (P∗ ⊗ kp).

Since P∗ ⊗R kp is an A⊗R kp-projective resolution of B ⊗R kp, we see that

TorAi (M,B) = Tor
A⊗kp
i (M,B ⊗ kp) = 0,

as B ⊗ kp is flat over A⊗ kp. �

The next theorem is a generalization of the well-known faithful flatness theorem for flat
commutative Hopf algebras over a Dedekind ring [5].

Proposition 3.2. Let B be a flat Hopf algebras over R and A be a special Hopf subalgebra of B.
Suppose that A is R-finite. Then B is left faithfully flat over A if and only if Bk is left faithfully
flat over Ak for k being the fraction field and any residue field of R.

Proof. Assume that B is faithfully flat over A. For the fraction field or a residue field k of R,
and for any right Ak-module M which satisfies M⊗Ak

Bk = 0, we have M⊗Ak
Bk

∼= M⊗AB =
0, hence M = 0. Thus Bk is faithfully flat over Ak.

Conversely, let M be an right A-module such that M ⊗A B = 0. Then we have

Mk ⊗Ak
Bk

∼= (M ⊗A B)⊗R k = 0,

for any residue field k of R. Since Ak → Bk is faithfully flat, we have Mk = 0. If M is finite
over A then it is R-finite, this implies that M = 0, according to [9, Thm 4.8]. In the general
case, M always contains a non-zero finite submodule and since B is flat over A, we see that
M = 0 if M ⊗A B = 0. Thus B is faithfully flat over A. �

Remarks 3.3. It is not known if one can drop the finiteness condition on A in the previous
proposition. This assumption is needed for proving the faithfulness of B over A (flatness is
fine by Lemma 3.1).

As a corollary of Proposition 3.2 and Nichols-Zoeller’s theorem [10] we have following

Proposition 3.4. Let R be a Dedekind ring and B be an R-finite flat Hopf algebra and A is a
special Hopf subalgebra of B. Then B is faithfully flat over A.
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Proof. Since B/A is R-flat we have Ak ⊂ Bk for any residue field and the fraction K. Bk is
free hence, in particular, faithfully flat over Ak, therefore Proposition 3.2 ensures that B is
faithfully flat over A. �

It is well known that every finitely presented flat A-module is projective over A, (see [20,
Thm 3.2.7]). Hence we obtain immediately

Corollary 3.5. Assume that B is finite over R. Then for any special Hopf subalgebra A, B is left
projective over A.

Theorem 3.6. Let B be a flat Hopf algebra over Dedekind ring R and A is a normal Hopf
subalgebra of B. Assume that A is R-finite. Then B is faithfully flat over A. Consequently B is
faithfully co-flat over C := B/A+B and we have equivalences MC ∼= MB

A and MA
∼= MC

B.

Proof. As B/A flat over R, we have Ak is a normal finite Hopf subalgebra of Bk for any residue
k and fraction field K. According to[18, Lemma 2.2 and Theorem 2.4], Bk free over Ak. The
assertion follows by Proposition 3.2. �

Questions 3.7. Let R be a DVR. Suppose that B is R-projective and A is finite normal Hopf
subalgebra of B. Under which circumstance will B be projective or free over A.

If R is local and B is R-finite free, then it is known that B will be free over any R-projective
Hopf subalgebra, see [16, Remark 2.1].

4. MODULE OF INTEGRALS ON A HOPF ALGEBRA

We study in this section the module of integrals on an R-projective Hopf algebra, where R
is a discrete valuation ring. We show that this module is either 0 or is projective of rank 1
over R. We also prove some finiteness property of Hopf algebras with integrals.

4.1. In what follows, the Hopf algebra H is assumed to be projective over a DVR R with
dual algebra H∗. The convolution product on H∗ is denote by a dot “·”. Any right comodule
M ∈ MH is a left module over H∗ by the action

H∗ ⊗M → M, f ·m =
∑

m

m0 ⊗ f(m1), f ∈ H∗, m ∈ M.

One shows that MH is a full subcategory of H∗M of left H∗-modules. An H∗-module M
is called rational if the action of H is induced from a coaction of H in the way described
above. Each M ∈ H∗M contains a unique maximal rational submodule denoted by Rat(M) -
the sum of all rational submodules of M . In particular, the rational module Rat(H∗) can be
characterized by finiteness condition (see [21, 5.3, 5.4] or [3, 1.4]):

Rat(H∗) = {f ∈ H∗|f ·H∗ is R-finite}

= {f ∈ H∗|f ·H is R-finite}.

One checks that Rat(H∗) is a right Hopf module and hence ([3, Lemma 3.3])

Rat(H∗) ∼= Rat(H∗)co(H) ⊗H.

Notice that by definition, Rat(H∗)co(H) is the module of left integrals on H:

I lH := HomH(H,R) = Rat(H∗)co(H).
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Lemma 4.1. The R-module Rat(H∗) is flat and it is saturated in H∗.

Proof. The first claim is obvious. We prove the second claim. For any r ∈ R and f ∈ H∗,
suppose that rf ∈ Rat(H∗). Then (rf)·H ⊂ H is an R-finite submodule. Since H is projective,
the saturation of this submodule in H is also R-finite, thus f ·H is also R-finite. �

Since H is projective over R, it is free and H =
⊕

αRα. Then H∗ ∼=
∏

αRα. In the case k
is residue of R, it is finitely generated as R-module, so we have (H∗)k ∼= (Hk)

∗. The above
lemma shows that the natural map

Rat(H∗)k
� � // (H∗)k ∼= (Hk)

∗

is injective, its image is by construction contained in Rat((Hk)
∗). This map also induces the

inclusion on the co-invariants:

(I lH)k → I lHk
.

Thus, if (I lH)k 6= 0, it has to be one-dimensional. Similar argument is valid for the ring of
quotients K. The inclusion (H∗)K → (HK)

∗ is injective (generally not surjective!), giving rise
to the inclusion Rat(H∗)K →֒ Rat((HK)

∗), and hence the inclusion

(Rat(H∗)co(H))K →֒ Rat((HK)
∗)co(HK).

Thus, if (I lH)K 6= 0, it has to be one-dimensional.

Proposition 4.2. Suppose H possesses a nonzero integral on H. Then space of integrals on H is
a free R-module of rank one.

Proof. Assume H possesses a non-zero integral ϕ. Since R is a PID, one can assume that the
integral is a surjective map. Therefore (I lH)k 6= 0, hence it is one-dimensional. The same
hold for (I lH)K . It is now well-known that IH is isomorphic to R, for example, by the lemma
below. �

Lemma 4.3. [19, Theorem 3.1] A flat module M of (finite) constant rank over a local ring R
is finitely generated (and thus free).

4.2. In what follows we shall prove the projectivity of H as a comodule on itself and some
finiteness properties of H assuming that H possesses a non-zero integral.

Lemma 4.4. For any M ∈ MH which is R-finite, HomH(H,M) ∼= M ⊗ HomH(H,R). Hence

the functor HomH(H,−) is exact when restricted to R-finite comodules.

Proof. First assume that M is projective. Then using the isomorphism of H-comodules

N ⊗H ∼= N ⊗H, n⊗ h 7→
∑

n

n0 ⊗ n1h,

where on the source H coacts diagonally and on the target H coacts through the coproduct
on itself, we have isomorphisms:

M ⊗ HomH(H,R) ∼= HomH((M∗)⊗H,R) ∼= HomH(M∗ ⊗H,R) ∼= HomH(H,M),
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which is explicitly given as follows:

m⊗ ϕ 7→ ϕm : η ⊗ h 7→ η(m)ϕ(h), η ∈ M∗

7→ ϕ̂m : η ⊗ h 7→
∑

η

η0(m)ϕ(η1h) =
∑

m

η(m0)ϕ(S(m1)h)

7→ ϕm : h 7→
∑

m

m0ϕ(S(m1h)).

This construction yields the map

(10) θM : M ⊗ HomH(H,R)
∼
−→ HomH(H,M),

m⊗ ϕ 7→ ϕm : h 7→
∑

m

m0ϕ(S(m1h)),

for any H-comodule M , which is functorial in M . We will show that it is an isomorphism
for any R-finite module M . The injectivity can be argued as follows. Consider an R-finite
free resolution of M : 0 → M1 → M0 → M → 0, then we have the following commutative
diagram with exact rows (I lH = HomH(H,R)):

0 // M1 ⊗ I lH

∼=
��

// M0 ⊗ I lH

∼=
��

// M ⊗ I lH

��

// 0

0 // HomH(H,M1) // HomH(H,M0) // HomH(H,M),

which shows that the right vertical map is injective.

To show the bijectivity of (10) we first assume that M is annihilated by the uniformizer
π ∈ R, i.e. M = Mk. Then

HomH(H,M) = HomHk(Hk,M) ∼= M ⊗k Hom
H(Hk, k) ∼= M ⊗R HomH(H,R).

For a arbitrary comodule M , the R-torsion part Mtor of M is a subcomodule. Since M is R-
finite, Mtor has finite length over R. We will use induction on the length of Mtor to show that
the map in (10) is an isomorphism. If the length of Mtor is 0, then M is torsion free, hence
R-projective, so θM is bijective by the discussion above. For general M , consider the exact
sequence 0 → πM → M → Mk → 0. Then we have the following commutative diagram with
exact rows:

0 // πM ⊗ I lH

∼=
��

// M ⊗ I lH� _

��

// Mk ⊗ I lH

∼=
��

// 0

0 // HomH(H, πM) // HomH(H,M) // HomH(H,Mk).

The left vertical map is bijective by the induction hypothesis, the right vertical map is bijective
according to the discussion above. This forces the middle vertical map to be bijective. �

Lemma 4.5. Let H be an R-projective Hopf algebra. Then H decomposes into a direct sum of its
R-finite subcomodules if and only if HK decomposes into a direct sum of its finite dimensional
subcomodules.

Proof. Assume that Hence HK is decomposed into a direct sum of its finite dimensional sub-
comodules: HK =

⊕
αHα. Since Hα is finite dimensional over K, there exists a ∈ R such

that aHα ⊂ H ⊂ HK . Thus we can find a K- basis of Hα which consists of elements of H.
The H-comodule generated by elements of this basis lies in H but also in Hα as Hα is also
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an H-comodule (as we have Hα ⊗R H ∼= Hα ⊗K HK). Thus it is a subcomodule of H ∩ Hα.
Its saturation in H is also contained in H ∩ Hα. But as H is R-projective, this saturation is
also R-finite, and by construction, its rank over R is the same as the dimension of Hα over
K. We conclude that it is equal to H ∩Hα, in other words, this intersection is saturated in H.
Consequently, we have H =

⊕
H ∩Hα. �

Proposition 4.6. Let H be an R-projective Hopf algebra. Then H possesses a left integral if and
only if it is a direct sum of its R-finite subcomodules.

Proof. Let ϕ : H → R be a non-zero integral on H, we can assume that ϕ is surjective. Then
it yields an integral on HK := H ⊗R K. Hence HK decomposes into a direct sum of its finite
dimensional subcomodules. According to the lemma above, H also decomposes into a direct
sum of its finite subcomodules.

Conversely, assume that H possesses such a decomposition. Then HK also possesses a
decomposition into sum of finite subcomodules. Consequently HK possesses a left integral ϕ.
Then we can decomposes HK in such a way that 1 ∈ HK is contained in one direct summand
and the integral of HK when restricted to other summand becomes zero. The discussion
above yields a decomposition of H, which is compatible with that of HK . Hence there exists
a ∈ R such that the value of aϕ on H lies in R. �

Corollary 4.7. Let H be an R-projective Hopf algebra. Then H possesses a left integral if and
only if so does HK .

Theorem 4.8. Let H be an R-projective Hopf algebra. Then H possesses an integral if and only
if H is projective in MH .

Proof. Assume that ϕ : H → R is a non-zero left integral. We have shown in the previous
proposition that H is a direct sum of its subcomodules: H =

⊕
Hα, where each Hα is R-finite

projective. Then we have

HomH(H,M) ∼=
∏

α

HomH(Hα,M).

Therefore H is projective iff Hα is projective for each α.

But we know that H is projective with respect to R-finite subcomodules by Lemma 4.4.
Consequently Hα is also projective with respect to R-finite subcomodules. The category MH

is a locally noetherian and Grothendieck category, and the functor HomH(Hα,−) commutes
with inductive limit ([6, Proposition 3.7.4]). This means Hα is projective in MH.

Conversely, assume that H is projective in MH . By the local finiteness, H is a union of
its R-finite subcomodules. Hence there exists a surjective map

⊕
Hα → H, where each Hα

is an R-finite subcomodule of H. The projectivity of H implies that H is a direct summand
of that direct sum:

⊕
Hα = H ⊕ H ′, for some comodule H ′. Tensoring with K we obtain⊕

Hα,K = HK⊕H ′

K . Each Hα,K is a direct sum of finite indecomposable comodules, hence we
can assume Hα,K is itself indecomposable. Then Azumaya’s theorem [1, Thm. 12.6] implies
that HK itself contains a finite direct summand. Consequently HK possesses an integral.
Hence by Corollary (4.7), H possesses an integral. �

4.3. In this last subsection we discuss the space of integrals on non-projective H. Since R is
a DVR, we can always choose an integral which is a surjective map. On the other hand notice
that an R-linear map M → R has to be zero if M is a divisible module, i.e. if any element
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in M is divisible by the uniformizer π. On the other hand, it is well-known that the maximal
divisible submodule of a flat module over R is a direct summand.

Proposition 4.9. Let H be an R-flat Hopf algebra possessing a left integral. Let I be the maximal
divisible R-submodule of H. Then I is a normal Hopf ideal I which is annihilated by any integral
on H. If R is a complete DVR then the quotient module H/I is Mittag-Leffler as an R-module, in
particular it will be projective if it is countable generated.

Proof. We have H = R ⊕ H+, hence I ⊂ H+. Define In := πnH+. Then I =
⋂

n In. On
the other hand, In is a non-saturated normal Hopf ideal (i.e. In satisfies the condition (ii) of
Definition (2.2)). Consequently I :=

⋂
n In is a normal Hopf ideal (as it is saturated in H).

Assume that R is a complete DVR. To see that it is Mittag-Leffler as an R-module, we
show that each of its finite submodule has a finite saturation. This follows immediately from
Lemma (4.10) below. Indeed, if M is a finite submodule of H/I and Msat its saturation
in H/I, then Msat has no divisible submodule, hence is finite. Thus H/I is a union of its
saturated submodules, hence is Mittag- Leffler. �

Notice that a Mittag-Leffler R-module which is countably generated is projective. But there
exist R-flat Mittag-Leffler Hopf algebras which is not R-projective. An example is the ring of
infinite series in one parameter R[[T ]] with the coproduct give by

∆(T ) = T ⊗ 1 + 1⊗ T.

Lemma 4.10. Let R be a complete DVR and M be an R- flat module of finite rank (i.e. MK is
finite dimensional over K). If M does not contain divisible submodule then M is finite.

Proof. This is a special case of Kaplansky’s result [7, Thm 12] stating that any torsion-free
module of countable rank is decomposable into a direct sum of rank one module. A rank one
module over R is either R itself of K. �

5. PROJECTIVITY OVER HOPF SUBALGEBRAS

Our aim in this section is to give a condition for an R-flat Hopf algebra to be projective over
a finite normal Hopf subalgebra. We shall keep the settings and assumptions of the previous
section. Thus let R be a DVR and assume that B is an R-flat Hopf algebra and A is an R-
finite normal Hopf subalgebra of B. Denote C := B ⊗A R = B/A+B.

5.1. We first give a description of C using the integral-elements:

εA := {b ∈ A|ab = ε(a)b, ∀a ∈ A}.

According to [12], if εA 6= 0 then it is free of rank 1 as an R-module, moreover, the antipode
of A is bijective. Choose a generator Λ of εA. For b ∈ B denote b̄ its coset in C. By definition
of Λ, the map

fB : C −→ B, f(b̄) := Λb,

is well-defined. The following result is a generalization of [8, Lemma 3.2].

Proposition 5.1. The map fB is right B-linear, right C-colinear and bijective. Thus C ∼= ΛB as
B-modules, where Λ is a non-zero integral element of A.
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Proof. It follows from definition that fB is surjective and right B-linear. To see that it is
C-colinear we notice that for a ∈ A, ā = ε(a) · 1 ∈ C. Hence

∑

Λ

Λ1 ⊗ Λ2 = Λ⊗ 1.

Consequently fB is right C-colinear. (It is also left C-colinear by the same argument).

It remains to show that fB is injective. Since fB is injective if its generic fiber (fB)K = fBK

is injective, we shall work with BK in stead of B. That mean we are working with Hopf
algebras over a field. In this case we know that B is free as a left A-module, cf. [18]. So
we can choose a basis {bj}j∈B of B over A. Assume that b =

∑
j ajbj and Λb = 0. We have

Λb =
∑

j εA(aj)Λbj = 0. Hence εA(aj)Λ = 0 for all j ∈ J , so εA(aj) = 0 implies aj ∈ A+B for

all j. So fB is injective. �

Corollary 5.2. If B is R-projective then C = B ⊗A R is also R-projective.

Proof. It is well-known that over a DVR, projective modules are free and a submodule of a
free module is again free, see, e.g. [13, Section 9.1]. �

Corollary 5.3. Let A be an R-finite normal Hopf subalgebra of an R-projective Hopf algebra B.
Then B possesses a left integral if and only if C := B/A+B does.

Proof. We know that C is also R-projective, so we can use the results of the previous section.
Assume that C possesses a left integral. Then we have a decomposition of right C-comodules

C =
⊕

α

Cα,

where Cα are all R-finite. The induced functor Cα 7→ Bα := Cα✷CB induces a direct decom-
position of B-comodules

B =
⊕

α

Bα.

According to (7), we have an isomorphism of right B-modules

Bα ⊗A B ∼= Cα ⊗B.

Since B is faithfully flat over A and since Cα are R-finite, we conclude that Bα are also finite
as right A-modules, hence are finite as R-modules. Thus, according to Proposition 4.6, B is
projective as a (right) comodule over itself.

Conversely, assume that B possesses a left integral. Then B decomposes into direct sum
of its finite subcomodules Bα. As B and hence its direct summand are projective in MB and
since B is faithfully co-flat over C, we conclude, by means of the natural isomorphism (2),
that each Bα is projective in MC. Notice that the Bα are R-finite projective. Consequently
CK also possesses a finite dimensional projective comodule. This implies that CK possesses
an integral, hence so does C, by Corollary (4.7). �

5.2. To put an end to the work, we need some basis properties of Hopf modules in MC
B (see

[2, 1.2, 1.4]).

Remarks 5.4. (i) For any right B-module M , M ⊗ C is in MC
B by letting C coacts on

itself and B acts diagonally:

ρ : M ⊗ C → (M ⊗ C)⊗ C, m⊗ b 7→
∑

b

m⊗ b1 ⊗ b2,
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µ : (M ⊗ C)⊗B → M ⊗ C, (m⊗ b)⊗ b′ 7→
∑

b′

mb′1 ⊗ bb′2.

(ii) The module C ⊗B is in MC
B with B acting on itself and C coating diagonally:

µ : (C ⊗B)⊗B −→ C ⊗ B, b⊗ b′ ⊗ b′′ 7→ b⊗ b′b′′;

ρ : (C ⊗B −→ (C ⊗ B)⊗ C, b⊗ b′ 7→
∑

b,b′

b1 ⊗ b′1 ⊗ b2 b′2.

(iii) If the antipode S of B has an inverse then

C ⊗ B −→ B ⊗ C, b⊗ b′ 7→
∑

b′

b′1 ⊗ bb′2

is an isomorphism in MC
B with inverse map

B ⊗ C −→ C ⊗B, b⊗ b′ 7→
∑

b

b′S−1(b2)⊗ b1.

Lemma 5.5. Assume that the antipode of B is bijective and C is projective in MC . Then B ⊗C
considered as an object of MC

B as in 5.4(i) is projective.

Proof. Consider C ⊗B as an object in MC
B as in 5.4(ii) above, we have an isomorphism

HomC
B(C ⊗ B,M) −→ HomC(C,M), g 7→ g(−⊗ B)

with the inverse given by f 7→ rM ◦ (f ⊗B). Now by the isomorphism in 5.4(iii), we have

HomC
B(B ⊗ C,M) ∼= HomC

B(C ⊗ B,M) ∼= HomC(C,M),

for any M ∈ MC
B. �

Lemma 5.6. Assume that B ⊗ C is projective in MC
B. Then B is right projective over A.

Proof. Consider B ⊗ B as an object in MC
B letting B coact diagonally and C coact by its

coaction on B. Then the quotient map B ⊗ B −→ B ⊗ C is in MC
B, hence it splits if B ⊗ C

is projective in MC
B. Since MC

B
∼= MA by means of the functor (−)co(C) : MC

B −→ MA, we
obtain a split surjective:

(B ⊗B)co(C) −→ (B ⊗ C)co(C)

of right A-modules. On the other hand, we have

(B ⊗B)co(C) ∼= (B ⊗ B)✷CR ∼= B ⊗ (B✷CR) ∼= B ⊗ Bco(C) ∼= B ⊗ A,

where, on the rightmost term A acts diagonally, and

(B ⊗ C)co(C) ∼= (B ⊗ C)✷CR ∼= B ⊗ (C✷CR) ∼= B,

where A acts on the rightmost term by the right action, furthermore, the induced map

B ⊗ A → B

is given by b⊗ a 7→ ε(a)b. Now we have an isomorphism in MA:

(B)⊗ A ∼= B ⊗ A, b⊗ a 7→
∑

a

ba1 ⊗ a2.

Combine this map with the previous one we obtain the map B ⊗ A → B, b ⊗ a 7→ ba. As
this map splits in MA, we conclude that B is a direct summand of the free A-module B ⊗A,
hence B is projective as a right A-module. �

The above lemmas bring together:
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Theorem 5.7. Let B be a Hopf over R with bijective antipode and A be an R-finite normal Hopf
subalgebra of B. Assume that C = B/A+B is projective in MC . Then B is right projective over
A. This is the case if B is R-projective an possesses an integral.
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