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ASYMPTOTIC BEHAVIOR OF NONAUTONOMOUS

MONOTONE AND SUBGRADIENT EVOLUTION EQUATIONS

HEDY ATTOUCH, ALEXANDRE CABOT, AND MARC-OLIVIER CZARNECKI

Abstract. In a Hilbert setting H, we study the asymptotic behavior of the
trajectories of nonautonomous evolution equations ẋ(t) +At(x(t)) ∋ 0, where
for each t ≥ 0, At : H ⇒ H denotes a maximal monotone operator. We
provide general conditions guaranteeing the weak ergodic convergence of each
trajectory x(·) to a zero of a limit maximal monotone operator A∞, as the
time variable t tends to +∞. The crucial point is to use the Brézis-Haraux
function, or equivalently the Fitzpatrick function, to express at which rate
the excess of gphA∞ over gphAt tends to zero. This approach gives a sharp
and unifying view on this subject. In the case of operators At = ∂ϕt which
are subdifferentials of closed convex functions ϕt, we show convergence results
for the trajectories. Then, we specialize our results to multiscale evolution
equations, and obtain asymptotic properties of hierarchical minimization, and
selection of viscosity solutions. Illustrations are given in the field of coupled
systems, and partial differential equations.

1. Introduction and notations

Throughout the paper, H is a real Hilbert space which is endowed with the scalar
product 〈·, ·〉 and the norm ‖ · ‖ defined by ‖x‖ =

√
〈x, x〉 for any x ∈ H . We study

the asymptotic behavior of the NonAutonomous Monotone Inclusion

ẋ(t) +At(x(t)) ∋ 0, t ≥ 0, (NAMI)

where for every t ≥ 0, At : H ⇒ H denotes a maximal monotone operator. Follow-
ing Brézis [17, Definition 3.1], we say that x : [0,+∞[→ H is a strong global solution
of (NAMI) if x(·) is locally absolutely continuous on [0,+∞[, and if (NAMI) holds
for almost all t > 0. We take for granted the existence of strong solutions to
(NAMI). The existence of solutions of nonautonomous differential inclusions gov-
erned by time dependent maximal monotone operators is a nontrivial topic. This
issue has been studied extensively in the years 70-80, see Brézis [17], Attouch and
Damlamian [9], Kenmochi [27], and references therein.

We prove the ergodic weak convergence of the trajectories of (NAMI) under
some general condition involving the Brézis-Haraux function associated to the op-
erator At. The Brézis-Haraux function GM : H × H → R ∪ {+∞} associated to
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the maximal monotone operator M was introduced in [19]. It is defined by

GM (x, u) = sup
(y,v)∈gphM

〈x− y, v − u〉,

where gphM denotes the graph of M . The function GM is nonnegative and takes
the zero value on the graph of M . The function GM is connected with the Fitz-
patrick function FM via the formula GM (x, u) = FM (x, u) − 〈x, u〉, for every
(x, u) ∈ H × H . If there exists a maximal monotone operator A∞ : H ⇒ H
such that S∞ = A−1

∞ (0) 6= ∅, and if

∀(z, p) ∈ gphA∞,

∫ +∞

0

GAt
(z, p) dt < +∞,

we show that every strong global solution of (NAMI) converges weakly in average
toward an element of S∞, as t → +∞. As a by-product, we recover the Baillon-
Brézis theorem [13] in the case of an autonomous evolution inclusion. The above
integral condition is well suited for structured problems of the form At = A+β(t)B,
with A, B : H ⇒ H maximal monotone operators, and β(t) a time-dependent
parameter. In this framework, we recover as a particular case a condition due
to Bot-Csetnek [16, Section 2] that guarantees the weak ergodic convergence of
a forward-backward penalty scheme. The Bot-Csetnek condition formulated by
means of the Fitzpatrick function is itself a generalization of a former condition
given by Attouch-Czarnecki [6], see also [7, 8].

The second important part of the paper concerns the study of the asymptotic
behavior of the NonAutonomous subGradient Inclusion

ẋ(t) + ∂ϕt(x(t)) ∋ 0, t ≥ 0, (NAGI)

where for every t ≥ 0, ϕt : H → R∪{+∞} is a closed convex function. Such an evo-
lution inclusion falls into the framework of (NAMI) since the operator ∂ϕt : H ⇒ H
is maximal monotone. In the context of subdifferential operators, we can obtain
convergence of the trajectories instead of ergodic convergence. If we assume that
the filtered family (ϕt)t≥0 is nonincreasing with respect to t, then we easily show
that the potential energy function t 7→ ϕt(x(t)) decreases toward its infimum as
t → +∞. By using the Opial lemma along with a suitable summability condition,
we deduce the weak convergence of the trajectories, see Theorem 3.1. When no
monotonicity assumption is made on the family (ϕt)t≥0, it may be tricky to prove
that limt→+∞ ϕt(x(t)) exists. The reader is referred to [26], where ad hoc con-
ditions are given in order to control the variations in time of the family (ϕt)t≥0.
Weak convergence of the trajectories is then obtained via energetical arguments. In
the present paper, we propose an alternative approach, based on the study of the
distance from the trajectory to the optimal set1 S∞. The argument follows from
an extension of a result due to Baillon-Cominetti [12] in a finite dimensional frame-
work. Under a suitable summability assumption, we derive the weak convergence
of every trajectory of (NAGI) toward a point of the optimal set S∞, see Theorem
3.2.

A particular attention is devoted to the case ϕt = Φ + β(t)Ψ, where Φ, Ψ :
H → R∪ {+∞} are closed convex functions, and β(t) is a positive time-dependent

1The optimal set S∞ is the set of minimizers (supposed to be nonempty) of the function ϕ∞,
that is obtained as the limit of ϕt as t → +∞ (in a sense to be precised).
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parameter. This corresponds to the situation of coupled (sub)gradients with mul-
tiscale aspects. If β(t) → +∞, and if the set C = argminΨ is nonempty, the orbits
of the Multiscale Asymptotic Gradient dynamics, studied in [6],

ẋ(t) + ∂Φ(x(t)) + β(t)∂Ψ(x(t)) ∋ 0 (MAG)

tend to minimize the function Φ over the set argminΨ, thus leading to a hierarchical
minimization process. The problem of convergence as t → +∞ depends on the
behavior as ε → 0 of the quantity ω(ε) defined by

ω(ε) = inf
H

((
Ψ− inf

H
Ψ
)
+ ε

(
Φ− inf

C
Φ
))

.

The key condition that implies weak convergence of the trajectories of (MAG) is
the following ∫ +∞

0

β(t) |ω(1/β(t))| dt < +∞.

The map ω(·) was introduced by Cabot [22] in the framework of a diagonal proximal
point algorithm involving multiscale aspects. The behavior of the map ω(·) was
used later by Alvarez-Cabot [1] to find asymptotic selection properties of viscosity
equilibria for semilinear evolution equations. By resorting to the duality theory,
we show that the quantity |ω(ε)| is majorized by an expression depending only on
the function Ψ. More precisely, there exists p ∈ H in the range of the normal cone
operator NC : H ⇒ H , such that2

|ω(ε)| ≤ Ψ∗(εp) + min
H

Ψ− σC(εp),

for every ε ≥ 0. Assuming that minH Ψ = 0, we deduce that the above summability
condition is satisfied as soon as

∫ +∞

0

β(t)

[
Ψ∗

(
p

β(t)

)
− σC

(
p

β(t)

)]
dt < +∞,

for every vector p in the range ofNC . This is precisely the condition due to Attouch-
Czarnecki [6] in order to ensure weak convergence of the trajectories of (MAG).
When the function Ψ satisfies the quadratic conditioning property Ψ ≥ a d2(·, C)

for some a > 0, the above assumption is fulfilled if
∫ +∞

0
(1/β(t)) dt < +∞.

Each of the above mentioned convergence results relies on a summability condi-
tion with respect to some suitable quantity. The summability condition expresses
that the integrand tends to zero sufficiently fast. Therefore the conditions stated
above quantify the fact that the operators At (resp. functions ϕt) tend sufficiently
fast toward their limit A∞ (resp. ϕ∞).

The problem of trajectory convergence toward a particular viscosity solution
naturally arises when the operators At (resp. functions ϕt) slowly tend toward
their limit. We give an answer to this important issue in two cases:

i) A first answer is given for a family (ϕt)t≥0 of closed convex functions by using
a technique of central path. For every t ≥ 0, we assume that the function ϕt has a
strong minimum ξ(t) ∈ H , i.e., for all x ∈ H

ϕt(x) ≥ ϕt(ξ(t)) + α(t) ‖x − ξ(t)‖2, for some α(t) > 0.

2The functions Ψ∗ and σC denote respectively the Fenchel conjugate of Ψ and the support
function of C.
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Under the slow condition
∫ +∞

0
α(t) dt = +∞, we show that any solution x(·) of

(NAGI) satisfies limt→+∞ ‖x(t)− ξ(t)‖ = 0, thus it is attracted toward the optimal
path ξ(·). It ensues that the trajectory x(.) strongly converges if and only if the
optimal path has a limit as t → +∞, and in this case the limits are equal. The
phenomenon of attraction toward the central path was brought to light in [5], under
a strong convexity property.

ii) A second answer is given in the case of the multiscaled evolution system

ẋ(t) + ∂Φ(x(t)) + ε(t) ∂Ψ(x(t)) ∋ 0, (MAGε)

where ε : R+ → R
∗
+ is a slowly vanishing viscosity coefficient, i.e., limt→+∞ ε(t) = 0

and
∫ +∞

0
ε(t) dt = +∞. By reversing the roles of the functions Φ and Ψ, and by

using a suitable time rescaling, which allows to pass from β(t) → +∞ to ε(t) → 0,
we show the convergence of the trajectories of (MAGε) to particular solutions. As
an important special case, if the set argminCΨ is a singleton {x} for some x ∈ H
(where C = argminΦ), then for any strong global solution x(·) of (MAGε), we have
x(t) → x strongly in H as t → +∞. In the case of the Tikhonov approximation
Ψ(x) = ‖x‖2, we obtain strong convergence to the element of minimal norm. Note
that we do not assume ε(·) to be nonincreasing. Under such general assumption,
this asymptotic selection result for the Tikhonov approximation was first obtained
by Cominetti-Peypouquet-Sorin [23].

The paper is organized as follows. In Section 2, we study the asymptotic be-
havior of the strong global solutions of (NAMI). The main result gives the ergodic
weak convergence of the trajectories under some general condition involving the
Brézis-Haraux function. Section 3 is devoted to the case At = ∂ϕt for a family
(ϕt)t≥0 of closed convex functions. In this framework, we show weak convergence
of the trajectories, thus making more precise the results of Section 2. A special at-
tention is dedicated to the case of structured problems of the form ϕt = Φ+β(t)Ψ,
where Φ, Ψ : H → R ∪ {+∞} are closed convex functions and β(t) is a parameter
tending to infinity as t → +∞. For these problems, a key ingredient consists in
the study of the infimum value associated to the viscosity minimization problem
infH(Ψ + εΦ). Section 4 is devoted to this question, wi! th new results obtained
by using duality arguments. Symetrically, we consider the case ϕt = Φ + ε(t)Ψ,
where ε : R+ → R

∗
+ is a slowly vanishing viscosity coefficient. We complete this

study by considering two other classes of nonautonomous subgradient inclusions,
corresponding respectively to the quasi-autonomous case, and the sweeping process.
Illustrations of our results in the case of coupled gradient systems with multiscale
aspects are given in Section 5.

Notations. For a function f : H → R ∪ {+∞}, the set domf = {x ∈ H : f(x) <
+∞} is called the domain of f . We call f a proper function if domf is a nonempty
set. Let f : H → R ∪ {+∞} be a proper convex function. The subdifferential of f
at x ∈ domf is defined by

∂f(x) = {p ∈ H : f(y) ≥ f(x) + 〈p, y − x〉 ∀y ∈ H}.
If the function f is closed and convex, the multivalued operator ∂f : H ⇒ H is
maximal monotone. For a nonempty convex set C ⊂ H , the normal cone to C at
x ∈ C is given by

NC(x) = {p ∈ H : 〈p, y − x〉 ≤ 0 ∀y ∈ C}.
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It coincides with the set ∂δC(x), where δC is the indicator function of C, taking
the value 0 on C, and +∞ elsewhere. The Fenchel conjugate of a function f :
H → R ∪ {+∞} is defined by f∗(p) = supx∈H{〈p, x〉 − f(x)} for every p ∈ H .
The support function of the set C ⊂ H is given by σC(p) = δ∗C(p) = supx∈C〈p, x〉
for every p ∈ H . Given two functions f , g : H → R ∪ {+∞}, we define the
inf-convolution of f and g as follows: for every x ∈ H ,

(f ▽ g)(x) = inf
y∈H

{f(y) + g(x− y)} .

Recall that the equality (f ▽ g)∗ = f∗ + g∗ is always true, while the equality
(f+g)∗ = f∗▽g∗ holds true if f , g are closed convex, and if there exists x0 ∈ domf
such that g is continuous at x0. This last condition is known as the Moreau-
Rockafellar condition. For classical facts on convex analysis, see for example [4, 10,
11, 24, 34, 35].

2. Nonautonomous monotone inclusion

In our approach, the Brézis-Haraux and the Fitzpatrick functions will play a
crucial role in order to capture the asymptotic behaviour of the filtered sequence
of maximal monotone operators (At)t→+∞.

2.1. Graph convergence and convergence of the Brézis-Haraux functions.

A set-valued mapping M from H to H assigns to each x ∈ H a set M(x) ⊂ H ,
hence it is a mapping from H to 2H . Every set-valued mappping M : H → 2H can
be identified with its graph defined by

gphM = {(x, u) ∈ H ×H : u ∈ Mx}.
To emphasize this, we speak of M as a multivalued operator (or multifunction, or
correspondence) and we write M : H ⇒ H . The domain and range of M : H ⇒ H
are taken to be the sets

domM = {x ∈ H : ∃u ∈ H with u ∈ Mx},
ran(M) = {u ∈ H : ∃x ∈ H with u ∈ Mx}.

An operatorM : H ⇒ H is said to be monotone if for any (x, u), (y, v) ∈ gphM , one
has 〈y−x, v−u〉 ≥ 0. It is maximal monotone if there exists no monotone operator
whose graph strictly contains gphM . For classical facts on maximal monotone
operators in Hilbert spaces, see for example [11, 35]. Given a maximal monotone
operator M , the Brézis-Haraux function GM : H ×H → R ∪ {+∞}, introduced in
[19], is defined by

GM (x, u) = sup
(y,v)∈gphM

〈x− y, v − u〉.

Let us show that GM is an exterior penalty function with respect to the graph of
M . By Minty’s theorem, we have the following characterization of (x, u) ∈ gphM

u ∈ Mx ⇔ x+ u ∈ x+Mx

⇔ x = (I +M)−1(x+ u)

⇔ x− (I +M)−1(x+ u) = 0.

Thus, the function

PM (x, u) := ‖x− (I +M)−1(x+ u)‖2



6 HEDY ATTOUCH, ALEXANDRE CABOT, AND MARC-OLIVIER CZARNECKI

is a penalty function with respect to the graph of M . It is nonnegative, Lipschitz
continuous on bounded sets, and PM (x, u) = 0 ⇔ (x, u) ∈ gphM . But PM is
difficult to handle practically because, in general, the computation of the resolvent
is a difficult task. Let us show that the Brézis-Haraux function solves some of these
difficulties. Given arbitrary (x, u) ∈ H × H , by Minty’s theorem, there exists a
unique y ∈ H such that

y +My ∋ x+ u,

which is y = (I + M)−1(x + u). Set v = x + u − y. We have v ∈ My, and
v − u = x− y. Thus

GM (x, u) = sup
(ξ,η)∈gphM

〈x− ξ, η − u〉

≥ 〈x− y, v − u〉
= ‖x− y‖2

= ‖x− (I +M)−1(x + u)‖2 = PM (x, u). (1)

On the other, by monotonicity of M , we immediately have that GM is less or equal
than zero on the graph of M . Thus GM is an exterior penalty function with respect
the graph of M , see also [25, Corollary 3.9]. A major advantage of GM is that it is
more flexible than PM for the practical computation, as we will show later. Another
interesting feature of GM is its close relationship with the convex analysis.
The Fitzpatrick function FM : H ×H → R ∪ {+∞} is defined by

FM (x, u) = sup
(y,v)∈gphM

{〈x, v〉+ 〈y, u〉 − 〈y, v〉}.

The function FM was introduced by Fitzpatrick in [25]. As a supremum of con-
tinuous affine functions, FM is convex and lower semicontinuous with respect to
the couple (x, u). This property makes it an effective tool to address the problems
governed by maximal monotone operators, using methods of convex analysis. It
is the subject of active research, see for example [14, 21, 29, 30, 33, 36, 37]. The
function GM is related to FM by

GM (x, u) = FM (x, u)− 〈x, u〉.
The convergence of nets of maximal monotone operators can be formulated in

terms of the Brézis-Haraux function.

Proposition 2.1. Let {At : H ⇒ H, t ≥ 0} be a family of maximal monotone
operators. Assume that there exists a maximal monotone operator A∞ : H ⇒ H
such that

∀(z, p) ∈ gphA∞, lim
t→+∞

GAt
(z, p) = 0.

Then, (At) converges in the resolvent sense to A∞. Equivalently, (At) graph con-
verges to A∞.

Proof. Take arbitrary y ∈ H . By Minty’s theorem there exists a unique z ∈ H such
that z +A∞z ∋ y. Set p = y− z, we have p ∈ A∞z, and z = (I +A∞)−1y. By (1)

GAt
(z, p) ≥ ‖z − (I +At)

−1(z + p)‖2

= ‖(I + A∞)−1y − (I +At)
−1y‖2. (2)

By assumption, limt→+∞ GAt
(z, p) = 0, which, by (2), implies the convergence

of the resolvents. Recall that, for sequence of maximal monotone operators, the
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convergence of the resolvents is equivalent to the graph convergence, [2, Proposition
3.60]. �

Remark 2.1. The main ingredient in the previous result is the inequality GM ≥ PM ,
that already appears in a paper by Penot & Zalinescu, see [33, Lemma 2.3]. By
using the same inequality, it is shown in [33, Proposition 3.1] that if GAt

converges
to GA∞

in the bounded-Hausdorff sense, then At → A∞ for the bounded-Hausdorff
convergence.

The following example shows that the convergence of the Brézis-Haraux functions
(equivalently, of the Fitzpatrick functions), is a stronger notion of convergence than
the graph convergence.

Take A a general maximal monotone operator, and ε : R+ → H a map such that
limt→+∞ ε(t) = 0. Set At(x) = A(x) + ε(t), with domAt = domA. It is immediate
to verify that At is maximal monotone, and At graph-converges to A as t → +∞.
An elementary computation gives, for any (x, u) ∈ H ×H

GAt
(x, u) = GA(x, u− ε(t)).

Therefore, to obtain the convergence of graphs without convergence of the Brézis-
Haraux functions, it is sufficient to produce a maximal monotone operator A such
that

u 7→ GA(x, u)

is not continuous at a point (x, u) ∈ gphA. Since they differ by a continuous
bilinear term (GA(x, u) = FA(x, u) − 〈x, u〉), it is equivalent to prove the result
for the mapping u 7→ FA(x, u). Let us specialize A ∈ B(H) to be a bounded
linear monotone self-adjoint operator. Let qA : H → R, qA(x) = 1

2 〈x,Ax〉 be
the quadratic form associated to A. By a straight computation using the Fenchel
conjugate, see [11, Example 20.45]

FA(x, u) = 2(qA)
∗
(1
2
u+

1

2
Ax

)
.

As a consequence, it is sufficient to consider A such that (qA)
∗ is not continuous.

This means that A is not invertible (it is only positive semi-definite). For example,
when A = 0, then FA is the indicator function of H × {0}, an extreme situation
where the continuity property of u 7→ FA(x, u) fails to be satisfied. Remark that,
if A ∈ B(H) is strongly monotone, then (qA)

∗ is continuous, and the two notions
of convergence coincide (in that particular case).

2.2. Nonautonomous monotone inclusion: Ergodic convergence. In this
section, we study the asymptotic behavior of the trajectories of

ẋ(t) +At(x(t)) ∋ 0, t ≥ 0. (NAMI)

The trajectory x(·) is a strong global solution of (NAMI) in the sense of Brézis
[17, Definition 3.1], i.e., x : [0,+∞[→ H is absolutely continuous on any bounded
interval [0, T ], and (NAMI) holds for almost every t > 0.

Recall that an absolutely continuous function is differentiable almost everywhere,
and that one can recover the function from its derivative by the usual integration
formula. Uniqueness of the solution for a given Cauchy data is an immediate
consequence of the monotonicity of the operators At. In the sequel, we take for
granted the existence of strong solutions to (NAMI).
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2.2.1. Statement of the ergodic convergence result.

Theorem 2.1. Let {At : H ⇒ H, t ≥ 0} be a family of maximal monotone oper-
ators. Assume that there exists a maximal monotone operator A∞ : H ⇒ H such
that S∞ = A−1

∞ (0) 6= ∅ and

∀(z, p) ∈ gphA∞,

∫ +∞

0

GAt
(z, p) dt < +∞. (Σ1)

Then every strong global solution x(.) of (NAMI) converges weakly in average to
some x∞ ∈ S∞, i.e., as t → +∞,

1

t

∫ t

0

x(s) ds ⇀ x∞.

Remark 2.2. From (2), we deduce that Condition (Σ1) implies

∀y ∈ H,

∫ +∞

0

‖(I +At)
−1y − (I +A∞)−1y‖2 dt < +∞. (3)

Hence, for all y ∈ H

lim inf esst→+∞‖(I +At)
−1y − (I +A∞)−1y‖ = 0, (4)

a property which is directly related to the graph convergence of At to A∞, as
t → +∞ (recall that the graph convergence of a filtered sequence of maximal
monotone operator is equivalent to the pointwise convergence of the resolvents).
The detailed study of this relationship is an interesting subject for further research.
Let us just say that, when H is separable, a thorough inspection of properties (3)
and (4), combined with the non expansive property of the resolvents, is likely to
provide (up to a negligeable set) the graph convergence of At to A∞.
Indeed, it is not necessary to deepen this topological analysis, as for our purpose,
the integral form (Σ1), which is used throughout this paper, is a more convenient
way to express the convergence of At to A∞. It carries more information than the
topological one: it expresses that, in the sense of the Brézis-Haraux functions, the
excess of gphA∞ over gphAt tends to 0 fast enough as t → +∞.

As a special case of Theorem 2.1, we recover Baillon-Brézis theorem [13].

Corollary 2.1. [13] Let A : H ⇒ H be a maximal monotone operator such that
S = A−1(0) 6= ∅. Let x(·) be a strong global solution of

ẋ(t) +A(x(t)) ∋ 0.

Then there exists x∞ ∈ A−1(0) such that 1
t

∫ t

0
x(s) ds ⇀ x∞ weakly in H, as

t → +∞.

Proof. Take At = A for every t ≥ 0, and A∞ = A. Since GA(z, p) = 0 for every
(z, p) ∈ gphA, Condition (Σ1) is verified, and therefore Theorem 2.1 applies. �

2.2.2. Proof of Theorem 2.1. Let us recall the Opial lemma [31], along with an
ergodic version named the Opial-Passty lemma.

Lemma 2.1 (Opial). Let H be a Hilbert space and x : [0,+∞[→ H be a function
such that there exists a nonempty set S ⊂ H which verifies

(i) ∀z ∈ S, limt→+∞ ‖x(t)− z‖ exists.
(ii) ∀tn → +∞ with x(tn) ⇀ x∞ weakly in H, we have x∞ ∈ S.
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Then, x(t) converges weakly as t → +∞ to some element x∞ of S.

For the following ergodic variant of the Opial lemma, the reader is referred to [32].

Lemma 2.2 (Opial-Passty). Let H be a Hilbert space, let S be a nonempty subset

of H and let x : [0,+∞[→ H be a function. For any t > 0 set X(t) = 1
t

∫ t

0
x(s) ds,

and assume that

(i) ∀z ∈ S, limt→+∞ ‖x(t)− z‖ exists.
(ii) ∀tn → +∞ with X(tn) ⇀ X∞ weakly in H, we have X∞ ∈ S.

Then, X(t) converges weakly as t → +∞ to some element X∞ of S.

The proof of Theorem 2.1 relies on the Opial-Passty lemma applied with S∞ =
A−1

∞ (0). Let us first show that for every z ∈ S∞, limt→+∞ ‖x(t) − z‖ exists. Fix
z ∈ S∞ and set h(t) = 1

2‖x(t) − z‖2. Since −ẋ(t) ∈ At(x(t)) for a.e. t ∈ R+, we
have

ḣ(t) = 〈x(t)− z, ẋ(t)〉 ≤ GAt
(z, 0) a.e. on R+.

From this inequality and assumption (Σ1) at the point (z, 0), it follows that ḣ+ ∈
L1(0,+∞). From a classical lemma, this implies that limt→+∞ h(t) exists in R.

Let us now show that every sequential weak cluster point of X(t) = 1
t

∫ t

0 x(s) ds
belongs to S∞. Let (z, p) ∈ gphA∞, and consider again the function h defined by
h(t) = 1

2‖x(t)− z‖2. Since −ẋ(t) ∈ At(x(t)) for a.e. t ∈ R+, we obtain

ḣ(t) + 〈x(t) − z, p〉 = 〈x(t) − z, p+ ẋ(t)〉 ≤ GAt
(z, p) a.e. on R+.

By integrating on [0, t], we find

h(t) +

〈∫ t

0

x(s) ds − tz, p

〉
≤ h(0) +

∫ t

0

GAs
(z, p) ds.

After division by t, and taking into account of h(t) ≥ 0, we have

〈X(t)− z, p〉 ≤ 1

t
h(0) +

1

t

∫ t

0

GAs
(z, p) ds

≤ c

t
with c = h(0) +

∫ +∞

0

GAs
(z, p) ds.

Suppose now that X(tn) ⇀ X∞ as n → +∞ for a sequence tn → +∞. Taking the
limit as n → +∞ in 〈X(tn)− z, p〉 ≤ c/tn, we immediately obtain 〈X∞ − z, p〉 ≤ 0.
Hence we have proved that for every (z, p) ∈ gphA∞,

〈X∞ − z, 0− p〉 ≥ 0.

The maximal monotonicity of A∞ allows us to infer that 0 ∈ A∞(X∞), that is
X∞ ∈ S∞. By Lemma 2.2, we conclude to the weak ergodic convergence of the
trajectories of (NAMI). �

2.3. Coupled operators with multiscale aspects: At = A + β(t)B with

β(t) → +∞. In this section, we specify our general ergodic convergence result
to the case of a structured operator of the form At = A + β(t)B. The parameter
β(t) is assumed to tend to +∞, thus leading to a two-scale problem.

Theorem 2.2. Let A, B : H ⇒ H be two maximal monotone operators such that

the sets C = B−1(0) and (A+NC)
−1

(0) are nonempty. Assume that the operator
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A+NC is maximal monotone. Given a map β : R+ → R
∗
+, assume that the operator

A+ β(t)B is maximal monotone for every t ≥ 0. Suppose additionally that

∀z ∈ C, ∀q ∈ NC(z),

∫ +∞

0

β(t)GB

(
z,

q

β(t)

)
dt < +∞. (Σ2)

Then every strong global solution x(.) of the Multiscale Asymptotic Monotone
Inclusion

ẋ(t) +A(x(t)) + β(t)B(x(t)) ∋ 0, (MAMI)

converges weakly in average to some x∞ ∈ (A+NC)
−1(0), i.e., as t → +∞,

1

t

∫ t

0

x(s) ds ⇀ x∞.

Remark 2.3. A particularly (new) interesting situation covered by the above theo-
rem is the case β(t) → +∞. Indeed, a quick formal inspection of the formula (Σ2)
shows that, if β(t) tends to a finite value, then B = NC , a situation where the
classical ergodic convergence theorem of Baillon-Brézis can be applied.

Remark 2.4. Denoting by FB the Fitzpatrick function associated to the operator B,
we have for every q ∈ NC(z),

GB

(
z,

q

β(t)

)
= FB

(
z,

q

β(t)

)
−
〈
z,

q

β(t)

〉

= FB

(
z,

q

β(t)

)
− σC

(
q

β(t)

)
.

The last equality is an immediate consequence of the Fenchel extremality relation
δC(z) + σC(q) = 〈z, q〉. It ensues that condition (Σ2) can be equivalently rewritten
as

∀z ∈ C, ∀q ∈ NC(z),

∫ +∞

0

β(t)

[
FB

(
z,

q

β(t)

)
− σC

(
q

β(t)

)]
dt < +∞. (Σ3)

This last condition was recently introduced in the discrete setting by Bot & Csetnek
[16] as a generalization of Condition (Σ4) below and its discrete counterpart.

As a consequence of Theorem 2.2, we recover the ergodic convergence result of
Attouch & Czarnecki [6].

Corollary 2.2. [6, Theorem 2.1, (i)] Let A : H ⇒ H be a maximal monotone
operator, let Ψ : H → R+ ∪ {+∞} be a closed convex proper function, such that C
= argminΨ = Ψ−1(0) 6= ∅, let β : R+ → R+ be a measurable function. Assume that
A + NC is a maximal monotone operator and S := (A +NC)

−1(0) is non empty,
and

∀p ∈ ran(NC),

∫ +∞

0

β(t)

[
Ψ∗

(
p

β(t)

)
− σC

(
p

β(t)

)]
dt < +∞. (Σ4)

Then, for every strong global solution trajectory x(.) of the differential inclusion

ẋ(t) +A(x(t)) + β(t) ∂Ψ(x(t)) ∋ 0 (MAG)

there exists x∞ ∈ S such that

w − lim
t→+∞

1

t

∫ t

0

x(s)ds = x∞.
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Indeed, apply Theorem 2.2 with B = ∂Ψ. Recalling that

F∂Ψ

(
z,

q

β(t)

)
≤ Ψ(z) + Ψ∗

(
q

β(t)

)
= Ψ∗

(
q

β(t)

)
,

Condition (Σ4) implies Condition (Σ3), which is in turn equivalent to (Σ2). Hence
all the assumptions of Theorem 2.2 are fullfilled.

2.3.1. Proof of Theorem 2.2. Let us start with the following preliminary result.

Lemma 2.3. Let A, B : H ⇒ H be two monotone operators. Then the following
properties hold

(i) For every (z, p) ∈ H ×H,

GA+B(z, p) ≤ inf
q∈H

GA(z, q) +GB(z, p− q).

(ii) For every (z, p) ∈ H ×H and every λ > 0, GλA(z, p) = λGA(z, p/λ).

(iii) For every z ∈ domA and p ∈ NdomA(z), GA(z, p) ≤ GA(z, 0).

Proof. (i) Given (z, p) ∈ H ×H , the following inequality holds true

FA+B(z, p) ≤ inf
q∈H

{FA(z, q) + FB(z, p− q)} ,

see for example [14, Proposition 4.2]. By subtracting 〈z, p〉 to each member, we
immediately find the announced inequality.
(ii) Let (z, p) ∈ H ×H and λ > 0. From the definition of GλA(z, p), we have

GλA(z, p) = sup
(y,q)∈gph (λA)

〈z − y, q − p〉

= λ sup
(y,q′)∈gphA

〈z − y, q′ − p/λ〉 = λGA(z, p/λ).

(iii) Fix z ∈ domA and p ∈ NdomA(z). For every (y, q) ∈ gphA, we have

〈z − y, q − p〉 = 〈z − y, q〉+ 〈y − z, p〉
≤ 〈z − y, q〉 since p ∈ NdomA(z) and y ∈ domA

≤ GA(z, 0).

Taking the supremum over (y, q) ∈ gphA, we deduce that GA(z, p) ≤ GA(z, 0). �

Let us now come back to the proof of Theorem 2.2. The main point consists in
checking that the assumption (Σ1) of Theorem 2.1 is verified with At = A+ β(t)B
and A∞ = A+NC . Let (z, p) ∈ gph(A+NC). Since p ∈ Az +NC(z), there exists
q ∈ NC(z) such that p− q ∈ Az. Observe that

GA+β(t)B(z, p) ≤ GA(z, p− q) +Gβ(t)B(z, q) in view of Lemma 2.3(i),
= Gβ(t)B(z, q) since (z, p− q) ∈ gphA,
= β(t)GB(z, q/β(t)) in view of Lemma 2.3(ii).

The assumption
∫ +∞

0
β(t)GB (z, q/β(t)) dt < +∞ then implies that

∫ +∞

0

GA+β(t)B(z, p) dt < +∞.

It suffices now to apply Theorem 2.1.
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2.4. Coupled operators with multiscale aspects: At = A + ε(t)B with

ε(t) → 0. By reversing the roles of the operators A and B and by using a suitable
time rescaling, we obtain the following consequence of Theorem 2.2.

Corollary 2.3. Let A, B : H ⇒ H be two maximal monotone operators such
that the sets D = A−1(0) and (B + ND)−1(0) are nonempty. Assume that the
operator B +ND is maximal monotone. Given a map ε : R+ → R

∗
+, assume that

the operator A+ ε(t)B is maximal monotone for every t ≥ 0. Suppose additionally

that
∫ +∞

0 ε(t) dt = +∞ and that

∀z ∈ D, ∀q ∈ ND(z),

∫ +∞

0

GA (z, ε(t) q) dt < +∞. (5)

Then for every strong global solution x(.) of

ẋ(t) +A(x(t)) + ε(t)B(x(t)) ∋ 0, (MAMIε)

there exists x∞ ∈ (B +ND)−1(0) such that

1

t

∫ t

0

x(s) ds ⇀ x∞ weakly in H, as t → +∞.

Proof. It is done by a time rescaling, following [6]. Let us rewrite the dynamical
system (MAMIε) as

1

ε(t)
ẋ(t) +B(x(t)) +

1

ε(t)
A(x(t)) ∋ 0.

Then use the time rescaling s = σ(t) =
∫ t

0
ε(u) du. Define y(.) and α(.) by y(s) =

x(σ−1(s)) and α(s) = 1/ε(σ−1(s)). We then have ẏ(s) = ẋ(t)/ε(t), so that y(.)
satisfies the following differential inclusion

ẏ(s) +B(y(s)) + α(s)A(y(s)) ∋ 0.

In terms of the variable s, condition (5) can be translated as

∀z ∈ D, ∀q ∈ ND(z),

∫ +∞

0

α(s)GA

(
z,

q

α(s)

)
ds < +∞.

The assumptions of Theorem 2.2 are satisfied, after reversing the roles of the oper-
ators A and B. The conclusion follows immediately. �

Condition
∫ +∞

0 ε(t) dt = +∞ expresses that ε(t) does not tend too fast toward
zero as t → +∞. On the other hand, condition (5) prevents the parameter ε(t)
from converging very slowly toward zero. Hence the conditions in Corollary 2.3
imply a moderately slow convergence ε(t) → 0 as t → +∞. Let us now analyze the

case
∫ +∞

0
ε(t) dt < +∞ corresponding to a fast decaying parameter.

Corollary 2.4. Let A, B : H ⇒ H be two maximal monotone operators such
that A + NdomB is maximal monotone and (A +NdomB)

−1(0) 6= ∅. Given a map
ε : R+ → R+, assume that the operator A+ ε(t)B is maximal monotone for every

t ≥ 0. Suppose additionally that
∫ +∞

0
ε(t) dt < +∞ and that GB(z, 0) < +∞ for

every z ∈ domA ∩ domB. Then for every strong global solution x(.) of

ẋ(t) +A(x(t)) + ε(t)B(x(t)) ∋ 0, (MAMIε)

there exists x∞ ∈ (A+NdomB)
−1(0) such that 1

t

∫ t

0
x(s) ds ⇀ x∞ weakly in H,

as t → +∞.
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Proof. The main point consists in checking that the assumption (Σ1) of Theo-
rem 2.1 is verified with At = A + ε(t)B and A∞ = A + NdomB . Let (z, p) ∈
gph(A+ NdomB). Since p ∈ Az+NdomB(z), there exists q ∈ NdomB(z) such that
p− q ∈ Az. By arguing as in the proof of Theorem 2.2, we find

GA+ε(t)B(z, p) ≤ ε(t)GB(z, q/ε(t)).

Recalling that q ∈ NdomB(z), we deduce from Lemma 2.3(iii) that GB(z, q/ε(t)) ≤
GB(z, 0) and hence

GA+ε(t)B(z, p) ≤ ε(t)GB(z, 0).

Since
∫ +∞

0 ε(t) dt < +∞ and GB (z, 0) < +∞ by assumption, this implies that∫ +∞

0 GA+ε(t)B(z, p) dt < +∞. It suffices now to apply Theorem 2.1. �

Remark 2.5. Assume that B = ∂Ψ for a lower semicontinuous convex function
Ψ : H → R ∪ {+∞}. Recalling that

G∂Ψ (z, 0) = F∂Ψ (z, 0) ≤ Ψ(z) + Ψ∗(0) = Ψ(z)− inf
H

Ψ,

we deduce that G∂Ψ (z, 0) < +∞ if z ∈ domΨ and infH Ψ > −∞.

3. Nonautonomous subgradient inclusion

Let us consider the following nonautonomous subgradient inclusion

ẋ(t) + ∂ϕt(x(t)) ∋ 0, t ≥ 0, (NAGI)

where for every t ≥ 0, ϕt : H → R ∪ {+∞} is a closed convex proper function. As
in Section 2, a map x : [0,+∞[→ H is said to be a strong global solution of (NAGI)
if it is absolutely continuous on any bounded interval [0, T ], and if (NAGI) holds
for almost every t > 0. Equation (NAGI) is a particular case of (NAMI), since
the operator At = ∂ϕt is maximal monotone for every t ≥ 0. In the framework of
subdifferential operators, we can make precise the convergence results of Section 2,
and show the convergence (instead of the ergodic convergence) of the trajectories.

In the autonomous case, ϕt ≡ ϕ for every t ≥ 0, and (NAGI) reduces to the
steepest descent system

ẋ(t) + ∂ϕ(x(t)) ∋ 0, t ≥ 0. (SD)

Bruck [20, Theorem 4] gives the weak convergence of the trajectories of (SD), when
argminϕ 6= ∅. It can be derived directly from the Baillon-Brézis theorem [13]. The
proof relies on a global estimate of the time derivative, see [18, Theorem 5], by
using the equality

x(t)− 1

t

∫ t

0

x(s) ds =
1

t

∫ t

0

ẋ(s) s ds.

If one obtains the same estimate limt→+∞ tẋ(t) = 0 in the present case, the weak
convergence of the trajectories of (NAGI) is a direct consequence of the weak er-
godic convergence of the trajectories of (NAMI). However, the extension of the
energetical argument to the nonautonomous case, leading to the estimate, remains
an open question in our general setting. So we provide specific results and proofs
in the subgradient case.
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3.1. Case of a nonincreasing family (ϕt)t≥0: energetical approach. In this
subsection, we assume a monotonicity property on the filtered family (ϕt)t≥0. This
allows us to use energetical arguments in order to derive convergence of the trajec-
tories of (NAGI).

Theorem 3.1. Let {ϕt; t ≥ 0} be a family of closed convex proper functions from
H to R ∪ {+∞}. Assume that ϕt ≤ ϕs for every s, t ≥ 0 such that s ≤ t. Let us
set ϕ∞ = cl(inft≥0 ϕt). Let x(.) be a strong global solution of (NAGI) such that
the function t 7→ ϕt(x(t)) is locally absolutely continuous. Then we have

(i) The function t 7→ ϕt(x(t)) is nonincreasing, and lim
t→+∞

ϕt(x(t)) = inf
H

ϕ∞.

Additionally assume that inf
H

ϕ∞ > −∞. Then

(ii)

∫ +∞

0

‖ẋ(t)‖2 dt < +∞.

Assume moreover that S∞ = argminϕ∞ 6= ∅, and that

∀z ∈ S∞,

∫ +∞

0

G∂ϕt
(z, 0) dt < +∞. (Σ5)

Then

(iii) there exists x∞ ∈ S∞ such that w − limt→+∞ x(t) = x∞.

Proof. (i) Let t > 0 be such that the derivatives ẋ(t) and d
dt
ϕt(x(t)) exist at t and

such that the inclusion −ẋ(t) ∈ ∂ϕt(x(t)) holds true. The subdifferential inequality
yields for every τ ∈]0, t[

ϕt(x(t− τ)) ≥ ϕt(x(t)) + 〈−ẋ(t), x(t − τ)− x(t)〉.
Recalling that the family {ϕt; t ≥ 0} is nonincreasing, we have ϕt−τ (x(t − τ)) ≥
ϕt(x(t − τ)), thus implying that

ϕt−τ (x(t− τ)) − ϕt(x(t)) ≥ 〈−ẋ(t), x(t− τ) − x(t)〉.
Dividing by τ and taking the limit as τ → 0, we find

− d

dt
ϕt(x(t)) ≥ ‖ẋ(t)‖2 ≥ 0. (6)

Since this is true for almost every t > 0, the map t 7→ ϕt(x(t)) is nonincreasing,
and hence converges toward some l ∈ R ∪ {−∞}. Using that ϕt ≥ ϕ∞ for every
t ≥ 0, we obtain

l = lim
t→+∞

ϕt(x(t)) ≥ inf
H

ϕ∞. (7)

Let us now fix z ∈ H , and define the auxiliary function h : R+ → R+ by h(t) =
1
2‖x(t) − z‖2. By differentiating, and using the subdifferential inequality, we find
for almost every t ≥ 0

ḣ(t) = 〈x(t) − z, ẋ(t)〉 (8)

≤ ϕt(z)− ϕt(x(t)).

Integrating this inequality, we get
∫ t

0

[ϕs(z)− ϕs(x(s))] ds ≥ h(t)− h(0) ≥ −h(0).

We immediately deduce that lims→+∞ ϕs(z) ≥ lims→+∞ ϕs(x(s)) = l. Since this is
true for every z ∈ H , the function infs≥0 ϕs = lims→+∞ ϕs is minorized by l. It
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ensues that the function ϕ∞ = cl (infs≥0 ϕs) is also minorized by l. In view of (7),
we conclude that l = infH ϕ∞.
(ii) Integrating the first inequality of (6), we find for every t ≥ 0

∫ t

0

‖ẋ(s)‖2 ds ≤ ϕ0(x(0)) − ϕt(x(t)).

Taking the limit as t → +∞, we deduce from (i) that
∫ +∞

0

‖ẋ(s)‖2 ds ≤ ϕ0(x(0)) − inf
H

ϕ∞

< +∞ since inf
H

ϕ∞ > −∞ by assumption.

(iii) The proof of the weak convergence x(t) ⇀ x∞ is based on the Opial lemma.
Fix z ∈ S∞ and consider the function h defined above by h(t) = 1

2‖x(t) − z‖2.
Coming back to equality (8) and recalling that −ẋ(t) ∈ ∂ϕt(x(t)) for almost every
t ≥ 0, we find

ḣ(t) ≤ G∂ϕt
(z, 0) a.e. on R+,

where G∂ϕt
is the Brézis-Haraux function associated to the operator ∂ϕt. It follows

from this inequality and assumption (Σ5) that ḣ+ ∈ L1(0,+∞). From a classical
lemma, this implies that limt→+∞ h(t) exists in R. It suffices now to prove that
every sequential weak cluster point of x(.) belongs to S∞. Let x∞ ∈ H and let
tn → +∞ a sequence such that x(tn) ⇀ x∞ as n → +∞. Since the family (ϕt)t≥0

is nonincreasing, it Mosco converges toward ϕ∞ = cl (infs≥0 ϕs), see [2, Theorem
3.20]. It ensues that

ϕ∞(x∞) ≤ lim inf
n→+∞

ϕtn(x(tn))

= lim inf
t→+∞

ϕt(x(t)) = min
H

ϕ∞ in view of (i).

We conclude that x∞ ∈ S∞. It suffices then to apply the Opial lemma. �

Remark 3.1. Condition (Σ5) is nothing else as condition (Σ1) applied with At = ∂ϕt

and p = 0. Recalling that

G∂ϕt
(z, 0) = F∂ϕt

(z, 0) ≤ ϕt(z) + ϕ∗
t (0) = ϕt(z)− inf

H
ϕt,

we deduce that assumption (Σ5) is implied by

∀z ∈ S∞,

∫ +∞

0

[
ϕt(z)− inf

H
ϕt

]
dt < +∞. (Σ6)

Remark 3.2. Assumptions (Σ5) and (Σ6) seem to be new in the study of the asymp-
totic behavior of the dynamical system (NAGI). Furuya, Miyashiba & Kenmochi
obtained the weak convergence of the trajectories of (NAGI) under an alternative
condition, see [26, Theorem 2]. Their condition also requires some quantity to be
summable, but it differs significantly from (Σ5) and (Σ6). In the framework of the
diagonal proximal point method, Lemaire used a discrete anologue of (Σ6) to derive
the weak convergence of the iterates, see [28, Section 4].

Corollary 3.1. Let Ψ, Φ : H → R ∪ {+∞} be closed convex functions such that
domΨ ∩ domΦ 6= ∅. Assume that Ψ is nonnegative. Let ε : R+ → R+ be a
nonincreasing map such that limt→+∞ ε(t) = 0. Let x(.) be a strong global solution
of

ẋ(t) + ∂Φ(x(t)) + ε(t) ∂Ψ(x(t)) ∋ 0, (MAGε)
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such that the function t 7→ Φ(x(t)) + ε(t)Ψ(x(t)) is locally absolutely continuous.
Then we have

(i) The function t 7→ Φ(x(t)) + ε(t)Ψ(x(t)) is nonincreasing and tends toward
infH(Φ + δdomΨ) as t → +∞.

Additionally assume that infH(Φ + δdomΨ) > −∞, then

(ii)
∫ +∞

0 ‖ẋ(t)‖2 dt < +∞.

Assume moreover that the set S∞ = argmin(cl(Φ + δdomΨ)) is not empty and

included in domΨ. If
∫ +∞

0 ε(t) dt < +∞, then

(iii) there exists x∞ ∈ S∞ such that w − limt→+∞ x(t) = x∞.

Proof. Let us check that the assumptions of Theorem 3.1 are satisfied for ϕt =
Φ + ε(t)Ψ. Since the map ε converges nonincreasingly toward 0, and since Ψ is
nonnegative, the function t 7→ ϕt is nonincreasing, and tends toward Φ+ δdomΨ as
t → +∞. We denote by ϕ∞ = cl(Φ + δdomΨ) the lower semicontinuous regular-
ization of the function Φ + δdomΨ. Observing that infH ϕ∞ = infH(Φ + δdomΨ),
item (i) (resp. (ii)) is a direct consequence of Theorem 3.1(i) (resp. (ii)). Let
us now check that condition (Σ6) is satisfied, thus implying the weaker condition
(Σ5). Given z ∈ S∞, we have

ϕt(z) = Φ(z) + ε(t)Ψ(z) ≤ ϕ∞(z) + ε(t)Ψ(z) = min
H

ϕ∞ + ε(t)Ψ(z), (9)

the inequality Φ ≤ ϕ∞ follows from the inequality δdomΨ ≥ 0 and the closedness of
Φ. On the other hand, we have ϕ∞ ≤ ϕt, and hence minH ϕ∞ ≤ infH ϕt for every
t ≥ 0. In view of (9), we deduce that

ϕt(z)− inf
H

ϕt ≤ ε(t)Ψ(z).

Since S∞ ⊂ domΨ, we have Ψ(z) < +∞, and condition (Σ6) is then an immediate

consequence of the assumption
∫ +∞

0 ε(t) dt < +∞. Item (iii) then follows directly
from Theorem 3.1(iii). �

3.2. A general result of convergence relying on the study of the distance

to the optimal set S∞. As in the previous subsection, x(·) denotes a strong
global solution of the evolution inclusion (NAGI). We now study the distance of
the solution x(t) to the optimal set S∞, and we show that it vanishes as t → +∞.
This is in fact an extension of a result due to Baillon-Cominetti [12] in a finite
dimensional framework. To obtain such an extension in a general Hilbert space,
one has to assume some inf-compactness property on the functions ϕt. Let us recall
that a function f : H → R∪{−∞,+∞} is said to be inf-compact if, for every l ∈ R

the lower level set {x ∈ H : f(x) ≤ l} is relatively compact in H . A weaker notion
consists in requiring that the function f + δB(0,R) is inf-compact3 for every R > 0.

Here B(0, R) denotes the closed ball of radius R centered at 0. This condition
amounts to assuming that for every R > 0 and l ∈ R the lower level set

{x ∈ H : ‖x‖ ≤ R, f(x) ≤ l} is relatively compact in H. (10)

If H is finite-dimensional, the ball {x ∈ H : ‖x‖ ≤ R} is compact, and the inf-
compactness property above is satisfied for every function f : H → R∪{−∞,+∞}.

3We use here the convention (−∞) + (+∞) = +∞.
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Theorem 3.2. Let {ϕt; t ≥ 0} be a family of closed convex functions from H to
R ∪ {+∞}. Assume that 4

(H1) There exists a closed proper convex function ϕ∞ : H → R ∪ {+∞} such
that the set S∞ = argminϕ∞ is nonempty and bounded.

(H2) ϕ∞(x∞) ≤ lim infk→+∞ ϕtk(xk) for all convergent sequences xk → x∞ and
tk → +∞.

(H3) limt→+∞ v∞(t) = minH ϕ∞, where v∞(t) = supz∈S∞
ϕt(z).

(H4) For t large enough, all functions ϕt are uniformly minorized by a function
f : H → R ∪ {−∞,+∞} satisfying5 the inf-compactness property (10).

Let x(.) be a strong global solution of (NAGI). Then we have

(i) limt→+∞ d(x(t), S∞) = 0.
(ii) If we assume moreover that

∀z ∈ S∞,

∫ +∞

0

G∂ϕt
(z, 0) dt < +∞, (Σ5)

then there exists x∞ ∈ S∞ such that x(t) ⇀ x∞ weakly in H as t → +∞.

Recall that Assumption (Σ5) is satisfied under the stronger condition

∀z ∈ S∞,

∫ +∞

0

[
ϕt(z)− inf

H
ϕt

]
dt < +∞, (Σ6)

see Remark 3.1.

Proof. (i) In a finite dimensional space, Baillon & Cominetti proved that

lim
t→+∞

d(x(t), S∞) = 0

under (H1)-(H2)-(H3), see [12, Theorem 2.1]. An immediate adaptation of their
arguments shows that this property still holds true in a Hilbert space, under the
additional assumption (H4).
(ii) The proof of the weak convergence x(t) ⇀ x∞ is based on the Opial lemma. To
show that limt→+∞ ‖x(t)−z‖ exists for every z ∈ S∞, we use the map h defined by
h(t) = 1

2‖x(t)−z‖2 and we proceed as in the proof of Theorem 3.1(iii). The second
point consists in proving that every weak limit point of x(.) belongs to S∞. In fact,
this is an immediate consequence of (i) and of the weak lower semicontinuity of the
convex continuous function d(., S∞). �

3.3. Coupled gradients with multiscale aspects. Let us now consider the case
ϕt = Φ + β(t)Ψ, where the functions Φ, Ψ : H → R ∪ {+∞} are closed convex
and the parameter β(t) tends to +∞. The trajectories of the multiscale gradient
dynamics

ẋ(t) + ∂Φ(x(t)) + β(t) ∂Ψ(x(t)) ∋ 0 (MAG)

tend to minimize the function Φ over the set C = argminΨ. If the parameter
β(t) tends rather fast to +∞, then any trajectory weakly converges to a point of
argminCΦ. This is the subject of the next statement, for which we define, following
[22], the map ω : R+ → R ∪ {−∞}: for every ε ≥ 0,

ω(ε) = inf
H
(Ψ + εΦ). (11)

4For the convenience of the reader, and coherence with the literature, we keep the name of the
assumptions (H1)-(H2)-(H3) as in [12].

5If H = R
n, assumption (H4) is automatically satisfied (take f ≡ −∞).
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Corollary 3.2 below shows that the map ω plays a crucial role in the asymptotic
study of the dynamical system (MAG). A detailed study of the map ω will be
carried out in Section 4.

Corollary 3.2. Assume

(HΨ) Ψ : H → R∪{+∞} is a closed convex proper function such that infH Ψ = 0,
and C = argminΨ 6= ∅.

(HΦ) Φ : H → R∪{+∞} is a closed convex proper function such that infC Φ = 0,
and S = argminCΦ 6= ∅.

Assume that the set argminCΦ is bounded, and that the function Ψ + Φ satis-
fies the inf-compactness property (10). Let β : R+ → R+ be a map6 such that
limt→+∞ β(t) = +∞. Let x(.) be a strong global solution of (MAG). Then we
have

(i) limt→+∞ d(x(t), argminCΦ) = 0. In particular, if the set argminCΦ is a
singleton {x} for some x ∈ H, then x(t) → x strongly in H as t → +∞.

Additionally assume that
∫ +∞

0

β(t) |ω(1/β(t))| dt < +∞, (Σ7)

Then

(ii) there exists x∞ ∈ argminCΦ such that w − limt→+∞ x(t) = x∞.

Proof. Let us check that the hypotheses of Theorem 3.2 are satisfied for ϕt =
Φ+ β(t)Ψ. Assumption (H1) is satisfied with ϕ∞ = Φ+ δC and S∞ = argminCΦ.
Now let (xk) ⊂ H and (tk) ⊂ R+ be such that xk → x∞ and tk → +∞ as
k → +∞. Let us fix m > 0. Since limk→+∞ β(tk) = +∞, we have β(tk) ≥ m for k
large enough and hence

lim inf
k→+∞

(Φ(xk) + β(tk)Ψ(xk)) ≥ lim inf
k→+∞

(Φ(xk) +mΨ(xk)).

Recalling that xk → x∞, and that the functions Φ and Ψ are closed, we deduce
that

lim inf
k→+∞

(Φ(xk) + β(tk)Ψ(xk)) ≥ Φ(x∞) +mΨ(x∞).

Letting m → +∞, we infer that

lim inf
k→+∞

(Φ(xk) + β(tk)Ψ(xk)) ≥ Φ(x∞) + δC(x∞),

hence (H2) is fulfilled. For every z ∈ S∞ = argminCΦ, we have ϕt(z) = 0, therefore
v∞(t) = 0 for every t ≥ 0, and (H3) is trivially satisfied. Since β(t) → +∞ we have
Φ + Ψ ≤ Φ + β(t)Ψ = ϕt for t large enough, and assumption (H4) is satisfied with
f = Φ+Ψ. Now observe that for every t ≥ 0 and z ∈ S∞,

ϕt(z)− inf
H

ϕt = − inf
H
(Φ + β(t)Ψ) since Φ(z) = Ψ(z) = 0

= −β(t)ω(1/β(t)) by definition of the map ω

= β(t) |ω(1/β(t))| because ω ≤ 0.

In view of Condition (Σ7), Condition (Σ6) is clearly satisfied, thus implying (Σ5).
Conclusions (i)-(ii) then follow from Theorem 3.2. �

6Note that we do not assume any monotonicity property for the map β.



19

Remark 3.3. In the context of the previous theorem, one can easily show that7

lim
t→+∞

Ψ(x(t)) = 0, (12)

see for example [6, Lemma 3.3]. Hence there exists t0 ≥ 0 such that Ψ(x(t)) ≤ 1
for every t ≥ t0. Since the trajectory x(.) is bounded, there exists R > 0 such
that ‖x(t)‖ ≤ R for every t ≥ 0. If Ψ satisfies the inf-compactness property (10),
we deduce that the set {x(t), t ≥ t0} is relatively compact for the strong topology
of H . Recalling from Corollary 3.2 (ii) that the trajectory x(.) weakly converges
to x∞, we immediately deduce that it converges strongly to x∞.

Remark 3.4. Assume that the function Ψ satisfies the following quadratic condi-
tioning property

Ψ ≥ a d2(·, C) for some a > 0.

Under this condition, there exists c > 0 such that |ω(ε)| ≤ c ε2 for every ε ≥ 0, see

Section 4. Hence, in this case, assumption (Σ7) is fulfilled if
∫ +∞

0 (1/β(t)) dt < +∞.

Corollary 3.3. Under Hypotheses (HΨ)-(HΦ), assume that the set S = argminΨ∩
argminΦ is nonempty and bounded. Suppose that the function Ψ + Φ satisfies
the inf-compactness property (10). Let β : R+ → R+ be a map that satisfies
limt→+∞ β(t) = +∞. Let x(.) be a strong global solution of

ẋ(t) + ∂Φ(x(t)) + β(t) ∂Ψ(x(t)) ∋ 0. (MAG)

Then there exists x∞ ∈ S such that x(t) ⇀ x∞ weakly in H as t → +∞.

Proof. If argminΨ∩argminΦ 6= ∅, the infimum in the definition of ω(ε) is attained
at every x ∈ argminΨ∩argminΦ, and it equals 0. It ensues that ω(ε) = 0 for every
ε ≥ 0. Therefore Condition(Σ7) of Corollary 3.2 is automatically satisfied. �

As a consequence of Corollary 3.2, we recover the convergence result of the
trajectories of (MAG) from [6].

Corollary 3.4. [6, Theorem 5.1] Let Ψ, Φ : H → R∪{+∞} be functions satisfying
Hypotheses (HΨ)-(HΦ), together with the following qualification condition

there exists x0 ∈ C such that Φ is continuous at x0. (QC)

Assume that the set S = argminCΦ is bounded, and that the function Ψ + Φ sat-
isfies the inf-compactness property (10). Let β : R+ → R+ be a map such that
limt→+∞ β(t) = +∞. Assume moreover that

∀p ∈ ran(NC),

∫ +∞

0

β(t)

[
Ψ∗

(
p

β(t)

)
− σC

(
p

β(t)

)]
dt < +∞. (Σ4)

Let x(.) be a strong global solution of

ẋ(t) + ∂Φ(x(t)) + β(t) ∂Ψ(x(t)) ∋ 0. (MAG)

Then there exists x∞ ∈ S such that x(t) ⇀ x∞ weakly in H as t → +∞.

Proof. It relies on the study of the map ω that we carry out in Section 4. Precisely,
it is a consequence of the forthcoming Proposition 4.2 (d). �

7Equality (12) is a basic result which requires neither Condition (Σ7) nor the inf-compactness
of Φ +Ψ.
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Let us now give an equivalent formulation of Corollary 3.2, which uses an asymp-
totic vanishing coefficient ε(t). The statement is obtained by reversing the roles of
the functions Φ and Ψ, and by using a suitable time rescaling, which allows to pass
from β(t) → +∞ to ε(t) → 0, and vice versa.

Corollary 3.5. Let Φ : H → R ∪ {+∞} be a closed convex proper function such
that C = argminΦ 6= ∅ and minH Φ = 0. Let Ψ : H → R ∪ {+∞} be a closed
convex proper function such that argminCΨ 6= ∅ and minC Ψ = 0. Assume that the
set argminCΨ is bounded and that the function Φ+Ψ satisfies the inf-compactness
property (10). Let ε : R+ → R

∗
+ be a map8 such that limt→+∞ ε(t) = 0 and∫ +∞

0
ε(t) dt = +∞. Let x(.) be a strong global solution of

ẋ(t) + ∂Φ(x(t)) + ε(t) ∂Ψ(x(t)) ∋ 0, (MAGε)

Then we have

(i) limt→+∞ d(x(t), argminCΨ) = 0. In particular, if the set argminCΨ is a
singleton {x} for some x ∈ H, then x(t) → x strongly in H as t → +∞.

Additionally assume that
∫ +∞

0

|ω(ε(t))| dt < +∞,

where the map ω : R+ → R is defined by ω(ε) = infH(Φ + εΨ). Then

(ii) there exists x∞ ∈ argminCΨ such that w − limt→+∞ x(t) = x∞.

The proof is based on a suitable time rescaling, see the proof of Corollary 2.3.

Remark 3.5. Cominetti-Peypouquet-Sorin[23] pay a special attention to the follow-
ing steepest descent system with vanishing Tikhonov regularization

ẋ(t) + ∂Φ(x(t)) + ε(t)x(t) ∋ 0. (SDε)

If
∫ +∞

0
ε(t) dt = +∞, it is proved in [23] that any solution x(·) of (SDε) strongly

converges as t → +∞ toward the least-norm minimizer of Φ. With essentially the

same arguments, if the function Ψ is strongly convex and if
∫ +∞

0 ε(t) dt = +∞,
then any solution of (MAGε) strongly converges as t → +∞ toward the unique
minimizer of Ψ over the set C = argminΦ. This convergence result can be recovered
from Corollary 3.5 (i). Notice that in this framework, the inf-compactness property
required by Corollary 3.5 appears to be superfluous.

Let us now consider some other examples of nonautonomous subgradient inclu-
sions. They illustrate the versatility of our approach, and its limits.

3.4. Quasi-autonomous case. Let us consider the quasi-autonomous subgradient
inclusion ẋ(t) + ∂Φ(x(t)) ∋ f(t), where Φ : H → R ∪ {+∞} is a closed convex
function, and the map f : R+ → H tends to f∞ ∈ H as t → +∞. This differential
inclusion falls into the setting of Theorem 3.2, by taking ϕt = Φ − 〈f(t), .〉. We
obtain the following statement.

Corollary 3.6. Let f : R+ → H be a map such that limt→+∞ f(t) = f∞ ∈ H. Let
Φ : H → R∪{+∞} be a closed convex function such that S = argmin(Φ−〈f∞, ·〉) is

8Note that we do not assume the map ε to be nonincreasing.



21

nonempty9 and bounded. Suppose that the function Φ satisfies the inf-compactness
property (10). Let x(.) be a strong global solution of

x(t) + ∂Φ(x(t)) ∋ f(t). (13)

Then we have

(i) limt→+∞ d(x(t), S) = 0.
(ii) Assume moreover that

∀z ∈ S,

∫ +∞

0

G∂Φ(z, f(t)) dt < +∞. (14)

Then there exists x∞ ∈ S such that x(t) ⇀ x∞ weakly in H as t → +∞.

Remark 3.6. Assumption (14) is satisfied under the following stronger condition

∀z ∈ S,

∫ +∞

0

[Φ∗(f(t)) + Φ(z)− 〈f(t), z〉] dt < +∞. (15)

Indeed, it suffices to observe that G∂Φ(z, f(t)) ≤ Φ∗(f(t)) + Φ(z)− 〈f(t), z〉.
Proof. Without loss of generality, we assume that f∞ = 0 and that minH Φ = 0.
Let us check that the hypotheses of Theorem 3.2 are satisfied for ϕt = Φ−〈f(t), .〉.
Assumption (H1) is satisfied with ϕ∞ = Φ. Let (tk) ⊂ R+ and (xk) ⊂ H be
sequences such that tk → +∞ and xk → x∞ as k → +∞, for some x∞ ∈ H .
Observe that

lim inf
k→+∞

ϕtk(xk) = lim inf
k→+∞

(Φ(xk)− 〈f(tk), xk〉)

= lim inf
k→+∞

Φ(xk) because f(tk) → 0 and xk → x∞,

≥ Φ(x∞) since Φ is closed and xk → x∞.

It ensues that (H2) is fulfilled. From the definition of v∞(t), we have

v∞(t) = sup
z∈S

ϕt(z) = sup
z∈S

(Φ(z)− 〈f(t), z〉)

= sup
z∈S

(−〈f(t), z〉),

because Φ(z) = 0 for every z ∈ S = argminΦ. Since the set S is bounded, there
exists M > 0 such that ‖z‖ ≤ M for every z ∈ S. It follows immediately that
|v∞(t)| ≤ M ‖f(t)‖ → 0 as t → +∞, which shows that (H3) is satisfied. For every
x ∈ H and t large enough, we have

ϕt(x) = Φ(x) − 〈f(t), x〉 ≥ Φ(x)− ‖f(t)‖‖x‖
≥ Φ(x)− ‖x‖ since f(t) → 0 as t → +∞.

It suffices to check that the function x 7→ Φ(x)− ‖x‖ satisfies the inf-compactness
property (10). For every R > 0 and l ∈ R, we have

{x ∈ H : ‖x‖ ≤ R, Φ(x)− ‖x‖ ≤ l} ⊂ {x ∈ H : ‖x‖ ≤ R, Φ(x) ≤ l +R}.
This last set is relatively compact by assumption, hence hypothesis (H4) is satis-
fied. Finally observe that G∂ϕt

(z, 0) = G∂Φ(z, f(t)) for every z ∈ S. In view of
assumption (14), Condition (Σ5) is clearly verified. Conclusions (i)-(ii) then follow
from Theorem 3.2. �

9By writing down the optimality condition for the elements of S, we immediately see that
S = ∂Φ−1(f∞). It ensues that the nonvacuity of S is equivalent to the condition f∞ ∈ ran(∂Φ).
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The next proposition gives sufficient conditions which guarantee that assump-
tions (14) and (15) are satisfied.

Proposition 3.1. Let f : R+ → H be a map such that limt→+∞ f(t) = f∞ ∈
H. Let Φ : H → R ∪ {+∞} be a closed convex function such that the set S =
argmin

(
Φ− 〈f∞, ·〉

)
is nonempty and bounded. The following hold true

(i) If the function Φ − 〈f∞, ·〉 is coercive and if
∫ +∞

0
‖f(t) − f∞‖ dt < +∞,

then Condition (15) is satisfied.
(ii) Assume that

Φ− 〈f∞, ·〉 −min
H

(
Φ− 〈f∞, ·〉

)
≥ a d2(., S) (16)

for some a > 0 and that
∫ +∞

0

‖ΠF (f(t)− f∞)‖ dt < +∞ and

∫ +∞

0

‖ΠF⊥(f(t)− f∞)‖2 dt < +∞,

(17)
where ΠF (resp. ΠF⊥) denotes the orthogonal projection on the linear space
F = cl [R+(S − S)] (resp. F⊥). Then condition (15) is satisfied.

Proof. Without loss of generality, we assume that f∞ = 0 and that minH Φ = 0.
(i) Since Φ is supposed to be coercive, the conjugate Φ∗ is continuous at 0. It

ensues classically that Φ∗ is Lipschitz continuous in a neighborhood of 0. Therefore
there exist r > 0 and L > 0 such that |Φ∗(x)| ≤ L‖x‖ for every x ∈ H satisfying
‖x‖ ≤ r. Let M > 0 be such that ‖z‖ ≤ M for every z ∈ S. Recalling that f(t) → 0
as t → +∞, we deduce that for t large enough

Φ∗(f(t)) − 〈f(t), z〉 ≤ L‖f(t)‖+ ‖f(t)‖‖z‖ ≤ (L +M)‖f(t)‖.
The assumption

∫ +∞

0 ‖f(t)‖ dt < +∞, and Φ(z) = minH Φ = 0, clearly imply that
Condition (15) is satisfied.

(ii) Since Φ ≥ a d2(., S) = a‖ . ‖2 ▽ δS , we have Φ∗ ≤ 1
4a‖ . ‖2 + σS . This implies

that for every z ∈ S,

Φ∗(f(t)) − 〈f(t), z〉 ≤ 1

4a
‖f(t)‖2 + σS(f(t))− 〈f(t), z〉

=
1

4a
‖f(t)‖2 + σS−z(f(t))

≤ 1

4a
‖f(t)‖2 + σS−S(f(t)). (18)

From f(t) = ΠF f(t) + ΠF⊥f(t), we deduce that

σS−S(f(t)) ≤ σS−S(ΠF f(t)) + σS−S(ΠF⊥f(t)) since σS−S is subadditive

≤ 2M ‖ΠF f(t)‖+ σF (ΠF⊥f(t)) since S − S ⊂ 2MB, S − S ⊂ F

= 2M ‖ΠF f(t)‖ since σF = δF⊥ .

Coming back to inequality (18), and using Pythagoras’ equality

‖f(t)‖2 = ‖ΠF f(t)‖2 + ‖ΠF⊥f(t)‖2,
we infer that

Φ∗(f(t))− 〈f(t), z〉 ≤ 1

4a
‖ΠF f(t)‖2 +

1

4a
‖ΠF⊥f(t)‖2 + 2M ‖ΠF f(t)‖ .

Since f(t) → 0 as t → +∞, we have ‖ΠF f(t)‖2 ≤ ‖ΠF f(t)‖ for t large enough.
Assumption (17) then clearly implies that condition (15) is satisfied. �
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Remark 3.7. By combining Corollary 3.6 and Proposition 3.1 (i), we derive that if∫ +∞

0
‖f(t)− f∞‖ dt < +∞, then any trajectory of (13) converges weakly toward

some point of S = ∂Φ−1(f∞). This result can be recovered directly by using
the Opial lemma and the fact that the energy function t 7→ Φ(x(t)) − 〈f∞, x(t)〉
tends toward its minimum as t → +∞. The inf-compactness assumption on Φ
appears to be useless, hence the result obtained as a consequence of Corollary
3.6 and Proposition 3.1 (i) is not optimal. The original part of Proposition 3.1
lies in point (ii), which brings to light that the L1-type condition on the function
f − f∞ may be relaxed. If we assume the quadratic conditioning property (16),
Proposition 3.1 (ii) shows that it is enough to require a L2-type condition for the
part of f − f∞ that is projected on F⊥.

3.5. Sweeping process. The sweeping process was originally considered by J.J.
Moreau in the study of evolution problems from unilateral mechanics.

Given t 7→ C(t) a time-dependent closed convex set in H , (the moving con-
straint), and Φ : H → R a convex differentiable function (the driving force), it
consists in the study of the following differential inclusion

ẋ(t) +NC(t)(x(t)) +∇Φ(x(t)) ∋ 0, t ≥ 0, (SW)

where NC(t)(x) stands for the normal cone to C(t) at x ∈ C(t). Since, its range
of applications has been extended to various domains, like economical and social
sciences, control theory. An abundant litterature has been devoted to its study, but
curiously only few results concern its asymptotical behaviour.

The differential inclusion (SW) falls in the setting of Theorems 3.1 and 3.2, by
taking

ϕt = δC(t)(·) + Φ.

The monotonicity assumption required by Theorem 3.1 amounts to saying that the
family {C(t); t ≥ 0} is nondecreasing for the set inclusion. On the other hand, it is
easy to check that assumptions (H2)-(H3) of Theorem 3.2 imply that the set C(t)
tends toward C∞ as t → +∞ in the Painlevé-Kuratowski sense and that C∞ ⊂ C(t)
for t large enough. These assumptions on the family {C(t); t ≥ 0} are clearly quite
stringent, and it is better to work directly with inclusion (SW), without resorting
to the general results mentioned above.

For simplicity, we assume in the sequel that Φ = 0. Most of the existence results
concerning (SW) rely on energy estimates. Thus we take for granted that the

trajectories have finite energy, i.e.,
∫ +∞

0 ‖ẋ(t)‖2dt < +∞. The result stated below
is an illustration of the energetical methods.

Theorem 3.3. Let {C(t); t ≥ 0} be a family of closed convex sets in H. Assume
that C(t) converges to some C∞ in the Mosco sense and that,

∀z ∈ C∞, ∃z(t) → z such that z(t) ∈ C(t), and

∫ +∞

0

‖z(t)− z‖2dt < +∞. (19)

Let x(.) be a strong global solution of (SW) which has a finite energy, i.e.,
∫ +∞

0

‖ẋ(t)‖2dt < +∞. (20)

Then, there exists x∞ ∈ C∞ such that x(t) ⇀ x∞ weakly in H as t → +∞.
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Proof. Let us apply the Opial lemma to x(.) and S = C∞. Given z ∈ C∞, set
hz(t) =

1
2‖x(t)− z‖2. By differentiating, we find for almost every t ≥ 0

ḣz(t) = 〈x(t)− z, ẋ(t)〉. (21)

By assumption (19) there exists z(t) → z such that z(t) ∈ C(t), and
∫ +∞

0
‖z(t)−

z‖2dt < +∞. By introducing z(t) in (21), we obtain

ḣz(t) = 〈x(t)− z(t), ẋ(t)〉 + 〈z(t)− z, ẋ(t)〉.
Since −ẋ(t) ∈ NC(t)(x(t)) and z(t) ∈ C(t), we have

〈x(t) − z(t), ẋ(t)〉 = 〈z(t)− x(t),−ẋ(t)〉 ≤ 0.

Hence

ḣz(t) ≤ 〈z(t)− z, ẋ(t)〉.
≤ ‖z(t)− z‖‖ẋ(t)‖ by Cauchy-Schwarz inequality. (22)

By assumptions (19) and (20) the second member of (22) belongs to L1(0,+∞).
Hence, the limit of hz(t) exists as t → +∞.

On the other hand since x(t) ∈ C(t), and C(t) Mosco converges to C∞, we
have that any weak cluster point of the trajectory belongs to C∞. Thus the two
conditions of the Opial lemma are satisfied, which gives the weak convergence of
the trajectory.

�

3.6. Slow case and strong attraction of the optimal path. In this subsection,
we assume that for every t ≥ 0, there exist ξ(t) ∈ H and α(t) > 0 such that

∀x ∈ H, ϕt(x) ≥ ϕt(ξ(t)) + α(t) ‖x− ξ(t)‖2.

It implies that ξ(t) is a strong minimum of the function ϕt.

Remark 3.8. Fix z ∈ S∞. We deduce from the above condition that

α(t) ‖z − ξ(t)‖2 ≤ v∞(t)−min
H

ϕt.

If ξ∗ = limt→+∞ ξ(t) exists and is not equal to z, there exists m > 0 such that
‖z − ξ(t)‖ ≥ m for t large enough. It ensues that

α(t) ≤ 1

m2
(v∞(t)−min

H
ϕt) for t large enough.

We assume that the function α is measurable and satisfies∫ +∞

0

α(t) dt = +∞,

which corresponds to a slow decay condition. Let us first consider the case of an
optimal trajectory having a finite length. The following result is a variant of [5,
Theorem 3.2], up to a slight modification of the arguments.10

Theorem 3.4. Let {ϕt, t ≥ 0} be a family of closed convex functions from H to
R ∪ {+∞}. Assume that

(i) ∀x ∈ H, ϕt(x) ≥ ϕt(ξ(t)) + α(t) ‖x− ξ(t)‖2;
10A strong convexity property is required in the statement of [5, Theorem 3.2]. The strong

convexity property is relaxed and replaced here with the strong minimum property (i).
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(ii)
∫ +∞

0
α(t) dt = +∞;

(iii) the optimal path ξ(.) is locally absolutely continuous on R+, and satisfies∫ +∞

0 ‖ξ̇(t)‖ dt < +∞.

If x(.) is a strong global solution of (NAGI), then limt→+∞ ‖x(t)− ξ(t)‖ = 0, and
hence limt→+∞ x(t) = ξ∗ strongly in H, where ξ∗ is the limit of the optimal path
ξ(t) as t → +∞.

Proof. Consider the function k defined by k(t) = 1
2‖x(t)− ξ(t)‖2. This function is

absolutely continuous, and for almost every t ∈]0,+∞[ we have

k̇(t) = 〈ẋ(t)− ξ̇(t), x(t) − ξ(t)〉
≤ 〈ẋ(t), x(t) − ξ(t)〉+ ‖ξ̇(t)‖‖x(t)− ξ(t)‖.

Since −ẋ(t) ∈ ∂ϕt(x(t)), we deduce from the subdifferential inequality

k̇(t) + ϕt(x(t)) − ϕt(ξ(t)) ≤ ‖ξ̇(t)‖‖x(t)− ξ(t)‖.
Invoking Assumption (i), we get

k̇(t) + α(t) ‖x(t) − ξ(t)‖2 ≤ ‖ξ̇(t)‖‖x(t)− ξ(t)‖,
or equivalently

k̇(t) + 2α(t) k(t) ≤
√
2‖ξ̇(t)‖

√
k(t).

The rest of the proof is analogous to that of [5, Theorem 3.2]. �

Let us now consider the case of an optimal trajectory satisfying ‖ξ̇(t)‖ = o(α(t))
as t → +∞, see [5, Theorem 3.3].

Theorem 3.5. Under the assumptions (i) and (ii) of Theorem 3.4, assume more-
over that the optimal path ξ(.) is locally absolutely continuous on R+ and that

limt→+∞ ‖ξ̇(t)‖/α(t) = 0. Let x(.) be a strong global solution of (NAGI). Then
limt→+∞ ‖x(t)− ξ(t)‖ = 0, therefore it converges strongly in H if and only if the
optimal path ξ(t) has a limit as t → +∞.

For the proof of this result, the reader is referred to [5, Theorem 3.3].

4. Infimum value associated to the viscosity minimization problem

infH(Ψ + εΦ)

4.1. Main properties of the map ε 7→ ω(ε) = infH(Ψ+εΦ). As we have already
pointed out, the map ω plays a crucial role in the asymptotic study of the dynamic
system (MAG). We now make a systematic study of this function. Throughout
this section, we assume (HΨ) and (HΦ), i.e.,

(HΨ) Ψ : H → R∪{+∞} is a closed convex proper function such that infH Ψ = 0,
and C = argminΨ 6= ∅.

(HΦ) Φ : H → R∪{+∞} is a closed convex proper function such that infC Φ = 0,
and S = argminCΦ 6= ∅.

Recall the definition (11) of the map ω : R+ → R ∪ {−∞}: for every ε ≥ 0

ω(ε) = inf
H
(Ψ + εΦ).

We denote by (Pε) the corresponding minimization problem

(Pε) inf
x∈H

{Ψ(x) + εΦ(x)} .
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Remark 4.1. Assumption (HΦ) implies that the domain of Φ intersects the set C
of minimizers of Ψ. This corresponds to a regular perturbation situation, where
we can expect a simple asymptotic development for ω(ε) as ε goes to zero, as well
as the convergence of the filtered sequence of solutions of (Pε) to a solution of the
hierarchical minimization problem minC Φ. That is the situation we consider. By
contrast, when the domain of Φ does not intersect the set C = argminΨ, we are
faced with a singular perturbation. This is a more involved situation, that one
encounters for example in phase transition, when considering the Van der Waals-
Cahn-Hilliard viscous approximation of the Gibbs free energy. In this case, we must
appeal to Γ-convergence methods for rescaled energy functions, see [3], [4, Chap.
12.5], [38].

The following proposition gathers properties of the map ω.

Proposition 4.1. Assume Hypotheses (HΨ)-(HΦ).
(a) The map ε 7→ ω(ε) is nonpositive, nonincreasing and concave on R+.
Assume moreover that the function Ψ +Φ is coercive11. Then
(b) for every ε ∈ [0, 1], we have ω(ε) > −∞, and the infimum is attained in the
definition of ω(ε).
(c) limε→0+ ω(ε)/ε = 0. In other words, the following asymptotic expansion holds12

as ε → 0

min
H

(Ψ + εΦ) = min
H

Ψ+ εmin
C

Φ+ o(ε). (23)

Proof. (a) Given z ∈ S, we have

ω(ε) ≤ Ψ(z) + εΦ(z) = 0,

hence ω(ε) ≤ 0 for every ε ≥ 0. Observe that the map ε 7→ Ψ(x) + εΦ(x) is affine,
hence the map ε 7→ ω(ε) is concave as an infimum of affine functions. Since the
function ω : R+ → R∪ {−∞} is concave, it admits a right (resp. left) derivative at
every t ≥ 0 (resp. t > 0). In particular, we have

ω′
+(0) = lim

ε→0+

1

ε
(ω(ε)− ω(0)) ≤ 0,

since ω(0) = 0, and ω(ε) ≤ 0 for every ε > 0. The concavity of ω implies that
ω′
+(ε) ≤ 0 (resp. ω′

−(ε) ≤ 0) for every ε > 0. We deduce that the function ω is
nonincreasing on R+.
(b) First observe that the conclusion is immediate for ε = 0. Now assume that
ε ∈]0, 1]. Since Ψ(x) ≥ 0, we have

Ψ(x) + εΦ(x) ≥ ε (Ψ(x) + Φ(x)).

From the coercivity of Ψ + Φ, we deduce that the lower semicontinuous convex
function x 7→ Ψ(x) + εΦ(x) is coercive. It ensues classically that the minimization
problem (Pε) has at least one solution, and that ω(ε) = inf Pε > −∞.
(c) Let us argue by contradiction and assume that there exist η > 0 and a sequence

11The coercivity of Ψ+Φ implies that of δC +Φ, and we deduce classically that argminCΦ =
argmin(δC +Φ) 6= ∅.

12For simplicity, we assumed minH Ψ = minC Φ = 0. The statement remains valid without
any assumption on the (finite) values of minH Ψ and minC Φ. The asymptotic expansion (23) can
be found in [3, Theorem 2.5].
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(εn) tending toward 0 such that ω(εn)/εn ≤ −η. From the definition of ω(εn),
there exists a sequence (xn) in H such that

∀n ∈ N, Ψ(xn) + εnΦ(xn) ≤ −η

2
εn. (24)

Since limn→+∞ εn = 0 and Ψ(xn) ≥ 0, we have εn Ψ(xn) ≤ Ψ(xn) for n large
enough, say n ≥ n0. In view of (24), this implies that for every n ≥ n0

Ψ(xn) + Φ(xn) ≤ −η

2
, (25)

or equivalently

xn ∈
[
Ψ+Φ ≤ −η

2

]
.

Recalling that the function Ψ + Φ is coercive by assumption, we deduce that the
sequence (xn) is bounded in H . Therefore there exist x∞ ∈ H and a subsequence
of (xn), still denoted by (xn), that converges weakly to x∞ in H . Since Φ is closed
and convex, it has a continuous affine minorant. Hence there exist a ∈ R and p ∈ H
such that Φ(x) ≥ a+ 〈p, x〉 for every x ∈ H . By using inequality (24), we infer that

Ψ(xn) ≤ −εn

[η
2
+ a+ 〈p, xn〉

]
.

Taking the upper limit when n → +∞, we find

lim sup
n→+∞

Ψ(xn) ≤ 0. (26)

On the other hand, since Ψ(xn) ≥ 0, we infer from (25) that

lim sup
n→+∞

Φ(xn) ≤ −η

2
. (27)

From the closedness of Ψ (resp. Φ) with respect to the weak topology in H and
inequality (26) (resp. (27)), we deduce respectively that

Ψ(x∞) ≤ lim inf
n→+∞

Ψ(xn) ≤ lim sup
n→+∞

Ψ(xn) ≤ 0,

Φ(x∞) ≤ lim inf
n→+∞

Φ(xn) ≤ lim sup
n→+∞

Φ(xn) ≤ −η

2
.

The first inequality implies that x∞ ∈ C and the second one gives the contradiction.
�

By using the duality theory, we are going to prove that the behavior of the map
ε 7→ ω(ε) can be interpreted with the conjugates of Ψ and Φ. Let us first recall the
following general theorem, see for example [24, Theorem 4.1 p. 58].

Theorem 4.1. Given two normed spaces V and Y , let F : V → R ∪ {+∞} and
G : Y → R ∪ {+∞} be closed convex functions, and let L ∈ L(V, Y ). Consider the
primal problem

(P) inf
u∈V

{F (u) +G(Lu)},

and the dual problem

(P∗) sup
p∗∈Y ∗

{−F ∗(L∗p∗)−G∗(−p∗)}.

Then we have supP∗ ≤ inf P. If moreover inf P is finite and if there exists u0 ∈
domF such that G is continuous at Lu0, then inf P = supP∗, and (P∗) has at
least one solution.
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Proposition 4.2. Assume Hypotheses (HΨ)-(HΦ).
(a) For every ε ≥ 0, we have

|ω(ε)| ≤ inf
p∈H

{Ψ∗(ε p) + εΦ∗(−p)} . (28)

(b) Let ε ≥ 0, assume ω(ε) > −∞ and the following qualification condition

there exists x0 ∈ domΨ such that Φ is continuous at x0, (QC’)

then we have
|ω(ε)| = min

p∈H
{Ψ∗(ε p) + εΦ∗(−p)} . (29)

(c) Assume the qualification condition (QC)13

there exists x0 ∈ C such that Φ is continuous at x0. (QC)

Then there exists p ∈ ran(NC) such that, for every ε ≥ 0,

|ω(ε)| ≤ Ψ∗(ε p)− σC(ε p). (30)

(d) Assume (QC). Then Condition (Σ4) implies Condition (Σ7).

Proof. (a) Let us apply Theorem 4.1 with V = Y = H , F = Ψ, G = εΦ and
L = IdH . The primal minimization problem (Pε) reads as

(Pε) inf
x∈H

{Ψ(x) + εΦ(x)} .

For every ε > 0, the dual problem is

(P∗
ε ) sup

p∈H

{−Ψ∗(p)− εΦ∗(−p/ε)} .

From the general relation supPε ≤ inf P∗
ε , we deduce that

|ω(ε)| = −ω(ε) ≤ inf
p∈H

{Ψ∗(p) + εΦ∗(−p/ε)} .

Replacing p with ε p, we immediately obtain inequality (28). This inequality triv-
ially holds true for ε = 0, hence it is valid for every ε ≥ 0.

(b) Since condition (QC’) is satisfied, Theorem 4.1 shows that inf Pε = supP∗
ε

and that (P∗
ε ) has at least one solution. This implies that

|ω(ε)| = min
p∈H

{Ψ∗(p) + εΦ∗(−p/ε)} .

Equality (29) follows immediately.

(c) Given x ∈ S = argminCΦ, we have 0 ∈ ∂(Φ + δC)(x). The qualification
condition (QC) implies ∂(Φ + δC)(x) = ∂Φ(x) + NC(x). We deduce that 0 ∈
∂Φ(x) +NC(x), whence the existence of p ∈ NC(x) ∩ (−∂Φ(x)). For every ε ≥ 0,
let us write that

Ψ∗(εp) + εΦ∗(−p) = [Ψ∗(εp)− σC(εp)] + ε [σC(p) + δC(x)− 〈p, x〉]
+ε [Φ∗(−p) + Φ(x) + 〈p, x〉] .

Since p ∈ NC(x) and −p ∈ ∂Φ(x), the Fenchel extremality relation shows that the
second and third brackets are equal to zero. This implies that, for every ε ≥ 0

Ψ∗(εp) + εΦ∗(−p) = Ψ∗(εp)− σC(εp).

Inequality (30) then immediately follows from (28).

13Notice that (QC) is slightly stronger than (QC’).
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(d) It follows from (c) and the statement of Conditions (Σ4) and (Σ7). �

Remark 4.2. The qualification condition (QC) may be slightly weakened in the
statement of Proposition 4.2, items (c)-(d). It suffices to assume that the operator
∂Φ + NC is maximal monotone. The same remark applies to the statement of
Corollary 3.4, as was observed in [6, Theorem 5.1].

4.2. Examples. We now review several examples for which we are able to majorize
explicitly the function Ψ∗−σC . This yields sufficient conditions for (Σ4), and hence
for (Σ7) in view of Proposition 4.2 (d).

Example 4.1. Let Ψ : H → R ∪ {+∞} be a closed convex function such that
C = argminΨ 6= ∅. Suppose that for every x ∈ H

Ψ(x) ≥ θ(d(x,C)),

where the closed convex function θ : R → R∪{+∞} is even14 and such that θ(0) = 0.
Then we have for every ε ≥ 0 and p ∈ H

Ψ∗(ε p)− σC(ε p) ≤ θ∗(ε ‖p‖). (31)

Proof. From a classical result, the conjugate of the function θ(d(., C)) is the function
θ∗(‖ . ‖)+σC , see for example [10, Exercise IV.17]. It ensues that Ψ∗ ≤ θ∗(‖ . ‖)+σC ,
and the conclusion follows immediately. �

Under the assumptions of Example 4.1, the key condition (Σ4) of Corollary 3.4
is satisfied if for every p ∈ H ,

∫ +∞

0

β(t) θ∗(‖p‖/β(t)) dt < +∞.

Remark 4.3. Assume that there exists a > 0 such that Ψ(x) ≥ a d(x,C) for every
x ∈ H . By applying the above proposition with θ(t) = a |t|, we find Ψ∗(ε p) −
σC(ε p) ≤ δ[−a,a](ε |p|), and hence Ψ∗(ε p)− σC(ε p) = 0 for ε small enough. In this
case, condition (Σ4) is automatically satisfied.

Remark 4.4. Assume that there exist a > 0 and r > 1 such that

Ψ(x) ≥ a dr(x,C), (32)

for every x ∈ H . Let us apply the above proposition with the function θ : R → R

defined by θ(t) = a |t|r. Since (| . |r/r)∗ = (| . |r∗/r∗), where r∗ is the conjugate
exponent of r, i.e. r∗ = 1/(1− 1/r), we easily obtain

θ∗(t) =
(ar)1−r∗

r∗
|t|r∗ .

In view of (31), we infer that Ψ∗(ε p) − σC(ε p) ≤ (ar)1−r
∗

r∗
(ε ‖p‖)r∗. In this case,

condition (Σ4) is satisfied as soon as
∫ +∞

0

(1/β(t))r
∗−1 dt < +∞.

14The assumptions on θ automatically imply that 0 ∈ argminθ.
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Example 4.2. Let L ∈ L(H) and let Ψ : H → R ∪ {+∞} be a closed convex
function such that C = argminΨ = kerL. Suppose that Ψ(x) ≥ 1

2‖Lx‖2 for all
x ∈ H. Then we have for every ε ≥ 0 and p ∈ ran(L∗),

Ψ∗(ε p)− σC(ε p) ≤
ε2

2
d2

(
0, (L∗)−1(p)

)
.

Proof. By applying Theorem 4.1, we can show15 that the conjugate of the function
x 7→ 1

2‖Lx‖2 is given by

p 7→
{

1
2d

2
(
0, (L∗)−1(p)

)
if p ∈ ran(L∗)

+∞ if p /∈ ran(L∗).

It ensues that for every p ∈ ran(L∗),

Ψ∗(p) ≤ 1

2
d2

(
0, (L∗)−1(p)

)
. (33)

On the other hand, since the set kerL is a subspace of H , we have

σkerL = (δkerL)
∗ = δ(kerL)⊥ . (34)

Recalling that ran(L∗) ⊂ (kerL)⊥, we deduce from (33) and (34) that for every
ε ≥ 0 and p ∈ ran(L∗),

Ψ∗(ε p)− σkerL(ε p) ≤
ε2

2
d2

(
0, (L∗)−1(p)

)
.

�

Under the assumptions of Example 4.2, the key condition (Σ4) of Corollary 3.4
is satisfied if ∫ +∞

0

1/β(t) dt < +∞.

Recall that for ρ ≥ 0, the ρ-Hausdorff distance between two nonempty sets K
and K ′ is defined by

hausρ(K,K ′) = sup
‖x‖≤ρ

|d(x,K)− d(x,K ′)|,

see [15] for an extended study of this notion.

Example 4.3. Let K ⊂ H be a closed convex set such that 0 ∈ K. Define the
function Ψ : H → R ∪ {+∞} by Ψ = δB + σK . The set of minima of Ψ is given by
C = B ∩NK(0), and we have for every ε ≥ 0 and p ∈ H,

Ψ∗(ε p)− σC(ε p) ≤ hausε‖p‖(K,TK(0)).

Proof. First observe that the assumption 0 ∈ K implies that σK(x) ≥ 0 for every
x ∈ H . We infer that Ψ(x) ≥ 0 for every x ∈ H , and that

Ψ(x) = 0 ⇐⇒ x ∈ B and σK(x) = 0

⇐⇒ x ∈ B and 〈x, y〉 ≤ 0 for every y ∈ K

⇐⇒ x ∈ B and x ∈ NK(0).

It ensues that C = argminΨ = B∩NK(0). Since the Moreau-Rockafellar qualifica-
tion condition is satisfied, we have

σC = σB∩NK(0) = σB ▽ σNK(0) = ‖ . ‖ ▽ δTK(0) = d(., TK(0)). (35)

15The details are left to the reader.
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In the same way, we obtain

Ψ∗ = σB ▽ δK = ‖ . ‖ ▽ δK = d(.,K). (36)

In view of (35)-(36), we deduce that for every ε ≥ 0 and p ∈ H

Ψ∗(ε p)− σC(ε p) = d(εp,K)− d(εp, TK(0)) ≤ hausε‖p‖(K,TK(0)).

�

5. Examples of coupled gradient systems with multiscale aspects

5.1. A two-dimensional example. Take H = R
2 and fix a > 0. Consider the

function Ψ : R2 → R ∪ {+∞} defined by

Ψ(x, y) =





y2

2(a2−x2) if (x, y) ∈]− a, a[×R

0 if (x, y) ∈ {(−a, 0), (a, 0)}
+∞ elsewhere.

It is easy to check that Ψ(x, y) = 1
2a (σD(a+ x, y) + σD(a− x, y)), where σD is the

support function of the set D defined by

D = {(x, y) ∈ R
2, 2x+ y2 ≤ 0},

see for example [35, Example 2.38]. The function Ψ is closed, convex and satisfies
C = argminΨ = [−a, a] × {0}. Let us now fix b ∈]0, a[, and define the function
Φ : R2 → R by

Φ(x, y) = y +
1

2
[x− b]2+ +

1

2
[x+ b]2−,

for every (x, y) ∈ R
2. The function Φ is convex and differentiable on R

2. It can
easily be seen that minC Φ = 0, and that S = argminCΦ = [−b, b]× {0}. Given a
nondecreasing map β : R+ → R+ such that limt→+∞ β(t) = +∞, we are interested
in the asymptotic behavior as t → +∞ of the following dynamical system

Ẋ(t) + ∂Φ(X(t)) + β(t)∂Ψ(X(t)) ∋ 0, with X(t) = (x(t), y(t)). (37)

From Corollary 3.2(i), we obtain that limt→+∞ d(X(t), argminCΦ) = 0. We let
the reader check that for every ε > 0, (0,−a2ε) is the unique minimum point of
the function Ψ + εΦ over R

2. The corresponding minimal value equals ω(ε) =
(Ψ + εΦ)(0,−a2ε) = −a2ε2/2. Condition (Σ7) of Corollary 3.2 amounts to

∫ +∞

0

1/β(t) dt < +∞.

Under this condition, Corollary 3.2(ii) shows that limt→+∞(x(t), y(t)) = (x∞, 0),
for some x∞ ∈ [−b, b]. For every (x, y) ∈]− a, a[×R, we have

(Ψ + εΦ)(x, y) − (Ψ + εΦ)(0,−a2ε)

=
y2

2(a2 − x2)
+ ε y +

ε

2
[x− b]2+ +

ε

2
[x+ b]2− +

1

2
a2ε2

≥ y2

2(a2 − x2)
+ ε y +

1

2
a2ε2. (38)

Observe that

y2

2(a2 − x2)
+ ε y +

1

2
a2ε2 ≥ y2

2a2
+ ε y +

1

2
a2ε2 =

1

2a2
(y + a2ε)2. (39)
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On the other hand, we have

y2

2(a2 − x2)
+ ε y +

1

2
a2ε2 =

1

2
ε2x2 +

(y + ε(a2 − x2))2

2(a2 − x2)
≥ 1

2
ε2x2. (40)

By combining (38), (39) and (40), we find for every (x, y) ∈]− a, a[×R,

(Ψ + εΦ)(x, y)− (Ψ + εΦ)(0,−a2ε) ≥ 1

4
ε2x2 +

1

4a2
(y + a2ε)2.

This inequality trivially holds true if (x, y) /∈ domΨ or if (x, y) ∈ {(−a, 0), (a, 0)}.
We infer that for every (x, y) ∈ R

2 and every ε ≤ 1/a,

(Ψ + εΦ)(x, y)− (Ψ + εΦ)(0,−a2ε) ≥ ε2

4

(
x2 + (y + a2ε)2

)

=
ε2

4

∥∥(x, y)− (0,−a2ε)
∥∥2 .

Dividing by ε and replacing ε with 1/β(t), we obtain that for every X = (x, y) ∈ R
2

and every t large enough,

(β(t)Ψ + Φ)(X)− (β(t)Ψ + Φ)(ξ(t)) ≥ 1

4 β(t)
‖X − ξ(t)‖2 ,

with ξ(t) = (0,−a2/β(t)). This shows that Assumption (i) of Theorem 3.4 is sat-
isfied. The optimal path t 7→ ξ(t) converges toward (0, 0) as t → +∞. The finite
length assumption of Theorem 3.4 is fulfilled because the map t 7→ 1/β(t) tends non-

increasingly toward 0. Assumption (ii) of Theorem 3.4 amounts to
∫ +∞

0 1/β(t) dt =
+∞. Under this last condition, Theorem 3.4 shows that limt→+∞(x(t), y(t)) =
(0, 0). To summarize, we have proved that

• if 1/β ∈ L1(0,+∞), then limt→+∞(x(t), y(t)) = (x∞, 0), for some x∞ ∈ [−b, b];
• if 1/β /∈ L1(0,+∞), then limt→+∞(x(t), y(t)) = (0, 0).

5.2. An example in PDE theory. Let Ω ⊂ R
N be a bounded domain with C1

boundary. Let us consider the space H = L2(Ω) endowed with the scalar product
〈u, v〉H =

∫
Ω uv and the corresponding norm. Let h ∈ L2(Ω) be a given function

satisfying
∫
Ω
h = 0, and let a, b ∈ R be such that a ≤ b. Take

• Ψ : L2(Ω) → R∪ {+∞} defined by Ψ(u) = 1
2

∫
Ω
‖∇u‖2 −

∫
Ω
hu if u ∈ H1(Ω) and

Ψ(u) = +∞ otherwise.
• Φ : L2(Ω) → R defined by Φ(u) = 1

2

∫
Ω

{
[u(x)− b]2+ + [a− u(x)]2+

}
dx for every

u ∈ L2(Ω).
The function Ψ is closed and convex. It is immediate to check that the variational
formulation of ξ ∈ ∂Ψ(u) is given by

∀v ∈ H1(Ω),

∫

Ω

ξ v =

∫

Ω

∇u.∇v −
∫

Ω

h v. (41)

The function Φ is convex, differentiable and satisfies ∇Φ(u) = [u − b]+ − [a− u]+
for every u ∈ L2(Ω). Given a map β : R+ → R+ such that limt→+∞ β(t) = +∞,
we are interested in the asymptotic behavior as t → +∞ of the following dynamical
system

u̇(t) + ∂Φ(u(t)) + β(t)∂Ψ(u(t)) ∋ 0.

If u(.) is a solution of the above differential inclusion, then for almost every t ≥ 0,
there exists ξ(t) ∈ ∂Ψ(u(t)) such that

u̇(t) + [u(t)− b]+ − [a− u(t)]+ + β(t)ξ(t) = 0.
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Taking the scalar product with v ∈ H1(Ω), we obtain in view of (41)
∫

Ω

u̇(t) v +

∫

Ω

([u(t)− b]+ − [a− u(t)]+) v + β(t)

[∫

Ω

∇u(t).∇v −
∫

Ω

h v

]
= 0.

By using Green’s formula, we find for every v ∈ H1(Ω),
∫

Ω

u̇(t) v +

∫

Ω

([u(t)− b]+ − [a− u(t)]+) v

+ β(t)

[
−
∫

Ω

∆u(t) v +

∫

∂Ω

∂u(t)

∂n
v −

∫

Ω

h v

]
= 0.

This yields
{

u̇(t) + [u(t)− b]+ − [a− u(t)]+ + β(t) [−∆u(t)− h] = 0 on Ω,
∂u(t)
∂n

= 0 on ∂Ω.

The elements of C = argminΨ are solutions of the minimization problem

inf

{
1

2

∫

Ω

‖∇u‖2 −
∫

Ω

hu : u ∈ H1(Ω)

}
.

The corresponding weak variational formulation is given by

∀v ∈ H1(Ω),

∫

Ω

∇u.∇v =

∫

Ω

h v. (42)

Since
∫
Ω
h = 0, it is well-known that such solutions exist, and they satisfy the

following Neumann boundary value problem
{

−∆u− h = 0 on Ω,
∂u
∂n

= 0 on ∂Ω.

Denoting by û a particular solution, the set C = argminΨ is the straight line
C = {û + m, m ∈ R}. Let us now check that the function Ψ satisfies the inf-
compactness property (10). Given R > 0 and l ∈ R, let u ∈ L2(Ω) be in the lower
level set

ΛR,l = {u ∈ L2(Ω), ‖u‖L2 ≤ R, Ψ(u) ≤ l}.
From the definition of Ψ, we have u ∈ H1(Ω) and

∫

Ω

‖∇u‖2 ≤ 2l+ 2

∫

Ω

hu

≤ 2l+ 2 ‖h‖L2‖u‖L2 ≤ 2 l+ 2R ‖h‖L2.

We immediately deduce that

‖u‖2H1 =

∫

Ω

u2 +

∫

Ω

‖∇u‖2 ≤ R2 + 2 l+ 2R ‖h‖L2,

which shows that the set ΛR,l is bounded for the H1(Ω)-norm. Since Ω is bounded
with C1 boundary, by the Rellich-Kondrachov theorem, the injection H1(Ω) →֒
L2(Ω) is compact. We conclude that ΛR,l is relatively compact for the L2(Ω)-
norm, hence the function Ψ satisfies the inf-compactness property (10).
Let us now determine the set S = argminCΦ. Since the function Φ is continuous,
convex and coercive, the set argminCΦ is a nonempty segment included in C. Recall
that u ∈ argminCΦ if and only if it satisfies the optimality condition −∇Φ(u) ∈
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NC(u). Since the set C is a straight line directed by the space of constant functions,
it is clear that

NC(u) =
{
p ∈ L2(Ω), 〈p, 1〉L2(Ω) = 0

}
=

{
p ∈ L2(Ω),

∫

Ω

p = 0

}
.

Finally, we obtain the equivalences

u ∈ argminCΦ ⇐⇒
∫

Ω

∇Φ(u)(x) dx = 0

⇐⇒
∫

Ω

(
[u(x)− b]+ − [a− u(x)]+

)
dx = 0. (43)

Assuming that û ∈ argminCΦ, let us denote by infΩ û (resp. supΩ û) the essential
infimum (resp. supremum) of û over the set Ω. We distinguish the cases supΩ û−
infΩ û > b− a, and supΩ û− infΩ û ≤ b− a.

Case 1: supΩ û − infΩ û > b − a. In view of condition (43), we deduce that the
sets

Ω+ = {x ∈ Ω, û(x) > b} and Ω− = {x ∈ Ω, û(x) < a}
have positive measures. For m ∈ R, let us define the quantity θ(m) by

θ(m) =

∫

Ω

(
[û(x) +m− b]+ − [a−m− û(x)]+

)
dx.

Recalling that θ(0) = 0, we have for every m ≥ 0

θ(m) =

∫

Ω

(
[û(x) +m− b]+ − [û(x) − b]+

)
dx

+

∫

Ω

(
[a− û(x)]+ − [a−m− û(x)]+

)
dx

≥
∫

Ω

(
[û(x) +m− b]+ − [û(x) − b]+

)
dx

≥
∫

Ω+

(
[û(x) +m− b]+ − [û(x) − b]+

)
dx

=

∫

Ω+

mdx = m |Ω+|.

In the same way, we obtain θ(m) ≤ m |Ω−| for every m ≤ 0. Since |Ω+| and |Ω−|
are positive, this implies that θ(m) = 0 if and only if m = 0. In view of (43), we
conclude that û is the unique minimum of Φ over the set C = {û+m, m ∈ R}. We
then infer from Corollary 3.2(i) that limt→+∞ u(t) = û strongly in L2(Ω).

Case 2: supΩ û − infΩ û ≤ b − a. In view of condition (43), we deduce that
û(x) ∈ [a, b] for almost every x ∈ Ω. We then have Φ(û) = 0, hence û ∈ argminΦ.
It ensues that

S = argminΨ ∩ argminΦ

=

{
û+m, m ∈

[
a− inf

Ω
û, b− sup

Ω
û

]}
.

By combining Corollary 3.3 and Remark 3.3, we deduce that there exists u ∈ S
such that limt→+∞ u(t) = u strongly in L2(Ω).
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In fact the convergence is strong in H1(Ω) in each of the above cases. Indeed,
observe that

‖u(t)− u‖2H1 =

∫

Ω

‖∇u(t)−∇u‖2 +
∫

Ω

|u(t)− u|2

=

∫

Ω

‖∇u(t)‖2 − 2

∫

Ω

∇u(t)∇u +

∫

Ω

‖∇u‖2 +
∫

Ω

|u(t)− u|2.

By using the weak variational formulation (42), we obtain that
∫
Ω
∇u(t)∇u =∫

Ω
hu(t), and that

∫
Ω
‖∇u‖2 =

∫
Ω
hu. We immediately deduce from the above

equality that

‖u(t)− u‖2H1 = 2
(
Ψ(u(t))−Ψ(u)

)
+

∫

Ω

|u(t)− u|2.

Since limt→+∞ Ψ(u(t)) = minH Ψ (see Remark 3.3) and since limt→+∞ ‖u(t) −
u‖L2 = 0, we conclude that limt→+∞ ‖u(t)− u‖H1 = 0.
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