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CHOQUET-MONGE-AMPÈRE CLASSES

VINCENT GUEDJ*, SIBEL SAHIN** AND AHMED ZERIAHI*

Abstract. We introduce and study Choquet-Monge-Ampère classes
on compact Kähler manifolds. They consist of quasi-plurisubharmonic
functions whose sublevel sets have small enough asymptotic Monge-
Ampère capacity. We compare them with finite energy classes, which
have recently played an important role in Kähler Geometry.

Introduction

Let (X,ω) be a compact Kähler manifold of complex dimension n ≥ 1.
Recall that a quasi-plurisubharmonic function (qpsh for short) on X is an
upper semi-continuous function ϕ : X → R∪{−∞} which is locally the sum
of a plurisubharmonic and a smooth function. We write ϕ ∈ PSH(X,ω) if
ϕ is qpsh and ωϕ := ω + ddcϕ is a positive current. Here d = ∂ + ∂ and

dc = i
2π (∂ − ∂) are both real operators, so that ddc = i

π∂∂.
There are various ways to measure the singularities of such functions. We

can measure the asymptotic size of the sublevel sets (ϕ < −t) as t → +∞
through the Monge-Ampère capacity, which is defined by

Capω(K) := sup

{
∫

K
MA(u);u ∈ PSH(X,ω),−1 ≤ u ≤ 0

}

.

where MA(u) = ωnu/
∫

X ω
n is a well-defined probability measure [BT82].

We can also consider the non-pluripolar measure

MA(ϕ) := lim
j→+∞

1{ϕ>−j}MA(max(ϕ,−j)).

Following [GZ07] we say that ϕ ∈ E(X,ω) ifMA(ϕ) is a probability measure
and set

Ep(X,ω) := {ϕ ∈ E(X,ω) |ϕ ∈ Lp(MA(ϕ))}.

The finite energy classes Ep(X,ω) have played an important role in re-
cent applications of pluripotential theory to Kähler geometry (see for ex.
[EGZ08, EGZ09, BBGZ13, BEG13]). While their local analogues can be
well understood by measuring the size of the sublevel sets, this is not the
case in the compact setting (see [BGZ08, BGZ09]).

In this article we introduce and initiate the study of the Choquet-Monge-
Ampère classes

Chp(X,ω) :=

{

ϕ ∈ PSH(X,ω) |

∫ +∞

0
tp+n−1Cω({ϕ ≤ −t})dt < +∞

}

.
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We show in Theorem 2.7 that an ω-psh function ϕ belongs to Chp(X,ω)
if and only if it has finite Choquet energy

Chp(ϕ) :=

∫

X
(−ϕ)p [(−ϕ)ω + ωϕ]

n < +∞.

We establish in Corollary 2.8 that Choquet classes compare to finite en-
ergy classes as follows,

Ep+n−1(X,ω) ⊂ Chp(X,ω) ⊂ Ep(X,ω).

These classes therefore coincide in dimension n = 1, but the inclusions
are strict in general when n ≥ 2: the first inclusion is sharp for functions
with divisorial singularities (Proposition 3.11), while the second inclusion is
sharp for functions with compact singularities (Proposition 3.8).

We briefly describe the range of the complex Monge-Ampère operator
acting on Choquet classes in Proposition 3.3 and Proposition 3.6. This de-
scription is not as complete as the corresponding one for finite energy classe
in [GZ07]; Choquet classes are rather meant to become a useful intermediate
tool in the analysis of the complex Monge-Ampère operator.

1. Choquet classes

1.1. Choquet capacity.

1.1.1. Generalized capacities. Let Ω be a Hausdorff locally compact topo-
logical space which we assume is σ-compact. We denote by 2Ω the set of all
subsets of Ω. A set function c : 2Ω −→ R̄+ := [0,+∞] is called a capacity
on Ω if it satisfies the following four properties:

(i) c(∅) = 0;

(ii) c is monotone, i.e. A ⊂ B ⊂ Ω =⇒ 0 ≤ c(A) ≤ c(B);
(iii) if (An)n∈N is a non-decreasing sequence of subsets of Ω, then

c(∪nAn) = limn→+∞c(An) = sup
n
c(An);

(iv) if (Kn) is a non-increasing sequence of compact subsets of Ω,

c(∩nKn) = limnc(Kn) = inf
n
c(Kn).

A capacity c is said to be a Choquet capacity if it is subadditive, i.e. if it
satisfies the following extra condition

(v) if (An)n∈N is any sequence of subsets of Ω, then

c(∪nAn) ≤
∑

n

c(An),

Capacities are usually first defined for Borel subsets and then extended
to all sets by building the appropriate outer set function.

Example 1.1. Let M be a family of Borel measures on Ω. The set function
defined on any Borel subsets A ⊂ Ω by the formula

cM(A) := sup{µ(A);µ ∈ M}

is a precapacity on Ω. It is called the upper envelope of M. Observe that
this precapacity need not be additive. The precapacity cM need not be outer
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regular either unless M is a finite set. However if M is a compact set for
the weak∗-topology then c∗M is a Choquet capacity.

If c is a Choquet capacity on Ω, every Borel subset B ⊂ Ω satisfies

c(B) = sup{c(K);K compact K ⊂ B}.

This is a special case of Choquet’s capacitability theorem.

1.1.2. Monge-Ampère capacities. Let (X,ω) be a compact Kähler manifold
of dimension n. We let Lp(X) = Lp(X,R, dV ) denote the Lebesgue space
of real valued measurable functions which are Lp-integrable with respect to
a fixed volume form dV .

We denote by PSH(X,ω) the set of ω-plurisubharmonic functions: these
are functions ϕ : X → R ∪ {−∞} which are locally the sum of a plurisub-
harmonic and a smooth function, and such that ωϕ := ω + ddcϕ ≥ 0 in the
sense of currents. Recall that for all p ≥ 1,

PSH(X,ω) ⊂ Lp(X).

The Monge-Ampère capacity Cω is defined for Borel sets K ⊂ X by

Cω(K) := sup

{
∫

K
MA(u);u ∈ PSH(X,ω),−1 ≤ u ≤ 0

}

.

where MA(u) = ωnu/
∫

X ω
n is a well-defined probability measure [BT82].

It follows from the work of Bedford-Taylor [BT82] that Cω is a Choquet
capacity. We refer the reader to [GZ05] for basics on PSH(X,ω) and Cω.

1.2. The Choquet integral. Let C be a Choquet capacity on X, a com-
pact topological space.

Definition 1.2. The Choquet’s integral of a non negative Borel function
f : X −→ R+ is

∫

X
fdC :=

∫ +∞

0
C({f ≥ t})dt.

A change of variables shows that for any exponent p ≥ 1,
∫

X
fpdC := p

∫ +∞

0
tp−1C({f ≥ t})dt.

Observe that if K ⊂ X is a Borel set then
∫

X
1KdC = C(K).

Definition 1.3. We set, for p ≥ 1,

Lp(X,C) := {f ∈ B(X,R); ‖f‖Lp(X,C) < +∞},

where B(X,R) is the space of real-valued Borel functions in X and

‖f‖Lp(X,C) :=

(
∫

X
|f |pdC

)1/p

.

Lemma 1.4. Let f, g ∈ Lp(X,C) and λ ∈ R. Then
1. If 0 ≤ f ≤ g then

∫

X fdC ≤
∫

X gdC.

2. ‖λf‖Lp(X,C) = |λ|‖f‖Lp(X,C).

3. ‖f + g‖Lp(X,C) ≤ 2(‖f‖Lp(X,C) + ‖g‖Lp(X,C)),
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In particular Lp(X,C) is a vector space. The above quasi-triangle in-
equality defines a uniform structure, which is furthermore metrizable for
general reasons [BOUR], i.e. we can equip Lp(X,C) with an invariant met-
ric ρ such that a sequence (fj) converges to f for the metric ρ if and only if
limj→+∞ ‖fj − f‖Lp(X,C) = 0.

Proof. The first two items are obvious. The third one follows from the
subaddivity of the capacity and the inclusion

{f + g ≥ t} ⊂ {f ≥
t

2
} ∪ {g ≥

t

2
}.

�

Lemma 1.5. Let (fj) be a sequence of non-negative Borel functions on X.
1. If (fj) is non-decreasing and f := supj fj, then

∫

X
fdC = lim

j→+∞

∫

X
fjdC = sup

j

∫

X
fjdC.

2. If (fj) is a decreasing sequence of positive upper semi-continuous func-
tions and f := infj fj, then

∫

X
fdC = lim

j→+∞

∫

X
fjdC = inf

j

∫

X
fjdC.

This lemma follows from continuity properties of the Choquet capacity;
the proof is left to the reader.

1.3. Choquet-Monge-Ampère classes. Let (X,ω) be a compact Kähler
manifold of dimension n.

Definition 1.6. The Choquet-Monge-Ampère class is

Chp(X,ω) := PSH(X,ω) ∩ Lp+n(X,Cω).

Observe that when ϕ ∈ Chp(X,ω) and ϕ ≤ 0 then

∫

X
(−ϕ)p+ndCω = (p + n)

∫ +∞

0
tp+n−1Cω({ϕ ≤ −t})dt,

and

Cω({ϕ ≤ −t}) ≤ t−p−n
∫

X
(−ϕ)p+ndCω.

Proposition 1.7. The class Chp(X,ω) is convex.
If (ϕj) ∈ Chp(X,ω)N converges in L1(X) to ϕ ∈ PSH(X,ω) and satisfies

supj
∫

X(−ϕj)
p+n dCω < +∞, then ϕ ∈ Chp(X,ω) and
∫

X
(−ϕ)p+ndCω ≤ lim inf

j→+∞

∫

X
(−ϕj)

p+ndCω.

Proof. Set

ϕ̃j :=

(

sup
ℓ≥j

ϕℓ

)∗

.
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Then (ϕ̃j) is a non-increasing sequence of PSH(X,ω) which converges to ϕ
pointwise. Since ϕj ≤ ϕ̃j ≤ 0 for all j, we infer that ϕ̃j ∈ Chp(X,ω) and

∫

X
(−ϕ̃j)

p+ndCω ≤

∫

X
(−ϕj)

p+ndCω ≤M := sup
j

∫

X
(−ϕj)

p+n dCω.

By Lemma 1.5 we conclude that
∫

X
(−ϕ)p+ndCω = lim

j

∫

X
(−ϕ̃j)

p+ndCω

≤ lim inf
j

∫

X
(−ϕj)

p+ndCω ≤M.

Hence ϕ ∈ Chp(X,ω) and the required inequality follows. �

2. Energy estimates

We now compare the Choquet-Monge-Ampère classes with the finite en-
ergy classes Eq(X,ω) introduced in [GZ07].

2.1. Finite energy classes. Given ϕ ∈ PSH(X,ω), we consider its canon-
ical approximants

ϕj := max(ϕ,−j) ∈ PSH(X,ω) ∩ L∞(X).

It follows from the Bedford-Taylor theory that the measures MA(ϕj) are
well defined probability measures. Since the ϕj ’s are decreasing, it is natural
to expect that these measures converge (in the weak sense). The following
strong monotonicity property holds:

Lemma 2.1. The sequence µj := 1{ϕ>−j}MA(ϕj) is an increasing sequence
of Borel measures.

The proof is an elementary consequence of the maximum principle (see
[GZ07, p.445]). Since the µj’s all have total mass bounded from above by 1
(the total mass of the measure MA(ϕj)), we can consider

µϕ := lim
j→+∞

µj,

which is a positive Borel measure on X, with total mass ≤ 1.

Definition 2.2. We set

E(X,ω) := {ϕ ∈ PSH(X,ω) | µϕ(X) = 1} .

For ϕ ∈ E(X,ω), we set MA(ϕ) := µϕ.

The notation is justified by the following important fact: the complex
Monge-Ampère operator ϕ 7→ MA(ϕ) is well defined on the class E(X,ω),
i.e. for every decreasing sequence of bounded (in particular smooth) ω-psh
functions ϕj , the probability measures MA(ϕj) weakly converge towards
µϕ, if ϕ ∈ E(X,ω).

Every bounded ω-psh function clearly belongs to E(X,ω) since in this
case {ϕ > −j} = X for j large enough, hence

µϕ ≡ µj =MA(ϕj) =MA(ϕ).
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The class E(X,ω) also contains many ω-psh functions which are unbounded.
When X is a compact Riemann surface (n = dimCX = 1), the set E(X,ω)
is the set of ω-sh functions whose Laplacian does not charge polar sets.

Remark 2.3. If ϕ ∈ PSH(X,ω) is normalized so that ϕ ≤ −1, then
−(−ϕ)ε belongs to E(X,ω) whenever 0 ≤ ε < 1. The functions which be-
long to the class E(X,ω), although usually unbounded, have relatively mild
singularities. In particular they have zero Lelong numbers.

It is shown in [GZ07] that the comparison principle holds in E(X,ω):

Proposition 2.4. Fix u, v ∈ E(X,ω). Then
∫

{v<u}
MA(u) ≤

∫

{v<u}
MA(v).

The class E(X,ω) is the largest class for which the complex Monge-
Ampère is well defined and the maximum principle holds.

Definition 2.5. We let Ep(X,ω) denote the set of ω-psh functions with
finite p-energy, i.e.

Ep(X,ω) :=
{

ϕ ∈ E(X,ω) / (|ϕ|)p ∈ L1(MA(ϕ))
}

.

Here follows a few important properties of these classes (see [GZ07]):

• when p ≥ 1, any ϕ ∈ Ep(X,ω) is such that ∇ωϕ ∈ L2(ωn);
• ϕ ∈ Ep(X,ω) if and only if for any (resp. one) sequence of bounded
ω-functions decreasing to ϕ, supj

∫

X(−ϕj)
pMA(ϕj) < +∞;

• the class Ep(X,ω) is convex.

2.2. Choquet energy. For ϕ ∈ PSH−(X,ω) and p ≥ 1, we set

Chp(ϕ) :=
n
∑

j=0

Cj
n

∫

X
(−ϕ)p+jωn−j

ϕ ∧ ωj =

∫

X
(−ϕ)p [(−ϕ)ω + ωϕ]

n .

Here and in the sequel we use the french notation Cjn :=

(

n
j

)

.

We recall the following useful result:

Lemma 2.6. Fix ϕ,ψ ∈ E(X,ω). Then for all t < 0 and 0 ≤ δ ≤ 1,

δnCω({ϕ− ψ < −t− δ}) ≤

∫

{ϕ−ψ<−t−δψ}
MA(ϕ).

In particular

δnCω({ϕ < −t− δ}) ≤

∫

{ϕ<−t}
MA(ϕ).

Proof. If u is a ω-psh function such that 0 ≤ u ≤ 1, then

{ϕ < −t− δ} ⊂ {ϕ < δu− t− δ} ⊂ {ϕ < −t}.

Since δnMA(u) ≤ MA(δu) and ϕ ∈ E(X,ω) it follows from the comparison
principle that

δn
∫

{ϕ<−t−δ}
MA(u) ≤

∫

{ϕ<δu−t−δ}
MA(δu)

≤

∫

{ϕ<δu−t−δ}
MA(ϕ) ≤

∫

{ϕ<−t}
MA(ϕ).
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This proves the last inequality. The first one is a refinement of the first,
we refer the reader to [EGZ09] for a proof. �

Theorem 2.7. For all p ≥ 1 and 0 ≥ ϕ ∈ PSH(X,ω) ∩ L∞(X),

(2.1)

∫

X
(−ϕ)n+pdCω ≤ 2n+pChp(ϕ),

and

(2.2) Chp(ϕ) ≤ Vω(X) + (n + 1)2n
∫

X
(−ϕ)n+pdCω.

In particular

Chp(X,ω) = {ϕ ∈ PSH(X,ω); Chp(ϕ) < +∞},

and the inequalities (2.1) and (2.2) hold for all ϕ ∈ Chp(X,ω).

Proof. By Lemma 1.5 and the continuity properties for the Monge-Ampère
operators, it suffices to prove the estimates (2.1) and (2.2) when 0 ≥ ϕ ∈
PSH(X,ω) ∩ L∞(X). Now

∫

X
(−ϕ)n+pdCω = (n+ p)

∫ +∞

0
tn+p−1Cω({ϕ ≤ −t})dt.

Fix t ≥ 1 and u ∈ PSH(X,ω) such that −1 ≤ u ≤ 0. Observe that
ϕ/t ∈ PSH−(X,ω) ∩ L∞(X) and

{ϕ < −2t} ⊂ {ϕ/t < u− 1} ⊂ {ϕ < −t}.

Set ψt := ϕ/t. This is a bounded ω-psh function in X such that ω +
ddcψt ≤ t−1ωϕ + ω. The comparison principle (Proposition 2.4) yields

∫

{ϕ<−2t}
ωnu ≤

∫

{ψt<u−1}
ωnu ≤

∫

{ϕ<−t}
(t−1ωϕ + ω)n.

Since (t−1ωϕ + ω)n =
∑n

j=0C
j
nt−n+jω

n−j
ϕ ∧ ωj, we infer, for all t ≥ 1,

tnCω({ϕ < −2t}) ≤
n
∑

j=0

Cjnt
j

∫

{ϕ<−t}
ωn−jϕ ∧ ωj .

It follows on the other hand from Lemma 2.6 that for 0 < t ≤ 1,

tnCω({ϕ < −2t}) ≤

∫

{ϕ<−t}
ωnϕ.

Thus for all t > 0

tn+p−1Cω({ϕ < −2t}) ≤ 2

n
∑

j=0

Cjn(p+ j)tp+j−1

∫

{ϕ<−t}
ωn−jϕ ∧ ωj ,

hence
∫

X
(−ϕ)n+pdCω ≤ (n + 1)2n+p+1Chp(ϕ).

Conversely fix ϕ ∈ PSH(X,ω) ∩ L∞(X). Then for j = 0, · · · , n
∫

X

(−ϕ)p+jωn−j
ϕ ∧ ωj = Vω(X) + (p+ j)

∫ +∞

1

tp+j−1ωn−j
ϕ ∧ ωj({ϕ ≤ −t}).
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Observe that if we set ϕt := sup{ϕ,−t}, then
∫

{ϕ≤−t}
ωn−jϕ ∧ ωj =

∫

{ϕ≤−t}
ωn−jϕt

∧ ωj.

Since for t ≥ 1, t−1ωϕt ≤ ωψt
, where ψt := sup{ϕ/t,−1} , we infer

∫

{ϕ≤−t}
ωn−jϕ ∧ ωj ≤ tn−j

∫

{ϕ≤−t}
ωn−jψt

∧ ωj.

Now

Cjnω
n−j
ψt

∧ ωj ≤ (ωψt
+ ω)n = 2n(ω + ddc(ψt/2))

n

and −1 ≤ ψt ≤ 0, therefore

n
∑

j=0

Cjn

∫ +∞

0
tp+jωn−jϕ ∧ ωj ≤ 2nVω(X) + n2n

∫

X
(−ϕ)n+pdCω,

hence
n
∑

j=0

Cjn

∫

X
(−ϕ)p+jωn−jϕ ∧ ωj ≤ 2nVω(X) + n2n

∫

X
(−ϕ)n+pdCω.

�

Corollary 2.8.

Ep+n−1(X,ω) ⊂ Chp(X,ω) ⊂ Ep(X,ω).

Proof. The second inclusion follows from the fact that
∫

X
(−ϕ)pωnϕ ≤ Chp(ϕ).

To prove the first inclusion we can assume that ϕ ≤ −1. Observe that
when ϕ ∈ Ep+n−1(X,ω) so does ϕ/2 and for j = 1, · · · , n− 1

∫

X
(−ϕ)p+jωn−jϕ ∧ ωj ≤ 2n

∫

X
(−ϕ)p+jωnϕ/2

and for j = 0, we always have
∫

X(−ϕ)
pωnϕ < +∞. �

3. Range of the Monge-Ampère operator

In this section X is a compact Kähler manifold equipped with a semi-
positive form ω such that

∫

X ω
n = 1, where n = dimCX.

3.1. The Monge-Ampère operator on Chp(X,ω).

Lemma 3.1. Fix 0 ≥ ϕ,ψ ∈ Chp(X,ω) and 0 ≤ j ≤ n. Then
∫

X
(−ϕ)p+jωn−jψ ∧ωj ≤ 2p+j

∫

X
(−ϕ)p+jωn−jϕ ∧ωj+2p+j

∫

X
(−ψ)p+jωn−jψ ∧ωj.

Proof. Set χ(t) = −(−t)p+j. The proof is slightly different if j = 0 and
0 < p < 1 or if p+ j ≥ 1 (χ is convex or concave). We only treat the second
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case and leave the modifications to the reader. Observe that 0 ≤ χ′(2t) =
Mχ′(t), with M = 2p+j−1, hence

∫

X
(−χ) ◦ ϕωn−jψ ∧ ωj =

∫ 0

−∞
χ′(t)ωn−jψ ∧ ωj(ϕ < t)dt

≤ 2M

∫ 0

−∞
χ′(t)ωn−jψ ∧ ωj(ϕ < 2t)dt.

Now (ϕ < 2t) ⊂ (ϕ < ψ + t) ∪ (ψ < t), hence 0 ≤ χ′(2t) = Mχ′(t), with
M = 2p+j−1, hence

∫

X
(−χ) ◦ ϕωn−jψ ∧ ωj ≤ 2M

∫ 0

−∞
χ′(t)ωn−jψ ∧ ωj(ϕ < ψ + t)dt

+ 2M

∫

X
(−ψ)p+jωn−jψ ∧ ωj.

The comparison principle yields ωn−jψ ∧ωj(ϕ < ψ+t) ≤ ωn−jϕ ∧ωj(ϕ < ψ+t).

The desired inequality follows by observing that (ϕ < ψ + t) ⊂ (ϕ < t). �

Lemma 3.2. Let µ be a probability measure. Then Chp(X,ω) ⊂ Lq(µ) if and
only if there exists Cµ > 0 such that ∀ϕ ∈ Chp(X,ω) with supX ϕ = −1,

∫

X
(−ϕ)q dµ ≤ Cµ [Chp(ϕ)]

q

p+n .

Proof. One implication is obvious. Assume that Chp(X,ω) ⊂ Lq(µ), we
want to establish the quantitative integrability property. Assume on the
contrary that there exists a sequence ϕj ∈ Chp(X,ω) with supX ϕj = −1
and

∫

X
(−ϕj)

q dµ ≥ 4jqChp(ϕj)
q

p+n .

Assume first thatMj := Chp(ϕj) is uniformly bounded. Note thatMj ≥ 1
since ϕj ≤ −1. It follows from Proposition 1.7 that ϕ =

∑

j≥1 2
−jϕj belongs

to Chp(X,ω). Now for all k ≥ 1,
∫

X
(−ϕ)q dµ ≥ 2−kq

∫

X
(−ϕk)

q dµ ≥ 2kq,

hence
∫

X(−ϕ)
q dµ = +∞, a contradiction.

Extracting and relabelling we can thus assume Mj := Chp(ϕj) → +∞.

Set ψj = εjϕj with εj = M
− 1

n+p

j and ψ =
∑

j≥1 2
−jψj. We note again that

for all k ≥ 1,
∫

X
(−ψ)q dµ ≥ 2−kq

∫

X
(−ψk)

q dµ ≥ 2kqεqkM
q

p+n

k = 2kq,

hence ψ /∈ Lq(µ). We now show that ψ ∈ Chp(X,ω) to get a contradiction.
It suffices to show that Chp(ψj) is uniformly bounded from above. Observe
that ωψj

= εjωϕj
+ (1− εj)ω ≤ εjωϕj

+ ω. We need to control each term

εp+n−kj

∫

X
(−ϕj)

p+ℓωn−ℓ−kϕj
∧ ωℓ+k,
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where 0 ≤ ℓ ≤ n and 0 ≤ k ≤ n− ℓ. Hölder inequality yields
∫

X
(−ϕj)

p+ℓωn−ℓ−kϕj
∧ ωℓ+k ≤

(
∫

X
(−ϕj)

p+ℓ+kωn−ℓ−kϕj
∧ ωℓ+k

)
p+ℓ

p+ℓ+k

,

therefore

Chp(ψj) ≤ Cmax
ℓ,k

(

εp+n−k
j M

p+ℓ

p+ℓ+k

j

)

= Cmax
ℓ,k

(

M
−

k(n−ℓ−k)
(p+ℓ+k)(n+p)

j

)

≤ C′,

since εj =M
− 1

n+p

j . �

The range of the complex Monge-Ampère operator acting on finite energy
classes has been characterized in [GZ07]. The situation is more subtle for
Choquet-Monge-Ampère classes.

We now connect the way a non pluripolar measure is dominated by the
Monge-Ampère capacity to integrability properties with respect to Choquet-
Monge-Ampère classes:

Proposition 3.3. Let µ be a probability measure on X. If µ ≤ ACαω with
0 < A and q/(p+ n) < α < 1, then

Chp(X,ω) ⊂ Lq(µ).

Proof. Let ϕ ∈ Chp(X,ω) with supX ϕ = −1. It follows from Hölder in-
equality that

0 ≤

∫

X

(−ϕ)qdµ = 1 + q

∫ +∞

1

tq−1µ(ϕ < −t)dt

≤ 1 + qA

∫ +∞

1

tq−1 [Capω(ϕ < −t)]α dt

≤ 1 + qA

[
∫ +∞

1

t
q−α(p+n)

1−α
−1dt

]1−α

·

[
∫ +∞

1

tn+p−1Capω(ϕ < −t)dt

]α

.

The first integral in the last line converges when q/(p + n) < α since
q−α(p+n) < 0. The last one is bounded from above by definition. Therefore
Chp(X,ω) ⊂ Lq(µ). �

We now investigate conditions under which the converse of this result
holds. We start by considering the problem for the finite energy classes
Ep(X,ω) :

Proposition 3.4. If E
p
(X,ω) ⊂ Lp(µ) for p > 1, then there exists an A > 0

such that µ ≤ ACαω where α = (1− 1/p)n.

Proof. Suppose that E
p
(X,ω) ⊂ Lp(µ) then by [GZ07] µ = ωnψ for some

ψ ∈ E
p
(X,ω) such that supX ψ = −1. Let ϕ ∈ PSH(X,ω) with −1 ≤ ϕ ≤ 0

then
∫

X
(−ϕ)pωnψ =

∫

X
(−ϕ)pωψ ∧ ωn−1

ψ

=

∫

X
(−ψ)(−ddc(−ϕ)p) ∧ ωn−1

ψ +

∫

X
(−ϕ)pω ∧ ωn−1

ψ .

Now

−ddc(−ϕ)p = −p(p− 1)(−ϕ)p−2dϕ ∧ dcϕ+ p(−ϕ)p−1ddcϕ ≤ p(−ϕ)p−1ddcϕ
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and (−ϕ)p ≤ (−ϕ)p−1 since 0 ≤ −ϕ ≤ 1, hence
∫

X
(−ϕ)pωnψ ≤ p

∫

X
(−ψ)(−ϕ)p−1ddcϕ ∧ ωn−1

ψ +

∫

X
(−ϕ)p−1ω ∧ ωn−1

ψ

≤ p

∫

X
(−ψ)(−ϕ)p−1ddcϕ ∧ ωn−1

ψ +

∫

X
(−ψ)(−ϕ)p−1ω ∧ ωn−1

ψ

= p

∫

X
(−ψ)(−ϕ)p−1ωϕ ∧ ωn−1

ψ .

Hölder inequality thus yields
∫

X
(−ϕ)pωnψ ≤ p

(
∫

X
(−ψ)pωϕ ∧ ωn−1

ψ

)
1
p
(
∫

X
(−ϕ)pωϕ ∧ ωn−1

ψ

)1− 1
p

≤ p

(
∫

X
(−ψ)pωnψ

)
1
p
(
∫

X
(−ϕ)pωϕ ∧ ωn−1

ψ

)1− 1
p

.

Repeating the same argument n times we end up with
∫

X
(−ϕ)pωnψ ≤ A

(
∫

X
(−ϕ)pωnϕ

)(1−1/p)n

Fix E ⊂ X a compact set. The conclusion follows by applying this in-
equality to the extremal function ϕ = h∗ω,E , observing that

µ(E) ≤

∫

X
(−h∗ω,E)

pωnψ,

while Cω(E) =
∫

X(−h
∗
ω,E)

pωnh∗
ω,E
, as shown in [GZ05]. �

Lemma 3.5. Let µ be a probability measure. Then Ep(X,ω) ⊂ Lq(µ) if and
only if there exists a constant C > 0 such that for all ψ ∈ PSH(X,ω) ∩
L∞(X) with supX ψ = −1

(3.1) 0 ≤

∫

X
(−ψ)qdµ ≤ C

(
∫

X
(−ψ)pωnψ

)
q

p+1

Proof. One implication is clear so suppose that Ep(X,ω) ⊂ Lq(µ) and as-
sume for a contradiction that there exists ψj ∈ PSH(X,ω) ∩ L∞(X) with
supX ψj = −1 such that

∫

X
(−ψj)

qdµ ≥ 4jqM
q

p+1

j

where Mj =
∫

X(−ψj)
pωnψj

.

If Mj is uniformly bounded then ψ =
∑

j≥1 2
−jψj belongs to Ep(X,ω).

Now
∫

X
(−ψ)qdµ ≥

∫

X

(−ψj)
q

2jq
dµ ≥ 2jqM

q

p+1

j ≥ 2jq

since ψj ≤ −1, Mj ≥ 1. So
∫

X(−ψ)
qdµ→ ∞, a contradiction.

We obtain the same contradiction if {Mj} admits a bounded subsequence

so we can assume Mj → ∞ and Mj ≥ 1. Set ϕj = εjψj where εj = M
− 1

1+p

j

and ψ =
∑

j≥1 2
−jϕj then,

∫

X
(−ψ)qdµ ≥

∫

X

(−ϕj)
q

2jq
dµ = 2−jqεqj

∫

X
(−ψj)

qdµ ≥ 2jq → ∞
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so ψ /∈ Lq(µ).
We now check that ϕj ∈ Ep(X,ω) to derive a contradiction. Since ωϕj

≤
εjωψj

+ ω, we get
∫

X
(−ϕj)

pωnϕj
= εpj

∫

X
(−ψj)

pωnϕj

≤ εpj

(
∫

X
(−ψj)

pωn + 2nεj

∫

X
(−ψj)

pωnψj

)

= O(1),

because
∫

X
(−ψj)

pωnψj
=

∫

X
(−ψj)

pω ∧ ωn−1
ψj

+

∫

X
p(−ψj)

p−1dψj ∧ dcψj ∧ ω
n−1
ψj

≥

∫

X
(−ψj)

pω ∧ ωn−1
ψj

≥ ...

∫

X
(−ψj)

pωk ∧ ωn−kψj

for all 1 ≤ k ≤ n− 1 and
∫

X(−ψj)
pωn is bounded since ψj ∈ PSH(X,ω) ∩

L∞(X) and supX ψj = −1. �

We are now ready to give necessary conditions for a non-pluripolar mea-
sure to be dominated by the Monge-Ampère capacity, in terms of its integra-
bility condition properties with respect to Choquet-Monge-Ampère classes:

Proposition 3.6. Let µ be a non-pluripolar probability measure such that

µ =MA(ψ) where ψ ∈ Chp(X,ω), then µ ≤ (Capω)
p

p+n

Proof. From [GZ07] we already know that µ = ωnψ for some function ψ ∈

E(X,ω) such that supX ψ = −1. Now suppose also that ψ ∈ Chp(X,ω).
For ϕ ∈ PSH(X,ω) with −1 ≤ ϕ ≤ 0 Hölder inequality and integration by
parts yields

∫

X
(−ϕ)p+nωnψ ≤ (p+ n)

∫

X
(−ϕ)p+n−1(−ψ)ωϕ ∧ ωn−1

ψ

≤ (p+ n)

(
∫

X
(−ψ)p+1ωϕ ∧ ωn−1

ψ

)
1

p+1
(
∫

X
(−ϕ)

(p+n)(p+n−1)
p ωϕ ∧ ωn−1

ψ

)
p

p+1

To handle the second term observe that
∫

X
(−ϕ)

(p+n)(p+n−1)
p ωϕ ∧ ωn−1

ψ

≤ cp,n

(
∫

X
(−ψ)p+2ω2

ϕ ∧ ωn−2
ψ

)
1

p+2
(
∫

X
(−ϕ)

(p+2)(p2+(p+1)(n−1))
p(p+1) ω2

ϕ ∧ ωn−2
ψ

)

p+1
p+2

As it can be observed, at each step the power of (−ϕ) is obtained by reducing
the previous power by 1 first and then multiplying by p+m

p+m−1 where m is the

number of the corresponding step. Hence the power of (−ϕ) at the m’th
step, σm, is given by induction by

σm+1 =
p+m

p+m− 1
(σm − 1)

Therefore we have to justify that σm is bigger than p + n −m and we can
continue the procedure n-times. We will show this by induction:
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For m = 1, σ1 =
p+1
p (p+ n− 1) > p+ n− 1 since p+1

p > 1 and assume that

σm > p+ n−m then

σm+1 =
p+m

p+m− 1
(σm − 1) >

p+m

p+m− 1
(p+ n−m− 1) > p+ n− (m+ 1)

since p+m
p+m−1 > 1.

Now at the n’th step we have,

∫

X
(−ϕ)p+nωnψ ≤ cp,n

(

n
∏

i=1

(
∫

X
(−ψ)p+iωiϕ ∧ ωn−iψ

)
1

p+i

)

(
∫

X
(−ϕ)σnωnϕ

)
p

p+n

and since 0 ≤ (−ϕ) ≤ 1 and σn > p we have

≤ cp,n

(

n
∏

i=1

(
∫

X
(−ψ)p+iωi ∧ ωn−iψ

)
1

p+i

)

(
∫

X
(−ϕ)pωnϕ

)
p

p+n

Each term in the product is bounded since ψ ∈ Chp(X,ω) so we have

∫

X
(−ϕ)p+nωnψ ≤ A

(
∫

X
(−ϕ)pωnϕ

)
p

p+n

and the conclusion follows by applying this inequality to the extremal func-
tion ϕ = h∗ω,E , where E ⊂ X is an arbitrary compact set. �

Remark 3.7. In the case where Chp(X,ω) ⊂ Lq(µ) and q ≥ p + n − 1,
p > 1 as an immediate consequence of Corollary 2.8 and Proposition 3.4 we
obtain that there exists A > 0 such that µ ≤ ACapαω where α = (1− 1

p)
n.

3.2. Examples. It follows from Corollary 2.8 that the classes Chp(X,ω)
and Ep(X,ω) coincide when n = 1. We describe in this section the finite
Choquet energy classes in special cases.

3.2.1. Compact singularities. The class Chp(X,ω) is similar to Ep(X,ω) for
functions with ”compact singularities”:

Proposition 3.8. let D be an ample Q-divisor. Let ϕ be a ω-psh function
which is bounded in a neighborhood of D. Then

ϕ ∈ Chp(X,ω) ⇐⇒ ϕ ∈ Ep(X,ω).

The inclusions Ep+n−1(X,ω) ⊂ Chp(X,ω) ⊂ Ep(X,ω) are strict in general
when n ≥ 2, as we show in Example 3.9 below .

Proof. Let V be a neighborhood of D where ϕ is bounded. For simplicity
we assume that c1(D) = {ω}. Let ω′ be a smooth semi-positive closed form
cohomologous to ω, such that ω′ ≡ 0 outside V . Let ρ be a smooth ω-psh
function such that ω′ = ω + ddcρ. Shifting by a constant, we can assume
that 0 ≤ ρ ≤M . Observe that

−ddc(−ϕ)p+j = −(p+ j)(p+ j − 1)(−ϕ)p+j−2dϕ ∧ dcϕ+ (p+ j)(−ϕ)p+j−1ωϕ

≤ (p+ j)(−ϕ)p+j−1ωϕ.
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Therefore
∫

(−ϕ)p+jωn−jϕ ∧ ωj =

∫

(−ϕ)p+jωn−jϕ ∧ ωj−1 ∧ ω′

+

∫

−(−ϕ)p+jωn−jϕ ∧ ωj−1 ∧ ddcρ

= O(1) +

∫

ρ ddc[−(−ϕ)p+j ] ∧ ωn−jϕ ∧ ωj−1

≤ O(1) + (p+ j)M

∫

(−ϕ)p+j−1ωn−j+1
ϕ ∧ ωj−1.

We denote here by O(1) the first term
∫

(−ϕ)p+jωn−jϕ ∧ ωj−1 ∧ ω′ which
is bounded, since ϕ is bounded on the support of ω′.

By induction we obtain that each term
∫

(−ϕ)p+jωn−jϕ ∧ ωj is controlled
by
∫

(−ϕ)pωnϕ. Thus Chp(ϕ) is finite if and only if so is
∫

(−ϕ)pωnϕ. �

This proposition allows us to cook up examples of ω-psh functions ϕ such
that ϕ ∈ Chp(X,ω) but ϕ /∈ Ep+n−1(X,ω). The next example shows how to
cook up examples such that ϕ ∈ Ep(X,ω) but ϕ /∈ Chp(X,ω):

Example 3.9. Assume X = CPn−1 × CP1 and ω(x, y) := α(x) + β(y),
where α is the Fubini-Study form on CPn−1 and β is the Fubini-Study form
on CP1. Fix u ∈ PSH(CPn−1, α) ∩ C∞(CPn−1) and v ∈ E(CP1, β).

The function ϕ defined by ϕ(x, y) := u(x) + v(y) for (x, y) ∈ X belongs
to E(X,ω). Moreover ωϕ = αu + βv and for any 1 ≤ ℓ ≤ n, we have

ωn−jϕ = αn−ju + (n− j)αn−j−1
u ∧ βv

and

ωn−jϕ ∧ ωj = αn−ju ∧ αj + jαj−1 ∧ αn−ju ∧ β + (n− j)αj ∧ αn−j−1
u ∧ βv .

Thus for j ≤ n− 1,

ϕ ∈ Lp+j(ωn−jϕ ∧ ωj) ⇐⇒ v ∈ Lp+j(βv)

hence

ϕ ∈ Chp(X,ω) ⇐⇒ v ∈ Ep+n−1(CP1, β)

while

ϕ ∈ Ep(X,ω) ⇐⇒ v ∈ Ep(CP1, β).

Choosing v ∈ Lp(βv) \ L
p+n−1(βv), we obtain an example of a ω-psh

function ϕ such that ϕ ∈ Ep(X,ω) but ϕ /∈ Chp(X,ω).

Remark 3.10. In the above examples, we can choose u and v toric, hence
both inclusions in Corollary 2.8 are sharp in the toric setting as well. For
details on toric singularities, we refer the reader to [G14, DN15].

3.2.2. Divisorial singularities. Let D be an ample Q-divisor, s a holomor-
phic defining section of LD and h a smooth positive metric of L. We assume
for simplicity that the curvature of h is ω, so that the Poincaré-Lelong for-
mula can be written

ddc log |s|h = [D]− ω,

where [D] denotes the current of integration along D.
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Let χ be a smooth convex increasing function and set ϕ = χ◦ log |s|h. We
normalize h so that χ′ ◦ log |s|h ≤ 1/2. It follows that ϕ is strictly ω-psh,
since

ddcϕ = χ′′ ◦ LdL ∧ dcL+ χ′ ◦ LddcL ≥ −χ′ ◦ Lω ≥ −ω/2,

where L := log |s|h.

Proposition 3.11. Set ϕ = χ ◦ log |s|h ∈ PSH(X,ω). Then

ϕ ∈ Chp(X,ω) ⇐⇒ ϕ ∈ Ep+n−1(X,ω).

Proof. Set L = log |s|h. Observe that

ω + ddcϕ = χ′′ ◦ LdL ∧ dcL+ χ′ ◦ L [D] + (1− χ′ ◦ L)ω.

A necessary condition for ϕ to belong to a finite energy class is that ωϕ
does not charge pluripolar sets, hence χ′(−∞) = 0 and

ω + ddcϕ = χ′′ ◦ LdL ∧ dcL+ (1− χ′ ◦ L)ω.

Since 1
2 ≤ 1− χ′ ◦ L ≤ 1, we infer

ωn−jϕ ∧ ωj ∼ χ′′ ◦ LdL ∧ dcL ∧ ωn−1 + ωn,

for 0 ≤ j ≤ n−1. We write here µ ∼ µ′ if the positive Radon measures µ, µ′

are uniformly comparable, i.e. C−1µ ≤ µ′ ≤ Cµ for some constant C > 0.
Thus

ϕ ∈ Chp(X,ω) ⇐⇒ ϕ ∈ Lp+n−1(χ′′ ◦ LdL ∧ dcL ∧ ωn−1)

⇐⇒ ϕ ∈ Lp+n−1(ωnϕ) ⇐⇒ ϕ ∈ Ep+n−1(X,ω).

�

Example 3.12. For χ(t) = −(−t)α, 0 < α < 1, we obtain

ϕ = −(− log |s|h)
α ∈ Ep(X,ω) iff α <

1

p+ 1

and

ϕ = −(− log |s|h)
α ∈ Chp(X,ω) iff α <

1

p+ n

We refer the reader to [DN15] for more information on Monge-Ampère
measures with divisorial singularities.
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[BOUR] N.Bourbaki: Eléments de mathématiques, Topologie générale, Fsc VIII, livre
III Chap 9.



16 VINCENT GUEDJ*, SIBEL SAHIN** AND AHMED ZERIAHI*

[BEG13] S. Boucksom, P. Eyssidieux, V. Guedj: An introduction to the Kähler-Ricci
flow. Lecture Notes in Math., 2086 , Springer, Heidelberg (2013).

[DN15] E.DiNezza: Finite pluricomplex energy measures. Preprint arXiv:1501.03747
(2015).

[EGZ08] P. Eyssidieux, V. Guedj, A. Zeriahi: A priori L
∞-estimates for degener-

ate complex Monge-Ampère equations. International Mathematical Research
Notes, Vol. 2008, Article ID rnn070, 8 pages.

[EGZ09] P. Eyssidieux, V. Guedj, A. Zeriahi: Singular Kähler-Einstein metrics. J.
Amer. Math. Soc. 22 (2009), 607-639.

[G14] V.Guedj: The metric completion of the Riemannian space of Kähler metrics.
Preprint arXiv:1401.7857.v2 (2014).

[GZ05] V. Guedj, A. Zeriahi: Intrinsic capacities on compact Kähler manifolds. J.
Geom. Anal. 15 (2005), no. 4, 607-639.

[GZ07] V. Guedj, A. Zeriahi: The weighted Monge-Ampère energy of quasiplurisub-
harmonic functions. J. Funct. An. 250 (2007), 442-482.

Institut Universitaire de France & Institut Mathématiques de Toulouse,,
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