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We consider the separate spin evolution of electrons and positrons in electron-positron and
electron-positron-ion plasmas. We consider oblique propagating longitudinal waves in this systems.
Working in a regime of high density n0 ∼ 1027 cm−3 and high magnetic field B0 = 1010 G we report
presence of the spin-electron acoustic waves and their dispersion dependencies. In electron-positron
plasmas, similarly to the electron-ion plasmas, we find one spin-electron acoustic wave (SEAW) at
propagation parallel or perpendicular to the external field and two spin-electron acoustic waves at
the oblique propagation. At the parallel or perpendicular propagation of the longitudinal waves in
electron-positron-ion plasmas we find four branches: the Langmuir wave, the positron-acoustic wave
and pair of waves having spin nature, they are the SEAW and, as we called it, spin-electron-positron
acoustic wave (SEPAW). At the oblique propagation we find eight longitudinal waves: the Langmuir
wave, Trivelpiece-Gould wave, pair of positron-acoustic waves, pair of SEAWs, and pair of SEPAWs.
Thus, for the first time, we report existence of the second positron-acoustic wave existing at the
oblique propagation and existence of SEPAWs.

I. INTRODUCTION

The field of spin quantum plasmas has been rapidly
growing over the last decade. Takabayasi [1] derived and
analyzed the quantum hydrodynamic equations for a sin-
gle spin-1/2 particle. The effects of electron spin on the
plasma dynamics were first studied by Kuz’menkov at.
al, [2, 3] in 2001. These authors have developed a method
of explicit derivation of many-particle quantum hydrody-
namic (QHD) equations. These equations were truncated
to consist of the continuity equation, the Euler equa-
tion, the energy balance equation, the magnetic moment
evolution equation for spin-1/2 quantum plasmas. The
starting point of these derivation was the many-particle
Pauli equation. These set of equations contain the ef-
fects of the spin-spin exchange interactions and Coulomb
exchange interactions. Another form of derivation was
recently suggested in Ref. [4]. A simplified form of QHD
equations were considered in Refs. [5, 6].

The method of many particle QHDs was applied to
study the eigenwave problem for spin-1/2 electron-ion
plasmas with an account of the ion motion [7]. The
dispersion relations of electrostatic and electromagnetic
waves has been studied and found that the spin-plasma
waves (found for electrons in Ref. [8]) exist in the vicinity
of electron and ion cyclotron frequencies in the spectrum
of waves propagating perpendicular to the external mag-
netic field, and the dispersion relation for self-consistent
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spin waves with a linear spectrum is also obtained in
Ref. [7]. Further applications of the method of many
particle QHDs have been given in Refs. [9, 10] which
predicts a mechanism of instabilities which arises due to
the interaction of neutron beam with electron-ion magne-
tized spin-1/2 quantum plasma, including instability of
the spin-plasma waves. Further analysis of spin-plasma
waves was presented in Refs. [11, 12]. Considering ki-
netics in the extended phase space suggested by Kagan
in 1961 [13]-[15], where the spin or magnetic moment is
considered along with the coordinate and momentum, the
fine structure of the Berstein modes is found [16]. The
fine structure is demonstrated on the example of the sec-
ond mode. It arises due to the presence of the anomalous
magnetic moment of electrons.

Recently, a set of QHD equations for charged spin-
1/2 particles is derived from the Pauli equation in Ref.
[17]. It forms separate spin evolution QHDs (SSE-QHDs)
Which treats spin-up and spin-down electrons as two dif-
ferent fluids. It is essential if the populations of spin-
up electrons and spin-down electrons in the presence of
external magnetic field is different (n↑ 6= n↓). This dif-
ference of populations of quantum states is responsible
for difference of Fermi pressures of the spin-up and spin-
down electrons. Revealing in a new type of a soundlike
solution called the spin-electron acoustic wave (SEAW)
[17], see some additional discussion below, after formula
(2). Spin current evolution in terms of SSE-QHD was
considered in Ref. [18].

In the framework of the hydrodynamic model and
linear-response-function formalism the effects of spin po-
larization on the Langmuir and zero sound waves is inves-
tigated in Ref. [19]. It was found that spin polarization
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increases the coefficient of spatial dispersion of Langmuir
waves. It has also shown that phase velocity of zero sound
increases with increase of the degree of polarization.

Electron-positron (e-p) plasma is distinct because it
consists of particles which have mass symmetry and anti
charge symmetry. Naturally electron-positron plasmas
are found in many astrophysical environments like early
universe [21], in neutron star magnetosphere [22], [23].
Naturally existence of electron-positron plasma in com-
pact stars has been investigated by applying a simplified
model of a gravitationally collapsing or pulsating baryon
core. It has shown that possible electric processes that
lead to the production of electron-positron pairs in the
boundary of a baryon core and calculate the number den-
sity of electron-positron pairs npair = 1028 cm−3 [24].
The degenerate electron-positron plasmas with ions are
believed to be found in compact astrophysical bodies like
neutron stars and the inner layers of white dwarfs [25–
27].

Physicists also trying to generate e–p plasmas in lab-
oratories. In this context different schemes have been
proposed for the laboratory generation. For exam-
ple, in large-scale conventional accelerators, the possi-
bility of recombining high-quality electron and positron
beams via magnetic chicanes [28]. Pederson et. al, [29]
have been presented plan for the creation and diagno-
sis of electron-positron plasmas in a stellarator, based
on extrapolation of the results from the Columbia Non-
neutral Torus stellarator, as well as recent developments
in positron sources. Interaction of ultrashort laser pulses
with gaseous or solid targets could lead to the genera-
tion of the optically thin e-p plasma with above solid
state densities in the range of (1023 −1028) cm−3[30]. Re-
cently, it has shown that, by using a compact laser-driven
setup, ion-free electron–positron plasmas can be gener-
ated in the laboratory [31]. Their charge neutrality, den-
sity about 1016cm−3 and small divergence finally open
up the possibility of studying electron–positron plasmas
in controlled laboratory experiments.

The wave propagation phenomenon in electron-
positron plasma is different as in usual electron-ion
plasma. Using a two-fluid model and a kinetic model, it
has been observed that many wave phenomena like acous-
tic waves, whistler waves, Faraday rotation, lower hybrid
waves and shear Alfven waves are absent in the nonrela-
tivistic e-p plasmas [32, 33]. Most of applications related
to the plasma wave phenomenon presented in above men-
tioned studies has focused on the electron–ion spin quan-
tum plasmas. However, some applications were presented
for electron-positron plasmas and electron-positron-ion
plasmas for both spin-1/2 quantum plasma and spin-
less quantum plasma. For instance, the set of spin-1/2
QHD equations developed for electron-ion plasmas was
applied for e-p plasmas by Brodin and Marklund [34].
They found new spin depended Alfvénic solitary struc-
tures obeying the Kortewegde Vries equation, where the
nonlinearity is caused by spin effects. Mushtaq et. al [35],
[36] studied the effects of quantum Bohm potential and

spin corrections on the spectrum of magnetosonic waves
in non- relativistic and relativistic degenerate electron-
positron-ion (e-p-i) plasmas, where the relativistic effects
are included in the Fermi pressure only. A hydrodynamic
and kinetic models for spin-1/2 electron-positron quan-
tum plasmas has been developed in Ref. [37] which in-
corporates the Coulomb, spin-spin, Darwin and annihi-
lation interactions. There was concluded that the contri-
butions of the annihilation interactions shifts the eigen-
frequencies of the transverse electromagnetic plane po-
larized waves and transverse spin-plasma waves.
New longitudinal wave in the degenerate e-p-i spinless

quantum plasma has been reported in Refs. [38]–[42]. It
was called positron acoustic wave (PAW). For ultrarel-
ativistic electrons and non-relativistic positrons the dis-
persion relation of PAWs in the intermediate wave range
were obtained [40]. The nonlinear wave structure of large
amplitude PAWs in e-p plasma with electron beam has
been discussed in Ref. [38].
In the present work, we employ the separated spin evo-

lution QHD for the e-p and e-p-i magnetized degenerate
plasmas. At consideration of separate evolution of spin-
up and spin-down electrons and positrons we discuss the
oblique propagation of longitudinal waves. So, in the
present work we calculate the spectrum of SEAWs, PAWs
and predict spin-electron-positron acoustic waves.

II. ANALYTICAL MODEL

The SSE-QHDs developed in Refs. [17], [43] can be
applied to the electron-positron plasmas and electron-
positron-ion plasmas. Therefore, we present the continu-
ity and Euler equations for each spin projection of each
species.
In this paper we consider the evolution of the longitu-

dinal waves in non-relativistic plasmas. Hence the spin
evolution does not affects our results. The Fermi spin
current (the thermal part of the spin current for the de-
generate spin-1/2 fermions) obtained in Ref. [44] is not
considered here. Explicit spin contribution in the spec-
trum of the Langmuir waves arising via the spin-orbit
interaction is found in Ref. [45] (see formula (34) for de-
scribing propagation perpendicular to the external mag-
netic field). In our approximation we need the continuity
and Euler equations for each subspecies.
The continuity equation in the SSE-QHD arises as fol-

lows [17]

∂tnas +∇(nasvas) = (−1)isTaz, (1)

where a = e, p for electrons and positrons correspond-
ingly, s = u, d for the spin-up and spin-down conditions
of particles, nas and vas are the concentration and veloc-
ity field of particles of species a being in the spin state
s, Taz = γ

h̄ (BxSay − BySax) is the z-projection of spin
torque, is: iu = 2, id = 1, with the spin density projec-
tions Sax and Say, each of them simultaneously describe
evolution of the spin-up and spin-down particles of each
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FIG. 1: (Color online) The figure shows the dispersion of
the oblique propagating longitudinal waves in the electron-
positron plasmas. It shows four waves. Upper branch de-
scribes the Langmuir wave. Second line from the bottom,
which looks almost horizontal and depicted by the dashed
line, presents the Trivelpiece-Gould wave. Two other waves
are the lower and upper branches of the spin-electron acoustic
waves. Details of the low frequency branches are shown in the
next figure.

species. Therefore, functions Sax and Say do not bear
subindexes u and d. In this model the z-projection of the
spin density Saz is not an independent variable, it is a
combination of concentrations Saz = nau − nad.
The time evolution of the velocity fields of all species

of particles for each projection of spin vau and vad is
governed by the Euler equations [17]

mnas(∂t + vas∇)vas +∇Pas

= qanas

(
E+

1

c
[vas,B]

)
+ (−1)isγanas∇Bz

+
γa
2
(Sax∇Bx+Say∇By)+(−1)ism(T̃az−vasTaz), (2)

with Pas = (6π2)
2

3n
5

3

ash̄
2/5m, T̃az = γa

h̄ (J(M)axBy −
J(M)ayBx), which is the torque current, where J(M)ax =
(vau + vad)Sax/2, and J(M)ay = (vau + vad)Say/2 are
the convective parts of the spin current tensor. All
species affect each other via the electric field: ∇E =
4π

∑
a,s qasnas and ∇×E = 0.

The SSE-QHDs was applied to two-dimensional elec-
tron gas in plane samples and nanotubes located in ex-
ternal magnetic fields [46]. It was found that in two-
dimensional electron gas Langmuir wave replaced by the
couple of hybrid waves by considering separate spin-up
electrons and spin- down electrons evolution. One of
them is the modified Langmuir wave and the other is
SEAW. Surface SEAWs was considered in Ref. [47]. Lin-
ear interaction between surface SEAW and surface Lang-
muir wave (surface plasmons) is found in Ref. [47]. In

FIG. 2: (Color online) The figure shows the low frequency
part of spectrum of oblique propagating longitudinal waves
in e-p plasmas, where Σ = 0.1.

FIG. 3: (Color online) The figure shows the longitudinal
waves in e-p-i plasmas propagating parallel to the external
magnetic field. Ratio between the electron and positron con-
centrations is chosen to be β = 0.1. The upper branch shows
the Langmuir wave dispersion. Three linear dependencies
present SEAW, PAW and SEPAW.

FIG. 4: (Color online) The figure shows the longitudinal
waves in e-p-i plasmas propagating parallel to the external
magnetic field for β = 0.5 and Σ = 0.1.
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FIG. 5: (Color online) The figure shows the TrivelpieceGould
wave in the e-p-i plasmas for the different ratios between con-
centrations of electrons and positrons. Upper (lower) line is
constructed for β = 0.5 (β = 0.1) and Σ = 0.1.

FIG. 6: (Color online) The figure shows the longitudinal
waves in e-p-i plasmas propagating perpendicular to the ex-
ternal magnetic field for β = 0.1. As in Fig. 3 we have
four branches: Langmuir wave (in other words the upper hy-
brid wave), SEAW, PAW and SEPAW. It shows the frequency
square shift for all branches on Ω2, with the dimensionless cy-
clotron frequency Σ = 0.1.

order to discuss the in-depth analysis of SEAW, which
was predicted by method of SSE-QHDs, method of sepa-
rate spin evolution quantum kinetics, which separately
describes spin-up and spin-down electrons, was devel-
oped in Ref. [48]. By applying this method, the effects
of SSE on the real dispersion and Landau damping of
SEAW were addressed and real and imaginary parts of
spectrums of ion-acoustic waves and zeroth sound have
also been found. Nonlinear SEAWs in presence of the
exchange interaction are considered in Ref. [49], where
the existence of spin-electron acoustic soliton is demon-
strated. Subsequently, in the Ref. [50] it has been demon-
strated that the existence of SEAW leads to an explana-
tion of the mechanism of the electron Cooper pair forma-
tion in the high temperature superconductors as result
of electron-spelnon interaction (spelnon is the quanta of

the SEAW). Moreover, SSE-QHD model applied to study
the oblique propagation of longitudinal waves in mag-
netized spin-1/2 plasmas and found that instead of two
well known waves (Langmuir wave and Trivelpiece–Gould
wave) four wave solutions appeared in separate spin-up
and spin-down degenerate magnetized plasma [43].
We deal with e-p plasmas and e-p-i plasmas located

in an external magnetic field Bext = B0ez and study
the dispersion of waves in these systems. We assume
that electrons, positrons, and ions have non-zero uni-
form equilibrium concentrations. The equilibrium veloc-
ity fields of all species are equal to zero. For e-p plasmas
concentrations of all electrons and all positrons are equal
n0e = n0p. Their spin polarization are equal to each other
as well ηe = ηp, where ηa = 3µBB0/2εFa, with the Bohr

magneton µB and Fermi energy εFa = (3π2n0a)
2

3 h̄2/2m
of species a. Thus, we have n0eu = n0pd and n0ed = n0pu,
where n0eu = n0e(1 − ηe)/2, n0ed = n0e(1 + ηe)/2,
n0pu = n0p(1 + ηp)/2, n0pd = n0p(1 − ηp)/2. For the
e-p-i plasmas we have n0e = n0p + n0i. Consequently,
the equilibrium concentrations of electrons and positrons
are not equal each other. Therefore, their spin polariza-

tion ηa ∼ n
−2/3
0a are not equal each other either. Hence,

parameters n0eu, n0ed, n0pu and n0pd are four indepen-
dent parameters (one can use another set of parameters
n0e, n0p, ηe, ηp). Relations between parameters depend
on the external magnetic field. Next, we consider linear
evolution of perturbations. For the oblique propagating
plane waves k = {kx, 0, kz} we find the following disper-
sion equation:

∑

a=e,p

(
sin2 θ

ω2 − Ω2
+

cos2 θ

ω2

)[
ω2
Lau

1− ( sin2 θ
ω2−Ω2 + cos2 θ

ω2 )U2
auk

2

+
ω2
Lad

1− ( sin2 θ
ω2−Ω2 + cos2 θ

ω2 )U2
adk

2

]
= 1, (3)

where ω2
Lau = 4πe2n0au/m, and ω2

Lad = 4πe2n0ad/m
are the Langmuir frequencies for the spin-up and spin-
down particles of species a, and ω2

La = ω2
Lau+ω2

Lad, Ω =
eB0/mc is the cyclotron frequency, k2 = k2x + k2z , U

2
as =

(6π2n0as)
2

3 h̄2/3m2, θ is the angle between direction of
wave propagation k and the external magnetic field B0 =
B0ez.
For the electron-positron plasmas we have n0e = n0p,

n0eu = n0pd, n0ed = n0pu. Hence, equation (3) in this
regime is an equation of the fourth degree relatively ω2

for the oblique propagation. At the propagation parallel
or perpendicular to the external magnetic field equation
(3) simplifies to equation of the second degree.
In the regime of e-p-i plasmas all four parameters n0eu,

n0ed, n0pu and n0pd are different from each other. As the
result equation (3) is an equation of eight degree rel-
atively ω2 for the oblique propagating waves. In the
regimes of the parallel or perpendicular propagation it
simplifies to the equation of fourth degree relatively ω2.
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III. NUMERICAL ANALYSIS

In our numerical analysis we use a single value of the
electron concentration n0e ≡ n0 = 1027 cm−3. We have
different regimes of the positron concentrations. To mea-
sure the concentrations of positrons in units of the equi-
librium concentration of electrons we introduce parame-
ter β = n0p/n0e. For the electron-positron plasmas we
have β = 1. For the electron-positron-ion plasmas we
have β ∈ (0, 1). We consider two values of β for electron-
positron-ion plasmas. They are β = 0.5 and β = 0.1.
Changing β at the fixed number of electrons n0e we

change the full concentration of light particles in the
system. It changes the effective Langmuir frequency,
which is the frequency of Langmuir wave at k → 0,
ω2
L,eff = 4πe2(n0e + n0p)/m = 4πe2n0e(1 + β)/m. It

creates difference in the behavior of the Langmuir wave
spectrum on different figures. It is well known result
which is not affect the effects caused by the spin polar-
ization considered in this paper.
For presentation of numerical results we use the fol-

lowing dimensionless variables: the dimensionless fre-
quency ξ = ω/ωLe, the dimensionless cyclotron fre-
quency Σ = Ωe/ωLe, and the dimensionless wave vector
κ = vFek/3ωLe.

A. Electron-positron plasmas

We start our analysis with relatively simple case of e-
p plasmas (β = 1). Due to the equal concentrations of
electrons and positrons they have same spin polarization.
Due to difference of the sign of their electric charges the
numbers of spin-up electrons and spin-down positrons are
equal to each other and these subspecies moves in phase.
Same picture we have for spin-down electrons and spin-
up positrons.
At the propagation of waves parallel or perpendicu-

lar to the external field we find two wave solutions: the
Langmuir wave and SEAW, with the properties similar
to the properties of these waves in e-i plasmas described
in [17].
Considering the oblique propagation of longitudinal

waves in e-p plasmas we obtain Fig. 1 showing four
waves. This regime demonstrates existence of two
SEAWs, similarly to the e-i plasmas considered in Ref.
[43]. Hence, Fig. 1 shows the Langmuir wave, the up-
per SEAW, the Trivelpiece-Gould wave, and the lower
SEAW correspondingly, in order of the decrease of their
frequency. Relative behavior of the lower SEAW and
the Trivelpiece-Gould wave is shown in Fig. 2. We see
that they do not have any overlapping. The SEAW has
smaller frequencies for all physically possible wave vec-
tors.
To summarize this subsection we report of existence of

two SEAWs in the e-p plasmas. We also report increase
of the Langmuir wave frequency due to spin polarization
entering spectrum via the Fermi pressure.

B. Electron-positron-ion plasmas

Describing longitudinal waves in e-p-i plasmas, we
start with propagation of waves parallel to the external
magnetic field. Fig. 3 (Fig. 4) shows results for β = 0.1
(β = 0.5).
In the beginning of Sect. III we have described the

mechanism of shift of the Langmuir wave dispersion de-
pendence. Same effect reveals itself in the spectrum of
Trivelpiece-Gould wave, as it is depicted in Fig. 5. First
of all we see presence of four branches in both cases.
Comparing these results with the well-known results and
results found in Refs. [17], [43] we make the following
conclusions. The upper dispersion branch belongs to the
Langmuir wave. One of these linear branches describes
the SEAW as it follows from the previous subsection and
Ref. [17]. One of two other branches is the PAW found
in Refs. [38], [39], which exists due to different concen-
trations of electrons and positrons. In addition to three
earlier found wave solutions we obtain an extra solution.
In the e-p-i plasmas we find four subspecies with differ-

ent spin polarizations (1+ηe)/2, (1−ηe)/2, (1−ηp)/2 =

(1 + ηeβ
− 2

3 )/2, and (1 + ηp)/2 = (1 − ηeβ
− 2

3 )/2 instead
of two existing in e-i or e-p plasmas. Therefore, we have
found reacher spectrum of the spin-electron acoustic ex-
citations.
Since new wave arises in the e-p-i plasmas due to the

account of the SSE we call it the spin-electron-positron
acoustic wave (SEPAW). The spectrum changes at the
change of positron number. As we mention above, it
changes the full number of the light particles. However,
it changes the spin polarization of positrons depending
on the Fermi energy of positrons. Therefore, the change
of β affects the SEPAW.
We calculate spectrum of longitudinal waves propa-

gating perpendicular to the external field as well. We
see that it increases square of all waves on Ω2 as it fol-
lows from Fig. 6. The frequencies of acoustic waves tend
to zero at k → 0 in the regime of parallel propagation.
Being shifted in the regime of the perpendicular propa-
gation we have ω → Ω at k → 0. It is different for the
Langmuir wave. In the regime of parallel propagation we
find ω2 → (1+β)ω2

Le at k → 0, while for the perpendicu-
lar propagation we obtain ω2 → (1+β)ω2

Le+Ω2 at k → 0.
Therefore, the shift of frequency ω(k → 0) is smaller than
Ω. In our case, for Ω = ΣωLe ≈ 0.1ωLe. It is hardly visi-
ble in Fig. 6, since ω ≃ ωLe[

√
(1 + β)+Σ2/2

√
(1 + β)] =

ωLe[1.05 + 0.01].
The upper linear branch in Figs. (3), (4), (6) presents

the SEAW similar to wave in the e-i plasmas. The mid-
dle linear branch presents the PAWs, where spin effects
increases frequency of the PAW. The lower branch is
the SEPAW, which is the SEAW in the subsystem of
positrons. It is located lower than SEAW in the electron
subsystem due to the smallar concentration of positrons
in compare with the concentration of electrons β < 1.
As it is directly follows from the dispersion equation

(3) number of the dispersion branches doubles at the
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oblique propagation. Thus, we have eight longitudinal
waves, which reduces to four branches at the parallel
and perpendicular propagations. It is well-known that
in e-i plasmas at the oblique wave propagation we find
Trivelpiece-Gould and Langmuir waves. The e-i plasmas
with the SSE picture is more interesting. Instead of the
Langmuir wave and the SEAW one can find: the Lang-
muir wave, the Trivelpiece-Gould wave, the lower SEAW
and the upper SEAW. If we forget about spin separa-
tion and consider e-p-i plasmas one can find the PAW
[38], [39] at the parallel or perpendicular propagation.
At the transition to the oblique regime we expect to find
the Langmuir wave, the Trivelpiece-Gould wave, and two
PAWs. To the best of our knowledge the second PAW ex-
isting at the oblique propagation has not been reported in
literature. Hence, in this paper, we report the existence
of this wave.
Main subject of this paper is the e-p-i plasmas with

the account of the SSE. Therefore, we obtain: the Lang-
muir wave, the Trivelpiece-Gould wave, the pair of PAWs,
lower and upper SEAWs, and reported for the first time,
a pair of SEPAWs. The spectrum of all these waves is
shown in Fig. 7 for β = 0.1. We see that the decrease
of the positron concentration causes shifts of dispersion
dependencies of PAWs and SEPAWs into area of larger
frequencies, while the dispersion dependencies of SEAWs
do not show any visible changes. Consequently the dis-
persion dependencies of SEAW, PAW, and SEPAW be-
comes closer. It is hard to distinguish the low frequency
part of the spectrum in Fig. 7. Hence, we present Fig. 8,
where the low frequency part of the spectrum is depicted.
Fig. 8 contains the Trivelpiece-Gould wave and lower
branches of the spin-electron acoustic, positron acoustic,
and spin-electron-positron acoustic waves.

C. Area of applicability of obtained results

Let us consider the following thought experiment in
context of analysis of propagation of waves parallel to
the external magnetic field.
Keeping a fixed number of electrons we can add a num-

ber of positrons and take away same number of ions
to keep the quasi-neutrality of the system. This imag-
inary quasicontinuous process we could find changes in
the spectrum of the SEAW, along with the discussed
above changes of the Langmuir wave spectrum. In addi-
tion to these changes we expect to find two other waves:
the PAW and the SEAW. However, these two waves are
predicted for plasmas with the degenerate electrons and
positrons.
If we consider a temperature regime with the degen-

erate electrons T ≪ TFe, and with the both subspecies
of electrons are degenerate either T ≪ TFeu, TFed (it re-
quires relatively small spin polarization for the finite tem-
peratures T ), we find that positrons, for a small number
of them, a non-degenerate T ∼ TFp or T ≫ TFp. Here
we have used the Fermi temperatures for the electrons

FIG. 7: (Color online) The figure shows the oblique propa-
gating longitudinal waves in the e-p-i plasmas. In this regime
we find eight branches described in the text. Figure is con-
structed for β = 0.1 and Σ = 0.1.

FIG. 8: (Color online) The figure shows details of the low
frequency part of spectrum of the oblique propagating longi-
tudinal waves for β = 0.1 and Σ = 0.1.

TFe, spin-up electrons TFeu, spin-down electrons TFed,
and positrons TFp. In this regime, our model presented
by equation (1) and (2) does not work. A strong col-
lision damping in the system of positrons might destroy
the PAW and SEPAW. Increasing number of positrons to
reach conditions for the degenerate positron gas we enter
area of applicability of our results.
For n0e = 1027 cm−3 and n0p = 0.1n0e = 1026 cm−3,

at B0 = 1010 G, we have ηe = 0.025 and ηp = 0.116.

It gives TFes(1 ± ηe)
2

3TFe ≈ TFe = 3.47 × 107 K and
TFps = {0.23, 0.21}TFe ≈ 0.2TFe = 0.7 × 107 K. Hence,
our results can be used for the plasmas with temperatures
below 106 K. At larger concentrations similar results can
be found for larger temperatures.

IV. CONCLUSION

Separate spin evolution in systems with the partial spin
polarization has revealed itself in existence of new waves.
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Thereby, we have found the SEAWs in the e-p plasmas.
One SEAW exists at the parallel and perpendicular prop-
agation. Two branches exist at the oblique propagation.
Their appearance is related to different Fermi pressure
for the spin-up and spin-down electrons and positrons.
For e-p-i plasmas we have demonstrated existence of pair
of SEAWs, pair of PAWs, and pair of SEPAWs along
with the Langmuir and Trivelpiece–Gould waves, at the
oblique propagation. Three of them have been found for
the first time: pair of SEPAWs and second (upper) PAW.
These eight branches reduces to four branches at the par-
allel and perpendicular propagation. These branches are
Langmuir wave, SEAW, PAW and SEPAW. The SEPAW

has been reported for the first time.
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