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Abstract 

Time course measurement of single molecules on a cell surface provides detailed 

information on the dynamics of the molecules, which is otherwise inaccessible. To 

extract the quantitative information, single particle tracking (SPT) is typically 

performed. However, trajectories extracted by SPT inevitably have linking errors 

when the diffusion speed of single molecules is high compared to the scale of the 

particle density. To circumvent this problem we developed an algorithm to estimate 

diffusion constants without relying on SPT. We demonstrated that the proposed 

algorithm provides reasonable estimation of diffusion constants even when other 

methods fail due to high particle density or inhomogeneous particle distribution. In 

addition, our algorithm can be used for visualization of time course data from single 

molecular measurements. 

  



Introduction 

Sensing the extracellular environment is crucial for cells to properly respond and 

function. The information from the environment is typically encoded in microscopic 

molecular signals, and they are recognized by cell surface receptors. The signaling 

of cell surface receptors involves several physical processes, such as ligation to their 

ligands, oligomerization, and subsequent binding to the downstream signaling 

components in cytosol. Although many details on these processes have been inferred 

from biochemical, genetic, and molecular or cell biological studies, its physical and 

dynamical aspects at microscopic level are still largely unknown (1). 

Recent development of single molecular measurement, such as total internal 

reflection fluorescence (TIRF) microscopy (2), provides a chance to directly observe 

the dynamics of these processes from time course images of single molecules on cell 

surfaces (3, 4). A typical workflow for such data is single particle tracking (SPT) (5). 

In SPT, the positions of particles in each time frame are first detected. With the 

help of the sophisticated detection algorithms, the spatial resolution of detected 

position could be sub-pixel order (6). The next step is linking, where the trajectory of 

each molecule is inferred by connecting seemingly identical particles in subsequent 

frames. Usually, the nearest particles in the subsequent frames with global 

consistency are identified as the same particles (7, 8)  

The identified trajectories of particles will be further analyzed qualitatively to 

find biologically relevant physical parameters. Diffusion constant, which 

characterizes the diffusion speed of the particles, is one of such important physical 

parameters, and have been the target for subsequent analyses (9, 10). It has been 

shown that diffusion constants of membrane proteins such as cell surface receptors 

can change along biophysical events like binding to their ligand or cytosolic adaptor 

molecules. For example, the diffusion constants of epidermal growth factor receptor 

(EGFR) that belongs a family of receptor tyrosine kinase, are found to decrease 

after binding to EGF, and transduce signals via subsequent binding with its 

adaptor Grb2 protein (11, 12). It was also shown that intracellular signaling 



proteins functioning on the membrane have multiple states each of which have 

different diffusion constants (13, 14).   

Though SPT methods are widely used, they encounter difficulties when the 

density of particles is higher. One of the difficulties is the diffraction limit of 

microscope. If the particle density becomes comparable to the scale defined by the 

diffraction limit, the chance of having two different particles within the diffraction 

limit cannot be ignored. Then, we may not be able to resolve the positions of the two 

particles, which lead to errors in the particle detection. The other difficulty occurs 

when the particle density becomes comparable to the scale of diffusion in the time 

resolution of the measurement. In this situation, the expected area of diffusion of a 

particle tends to contain several irrelevant particles purely by chance. Since, in 

typical experiments, visualized molecules are indistinguishable just from the 

fluorescent signals, linking errors are inevitable. Then, trajectories from such an 

erroneous SPT might lead to a biased estimation of diffusion constants, and 

different biological interpretation. Note that, this problem of linking error may 

occur if the diffusion speed is high enough, even in the regime that the detection 

error coming from the diffraction limit is negligible. 

In this paper, we address this problem of linking error in diffusion constant 

estimation. As we have seen, the problem arises from the impossibility of the perfect 

hard linking of the identical particles in SPT. Here, instead of hardly linking the 

nearest particles in subsequent frames, we only assign a probability of such possible 

identification with respect to the particle density around the position, and directly 

estimate the diffusion constant without specifying concrete trajectories. The 

resultant algorithm, which successfully estimates diffusion constants even under 

high particle density condition, shows some resemblance to another SPT free 

diffusion constant estimation method, particle image correlation spectroscopy 

(PICS) (15), which was inspired by image correlation microscopy (16–19). The main 

advantage of our algorithm towards PICS is that our algorithm can be applied to 

the cases with inhomogeneous distribution of single molecules, while PICS assumes 

homogeneous distribution. 



In this paper, first, we introduce a probabilistic model of the position of nearest 

particles of a diffusing particle surrounded by indistinguishable particles and 

formulate the inference of diffusion constants in terms of maximum likelihood 

estimation based on this probabilistic model. In a simple setting with a 

homogeneous particle distribution, our algorithm can be considered as a natural 

generalization of the canonical diffusion constant estimation from the mean square 

displacement (MSD) to the case of finite density of surrounding particles. Our 

algorithm is further generalized to allow multiple states with different diffusion 

constant with a help of the expectation maximization (EM) algorithm (20). 

Comparison of the performance of our proposed method based on simulated 

artificial data of diffusion indicated the advantage of the proposed method over 

other diffusion constant estimation methods. In addition to the estimation of 

diffusion constants, we also demonstrate that the algorithm could infer the state of 

each molecule and visualize the single molecular data with such information. 

Theory 

A probabilistic model of a diffusing particle surrounded by 

indistinguishable particles 

To develop the probabilistic model for estimating 2D diffusion constants of lateral 

diffusion under high particle density, we focus on a single Brownian particle in a 

time frame (Fig. 1). Without loss of generality, we take the position of the particle as 

the origin of our polar coordinates. As well known, for a Brownian particle, the 

probability of finding the same particle at a position with a radial distance greater 

than r  after a time-lag t  is given by (21) 
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where the parameter D  is the diffusion constant of the particle. 

In a typical time lapse single molecular imaging on cells, particles are 

indistinguishable from each other. By assuming the independence of the dynamics 

of each particle, we can model the distribution of such indistinguishable 

surrounding particles by a local uniform density  . Thus, the probability of having 



the nearest surrounding particle at a distance greater than r  is given by 
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(See the supplementary text for a pedagogical derivation of this distribution.)  

By combining the above results together, the probability of detecting the nearest 

particle at a distance greater than r  would be given by 
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This is the fundamental probabilistic model to develop the estimation algorithm of 

the diffusion constant in this paper (Fig. 1).  

The indication of the model becomes more manifest if we calculate the expected 

mean square displacement to the nearest particle (MSDN) as

tD

tD
rdDrrP

rd

d
rrE















 






41

4
)(),|(

)(
)(MSDN

0

nn
22 . (1) 

This is a natural generalization of the well-known relationship between MSD of a 

single diffusing particle and diffusion constant (21), 

     tD 4MSD . 

As expected, MSDN goes back to the original MSD in the limit of   being zero, 

namely no surrounding particles. Due to the additional term in the denominator, 

the MSDN is, in general, smaller than MSD. This is because the nearest particle 

can be the original particle diffused from the origin as in MSD, or even a nearer 

surrounding particle. 

This relation can be easily solved with respect to D  to estimate it, 
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Compared to the standard estimation from MSD, 
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the estimated diffusion constant acquires a fold increase of )MSDN1/(1  , which 

compensate the apparent reduction of the displacement compared to MSD. In Fig. 2, 



we showed the MSD to the nearest particle for simulated data. As t  increases, 

the points deviate from the line tD4  and lie on the above theoretical prediction as 

expected. Note that the time course of MSDN is conceptually different from the one 

of MSD in a trajectory after SPT. In the case of SPT, the identification of the same 

particle is consecutively performed using all the measured time points during t . 

On the other hand, in MSDN here, the nearest point after a time duration t  was 

chosen without referring to the measured time points before t .  

A maximum likelihood estimation of diffusion constants for local 

particle density 

Though the above relationship between diffusion constant and MSDN allows us 

to estimate diffusion constants for the case of uniform particle distribution, it is 

difficult to generalize it into inhomogeneous particle distribution, which is less ideal 

but much more relevant situations. In such case, a constant particle density   

alone cannot capture the underlying particle distribution. 

Here, we formulate more general estimation algorithm of diffusion constants 

using maximum likelihood estimation based on the above probabilistic model. The 

log-likelihood of an observed data is given by  
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Here, the index i  represents each particle in the preceding time frame, ir  is the 

distance to the nearest particle in the subsequent time frame and i  is the local 

particle density around the particle i . If we further assume the uniform 

distribution, namely all i  is the same, this maximum likelihood estimation of D  

is analytically tractable and reduces to the same relation between the diffusion 

constant and MSDN as described above.  



In the case of general i , it is convenient to utilize EM algorithm (20, 22). For 

this purpose, we introduce a latent variable }1,0{iq , which takes the value of zero 

if the nearest point comes from the surrounding particles, while it becomes one if it 

is the original particle diffused from the origin. Then the complete-data 

log-likelihood with the information of the latent variable is given by 
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Here, the joint probability distribution is defined as 
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In the EM algorithm, instead of maximizing the log-likelihood directly, a quantity 

),( lDDQ  is maximized with respect to D  by iteration: 
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Here, lD  is the estimation of the diffusion constant D  at the l -th iteration. The 

conditional probability based on lD  is calculated from the above joint probability 

as 
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Taking the derivative of Q  with respect to D  and equating it to zero, 
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we obtain the update rule 
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where we have defined the expected fraction of data points with 1q  as 
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Now the correction from the original MSD relation is neatly summarized by this 

expected fraction of the data points whose nearest points comes from the original 

particle diffused from the origin. 

Generalization to multiple states 

In this subsection, we further generalize the maximum likelihood estimation of 

diffusion constants into the case where particles take multiple states with different 

diffusion constants. It has been revealed that some membrane proteins change their 

physical properties upon binding to other molecules or spontaneous change of their 

conformation, and these changes could be inferred from the change of the diffusion 

constant in some cases (13, 14). Here we consider this type of change of diffusion 

constants, which we shall refer it as to the change of their states.  

It is worth mentioning that this generalization is useful even when there is no 

biological reason to expect the existence of such multiple states of the target 

molecule. In real experiment, many of fluorescently-dyed surface molecules 

disappear for several reasons like internalization of the particle, breaching of the 

fluorescent dye and so on. Such disappearance of particles can be modeled in the 

above framework by adding an additional state whose diffusion constant is 

infinitely large. In addition, we may have some fictitious particles wrongly detected 

due to low signal to noise ratio of the original images. Those fictitious particles also 

tend to disappear in the subsequent time frame. Thus, we can reduce the effects of 

such fictitious particles, by introducing such a state in advance.  

The derivation of the corresponding EM algorithm is largely parallel to the one in 

the previous subsection. In addition to the latent variable iq  which specifies 

whether the nearest particles are the original particle itself or not, we introduce an 



additional latent variable specifying states of the particle i , },,1{ Msi  , where 

M  is the number of possible states. 

The joint probability distribution of this model is given by 
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where 
iSD  is the diffusion constant of the state is , and 

is
  is the probability of 

being the state is . 

The quantity Q  for deriving the update rule of the EM algorithm is similarly 

defined by 

  
  


N

i

M

s q

l
iiii

l rsqpsqrpDDQ
1 1 }1,0{

),,|,()),|,,(log(),(  . 

Here   collectively denotes all the parameters to be estimated, namely, 

},,,,{ 11 MMDD   . The conditional probability is calculated from the joint 

probability as follows: 
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Compared to the single state case, here the joint probability also depends on the 

displacement ir . 



By maximizing Q  under the restriction of the conservation of the probability, 
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This is our final update rule for maximum likelihood estimation for the multi state 

model. 

Methods 

Monte Carlo simulation 

For the comparison of the performance of the proposed and existing methods, we 

generated artificial data of single molecular particle diffusion with Monte Carlo 

simulation. Since it allows easier control of the underlying particle distribution, 

following (15), we generated pairs of time frames, instead of single time course of 

diffusing particles, in the following way.  

First we drew a fixed number of positions of particles from the corresponding 

probability distribution of particles for the preceding time frame. In the case of 

uniform particle distribution, we sampled particles over much larger area than the 

area of interest to keep the same distribution after diffusion steps. Next we 

generated the subsequent frame by adding a displacement drawn from the two 

dimensional normal distribution with the variance of tD2  to each position. When 

needed, another fixed number of particles are drawn from the same particle 

distribution, and added both the preceding and subsequent frames independently to 

represent the existence of noise. In the simulation with noise, we set the fraction of 

noise to be 20%.   

Each estimation of diffusion constants was performed against 10 pairs of time 

frames. For the uniform distribution, the simulation was repeated 1000 times for 



each condition while the number was reduced to 100 times for inhomogeneous 

distribution because of the limitation of computational costs. All the simulation has 

been performed using R (http://www.r-project.org/). 

PICS 

We have implemented the PICS algorithm in R to enable automatic parameter 

estimation from the Monte Carlo simulation data. A minor difference from the 

original implementation described in (15) is, that, instead of separately fitting the 

linear part and non-linear part of the cumulative correlation function to the data, 

we fit the whole cumulative correlation function at once to make the automation 

easy. 

Local SPT 

As an example of most naïve approach, we have made trajectories by simply 

associating each particle to the nearest particle in the subsequent frame without 

considering global consistency. Unlike the case for the global SPT described below, 

in this approach, a particle in the subsequent frame might be associated with 

several particles in the preceding frame.  

Global SPT 

As a representative of SPT method, we have implemented the global linking 

algorithm based on a greedy hill-climbing optimization with topological constraints 

following (23, 24). In this algorithm, there is no confliction between the associations 

of each particle. We have set the maximum distance parameter for limiting the 

association of subsequent particles large enough to link all the particles.  

After obtaining the distribution of diffusion step sizes with local or global SPT, we 

have estimated the diffusion constant with a maximal likelihood estimation based 

on the assumption where each single particle exhibits Brownian motion. 

Particle density estimation for the simulated data 

To apply our algorithm, we have to estimate the (local) particle density. In the 

case of a uniform distribution, we have estimated the density by simply dividing the 

total particle number in the frame by the area of interest. In an inhomogeneous case, 



it is difficult to accurately estimate the local particle density based just on a single 

time frame. Therefore, we have estimated the local probabilistic density by k 

nearest neighbor algorithm after merging all the subsequent frames in the dataset 

except for the one in the frame of interest. Then, the particle density at the point is 

obtained by weighting the probabilistic density with the number of particles in the 

frame of interest. The value of k  of the k nearest neighbor density estimation in 

the merged data is chosen to be the number of time frames utilized, which 

corresponds to the length scale of 1k  in a time frame. 

Results 

Dependence of estimated diffusion constants on particle density 

Both PICS and our estimation algorithm based on the probabilistic model of 

nearest neighbors (PNN) have been designed to make accurate estimation of 

diffusion constants under the condition with high particle density. We compared 

these methods to SPT based methods with and without global optimization of 

linking (referred to as global SPT and local SPT, respectively) with simulated data. 

First, we have examined the effect of particle density under the ideal condition of 

homogeneous distribution without noise (Fig. S1 and Fig. 3). We have varied the 

particle density from 0.1 to 10 particles/m2 with fixing the diffusion constant to be 

1m2/s. The time resolution t  of the data acquisition was assumed to be 20ms 

(15).  

As expected, the change of particle density significantly affected the diffusion 

constants estimated by the simplest method, local SPT (Fig. 3). In this method, each 

pair of the nearest neighbor points in the subsequent time frame is simply 

identified as the same physical particle without considering behaviors of other 

particles. In this simple method, even with one order lower particle density, the 

estimation accuracy was low (Fig. S1). 

After global optimization (global SPT) of the linking, the estimation accuracy of 

SPT method improved. Especially, under lower particle density condition, it 



reproduced the true diffusion constants in a great accuracy (Fig. S1). However, in 

the condition with higher particle density ( 2 ), this method also underestimated 

the diffusion constants. This value of the particle density roughly corresponds to the 

one where tD4  becomes comparable to 1 in the equation (1). The result 

suggested the limitation in SPT methods under high particle density condition.  

On the other hand, the two SPT-free methods PICS and PNN, which take the 

effects of surrounding particle explicitly into account, estimated the diffusion 

constants quite well in the whole range of the particle density we have considered 

(Fig 3 and Fig S1). Though the standard deviations among independent simulations 

tend to increase along the increase of particle density, it could be reduced if more 

data in the same condition is available (15). 

Thus, the estimation of diffusion constants using PICS or PNN leads similar 

performance with SPT based methods in the lower particle density and outperforms 

them in the condition with higher particle density. Therefore, we focus on these two 

methods in the following discussion. 

Effect of shot noise 

By comparing PICS and PNN from the above results, one might conclude that the 

accuracy of PNN is slightly better than PICS because the standard deviation of the 

estimated results is smaller in PNN than PICS. However, the above comparison 

was performed based on simulation in a quite ideal condition: particles distributed 

uniformly without any false detection. On the other hand, real single molecular 

measurements tend to be performed under less ideal conditions with lower signal to 

noise ratio. This affects the accuracy of detection of peak positions from raw images, 

leading to spurious particles which are wrongly detected in such noisy images. 

In order to mimic such a situation, we artificially introduced additional particles 

independently drawn from the same distribution in each time frame. We simply 

refer these additional particles to as noise here. The existence of noise significantly 

degraded the estimation accuracy (Fig 4, left panels). The effects of noise in the 

diffusion constant estimation are two-folded. One is to increase the apparent 

particle density as surrounding particles, and the other is addition of spurious 



particles which immediately disappear from the scope. The former effect is, by 

design, treated both in PICS and PNN since the particle density is estimated with 

both physical particles and noise. On the other hand, the spurious particles coming 

from noise behave particles with infinitely high diffusion constant. Therefore, the 

addition of noise biases the estimated diffusion constants towards higher values. 

The effects of the noise are larger in PNN than in PICS. While maximum likelihood 

estimation in PNN examines each particle independently, PICS first summarizes 

the data into an empirical cumulative distribution ignoring the property of each 

particle. This nature of PICS seems to alleviate the detrimental effects of spurious 

particles. 

Fortunately, this effect of noise can be taken care by generalizing the probabilistic 

model both in PICS and PNN with introducing an additional state for noise with an 

infinitely large diffusion constant. With this generalization, both PICS and PNN 

improved their prediction accuracy (Fig 4, right panels) with a cost of larger 

standard deviation which originates from the increase of the number of the 

parameters to be estimated, namely the diffusion constant and the fraction of noise.  

Estimation with Inhomogeneous distribution 

As mentioned above, another idealization in the above simulation was the 

assumption of uniform distribution of the particles. Actually, this is one of the key 

assumptions in PICS algorithm. On the other hand, we have designed PNN to be 

applicable beyond this assumption. Here we compare the performance of these two 

methods under two inhomogeneous distributions, Gaussian and a circular 

distribution. 

Fig. 5 and Fig. S2 show the results of estimation of diffusion constants under two 

inhomogeneous distributions, a Gaussian distribution and a circular distribution 

forming an annulus, respectively. The panel B in both figures shows the results of 

PICS, where the estimated diffusion constants were biased especially for the higher 

particle density. This result is more or less expected since this type of 

inhomogeneous condition is beyond the original scope of PICS.  



The panel C is the results of the PNN estimation with the known theoretical 

distribution utilized to generate simulated data. In this case, the estimated 

diffusion constants are much closer to the true values. Of course, in a real situation, 

we cannot access to the true underlying distribution of the particles. Thus, we have 

to estimate the distribution from the data, and the accuracy of the diffusion 

constant estimation depends on the accuracy of the density estimation. However, 

the results here demonstrate that if the particle density is estimated accurately 

enough, PNN would work reasonably well. 

The panel D of Fig. 5 and Fig. S2 shows the results of PNN with a particle density 

estimated from the data itself. Here, in order to estimate the particle density, we 

have used k nearest neighbor estimation. In general, there is a tradeoff between the 

spatial resolution and statistical error in density estimation. Since our algorithm of 

PNN relies on the (first) nearest neighbor, smaller k  value with high spatial 

resolution would be preferable. However, density estimation based on a smaller k  

tends to have a larger variance. In order to circumvent this problem, we have 

estimated the particle density using all the post frames in the dataset except for the 

one in the frame of interest with keeping the effective k  value to be one (see 

Method section for details). The accuracy of the resultant diffusion constant was 

comparable to the one using theoretical distributions. Our result here demonstrates 

that, with a suitable choice of estimation methods, our algorithm can be utilized to 

estimate diffusion constant even under inhomogeneous particle distribution. 

3D visualization of particle states 

Our algorithm assigns a probability of taking each possible state to each particle 

detected without specifying trajectory. This property of the algorithm can be 

utilized to visualize time course data itself. The data shown in the upper panel of 

Fig. 6 consists of particles taking three different states, namely, slower diffusion 

(0.2 m2/s), faster diffusion (2m2/s) and noise. The lower left panel is the same 

data with colors (red: slower particle, cyan: faster particle) after removing the noise. 

We have applied the PNN algorithm to the data and inferred the state of each 

particle by choosing the most probable one among the assigned probability. As 



shown in the lower right panel, the resultant figure bore a strong resemblance to 

the original data, giving another support for the validity of this algorithm. Different 

from canonical SPT methods attempting to determine a hard wired trajectory, our 

algorithm keeps several possibilities at the same time. This application of PNN to a 

visualization purpose would be useful particularly when one is interested in 

identifying rare events like interaction between pairs of particles.  

Discussion 

In this paper, we proposed a novel diffusion constant estimation algorithm based 

on a probabilistic model of the nearest point without performing SPT explicitly. 

Though conventional SPT methods try to link pairs of particles in the subsequent 

frames in a hard manner, such hard linking inevitably leads erroneous pairing if no 

other information to distinguish particles is available. Since our probabilistic model 

allows us to estimate diffusion constants without relying on particular hard-linked 

trajectories, it performed well even in the cases with higher particle density where 

standard SPT methods underestimate the diffusion constant. Since particle density 

is hard to be controlled in real experiments, this is advantageous in practical usage.  

Though a naïve implementation of PNN has a weak point that it is too sensitive 

towards existing noise, this weak point can be overcome by introducing state 

corresponding to spurious particles originating from the noise, further increasing 

utility of the proposed method. Thus, in practice, one should always examine both 

models with and without noise fraction, and select a model by comparing some 

statistical indicator like Akaike Information Criterion (25). 

In addition to the high prediction accuracy, the advantage of PNN is its 

applicability beyond uniform particle distribution, which has been the limitation of 

PICS that is another existing SPT free algorithm. We demonstrated that with or 

without knowledge of the underlying distribution, our algorithm accurately 

estimates diffusion constants even for the cases where PICS cannot be properly 

applied. In general, without prior knowledge of the underlying particle distribution, 

the actual performance of diffusion constant estimation depends also on the 



accuracy of estimation of the underlying particle distribution from the data, though 

the investigation of optimal density estimation itself is beyond the scope of this 

paper. 

Since PNN consider each particle separately, it allows us to obtain detailed 

information on each particle. With the help of the EM algorithm, PNN estimate the 

probability for each particle of being each state. This kind of information combined 

with their spatial distribution may provide further insights on the underlying 

biology as briefly demonstrated in Fig 6. 

On the other hand, there is still room for further investigation on the proposed 

algorithm. One of the most important directions is the limitation coming from 

diffraction limit. As discussed in the introduction, if the particle density becomes 

higher than the scale defined by the diffraction limit, detection errors tend to 

become significant. Though such detection errors might be minimized with 

sophisticated detection algorithm, it would be better if the subsequent linking 

algorithm itself also has some tolerance towards existence of such detection errors. 

For example, in PICS, the authors proposed an iterative algorithm to reduce the 

effect of the diffraction limit (15). In PNN, it is also desirable to investigate such 

direction. In addition, our proposed algorithm assumed Brownian diffusion as in 

PICS. However, there are several possibilities of anomalous diffusion in biological 

molecules on cell surface (26–31). It is another important direction to consider such 

cases in the context of PNN. 

Finally, we would like to emphasize the complementary role of diffusion constant 

estimation algorithms. As we have shown, the accuracy measured by the standard 

deviations for independent simulations were in general higher in PNN than in PICS. 

This is probably because PNN treats each pair of nearest particles independently, 

thus utilizes more information, while PICS merges the individual information into a 

cumulative distribution in the beginning. In addition, PNN can be applied to the 

case with inhomogeneous particle distribution and also allows one to extract 

detailed information of the property of each particle with the help of EM algorithm. 

On the other hand, PICS analysis is more graphical and the visual information of 



cumulative distribution may provide hints to select proper models to fit as far as the 

underlying spatial distribution of the particle is uniform. In turn, canonical SPT 

method works quite well when particle density is reasonably low and there exist 

several subsequent analyses requiring hard wired SPT trajectories, like 

determination of dwell time. Thus, each method has its own advantages and 

disadvantages. Having different diffusion estimation algorithms enlarges our 

freedom to analyze the data, and would increase the chance to obtain biologically 

meaningful information from various single molecular time course data. In this 

regard, our algorithm opens a new window for accessing diffusion constants in the 

regime with higher diffusion constants in inhomogeneous particle density. 
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Figure legends 

 

Figure 1. Schematic of the probabilistic model. A, a typical distribution of particles  

at tt   (thick circles) with an indication of the position of a representative 

particle at t  (dashed circle). B, the case when the nearest particle is the original 

particle. C, the case when the nearest particle is a surrounding particle. Gray color 

indicates the identification of the original particle. The large dotted circles indicate 

the distance to the nearest particle. The distance to the nearest neighbor of the 

origin at the subsequent time frame is modeled by the probabilistic model with 

respect to the diffusion constant of the original particle and the particle density at 

the origin. 



 

Figure 2. Mean square displacement to the nearest particle. A comparison of MSDN 

and MSD. The black straight line corresponds to the expected MSD, while the black 

curve is the expected MSDN, with D =1m2/s and  =1 particles/m2. The points 

are mean MSDN directly calculated from corresponding simulated data. The error 

bars indicate the standard deviation from one thousand independent simulations. 

The red line indicates asymptotic value of the expected MSDN at t . 

 

Figure 3. Comparison of the performance of different algorithms in uniform 

distribution. Box plots summarizing the comparison of the algorithms. The x axis is 

the particle density and the y axis is the estimated diffusion constant. The red line 

indicates the true diffusion constant. A, local SPT. B, global SPT. C, PICS and D, 

PNN. 

 

Figure 4. Comparison of the performance of PICS and PNN in uniform distribution 

with noise. Box plots summarizing the comparison of PICS and PNN. The top row is 

for PICS and the bottom row is for PNN. The first column is the result before 

introducing the state corresponding to noise. The second column is the result after 

introducing the state for noise compensation. The x axis is the particle density and 

the y axis is the estimated diffusion constant. The red line indicates the true 

diffusion constant. 

 

Figure 5. Comparison of the performance of PICS and PNN in Gaussian 

distribution. A, a representative snapshot of the particle distribution. B, C and D, 

box plots summarizing the comparison between PICS and PNN under Gaussian 

distribution. B, PICS. C, PNN where the known particle density distribution for the 

simulation was used for the diffusion constant estimation. D, PNN where the 

particle density distribution was estimated from the data using k nearest neighbor 



algorithm. The x axis is the mean particle density over the area of interest, and the 

y axis is the estimated diffusion constant. The red line indicates the true diffusion 

constant. 

 

Figure 6. 3D visualization of particle positions and states. 3D representation of the 

time course simulated data of diffusing particles. The z axis corresponds to time 

while the other two axes corresponds to x and y axis of the original data. A, the 

original data. B, the original data depicted with colors (red: slower particle, cyan: 

faster particle) after removing the noise. C, the same data depicted with colors 

based on the inferred particle states with PNN.  

 

Figure S1. Comparison of the performance of different algorithms in uniform 

distribution with lower particle densities. Box plots summarizing the comparison of 

the algorithms as in Fig. 3. The x axis is the particle density and the y axis is the 

estimated diffusion constant. The red line indicates the true diffusion constant. A, 

local SPT. B, global SPT. C, PICS and D, PNN. 

 

Figure S2. Comparison of the performance of PICS and PNN in circular distribution. 

A, a representative snapshot of the particle distribution. B, C and D, box plots 

summarizing the comparison between PICS and PNN under circular distribution. B, 

PICS. C, PNN where the known particle density distribution for the simulation was 

used for the diffusion constant estimation. D, PNN where the particle density 

distribution was estimated from the data using k nearest neighbor algorithm. The x 

axis is the mean particle density over the area of interest, and the y axis is the 

estimated diffusion constant. The red line indicates the true diffusion constant. 



Supplementary text 

Distribution of the nearest surrounding particle 

For a reference for readers, we provide a simple derivation of the distribution of 

the position of the nearest surrounding particle. 

We begin with a finite case where there are on average N  surrounding particles 

in the disk with a radius R  around a point. 2RA  is the area of the disk. We 

assume that the surrounding particles are uniformly distributed inside the disk. If 

we consider a smaller disk with a radius r  and the area 2ra    inside the disk, 

the probability of a single surrounding particle being found in the outside of the 

smaller disk is Aa1 . Then, the probability that all the N  surrounding particles 

are also found in the outside is  NAa1 . Assuming that a  is much smaller than 

A , we have 
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where   is the local particle density AN / . This is nothing but the probability 

that the distance from the nearest surrounding particle is more than r , 

)(bg rrP  . The derivative of this cumulative distribution gives the probability 

density of the nearest surrounding particle being found at a point with radius r : 
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Fig 2. Mean square displacement to the nearest particle.
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Fig 3. Comparison of the performance of different algorithms in uniform distribution.
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Fig 5. Comparison of the performance of PICS and PNN in a Gaussian distribution 
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Fig 6. 3D visualization of particle positions and states.



Fig S1. Comparison of the performance of different algorithms in uniform distribution with lower 
particle densities
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Fig S2. Comparison of the performance of PICS and PNN in a circular distribution 
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