
ar
X

iv
:1

60
1.

00
75

1v
1

 [c
s.

N
I]

 5
 J

an
 2

01
6

Service Function Chaining Simplified
Milad Ghaznavi, Nashid Shahriar, Reaz Ahmed, Raouf Boutaba

David R. Cheriton School of Computer Science, University ofWaterloo, ON, Canada
{eghaznav | nshahria | r5ahmed | rboutaba}@uwaterloo.ca

Abstract— Middleboxes have become a vital part of modern
networks by providing service functions such as content filtering,
load balancing and optimization of network traffic. An ordered
sequence of middleboxes composing a logical service is called
service chain. Service Function Chaining (SFC) enables us to
define these service chains. Recent optimization models of SFCs
assume that the functionality of a middlebox is provided by a
single software appliance, commonly known asVirtual Network
Function (VNF). This assumption limits SFCs to the throughput
of an individual VNF and resources of a physical machine hosting
the VNF instance. Moreover, typical service providers offer VNFs
with heterogeneous throughput and resource configurations.
Thus, deploying a service chain with custom throughput can be-
come a tedious process of stitching heterogeneous VNF instances.
In this paper, we describe how we can overcome these limitations
without worrying about underlying VNF configurations and
resource constraints. This prospect is achieved by distributed
deploying multiple VNF instances providing the functionality
of a middlebox and modeling the optimal deployment of a
service chain as a mixed integer programming problem. The
proposed model optimizes host and bandwidth resources alloca-
tion, and determines the optimal placement of VNF instances,
while balancing workload and routing traffic among these VNF
instances. We show that this problem is NP-Hard and propose a
heuristic solution called Kariz. Kariz utilizes a tuning parameter
to control the trade-off between speed and accuracy of the
solution. Finally, our solution is evaluated using simulations in
data-center networks.

I. I NTRODUCTION

Network Function Virtualization (NFV) is expected to insti-
gate a revolutionary change in the networking industry. This
industry still has the “mainframe” mindset relying on vendor
specific, proprietary middleboxes providing various network
functions. Examples of such middleboxes include firewalls,
proxies, WAN optimizers, Intrusion Detection Systems (IDSs),
etc. NFV proposes to replace proprietary, hardware middle-
boxes with innovative and flexible software middleboxes also
known as Virtual Network Functions (VNFs).

VNFs are generally run on commodity (e.g., x86 based
systems) hardware. In this way, the capital and operational
expenditures of buying and maintaining specialized hardware
is reduced. However, VNFs are yet to achieve the same
performance of their hardware counterparts. This impedes
the real life adoption of VNFs in today’s networks carrying
voluminous data traffic every second. In these networks, traffic
is often required to pass through and processed by an ordered
sequence of VNFs calledservice chain. For instance, traffic
may need to pass through an IDS, then a proxy, and finally
through a firewall. This phenomenon is commonly referred
to asService Function Chaining(SFC) [30]. Service chains
or simply chains are required to process large volumes of
traffic within a very short period of time to facilitate real-
time streaming applications that comprise majority of traffic

in today’s networks. Failure to provide the desired throughput
of a chain may lead to violation of the service level agreements
incurring high penalties. Hence, achieving high throughput of
VNFs is of paramount importance.

There are several streams of on going researches towards
increasing the throughput of a VNF. The first stream explores
the possibility to build virtual platforms capable of processing
packets very fast by utilizing advanced hardware technologies
[18], [26]. The second stream combines VNFs with hardware
middleboxes to facilitate a better usability of the existing
hardware middleboxes [27] and brings the benefits of the both
worlds. However, none of these approaches can overcome
the physical limitation of deploying a VNF on a single
physical machine. Hence, the third stream of works including
[14], [31] propose to redistribute the traffic destined to a
VNF across multiple VNF instances running independently
on different CPU cores of a server, or even different servers
altogether providing the functionality of the VNF. The cluster
architecture of Bro IDS [29] is an example of such distributed
deployment. In addition to achieving higher throughput, the
distributed deployment offers better flexibility and reliability
of the deployed chains than the standalone counterpart.

A fundamental problem for deploying a chain with a custom
throughput is the resource efficient selection and placement of
VNF instances. Solving this problem requires addressing sev-
eral optimization challenges. First, there can be heterogeneity
in terms of the throughput of different VNF instances. For in-
stance, virtual WAN optimizer such as Riverbed STEELHEAD
instances [5] have throughput of 10 and 50 Mbps whereas
virtual firewalls such as Baracuda firewalls [1] have throughput
of 100, 200, 400, and 750 Mbps. Hence, to attain a desired
throughput in an chain of WAN optimizer and firewall, one has
to enumerate all possible combinations of VNF instances for
each of the VNFs and choose the combination minimizing the
demand on physical resources (e.g., CPU cores, memory, etc).
Furthermore, the chosen combination of VNF instances has to
be placed into the physical machines/hosts in such a way that
optimizes the overall bandwidth consumption of the chain. for
example, placing a VNF instance far apart from other VNF
instances of the same chain will result in increased bandwidth
allocation along the path.

These problems are interdependent, and an optimal chain
deployment has to solve them all together resulting in a joint
optimization problem. Furthermore, a deployment solution
should adhere the system implementation aspects regarding
distributed deployment of VNF instances, traffic splitting, and
accurate load distribution among these instances. Existing
optimization models including [7] and [27] assume that the
functionality of a middlebox is provided by a single VNF
and have not studied this joint optimization problem. In this

http://arxiv.org/abs/1601.00751v1

paper, we address this joint optimization problem by taking
into account the system implementation aspects. Specifically,
our contribution in this paper are as follows:

• We develop an optimization model to deploy a chain in a
distributed and resource efficient manner. Our proposed
model abstracts heterogeneity of VNF instances and al-
lows us to deploy a chain with custom throughput without
worrying about individual VNF’s throughput.

• We implement this model using Mixed Integer Program-
ming (MIP) in CPLEX for finding optimal solutions in
small scale networks.

• For larger scale networks, we proposeKariz, a local
search heuristic, that employs a tuning parameter to
balance the speed-accuracy trade-off.

• We evaluate Kariz compared to MIP implementation
for various chain-lengths and throughput-demands. The
results suggest that Kariz achieves the competitive ac-
ceptance ratio of∼ 80-100% at an extra cost of less than
25% in comparison to MIP model.

The rest of the paper is organized as follows. In Section II,
we study the related work. Section III discusses the system
implementation and deployment challenges. We present our
problem formulation in Section IV. Our solution is proposed
and evaluated in Section V and Section VI, respectively.
Lastly, Section VII concludes this paper.

II. RELATED WORK

SFC deals with deployment of VNFs that are chained
together to provide a collection of services. CoMb [34], for
example, proposes a simplified VNF placement by putting
all the VNFs dealing with the same flow on the same fixed
physical node (called CoMb box). In contrast, our solution
does not restrict VNFs to run on a fixed set of physical nodes,
and can be deployed anywhere in the infrastructure.

Bari et al. model a batch deployment of chains, called
VNF Orchestration Problem (VNF-OP) [7]. VNF-OP deploys
each middlebox in one physical node. VNF-P [27] studies a
hybrid scenario of hardware-middlebox and VNFs to provide
requested service. None of these models assume that a middle-
box is deployed in a distributed manner. Clayman et al. [10]
consider the placement of VNFs with respect to several goals,
including reducing energy consumption and load balancing.
Based on these goals, the best performing algorithm out of
least used host, N at a time in a host, and least busy hostis
chosen.

Sahhaf et al. propose to decompose a chain into more
elementary and implementation-close components [32]. A
selection mechanism determines a decomposition to minimize
the mapping cost, and an algorithm deploys the selected
decomposition. While this work focuses on the functional
decomposition, our goal is to decompose the chain based on
performance requirement. In addition, their algorithm does not
consider the joint optimization properties of the problem.

The distributed deployment of a chain raises several chal-
lenging implementation questions including control planede-
sign, VNF state management, and system abstraction. These

Table I: Comparison of Our Work to the Most Related Works
Paper Methodology Distributed VNF

deployment
Traffic
splitting

Accurate load
distribution

Optimal
deployment

VNF-OP [7] Optimization✗ ✗ ✗ X

Service Dec. [32] Optimization✗ ✗ ✗ X

Split/Merge [31] System Imp.X X ✗ ✗
OpenNF [14] System Imp.X X ✗ ✗
Our work OptimizationX X X X

challenges have addressed by [12], [14], [31]. Split/Merge
[31] proposes a system to address challenges of VNF state
management and traffic route management. Stratos [12] uses
a rather simple technique for both the initial and subsequent
placement of VNFs. It packs VNFs that belong to the same
chain as close as possible. OpenNF [14] supports the idea of
packet processing to be redistributed across a collection of
VNF instances. However, its focus is to provide a coordinated
control plane framework for both internal VNF state and
network forwarding state. As such, none of these works
consider the optimization problem of deploying a VNF chain
in a distributed fashion.

The related works discussed above are compared in Table I
in view of four important aspects of the distributed VNF
orchestration problem. From the comparison, it is apparentthat
none of the existing works have considered all the aspects of
the optimization problem we study in this paper.

III. C HALLENGES

A service chain specifies that the traffic originating from a
source, is processed by an ordered sequence of middleboxes,
and finally is delivered to atarget. To have transparent
underlying VNF instances as well as abstracting the resource
requirements of these instances, several system implementa-
tion and optimization challenges have to be addressed.

A. System Implementation Challenges

Middleboxes often operate on data-packets in aflow gran-
ularity and maintainstate informationon the flows and ses-
sions they process [36], [38]. The state information consists
of configuration and statistical data, and differs from one
middlebox to another. By replacing a middlebox with multiple
VNF instances, the functionality should not change, and these
instances have to act unified. Moreover, the traffic processed
by a single middlebox, now should be processed by multiple
VNF instances. Thus,consistent state distributionandconsis-
tent traffic distributionamong the VNF instances are essential.

1) Consistent State Distribution:Deployment of multiple
VNF instances to provide functionality of a middlebox re-
quires distribution of the state information. Hence, we need
to modelthe state information of middleboxes anddistribute
the state information among the VNF instances consistently.
The state information can be classified asinternal and exter-
nal. The internal state is only stored and used by a single
instance, while the external state is distributed and shared
across multiple instances. Since the state information is stored
in a key-value structure [19], [33], [36], data structures like
distributed hash-tables and technologies like Remote Direct
Memory Access (RDMA) can fulfill this challenge efficiently.
Moreover, it might require to modify the middleboxes to
cope with the defined model. There are abstraction models

and system implementations that address this challenge. Ra-
jagopalan et al. [31] introduce a system-level abstractioncalled
Split/Merge that store the internal state exclusively inside
each VNF instance, while the external state is distributed
and accessible among other instances. As a proof of concept,
they implemented FreeFlow as a Split/Merge system, and
ported Bro IDS [29] inside it. Further, they analyzed and
confirmed the compatability of two other middleboxes, i.e.
application delivery controller and stateful NAT64. In addition,
Joseph and Stoica [19] provides a model to describe different
middleboxes. As concrete examples, firewall, NAT and layer4
and layer 7 load balancer are described using the proposed
model. Moreover, Qazi et al. [13] and OpenNF [14] introduce
a unified framework to manage the state information.

2) Consistent Traffic Distribution:By replacing a single
middlebox with multiple VNF instances,splitting and bal-
ancing the traffic load among these instances are necessary.
Per-flow traffic splitting distributes the traffic in granularity of
flows, and packets of a flow have to be routed along the same
path. Split/Merge [31] utilizes a similar approach. However,
this approach does not support accurate load distribution and
is not always applicable. For instance, if the load of a flow
is higher than the throughput of assigned VNF instance, it
cannot handle the load and we have to split the traffic to a
smaller granularity.Flowlet switching[8], [20], [35] can be
leveraged to split the traffic in a more fine-grained granularity.
A flowlet is a “burst of packets from the same flow followed
by an idle interval” [35]. If the interval between two flowlets
is greater than the maximum difference of parallel paths, the
second flowlet –and consequaently following flowlets– can be
sent through different paths. Thus, a single flow can split
into multiple paths without packet-reordering. Furthermore,
accurate load balancing is achieved using short flowlet in-
tervals ([50, 100]ms) [35]. Specifically, flowlets are abundant
in data center networks since the latency is very low and
the traffic is intensively bursty [21]. In addition to these
distributed methods, the central schemes leveraging SDN and
OpenFlow capabilities [23] can also be used. For instance,
group tables[4] can be used to split and balance the traffic.
Combining these schemes with virtualization technologies,
such as VXLAN [24] and NVGRE [11] can provide consistent
traffic distribution for deployed chains.

We showed the feasibility of distributed deployment of VNF
instances to provide the functionality of a middlebox and
distributing traffic among these instances. Here, we clearly
mention our assumptions to build the ground for our opti-
mization model.

• The state information of middleboxes can be classified
and distributed among multiple VNF instances.

• VNF instances of the same middlebox act as a single unit
by accessing the distributed state information.

• The host resource overhead of accessing distributed state
information is considered in resource demands of VNFs.

• Multi-path routing of a single flow among the VNF
instances does not alter the functionality of instances
as a whole, and shared distributed state information is

Table II: VNFs
Middlebox VNF Throughput CPU demand Memory demand

IDS IDS1 50 Mbps 1 core 24 GB
IDS2 80 Mbps 1 core 32 GB

Firewall FW1 100 Mbps 1 core 1.75 GB
FW2 200 Mbps 2 core 3.50 GB

sufficient for the correct functionality.
• The communication overhead to access the distributed

state information is negligible compared to the actual
service traffic volume.

• VNF instances belonging to the same middlebox process
the same amount of traffic in similar amount of time.

B. Optimization Challenges

The optimization challenge is computing an optimal allo-
cation of host and bandwidthresources to a chain. For each
middlebox in a chain, a number ofinstancesof eachVNF are
placed to provide the requested throughput. These instances
are placed in a set of selected hosts. In addition, the traffic
is split and routed among the placed instances. Therefore,
following decisions have to be made optimally:Number of
instancesof each VNF,placementof these instances in a set
of hosts, androuting the trafficamong the placed instances.
These decisions are dependent and need to be made together.

Fig. 1 depicts a deployment of a chain. The substrate
network of Fig. 1a consists of 6 hosts. Each host has 8 core
CPU and 64 GB residual memory. For the sake of simplicity in
this example, the switches are not shown, and we assume that
presented substrate paths are disjoint. All substrate paths have
130 mbps available bandwidth. The chain of Fig. 1b consists of
two VNFs with 210 mbps throughput: an Intrusion Detection
System (IDS) and a firewall (FW). The traffic flow comes from
hostA, the source, and after being processed by IDS and FW
is sent to hostF , the target. As listed in Table II, there are
4 VNF types for IDS and FW. Fig. 1c depict the deployed
service chain in the network, and Fig. 1d shows the logical
representation of this deployment. As shown, three instances
for IDS (oneIDS1 and twoIDS2) and two instances for FW
(oneFW1 and oneFW2) are placed. The IDS instances are
installed in hostsB and D. The traffic flow splits, and 80
mbps and 130mpbs is routed from the source to hostsB and
D, respectively. FW instances are installed in hostsB andE.
In hostB, the traffic flow after being processed byIDS2 is
sent toFW1. Furthermore,IDS1 andIDS2 forward the traffic
flow to hostC in which instanceFW2 is placed. Finally, the
traffic flow from the FW instances is sent to the target. Note
that it is possible to place the VNF instances in the source and
target if there are sufficient available host resources.

IV. SERVICE FUNCTION CHAINING SIMPLIFIED

Having the assumptions established and optimization chal-
lenges discussed, we introduce the formal definitions followed
by the mathematical model.

A. Definitions

1) Physical Resources:R = {CPU, memory, storage, . . .}
represents a set of available physical resources.

Host

VNF

Replica

A B

E F

C

D

(a) Substrate Network

FA !"# $%

&'(&'(&'(

(b) Service Chain

A

F

C

!"#$
!"#%

!"#%

&'%

()

*
)

+
(
)

*) +() ,-)

(
)

()

&'$

(c) Deployed in Network

!A

!"#

!"$

%&'$

%&'#

%&'$

()

()

*)

(d) Logical Representation

Figure 1: Deployment of a Service Chain

2) Substrate Network:GraphG = (N,E) is the substrate
network, whereN and E are substrate nodes and links,
respectively. We use index notation for substrate nodes. For
instance,m < n for nodesm,n ∈ N means that index ofm
is less than index ofn. Let cmr ∈ R

+ denotes the residual
capacity of nodem ∈ N for resourcer ∈ R. SetEm ⊆ E
represents incident links on nodem. Moreover,(m,n) ∈ E
is the link between nodem ∈ N and noden ∈ N and has
residual bandwidth capacity ofcmn ∈ R

+.
3) Service Chain:Forwarding graphG = (N,A) denotes

a chain. We use Service Function (SF) and middlebox syn-
onymously.N includes SFsV ⊂ N , and two endpointss
and t. Traffic flow coming froms ∈ N , is processed by SFs
in the chain, and is forwarded tot ∈ N . s and t are the
sourceand target of the traffic, respectively. Corresponding
substrate nodes for source and target are respectivelys ∈ N
and t ∈ N . SF v = f(u) is following SF next to SFu. We
define ring (u, v) ∈ A as two consecutive SFsu, v ∈ N ,
wherev = f(u). We assume thatu generates traffic of typeu
andv consumes this traffic type. Each ring(u, v) ∈ A has the
throughput demandof b representing the integer volume of
traffic flow that is generated or consumed by the ring nodes.

4) VNFs: Set V denotes VNFs. Each VNFu ∈ V has
throughputqu ∈ R

+ showing the maximum traffic volume
thatu can process. Besides,dur ∈ R

+ is the demand ofu for
resourcer ∈ R. Fors, t ∈ N , we assume there are VNFsus ∈
V andut ∈ V , respectively. These VNFs have throughput ofb
and no demand for any resource. Finally, VNFs of typeu ∈ V
are identified byVu.

B. Mathematical Model

1) Decision Variables:xu
mn ∈ R is the volume of traffic

of type u ∈ N/{t} on substrate link(m,n) ∈ E. Target t
is excluded from this definition because it only consumes the
traffic, therefore no traffic of this type exists in the network.
Variableymu ∈ Z is the number of instances of VNFu ∈ V
in substrate nodem ∈ N . VNF instances ofVu installed in
nodem ∈ N provide throughput of typeu ∈ N/{t}. Decision
variablezmu ∈ R denotes the allocated throughput of these
VNF instances. A solution for the problem is represented by
a tuple of allocation vectors(X,Y, Z) which are defined as
follows. Let vectorXu = {xu

mn : ∀(m,n) ∈ E} be allocated
bandwidth of links to traffic of typeu, andX =

⋃

u∈N/{t} Xu.
If Yu = {ymu : ∀m ∈ N, ∀u ∈ Vu} identifies the VNF
instantiated for SFu ∈ N , let Y =

⋃

u∈N/{t} Yu. Finally,

Zu = {zmu : ∀m ∈ N} denotes allocated throughput of type
u ∈ N/{t} in every node, andZ =

⋃

u∈N/{t} Zu.

2) Substrate Node Capacity Constraint:Eq. 1 guarantees
the resource capacities of substrate nodes in which instances
are placed are respected.

∀m ∈ N : ∀r ∈ R :
∑

u∈V

ymudur ≤ cmr (1)

3) Location Constraint:Equalities in Eq. 2 ensure that a
instance ofus and a instance ofut are only placed ins ∈ N
and t ∈ N , respectively.

ysus
= 1,

∑

m∈N/{s}

ymus
= 0

ytu
t
= 1,

∑

m∈N/{t}

ymu
t
= 0

(2)

4) Substrate Link Capacity Constraint:Eq. 3 makes sure
that the capacities of substrate links are not violated.

∀(m,n) ∈ E,m < n :
∑

u∈N

(xu
mn + xu

nm) ≤ cmn (3)

5) Throughput Constraint:Eq. 4 assures that the aggregate
throughput capacity of instances of VNFs of typeu ∈ N
placed in substrate nodem ∈ N is more than allocated
throughputzmu.

∀m ∈ N : ∀u ∈ N :
∑

u∈Vu

ymuqu ≥ zmu (4)

6) Throughput Demand Constraint:Eq. 5 guarantees that
for each SFu ∈ V , throughput ofb is allocated by VNF
instances ofVu.

∀u ∈ N :
∑

m∈N

zmu = b (5)

7) Flow Conservation Constraint:Eq. 6 is the modified
version of flow conservation constraint [37]. Let say in node
m ∈ N , VNF instances of typesu andv = f(u) are installed.
Therefore, VNF instances ofVv locally process a volume of
traffic of typeu generated by instances ofVu. This volume is
zmv. Not processed traffic volume should comes outside the
nodem. This constraint assures this phenomenon.

∀m ∈ N : ∀u ∈ N/{t} : v = f(u) :
∑

(m,n)∈Em

(

xu
mn − xu

nm

)

=
(

zmu − zmv

) (6)

8) Bandwidth Allocation Cost:Eq. 7 denotes the bandwidth
resource allocation cost. Coefficientβ ∈ R

+ identifies the rel-
ative importance of bandwidth resources. Analogously,B(Xu)

is the bandwidth cost for SFu.

B(X) =
∑

u∈N/{t}

∑

(m,n)∈E

βxu
mn (7)

9) Host Resource Allocation Cost:Eq. 8 is the cost of
allocating host resources to place VNF instances.αr ∈ R

+

is a coefficient denoting the relative importance of resource
r ∈ R. Similarly, H(Yu) andH(ymu) represent this cost for
SF u ∈ V and VNF u ∈ V , respectively. Note that we can
compute cost ofH(ymu) if zmu is given1. Let H(zmu) be
this computed cost.

H(Y) =
∑

u∈V

∑

r∈R

αrdurymu (8)

10) Objective Function:Eq. 9 is minimization of aggregate
cost of allocating host and bandwidth resources.

min
(

B(X) +H(Y)
)

(9)

This problem is NP-Hard. Even if the number of instances
and throughput allocations for every VNF are known, the
problem still generalizes the NP-Hard problem ofvirtual
network embedding problem with path splitting[9], [39]. Due
to intractability of the problem for larger scales, we introduce
a heuristic which approximates the optimal solution in a
reasonable time.

V. K ARIZ : HEURISTIC SOLUTION

Before explaining our solution, we construct a visualization
tool to simplify our description. Let assume that eachu ∈ N
is deployed in alayer. Each layer contains a set of nodes in
which VNF instances of corresponding type can be installed.
In other words, in the layer corresponding tou, we initially
place nodes in which at least a VNFv ∈ Vu can be
instantiated. More precisely, this layer is a subset of nodes and
is denoted byL(u). Fig. 2c depicts the layers for chain. As
shown in Fig. 2c,s andt are the only present nodes in layers
L(s) andL(t), respectively. Further, nodes{s,m} and{n, t}
are respectively included in layersL(u) and L(v) because
these nodes have sufficient resource to host VNF instances of
these SFs. We can now describe our problem as the problem
of routing between layers to bring the traffic from the first
layerL(s) to last layerL(t). In each layerL(u), traffic passes
through a set of nodes in which VNF instances ofVu are
placed. Fig. 2d presents a sample solution for the chain of
Fig. 2b.

Inspired by [17], [28], we develop a local search heuristic,
Kariz, which routes traffic layer by layer. We provide the
process first, and then explain an overview of the details. Kariz
is shown in Alg. 1 and works as follows. At the beginning,
we set initial solution as empty (line 1). Starting from layer
L(s) (line 2), iteratively routeb volume of traffic from layer
S = L(u), source-layer, to next layerT = L(v), sink-
layer (lines 3-11). After finding the optimal route between
two layers (line 5), compute the number of VNF instances of
Vv by considering the allocated throughput (line 6). Add the
solution of sink-layer to the earlier solution (line 7). Improve

1By solving a variant of knapsack problem as explained in Section V-A

!

" #

$

(a) Substrate Network

!"#" $% &"

(b) Service Chain

! "#$%&'

"#'(&'

)* "#+(&

) "#)(&

(c) Layers

! "#$%&'

"#'(&'

) "#*(&

+ "#+(&

(d) A Sample Solution

Figure 2: Layers
the current solution (line 8), and update layers (line 9). Now,
traffic has reached the sink-layer; consider this layer as new
source-layer (line 10). Repeat this procedure if traffic hasnot
reached the last layer yet, and there are nodes in new source-
layer (line 11).

Algorithm 1 Kariz Algorithm

1: (X,Y, Z)← (∅, ∅, ∅);
2: u← s; zss ← b; z

tt
← b; S ← L(s);

3: do
4: v ← f(u); T ← L(v);
5: Xv, Zv ← route(S, T, b);
6: Yv ← vnf -instances(Zv);
7: (X,Y, Z)← (X ∪Xv , Y ∪ Yv, Z ∪ Zv);
8: improve(X,Y, Z);
9: update-layers(Y);

10: u← v; S ← L(v);
11: while

(

u 6= t andS 6= ∅
)

;

Yet, we have not clarified how the routing between two
layers and the number of VNF instances in the sink-layer are
computed; how the solution is improved; also how the layers
are updated.

A. Route and VNF Instances

Functionroute(.) in Alg. 1 computes the route between two
layers by solving the multi-source multi-sink Minimum Cost
Flow Problem (MCFP) [16]. MCFP is the problem of routing
a volume (sayb) of a commodity(in our case traffic of type
u) from multiple sources (say source-layer) to multiple sinks
(in our case sink-layer). Any multi-source multi-sink MCFP
can be modeled as a single-source single-sink MCFP which
is solvable in polynomial time [16]. For our problem, this
is achieved by representing the source- and sink-layers with
imaginary nodessuper-sourceand super-sink, respectively.
Fig. 3 depicts this model for layersS and T in Fig. 2. The
procedure is as follows. Add super-source and connect it to

!

" #

$ % & '()*+

, & '(-.+

super

sink

super

source

/012/312

456(/78*+456(/98*+

Supply of :*

Demand of :*

Figure 3: Routing as Single-Source Single-Sink MCFP

every nodem ∈ S in the source-layer with a directed-link
whose capacity iszsu ∈ Z. For the sink-layer, add super-sink
node and connect every noden ∈ T using a directed-link. The
capacity of the directed-link connecting noden to super-sink
is the maximum throughputmax(znv) of the VNF instances
that can be installed in noden. There is no cost to send the
traffic via these links. As the result, the minimum cost route
of traffic from super-source to super-sink gives the optimal
routing between the two layers. Ifp represents super-sink, the
throughput allocation in eachn ∈ L(v) is znv = xu

np.
Finding the capacity of directed-links from sink-layer

to the super-sink is similar to the problem of function
vnf -instances(.). Former is finding the maximum throughput
max(znv) out of VNF instances that can be installed in node
n. Latter is finding the minimum allocation of resources to
VNF instances providing throughput of at leastznv in each
node n ∈ L(v). In fact, these two problems aredual and
can be modeled as amultidimensional knapsack problem
[22]. Think of the node as|R|-dimensional knapsack, each
dimensioncorresponding to a resourcer ∈ R. The items to
be packed are VNF instances withprofitsof their throughputs
and weightsof their host resources demands. Although this
problem is known to be NP-Hard [22], since the resources of
a single physical machine, specially number of CPU cores are
limited, and the problem size is small. Hence, we can solve it
efficiently. Alternatively, as CPU cores are the most expensive
and restricted resources, a feasible solution optimizing the
number of allocated cores is a good optimum.

B. Solution Improvement Rounds

Routing of traffic between two layers might result in frag-
mented host resource allocation with high cost. Therefore,
we need to improve the solution. Functionimprove(.) as
presented in Alg. 2 facilitates this: Repeatedly search forsome
actionsto improve the solution (lines 2-8). If no such action
is found, report the current solution (line 4-6). Otherwise,
perform the action with greatest drop in the cost, the best
admissibleaction (line 7), and continue with the adjusted
solution. We define actions andadmissibilityin Section V-B1
and Section V-B3, respectively.

1) Actions: An action is alocal transformationintended
to reduce the solution cost. Let(X

′

, Y
′

, Z
′

) be the modified
solution after performing an action on a current solution
(X,Y, Z). The cost difference before and after performing an

Algorithm 2 Functionimprove(.)

1: function improve(X, Y,Z)
2: loop
3: a← best-action(X, Y, Z);
4: if not admissible(a) then
5: return (X,Y, Z);
6: end if
7: perform-action(X,Y, Z, a);
8: end loop
9: end function

!"#$%

!"&'%()

) *

!"+,%-)

.
/
0'
1
2

)

(a) add(n,L(v), δ)

!"#$%&

!"'(%)

) *

!"+,%)

-
.
/(
0
1

)

(b) open(n, {m}, L(v), δ)

Figure 4: Actions

action is regarded as theaction cost, as defined in Eq. 10. The
best action has the lowest cost.

(

B(X
′

) +H(Y
′

)
)

−
(

B(X) +H(Y)
)

(10)

We define the following actions that are variants of actions
used by [28]:

• add(n, L(v), δ): Include noden ∈ N in L(v) and allocate
more δ > 0 units of throughput in this node (znv ←
znv+δ). Then, find the minimum cost routing from layer
L(v) to next and previous layers in the current solution,
given allocated throughputs ofL(v)/{n}. The next and
previous layers areL(w) andL(u) if w = f(v) andv =
f(u), respectively. Finally, tune the allocated throughput
of nodesL(v). This action is shown in Fig. 4a.

• open(n,M,L(v), δ): Add noden ∈ N into layerL(v),
remove nodesM ⊆ L(v), and allocate moreδ > 0 units
of throughput in noden (znv ← znv+δ). Finally, reroute
the traffic either received or originated in layerL(v). This
action replaces a set of fragmented VNFs installed in
different nodesM with VNFs collocated in one node
n. This action makes sense only ifδ ≥

∑

m∈M (zmv).
We used a similar action,install, in elastic placement of
VNFs in [15]. Fig. 4b depicts this action.

Traffic routing in the above actions is a bit different from
routing in functionroute(.). The difference is routing of two
different traffic types. Still this problem is tractable, and we
can model it as a multi-commodity MCFP that is solvable in
polynomial time.

We also need to examine actions and select the best in poly-
nomial time and ensure that the number of performed actions is
not exponential. Particularly, we need to select the best action
with sufficient improvement efficiently. These criteria,efficient
action selectionand sufficient improvement, are essential to
assure that the algorithm terminates in polynomial time.

2) Efficient Action Selection:The number of possible
add(n, L(v), δ) actions are at most|N | × |V | × b under the
assumption of integrality ofb. Hence, it is possible to check
all actions and select the best one in polynomial time. We
can even do better and select the value ofδ by considering
the throughputs of VNFsVv. However, number of possible
open(.,M,L(v), .) actions can be exponential because of the
large number of possible subsetsM ⊆ L(v). Thus, we need
an efficient procedure to select a goodopen(.) action. For a
fixed layerL(v), fixed noden ∈ N and fixedδ, we find this
subset in a greedy procedure working as follows. Starting from
empty setM , iteratively remove a nodem from L(v) and add
it to M . Removing this node has the minimum cost vs. other
nodesL(v)/m. Continue this procedure while such a node
m ∈ L(v) exists, the removal ofm decreases the cost, and
m’s throughput is less thanδ −

∑

m∈M zmv. This procedure
repeatedly removes an individual nodem ∈ L(v) whose
removal produces the highest decrease in both bandwidth and
host resource allocation costs.

3) Sufficient Improvement:Still the number of actions can
be large due to exponential number of performed actions with
minor improvement. To solve this problem, only actions with
sufficient improvement of the cost are applied. An action with
sufficient improvement is calledadmissible. More precisely,
we define an action as admissible if it improves the solution
no less than ǫ

4|N |

(

B(X) +H(Y)
)

for some tuning parameter
ǫ > 0 [25]. Using ǫ, we can control the trade-off between
accuracy and speed of our solution. Let(X∗, Y ∗, Z∗) be the
optimal solution. Since the optimal solution is the lower bound
for our solution, the number of performed actions will be at
most 4|N |

ǫ ln B(X)+H(Y)
B(X∗)+H(Y ∗) .

C. Update Layers

As the last piece of the puzzle, functionupdate-layers(.)
updates the nodes in every layer. From a layerL(u) to which
traffic is already reached, every nodem ∈ L(u) is eliminated
if this node does not allocate throughput of typeu. From
other layers, nodes whose resources are allocated and hereafter
cannot host corresponding VNF instances are excluded. Layers
L(s) andL(t) are kept out of the update.

VI. EVALUATION

A. Experimental Setup

1) Simulated Network:6-ary Fat-tree [6], a common data-
center topology, is used as the simulated network containing
99 nodes (54 hosts and 45 switches) and 162 links providing
full bisection bandwidth. Hosts are equipped with 8 core CPU
and 1 Gbps network adapter. The link capacities are 1 Gbps.
The relative importance of allocating 1 Mbps of bandwidth
over one link vs. one core CPU is1%.

2) VNFs: We select firewall, IDS, IPsec and WAN-opt. as
SFs. Table III reveals the VNFs used in the simulation. Since
CPU is the most restricted host resource while dominating the
cost, we ignore memory and storage requirements.

Table III: Off-the-shelf VNFs
Middlebox VNF Throughput CPU demand

Firewall [1]
Level 1 100 Mbps 1 core
Level 5 200 Mbps 2 core
Level 10 400 Mbps 4 core

IDS Bro [2] 80 Mbps 1 core

IPSec [3]
VSR1001 268 Mbps 1 core
VSR1004 580 Mbps 4 core

WAN-opt. [5]
CCX770M 10 Mbps 2 core
CCX1555M 50 Mbps 4 core

3) Service Chains:Sources and targets are uniformly dis-
tributed in the data-center network. Poisson distributionwith
the average of 1-chain per 100-seconds is used to simulate the
arrival rate. Chains lifetimes follow the exponential distribu-
tion with an average of 3 hours.

4) Parameters:We asses Kariz in respect tothroughput-
demand and length of chains. In each experiment, the
throughput-demand is fixed to one of{100,150,200,250,300}
Mbps, and one of the following chains is selected.

• Len-1: {Firewall},
• Len-2: {Firewall→ IDS},
• Len-3: {Firewall→ IDS→ IPSec}, and
• Len-4: {Firewall→ IDS→ IPSec→ WAN-opt.}

Note that Len-i contains all SFs of Len-i-1. We consider Len-
1 and Len-2 as homogeneous chains because firewall and IDS
VNFs in Len-2 almost demand the same resources for the same
throughput. Len-3 and Len-4 are more heterogeneous due to
different resource requirements of corresponding VNFs.

5) Evaluation Method:We compare Kariz against the op-
timal solution implemented using CPLEX. We refer to the
optimal solution byMIP. The tuning parameter of Kariz is
set toǫ = 20. Thus, an action is performed if it improves the
current solution by5%. With fixed parameters, we repeat each
experiment10 times for different generated1000 chains, and
report the arithmetic mean. In comparison charts, the ratioof
Kariz’s to MIP’s corresponding value is reported.

B. Acceptance Ratio

The acceptance ratio results are shown in Fig. 5. Fig. 5a
and Fig. 5b depicts the acceptance ratio of Kariz and MIP,
respectively. The values are the average of acceptance ratios
of 10 experiments. As expected, the longer chains with higher
throughput-demand have the less chance to be accepted. The
low acceptance ratio for Len-4 is due to resource hungriness
of these chains, especially for WAN-opt. VNFs.

The range of number of accepted chains by Kariz vs. MIP in
Fig. 5c are as follows: 95-100% for Len-1, 82-95% for Len-2,
79-100% for Len-3, and 89-102% for Len-4. Note that higher
acceptance ratio for Kariz makes sense. Consider a situation
that MIP accepts a hard to deploy chain rejected by Kariz. MIP
allocates the resources, not allocated by Kariz. Consequently,
this allocation prevents MIP from accepting some of the next
chains; despite that, Kariz assigns not-allocated resources to
these chains resulting in higher acceptance-ratio.

Considering chain length and throughput-demand impacts in
Fig. 5c, Kariz performs closely to MIP. It might be expected
that increasing the length of chain and throughput-demand
should deteriorate Kariz’s acceptance ratio vs. MIP. However,
Kariz has better results for Len-3 and Len-4 than Len-2 and

Len-1, especially for 250 Mbps throughput-demand. Recall
from Section V-B, Kariz attempts to improve the solution after
deployment of every SF of a chain. Since, Len-4 and Len-3
include all SFs of Len-2 and Len-1 chains (see Section VI-A4),
the expense of more improvement rounds increases the chance
of adjusting the earlier solution. All in all, Kariz has a
competitive acceptance ratio within 79-100% vs. MIP.

C. Resource Utilization

Resource utilization of Kariz is compared with MIP in
Fig. 6. Bandwidth/CPU utilization for Kariz and MIP are the
ratio of allocated bandwidth/CPU resources over aggregated
bandwidth/CPU capacities in the network. Regarding VNF
resources, the reports are the arithmetic mean of per-SF
throughput utilization provided by placed VNF instances.

Bandwidth utilization ratios as depicted in Fig. 6a are: 97-
101% for Len-1, 88-106% for Len-2, 78-111% for Len-3,
and 101-131% for Len-4. Fig. 6a and Fig. 5c shows that
Kariz efficiently utilizes the bandwidth resources for Len-1,
Len-2, and Len-3 for various throughput-demands. Regarding
Len-4, the efficiency of utilizing bandwidth resources is very
close to MIP for throughput-demand of 100 and 200 Mbps.
However, the efficiency of bandwidth utilization decreasesfor
other throughput demands.

The CPU utilization ratios are in the range of 95-100% for
Len-1, 84-95% for Len-2, 76-100% for Len-3, and 100-103%,
as observed in Fig. 6b. According to Fig. 6b and Fig. 5c, Kariz
utilizes the CPU resources in an efficient way close to MIP.

Finally, the VNF utilization ratios vs. MIP are shown in
Fig. 6c. Following ranges are reported: 100-100% for Len-
1, 99-100% for Len-2, 101-105% for Len-3, and 101-111%.
Evidently Kariz utilizes VNF instances very closely to MIP
for different lengths and throughput demands.

D. Operational Costs

Fig. 7 shows Kariz’s costs vs MIP. We collect the Kariz’s
and MIP’s average of per chain costs. The reported values
are the ratio of Kariz’s and MIP’s costs. As shown in Fig. 7a
on average, Kariz allocates bandwidth resource vs. MIP in
the range of: 101-102% for Len-1, 105-111% for Len-2, 101-
109% for Len-3, and 100-140% for Len-4. Regarding CPU
as presented in Fig. 7b, on average the same number of CPU
cores is allocated for Len-1 and Len-2. For Len-3, 0-3% less
number of CPU cores are allocated. Also, 2-13% more number
of CPU cores are allocated to Len-4 by Kariz. Finally, in
respect to total operational cost in Fig. 7c, following cost
ratios vs MIP are observed: 100-101% for Len-1, 103-107%
for Len-2, 100-105% for Len-3, and 99-125% for Len-4. Note
that it makes sense that Kariz pays 1% less cost than MIP
per Len-4 chains. These solutions accept different number
of chains in presence of different available resources. For
instance, MIP might accept a chain when the resources are
scarce, while Kariz not finding a feasible solution rejects this
chain. Consequently, MIP would pay more operational cost in
average. In summary, Kariz incurs competitive per-chain cost
less than 125% of MIP.

VII. C ONCLUSION

Recent optimization models of SFC assume that function-
ality of a middlebox is provided by a single VNF. This
assumption limits SFC to either a single VNF or an individual
physical machine. Moreover, heterogeneity of throughput and
resource configurations of miscellaneous VNFs makes deploy-
ment of a service chain complex. In this paper, we described
how we can overcome these limitations. We introduced a
mathematical model that enables us to deploy multiple VNF
instances to provide the functionality of a middlebox. This
eliminates the throughput bound of a chain to a single VNF
or a single physical machine. Moreover, this model abstracts
heterogeneity of VNFs and allows us to define chains with
custom throughput without worrying about individual VNF
throughputs. In addition, our Mixed Integer Programming
(MIP) model gives the optimal deployment of a chain. For
larger scales, we proposed and evaluated a heuristic called
Kariz. The experimental results for various chain lengths and
throughput demands suggest that Kariz achieves a competitive
acceptance ratio of∼ 80-100% with an extra cost of less than
25% compared to MIP model.

REFERENCES

[1] Barracuda WAF. https://www.barracuda.com/assets/docs/Datasheets/BarracudaWeb Application
[Online].

[2] Bro. https://www.bro.org/sphinx/cluster/index.html. [Online].
[3] HP Virtual Router Series. http://www8.hp.com/us/en/products/networking-routers/product
[4] Openflow switch specication v.1.3.1.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/
[5] Steelhead Product Family Spec Sheet.

http://media-cms.riverbed.com/documents/Spec+Sheet+-+Steelhead+Family+-+05.06.2015
[6] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity Data

Center Network Architecture. InACM SIGCOMM 2008.
[7] M. Al-Fares, A. Loukissas, and A. Vahdat. On Orchestrating Virtual

Network Functions in NFV. InIEEE CNSM 2015.
[8] Mohammad Alizadeh et al. Conga: Distributed congestion-aware load

balancing for datacenters.SIGCOMM Comput. Commun. Rev.
[9] N. Chowdhury, M. Rahman, and R. Boutaba. Virtual networkembedding

with coordinated node and link mapping. InINFOCOM 2009, IEEE.
[10] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca. The

dynamic placement of virtual network functions. InIEEE NOMS, 2014.
[11] Pankaj Garg and Yu-Shun Wang. Nvgre: Network virtualization using

generic routing encapsulation. 2014.
[12] A. Gember, R. Grandl, A. Anand, T. Benson, and A. Akella.Stratos:

Virtual middleboxes as first-class entities.UW-Madison TR1771, 2012.
[13] Aaron Gember et al. Toward software-defined middlebox networking.

In 11th ACM Workshop on Hot Topics in Networks. ACM, 2012.
[14] Aaron Gember-Jacobson et al. Opennf: Enabling innovation in network

function control. SIGCOMM 2014, 2014.
[15] Milad Ghaznavi et al. Elastic virtual network functionplacement. In

CloudNet 2015, Oct 2015.
[16] Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost

circulations by canceling negative cycles.J. ACM, October 1989.
[17] S. Guha et al. Hierarchical placement and network design problems. In

41st Annual Symposium on Foundations of Computer Science, 2000.
[18] Jinho Hwang et al. Netvm: high performance and flexible networking

using virtualization on commodity platforms.Network and Service
Management, 2015.

[19] D. Joseph and I. Stoica. Modeling middleboxes.Network, IEEE,
22(5):20–25, September 2008.

[20] Srikanth Kandula et al. Dynamic load balancing withoutpacket
reordering.SIGCOMM Comput. Commun. Rev., 2007.

[21] Rishi Kapoor et al. Bullet trains: A study of nic burst behavior at
microsecond timescales. CoNEXT ’13, New York, NY, USA.

[22] Edward Yu-Hsien Lin. A biblographical survey on some wellknown
non-standard knapsack problems. 1998.

https://www.barracuda.com/assets/docs/Datasheets/Barracuda_Web_Application_Firewall_DS_Azure_US.pdf
https://www.bro.org/sphinx/cluster/index.html
http://www8.hp.com/us/en/products/networking-routers/product-detail.html?oid=5443163#!tab=models
https://www.opennetworking.org/images/stories/downloads/ sdn-resources/ onf-specifications/openflow/openflow-spec-v1.3.1.pdf
http://media-cms.riverbed.com/documents/Spec+Sheet+-+Steelhead+Family+-+05.06.2015.pdf

100 150 200 250 300

Throughput-Demand (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

(a) Kariz Acceptance Ratio

100 150 200 250 300

Throughput-Demand (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

(b) MIP Acceptance Ratio

100 150 200 250 300

Throughput-Demand (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

(K
a
ri
z
/
M
IP

)

(c) Comparison of Acceptance Ratio

Figure 5: Acceptance Ratio

100 150 200 250 300

Throughput-Demand (Mbps)

0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

(K
a
ri
z
/
M
IP
)

(a) Bandwidth Utilization

100 150 200 250 300

Throughput-Demand (Mbps)

0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

(K
a
ri
z
/
M
IP
)

(b) CPU Utilizaiton

100 150 200 250 300

Throughput-Demand (Mbps)

0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

(K
a
ri
z
/
M
IP
)

(c) VNF Utilization

Figure 6: Comparison of Resource Utilization

100 150 200 250 300

Throughput-Demand (Mbps)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

(K
a
ri
z

/
M

IP
)

(a) Bandwidth Allocation Cost

100 150 200 250 300

Throughput-Demand (Mbps)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

(K
a
ri
z

/
M

IP
)

(b) CPU Resource Allocation Cost

100 150 200 250 300

Throughput-Demand (Mbps)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

(K
a
ri
z

/
M

IP
)

(c) Total Cost

Figure 7: Operational Costs

[23] Hui Long et al. Laberio: Dynamic load-balanced routingin openflow-
enabled networks. InIEEE AINA, 2013, 2013.

[24] M. Mahalingam et al. Virtual extensible local area network: A frame-
work for overlaying virtualized layer 2 networks over layer3 networks.
Technical report, 2014.

[25] Mohammad Mahdian and Martin Pál. Universal facility location. In
Algorithms-ESA 2003, pages 409–421. Springer, 2003.

[26] Joao Martins et al. Clickos and the art of network function virtualization.
In NSDI 2014.

[27] H. Moens and F. D. Turck. Vnf-p: A model for efficient placement of
virtualized network functions. InIEEE CNSM ’14.

[28] Martin Pal et al. Facility location with nonuniform hard capacities.
In Proceedings. 42nd IEEE Symposium on Foundations of Computer
Science, 2001.

[29] Vern Paxson. Bro: A system for detecting network intruders in real-time.
Comput. Netw., 31(23-24):2435–2463, December 1999.

[30] P. Quinn and T. Nadeau. Service function chaining problem statement.
Technical report, 2014.

[31] Shriram Rajagopalan et al. Split/merge: System support for elastic
execution in virtual middleboxes. InNSDI 2013.

[32] S. Sahhaf et al. Network service chaining with efficientnetwork function
mapping based on service decompositions. InNetSoft, 2015.

[33] Derek L. Schuff et al. Conservative vs. optimistic parallelization of
stateful network intrusion detection. In12th ACM SIGPLAN, 2007.

[34] V. Sekar et al. Design and implementation of a consolidated middlebox
architecture. InProc. of USENIX NSDI ’12.

[35] Shan Sinha et al. Harnessing TCPs Burstiness using Flowlet Switching.
In HotNets, San Diego, CA, November 2004.

[36] Robin Sommer et al. Hilti: An abstract execution environment for deep,
stateful network traffic analysis. InIMC 2014.

[37] JA Tomlin. Minimum-cost multicommodity network flows.Operations
Research, 14(1):45–51, 1966.

[38] Javier Verdú et al. Multilayer processing - an execution model for
parallel stateful packet processing. InANCS 2008.

[39] Minlan Yu et al. Rethinking virtual network embedding:Substrate
support for path splitting and migration.SIGCOMM 2008.

