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1. Introduction

In recent years the Next-to-Minimal Supersymmetric Standard Model (NMSSM) gained

a lot of attention in particle physics community. The primary reason for this is the mea-

surement of the Higgs mass of 125 GeV which is hard to accommodate in the Minimal

Supersymmetric Standard Model (MSSM) with light stops, hence threatening naturalness

of supersymmetry. On the other hand, in NMSSM the 125 GeV Higgs can be compatible

with relatively light stops due to additional contributions to the Higgs mass. The Higgs

mass in NMSSM is usually enhanced by demanding large singlet-Higgs-Higgs superpoten-

tial coupling λ and small tanβ . However, it was recently emphasized that light stops in

NMSSM are also possible for moderate and large tanβ provided that the mixing between

the Higgs and a lighter singlet-dominated scalar is non-negligible [1].

Presence of a light singlet-dominated scalar has important implications for neutralino

dark matter. This is because the Higgs-singlet mixing modifies the Higgs couplings to LSP

and nucleons, hence also the spin-independent (SI) scattering cross-section σSI. Moreover,

a light singlet-dominated scalar can mediate the LSP-nucleon interaction itself giving con-

tribution to σSI that can be even larger than the one coming from the Higgs exchange. In

these proceedings we investigate the SI scattering cross-section and derive analytic formu-

lae for the neutralino blind spots i.e. regions of the NMSSM parameter space with strongly

suppressed SI scattering cross-section, including the effects of the singlet. We focus on

a singlino-Higgsino LSP since this is the most distinct from MSSM type of LSP and, in

addition, can be a thermal relic with the abundance in agreement with the observations.

Many results presented in these proceedings (except subsection 5.1) are discussed in more

details in [2].

2. CP-even scalar and neutralino sector of the NMSSM

We will start from a brief summary of the NMSSM CP-even scalar and neutralino

sector. Let us parametrize the NMSSM specific part of the superpotential as:

WNMSSM = λSHu ·Hd + f (S) , (2.1)

where S is a SM-singlet superfield. In a general model the function f (S) contains all possible

renormalizable terms f (S) = ξFS + µ ′S2/2 + κS3/3. The corresponding soft terms are:1

−Lsoft ⊃ m2
Hu

H†
u Hu + m2

Hd
H†

d Hd + m2
S |S|

2

+

(
Aλ λHu ·HdS +

1
3

AκκS3 + m2
3Hu ·Hd +

1
2

m′2S S2 + ξSS + h.c.
)
. (2.2)

The first term in (2.1) is the source of the effective Higgsino mass parameter: µ ≡ λvs

(note that we dropped the usual MSSM µ parameter by a shift symmetry). In the simplest

version, known as the scale-invariant NMSSM, m2
3 = m′2s = ξS = 0 while f (S)≡ κS3/3.

There are three neutral CP-even scalar fields, H0
u , H0

d , S which are the real parts of

excitations around the real vevs, vu ≡ vsinβ , vd ≡ vcosβ , vs with v2 = v2
u +v2

d ≈ (174GeV)2,

1We use the same notation for chiral superfields as for their scalar components; Hu ·Hd ≡H+
u H−d −H0

u H0
d .
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of the neutral components of doublets Hu, Hd and the singlet S. It is more convenient for

us to work in the basis
(
ĥ, Ĥ, ŝ

)
, where ĥ = H0

d cosβ + H0
u sinβ , Ĥ = H0

d sinβ −H0
u cosβ and

ŝ = S. The ĥ field has exactly the same couplings to the gauge bosons and fermions as the

SM Higgs field. In this basis the off-diagonal elements of the scalar mass squared matrix M2

have the form:

M2
ĥĤ =

1
2

(M2
Z−λ

2v2)sin4β , M2
ĥŝ = λv(2µ−Λsin2β ), M2

Ĥŝ = λvΛcos2β , (2.3)

and Λ ≡ Aλ + 〈∂ 2
S f 〉. The mass eigenstates of M2, denoted by hi (with hi = h,H,s), are

expressed in terms of the hatted fields with the help of the diagonalization matrix S̃:2

hi = S̃hiĥĥ + S̃hiĤĤ + S̃hi ŝŝ . (2.4)

The neutralino mass matrix in NMSSM is 5-dimensional. However, in this work we

assume that gauginos are heavy and thus we focus on the sub-matrix describing the three

lightest neutralinos:

Mχ0 =


0 −µ −λvsinβ

−µ 0 −λvcosβ

−λvsinβ −λvcosβ 〈∂ 2
S f 〉

 . (2.5)

Trading the model dependent term 〈∂ 2
S f 〉 for one of the eigenvalues, m

χ0
j
, of the above

neutralino mass matrix we find the following (exact at the tree level) relations for the

neutralino diagonalization matrix elements:

N j3

N j5
=

λv
µ

(m
χ0

j
/µ)sinβ − cosβ

1−
(

m
χ0

j
/µ

)2 ,
N j4

N j5
=

λv
µ

(m
χ0

j
/µ)cosβ − sinβ

1−
(

m
χ0

j
/µ

)2 , (2.6)

where j = 1,2,3 and |m
χ0

1
| ≤ |m

χ0
2
| ≤ |m

χ0
3
|. Notice that the physical (positive) LSP mass is

equal mLSP ≡ |mχ | (to simplify the notation from now on we use χ ≡ χ0
1 , mχ ≡ m

χ0
1

etc.).

In our discussion we will consider only positive values of λ . The results for negative

λ are exactly the same due to the invariance under the transformation λ →−λ , κ →−κ,

ξS→−ξS, ξF →−ξF , S→−S with other fields and couplings unchanged.

3. Spin-independent scattering cross-section

The spin-independent cross-section for the LSP interacting with the nucleus with the

atomic number Z and the mass number A is given by

σSI =
4µ2

red
π

[
Z f (p) +(A−Z) f (n)

]2
A2 , (3.1)

where µ2
red is the reduced mass of the nucleus and the LSP. Usually, the experimental limits

concern the cross section σSI defined as 1
2(σ

(p)
SI +σ

(n)
SI ). Thus, in the rest of the paper we will

2The matrix S̃ is related to the commonly used Higgs mixing matrix S by a rotation by the angle β in

the 2-dimensional space of the weak doublets.
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follow this convention. When the squarks are heavy the effective couplings f (N) (N = p,n)

are dominated by the t-channel exchange of the CP-even scalars [3]:

f (N) ≈
3

∑
i=1

f (N)
hi
≡

3

∑
i=1

αhiχχαhiNN

2m2
hi

. (3.2)

The couplings of the i-th scalar to the LSP and to the nucleon in our rotated basis (ĥ,Ĥ,ŝ)
are given, respectively, by

αhiχχ ≈
√

2λ
[
S̃iĥN15 (N13 sinβ + N14 cosβ )+ S̃iĤN15 (N14 sinβ −N13 cosβ )

+S̃iŝ

(
N13N14−

κ

λ
N2

15

)]
, (3.3)

αhiNN ≈
mN√

2v

[
S̃iĥ

(
F(N)

d + F(N)
u

)
+ S̃iĤ

(
tanβF(N)

d − 1
tanβ

F(N)
u

)]
, (3.4)

where we neglected the contributions from (heavy) gauginos i.e. N11 ≈ 0 ≈ N12 and intro-

duced the form factors F(p)
u ≈ 0.152, F(p)

d ≈ 0.132, F(n)
u ≈ 0.147, F(n)

d ≈ 0.140 [4].

4. Blind spots coming from the h and H exchange

In this section we will present the blind spot conditions analogous to those already

known in the MSSM i.e. for decoupled s with ms→∞. Thus, we can neglect the mixing of h
and H with s in f (N)

h and f (N)
H as well as the f (N)

s amplitude. Let us start from the situation in

which f (N)
h interferes destructively with the contribution f (N)

H mediated by the heavy Higgs

doublet. The coupling of H to down quarks, hence also to nucleons, may be enhanced by

large tanβ which could compensate the suppression of f (N)
H by m−2

H . Considering tanβ � 1
we can neglect S̃hĤ ∼−2(M2

z −λ 2v2)/(tanβ m2
H) (see. eq. (2.3)), which causes S̃hĥ ≈ S̃HĤ ≈ 1,

and rewrite the amplitudes as:

f (N)
h + f (N)

H ≈ λmNN15

vm2
h

F(N)

[
N13 sinβ + N14 cosβ +

(
mh

mH

)2 tanβ

2
(N14 sinβ −N13 cosβ )

]
,

(4.1)

where we used the approximation F(N)
d = F(N)

u (≡ F(N)). We can see immediately that if the

LSP is a pure singlino or a pure Higgsino this expression vanishes. For a mixed LSP the

sum of the above amplitudes may be small only if there is a cancellation in the square

bracket. Perfect cancellation gives the following blind spot condition:

mχ

µ
− sin2β ≈

(
mh

mH

)2 tanβ

2
. (4.2)

This is a similar result to the one obtained in the MSSM [5], but for the Higgsino-singlino

LSP rather than the Higgsino-gaugino one. Note that mχ µ > 0 is required in contrast to

MSSM. This kind of a blind spot allows for a highly-mixed singlino-Higgsino LSP and large

tanβ since (4.2) can be satisfied with |mχ | ≈ |µ| provided that (mh/mH)2 tanβ ∼ O(1). In

the decoupling limit of H, i.e. mH → ∞, our blind spot condition simplifies to:

mχ

µ
− sin2β = 0 . (4.3)

4
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This result is analogous to the one obtained in [6] for the Higgsino-gaugino LSP in the

MSSM (as called traditional blind spots) but, again, with opposite sign between the two

terms in the l.h.s. Notice that if tanβ is not small, the blind spot condition implies a

singlino-dominated LSP (|mχ | � |µ|) for which fh is suppressed anyway.

4.1 Mixing with the singlet

Now we can ask the question what happens if h and H mix with the singlet-dominated

scalar s (but still in the limit of large ms i.e. with fs neglected). Let us start with the blind

spot condition (4.3). The effect of h-s mixing modifies the r.h.s. of that formula giving:

mχ

µ
− sin2β ≈− S̃hŝ

S̃hĥ

µ

λv

[
1−
(

mχ

µ

)2
](

N13

N15

N14

N15
− κ

λ

)
, (4.4)

where:
S̃hŝ

S̃hĥ
≈ sgn(Λsin2β −2µ)

√
2|∆mix|mh

ms
, ∆mix ≡ mh− M̂hh . (4.5)

The last parameter, ∆mix, measures the linear correction to the Higgs mass coming from

the mixing with other states (mainly s). For mh < ms this correction is negative which is

not preferable. Thus, the requirement of small |∆mix|, say smaller than O(1) GeV, implies

(S̃hŝ/S̃hĥ) . 0.1(mh/ms). Therefore, in order to have a strong modification of the blind spot

condition at least one of the factors in the r.h.s. of eq. (4.4) must be much larger than 1

which puts limitations on the composition of the LSP. Namely, for a singlino-dominated

and highly-mixed singlino-Higgsino LSP the blind spot with mχ µ < 0 requires large |κ/λ |,
and thus small λ if we impose perturbativity limits, while for a Higgsino-dominated LSP

such a blind spot can be present both for small and large λ .

In the case of a non-negligible effect of H the analogue of eq. (4.2) takes the form:

mχ

µ
− sin2β ≈

(
mh

mH

)2 tanβ

2

[
1− S̃Hŝ

S̃HĤ

µ

λv

(
1−
(

mχ

µ

)2
)(

N13

N15

N14

N15
− κ

λ

)]
. (4.6)

If S̃hŝ is not negligible with respect to
( mh

mH

)2 tanβ

2 S̃Hŝ we should also add here the correc-

tion (4.4). However, the conclusions for blind spots regarding the LSP composition are

qualitatively similar to those resulting from (4.4) (see [2] for detailed analysis).

5. Blind spots coming from the h and s exchange

Now we move to the main point of our discussion i.e. the situation when the singlet-like

scalar is light. To simplify our consideration and feel the qualitative difference with respect

to the previous section, we decouple the H state i.e. we neglect the f (N)
H amplitude (assuming

that ms,mh�mH) but at the same time we take into account the Ĥ-ŝ mixing effects in f (N)
s

which may be enhanced by large tanβ . The modification will concern eqs. (4.3) and (4.4).

In order to shorten our notation we introduce additional parameters:

As ≡−γ
1 + cs

1 + ch

(
mh

ms

)2

, chl ≡ 1 +
S̃hlĤ

S̃hl ĥ
(tanβ − cotβ ) , (5.1)

5
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where hl = h,s and γ ≡ S̃hŝ/S̃hĥ is given in (4.5). In the limit of large tanβ the cs (ch)

parameter measures the ratio of the couplings, normalized to SM values, of the s (h) scalar

to the b quarks and to the Z bosons.3 Then our blind spot condition reads:

mχ

µ
− sin2β ≈− γ +As

1− γAs

µ

λv

[
1−
(

mχ

µ

)2
](

N13

N15

N14

N15
− κ

λ

)
, (5.2)

which is of the form (4.4) but with a crucial modification of the first factor in the r.h.s.:

γ ≡ S̃hŝ

S̃hĥ
−→ γ +As

1− γAs
. (5.3)

(Note that for ms→ ∞ we have As→ 0.) The new prefactor can be at least one order of

magnitude larger than the previous one i.e. in the case with only h exchange taken into

account, which soften the constraints on the LSP composition e.g. large |κ/λ | is not always

necessary in the case of a singlino/highly-mixed singlino-Higgsino LSP and mχ µ < 0.

From our perspective the most interesting situation takes place when ∆mix, being now

positive, is large. As stated above, for ms . 85 GeV small |cs| and hence large tanβ and

small λ are preferred [1]. For definiteness, let us consider tanβ = 10, λ = 0.1 and two

representative values of ms, 70 and 95 GeV, for which the LEP bounds are, respectively,

quite severe and rather mild. In Fig. 1 we present the points (for a few values of cs)

for which σSI is smaller than the neutrino background for two signs of mχ µ (in all plots

presented in this paper the LEP and LHC Higgs constraints are satisfied, at 2σ level, unless

otherwise stated). The most apparent difference between cs > 1 and cs < 1 is that in the

first case there are no points with Higgsino-dominated LSP, whereas in the second one there

is a negative correlation between Higgsino admixture and ∆mix (for N2
15 . 0.1). In order to

explain this behavior we rewrite the blind spot condition (5.2) in the form adequate for the

Higgsino-dominated limit i.e. for |mχ/µ| → 1. The result reads:

γ +As

1− γAs
≈ sgn(µ)|N15|

√
2(1− sgn

(
mχ µ

)
sin2β ) . (5.4)

For specific values of cs and ms (chosen in our example) the l.h.s. of the above equation is

proportional4 to −γ and thus to ∆mix (see (4.5)) – this explains why there is a correlation

between ∆mix and |N15|. To understand why for cs > 1 (cs < 1) there are (no) points which

fulfill (5.4) we should notice (see eq. (2.3)) that for tanβ � 1 we have sgn(1−cs) = sgn(Λγ) =

sgn(µγ) – the second equality holds because a partial cancellation between the two terms

in M2
hŝ is needed.5 This is exactly what we wanted to show: for cs < 1 the l.h.s. of (5.4)

has the sign equal to −sgn(µ) thus the equality cannot hold (and inversely for cs > 1). It

3It is easier to make a light scalar s compatible with the LEP bounds when |cs| is small [1], especially

for ms . 85 GeV. We should note, however, that cs < 1 implies ch > 1 which in turn leads to suppressed

branching ratios of h decaying to gauge bosons, so ch is constrained by the LHC data.
4It can be easily seen if we notice that As =−γ const, where const = 1+cs

1+ch

(mh
ms

)2
> 1. Moreover |γAs| � 1

and hence the denominator in the l.h.s. of (5.4) is roughly 1.
5This happens in our example in Fig. 1 because for |µ| = 500 GeV and λ = 0.1 we have |M2

hŝ| ∼
O(100 GeV), which is of order mh and ms. The situation for smaller |µ| is not much different.
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∆mix [GeV]
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10-3

10-2

10-1
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N
2 15

λ=0.1, tanβ=10, |µ|=500 GeV, ms =70 GeV, cs =0.1
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∆mix [GeV]
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100

N
2 15

λ=0.1, tanβ=10, |µ|=500 GeV, ms =70 GeV, cs =1.2

10-2 10-1 100 101

∆mix [GeV]
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10-3

10-2

10-1

100

N
2 15

λ=0.1, tanβ=10, |µ|=500 GeV, ms =95 GeV, cs =0.5

10-2 10-1 100 101

∆mix [GeV]

10-4

10-3

10-2

10-1

100

N
2 15

λ=0.1, tanβ=10, |µ|=500 GeV, ms =95 GeV, cs =1.2

Figure 1: Regions of the plane (∆mix−N2
15) with σSI smaller than the neutrino background [7]

for mχ µ > 0 (red) and mχ µ < 0 (blue), while keeping |κ| ≤ 0.6. Upper (lower) plots correspond to

ms = 70 (95) GeV whereas the left (right) to cs smaller (larger) than 1.

can be shown (using relations (2.6)), that the above conclusions hold also when |κ/λ | is

smaller than |N13
N15

N14
N15
| in eq. (5.2) i.e. for some part of highly-mixed singlino-Higgsino LSP

parameter space. For singlino-dominated LSP we can always choose the sign and value of

κ to fulfill relation (5.2), however, as we will see below, this may be different in specific

versions of NMSSM.

5.1 Model with µ ′ = 0

Let us now consider the version of NMSSM with µ ′ = 0 in the superpotential (2.1).

It has been shown [8] that such superpotential can arise from an underlying ZR
8 symmetry

and hence would be theoretically motivated. Moreover, this model has the same neutralino

sector as the no-scale model, while the scalar sector is very similar to the general one,6

which allows us to fix the masses of scalars and simplify greatly our analysis.

The condition µ ′ = 0 means that the singlino mass parameter is now equal to 〈∂ 2
S f 〉=

6Due to the fact that µ ′ affects only the diagonal terms in the mass matrix of the CP-even scalars.
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10-2 10-1 100 101

∆mix [GeV]

10-4

10-3

10-2

10-1

100

N
2 15

λ=0.1, tanβ=10, |µ|=500 GeV, ms =95 GeV, cs =1.2

10-2 10-1 100 101

∆mix [GeV]

10-2

10-1

1−
N

2 15

λ=0.1, tanβ=10, |µ|=500 GeV, ms =95 GeV, cs =1.2

Figure 2: Left plot: regions of the plane (∆mix−N2
15) with σSI smaller than the neutrino back-

ground [7] for mχ µ > 0 (red) and mχ µ < 0 (blue). Right plot: the same as the left one but vertical

axis denotes 1−N2
15 values i.e. the upper, hardly visible region of the left plot is enlarged. We put

µ ′ = 0.

2µκ/λ . Thus, we can express the ratio κ/λ in term of mχ/µ in the following way:

κ

λ
=

1
2

[(
mχ/µ

)
+(λv/µ)2

(
mχ/µ

)
− sin(2β )

1−
(
mχ/µ

)2

]
. (5.5)

Now the κ parameter is not an independent one and this may primarily constrain the

singlino-dominated LSP region. This is illustrated in Fig. 2 which is the analogue of the

right down plot in Fig 1 (we also enlarged the region of singlino-dominated LSP – right

plot in Fig. 2). One can see that there is a positive correlation between a (small) Higgsino

component of the LSP and ∆mix in the singlino-like LSP region (in a general model almost

every ∆mix smaller than some value is possible for a highly singlino-dominated LSP).

As we know, for ms . 85 GeV and sizable ∆mix we prefer |cs| � 1 in order to be compat-

ible with the LEP bounds. In a general NMSSM the LSP in this case should be singlino-

dominated (see Fig. 1), where the blind spot condition (5.2) can be rather easy fulfilled

by tuning the ratio κ/λ . However, for µ ′ = 0 we cannot freely change the value and

sign of κ/λ and therefore fulfill condition (5.2) so easily. In Fig. 3 we present the re-

gions in the plane (mχ/µ −σ
(n)
SD ) allowing σSI below the LUX bound, XENON1T bound

and neutrino background. For smaller σ
(n)
SD (and hence smaller |λv/µ|) all the points are

singlino-dominated. One can see that for small |cs| the blind spots are possible only for

mχ/µ close to sin2β ∼ 2/ tanβ (these are our traditional blind spots in (4.3)), which is not

preferable from the viewpoint of Higgs invisible decays (mLSP is then smaller than mh/2)

unless |µ| is large: |µ|& O
(

500 tanβ

10

)
GeV – see upper right plot in Fig. 3. We can under-

stand this better if we substitute (5.5) into (5.2), omitting N13
N15

N14
N15

. If |mχ/µ| is small, for

large tanβ and small |λv/µ| (which is satisfied in our case) we can neglect the second term

in the square bracket in (5.5) and our blind spot condition becomes:

mχ

µ

(
1− 1

2
γ +As

1− γAs

µ

λv

)
− sin2β ≈ 0 . (5.6)

8
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From the sign analysis below (5.4) it follows that the second term in the bracket in (5.6) is
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)

S
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LUX or λ>0.7
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tanβ=10, |µ|=150 GeV, ms =70 GeV, ∆mix =3 GeV, cs=0.1
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σ
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S
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b
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Excluded by LEP, LHC,
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tanβ=10, |µ|=150 GeV, ms =95 GeV, ∆mix =3 GeV, cs=1.2
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σ
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S
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b
] Excluded by LEP, LHC,

LUX or λ>0.7
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tanβ=10, |µ|=500 GeV, ms =95 GeV, ∆mix =3 GeV, cs=1.2

Figure 3: Spin-dependent scattering cross section for neutrons σ
(n)
SD versus mχ/µ for the points

with σSI below LUX limit [9] (yellow), XENON1T [10] limit (green) and neutrino background [7]

(red) for µ ′ = 0. Upper (lower) plots correspond to ms = 70 GeV, cs = 0.1 (ms = 95 GeV, cs = 1.2)

whereas the left (right) ones to |µ|= 150 (500 GeV). Solid red lines represent mLSP = mh/2, whereas

dashed ones the XENON100 bound [11] for σ
(n)
SD . Blue regions for µ = 150 GeV correspond to light

LSP with very weak neutrino background limit ∼ 10−46 cm2.

positive for cs < 1 and hence the smaller λ the smaller |mχ/µ| (and reversely for cs > 1) –

one can see this in Fig. 3. On the other hand, if |mχ/µ| is closer to 1 (but LSP is still

singlino-dominated), we can neglect the first term in the square bracket in (5.5) and get:

1≈ 1
2

γ +As

1− γAs

λv
µ

. (5.7)

Note that the above equation does not depend on mχ/µ. Again, the sign analysis shows

that this kind of a blind spot is possible only for cs > 1 (lower plots in Fig. 3). For moderate

values of |mχ/µ| both terms in the square bracket in (5.5) are important and the sign of

mχ/µ starts to be crucial e.g. for cs > 1 and mχ µ < 0 we need smaller |λv/µ| to fulfill the

corresponding blind spot condition than for mχ µ > 0. One can see that the XENON100

experiment excludes some region with smaller |µ| where the SI blind spots are present.

The future SD experimental bounds may be especially important for testing the parameter

space of the model.
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6. Conclusions

We have found analytic expressions for blind spots in NMSSM with a light singlet-

like scalar and a Higgsino-singlino LSP. Using this formulas, it is relatively easy to obtain

regions with suppressed spin-independent LSP-nucleus cross-section without violating any

other experimental constraints, especially when the singlet mass ms lies in the LEP favored

window i.e. in the range of about 85÷100 GeV (this holds both in a general model and for

µ ′ = 0, originating from underlying ZR
8 symmetry, however in the second case the singlino-

dominated region is more constrained). This stays in contrast to the MSSM, where the

blind spot conditions put very severe limitations on the parameter space.

Outside the LEP favored window (ms . 85 GeV) and when the linear correction to the

Higgs mass, ∆mix, is sizable in a general model the LSP tends to be singlino-dominated. In

the model with µ ′ = 0 this scenario is additionally constrained by invisible Higgs decays

unless |µ| is large.
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