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Abstract

We present a novel end-to-end neural model
to extract entities and relations between them.
Our recurrent neural network based model
stacks bidirectional sequential LSTM-RNNs
and Dbidirectional tree-structured LSTM-
RNNs to capture both word sequence and
dependency tree substructure information.
This allows our model to jointly represent both
entities and relations with shared parameters.
We further encourage detection of entities
during training and use of entity information
in relation extraction via curriculum learning
and scheduled sampling. Our model improves
over the state-of-the-art feature-based model
on end-to-end relation extraction, achieving
35% and 4.8% relative error reductions
in F-score on ACE2004 and ACE2005,
respectively. We also show improvements
over the state-of-the-art convolutional neural
network based model on nominal relation
classification (SemEval-2010 Task 8), with
2.5% relative error reduction in F-score.

1 Introduction

Extracting semantic relations between entities in
text is an important and well-studied task in in-
formation extraction and natural language process-
ing (NLP). Traditional systems treat this task as a
pipeline of two separated tasks, i.e., named entity
recognition (NER) (Nadeau and Sekine, 2007} |Rati-
nov and Roth, 2009) and relation extraction (Ze-
lenko et al., 2003} Zhou et al., 2005)), but recent stud-
ies show that end-to-end (joint) modeling of entity
and relation is important for high performance (Li
and J1, 2014; Miwa and Sasaki, 2014) since rela-
tions interact closely with entity information. For
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instance, to learn that Toefting and Bolton have an
Organization-Affiliation (ORG-AFF) relation in the
sentence Toefting transferred to Bolton, the entity in-
formation that Toefting and Bolton are Person and
Organization entities is important. Extraction of
these entities is in turn encouraged by the presence
of the context words transferred to, which indicate
an employment relation. Previous joint models have
employed manual feature based structured learning.
An alternative approach to this end-to-end relation
extraction task is to employ automatic feature learn-
ing via neural network (NN) based models.

There are two ways to represent relations between
entities using neural networks: recurrent/recursive
neural networks (RNNs) and convolutional neural
networks (CNNs). Among these, RNNs fit well to
NLP models, since they can directly represent essen-
tial linguistic structures, i.e., word sequences (Ham-
merton, 2001) and constituent/dependency trees (Tai
et al., 2015). Despite this representation ability,
for relation classification tasks, the previously re-
ported performance using long short-term memory
(LSTM) based RNNs (Xu et al., 2015b; L1 et al.,
2015) is worse than one using CNNs (dos Santos
et al., 2015). These previous LSTM-based systems
mostly include limited linguistic structures and neu-
ral architectures, and do not model entities and re-
lations jointly. We are able to achieve improve-
ments over state-of-the-art models via end-to-end,
combined modeling of entities and relations based
on richer LSTM-RNN architectures that incorporate
complementary linguistic structures.

Word sequence and tree structure are known to be
complementary information for extracting relations.
For instance, dependencies between words are not



enough to predict that source and U.S. have an ORG-
AFF relation in the sentence “This is ...”, one U.S.
source said, and the context word said is required for
this prediction. Many traditional, feature-based rela-
tion classification models extract features from both
sequences and parse trees (Zhou et al., 2005). How-
ever, previous RNN-based models focus on only one
of these linguistic structures (Socher et al., 2012).

We present a novel, end-to-end entity and rela-
tion extraction model based on both bidirectional
sequential (left-to-right and right-to-left) and bidi-
rectional tree-structured (bottom-up and top-down)
LSTM-RNNS, to represent both word sequence and
dependency tree structures, and to allow joint mod-
eling of entities and relations in a single model. Our
model also incorporates curriculum learning (Ben-
gio et al., 2009) and scheduled sampling (Ben-
gio et al., 2015) to alleviate the problem of low-
performance entity detection in early stages of train-
ing, as well as to allow entity information to fur-
ther help downstream relation extraction. On end-to-
end entity and relation extraction, we improve over
the state-of-the-art feature-based model, with 3.5%
(ACE2004) and 4.8% (ACE2005) relative error re-
ductions in F-score. On nominal relation classifica-
tion (SemEval-2010 Task 8), our model gets a 2.5%
relative error reduction in F-score over the state-of-
the-art CNN-based model. Finally, we also ablate
and compare our various model components, which
leads to some key findings about the contribution
and effectiveness of different RNN structures, in-
put dependency relation structures, and joint learn-
ing settings.

2 Related Work

LSTM-RNNs have been widely used for sequential
labeling, such as clause identification (Hammerton,
2001)), phonetic labeling (Graves and Schmidhuber,
2005), and NER (Hammerton, 2003). Recently,
Huang et al. (2015) showed that building a condi-
tional random field (CRF) layer on the top of bidi-
rectional LSTM-RNNs performs comparably to the
state-of-the-art methods in the part-of-speech (POS)
tagging, chunking, and NER.

For relation classification, in addition to tradi-
tional feature/kernel-based approaches (Zelenko et
al., 2003} [Bunescu and Mooney, 20035)), several neu-

ral models have been proposed in the SemEval-
2010 Task 8 (Hendrickx et al., 2010), including
embedding-based models (Hashimoto et al., 2015)),
CNN-based models (dos Santos et al., 2015), and
RNN-based models (Socher et al., 2012). Recently,
Xu et al. (2015a) and Xu et al. (2015b) showed
that the shortest dependency paths between rela-
tion arguments, which were used in feature/kernel-
based systems (Bunescu and Mooney, 2005), are
also useful in NN-based models. [Xu et al. (2015b)
also showed that LSTM-RNNs are useful for rela-
tion classification, but the performance was worse
than CNN-based models. |Li et al. (2015) compared
separate sequence-based and tree-structured LSTM-
RNNs on relation classification, using basic RNN
model structures.

Research on tree-structured LSTM-RNNs (Tai et
al., 2015)) fixes the direction of information prop-
agation from bottom to top, and also cannot han-
dle an arbitrary number of typed children as in
a typed dependency tree. Furthermore, no RNN-
based relation classification model simultaneously
uses word sequence and dependency tree informa-
tion. We propose several such novel model struc-
tures and training settings, investigating the simul-
taneous use of bidirectional sequential and bidirec-
tional tree-structured LSTM-RNNs to jointly cap-
ture linear and dependency context for end-to-end
extraction of relations between entities.

As for end-to-end (joint) extraction of relations
between entities, all existing models are feature-
based systems (and no NN-based model has been
proposed). Such models include structured predic-
tion (L1 and J1, 2014; [Miwa and Sasaki, 2014), inte-
ger linear programming (Roth and Yih, 2007; [Yang
and Cardie, 2013)), card-pyramid parsing (Kate and
Mooney, 2010), and global probabilistic graphical
models (Yu and Lam, 2010j |Singh et al., 2013).
Among these, structured prediction methods are
state-of-the-art on several corpora. We present an
improved, NN-based alternative for the end-to-end
relation extraction.

3 Model

We design our model with LSTM-RNNs that rep-
resent both word sequences and dependency tree
structures, and perform end-to-end extraction of re-
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Fig. 1: Our end-to-end relation extraction model, with bidirectional sequential and bidirectional tree-structured LSTM-RNNs.

lations between entities on top of these RNNs. Fig.
illustrates the overview of the model. The model
mainly consists of three representation layers: a
word embeddings layer, a word sequence based
LSTM-RNN layer, and finally a dependency subtree
based LSTM-RNN layer.

3.1 Embedding Layer

The embedding layer handles word embedding rep-
resentations. 1, np, ng and n.-dimensional vectors
v(“’), 0@ (@D and v(¢) are embedded to words, part-
of-speech (POS) tags, dependency types, and entity
labels, respectively.

3.2 Sequence Layer

The sequence layer represents words in a linear se-
quence using the representations from the embed-
ding layer. This layer represents sentential con-
text information and maintains entities, as shown in
bottom-left part of Fig.[I]

We employ bidirectional LSTM-RNNs (Zaremba
and Sutskever, 2014) to represent the word sequence
in a sentence. The LSTM unit at ¢-th word consists
of a collection of d-dimensional vectors : an input
gate i;, a forget gate f;, an output gate o;, a memory
cell ¢;, and a hidden state h;. The unit receives an
n-dimensional input vector z;, the previous hidden
state h;—1, and the memory cell ¢;_1, and calculates
the new vectors using the following equations:

o (W2 +UDhe g +59), (1)

i =

fi o (W(f):z:t +UDp + b(f)) ’

0 = o (W(O)xt + U(O)ht,1 + b(O)) 7

u;y = tanh (W(“)xt +UMpq + b(“)> ,
. = wOu + fiOci—1,

hy = o:®tanh(c),

where o denotes the logistic function, ® denotes
element-wise multiplication, W and U are weight
matrices, and b are bias vectors. The LSTM unit at ¢-
th word receives the concatenation of word and POS
embeddings as its input vector: z; = [vﬁw);vﬁp )}.
We also concatenate the hidden state vectors of the
two directions’ LSTM units corresponding to each

word (denoted as h; and h;) as its output vector,
- .
St = [ht; E} and pass it to the subsequent layers.

3.3 Entity Detection

We treat entity detection as a sequence labeling task.
We assign an entity tag to each word using a com-
monly used encoding scheme BILOU (Begin, In-
side, Last, Outside, Unit) (Ratinov and Roth, 2009)),
where each entity tag represents the entity type and
the position of a word in the entity. For example,
in Fig. [T} we assign B-PER and L-PER (which de-
note the beginning and last words of a person entity
type, respectively) to each word in Sidney Yates to
represent this phrase as a PER (person) entity type.
We realize entity detection on the top of the se-
quence layer. We employ a two-layered NN with
an h.-dimensional hidden layer A(¢) and a softmax



output layer for entity detection.

h(e) —

‘ =

tanh (W [sy; 0] +6)) - (2)

Yy = softmax (W(ey)hie) + b(ey)) 3)
Here, W are weight matrices and b are bias vectors.
We assign entity labels to words in a greedy, left-
to-right mannerﬂ During this decoding, we use the
predicted label of a word to predict the label of the
next word so as to take label dependencies into ac-
count. The NN above receives the concatenation of
its corresponding outputs in the sequence layer and
the label embedding for its previous word (Fig. [I)).

3.4 Dependency Layer

The dependency layer represents a relation between
a pair of target words in the dependency tree, and
is in charge of relation-specific representations, as is
shown in top-right part of Fig. 1| This layer mainly
focuses on the shortest path between a pair of target
words in the dependency tree (i.e., the path between
the least common node and the two target words)
since these paths are shown to be effective in relation
classification (Xu et al., 2015a). For example, we
show the shortest path between Yates and Chicago
in the bottom of Fig. [I| and this path well captures
the key phrase of their relation, i.e., born in.

We employ bidirectional tree-structured LSTM-
RNNs (i.e., bottom-up and top-down) to represent
a relation candidate by capturing the dependency
structure around the target word pair. This bidirec-
tional structure propagates to each node not only
the information from the leaves but also informa-
tion from the root. This is especially important
for relation extraction, which makes use of argu-
ment nodes near the bottom of the tree, and our top-
down LSTM-RNN sends information from the top
of the tree to such near-leaf nodes (unlike in stan-
dard bottom-up LSTM-RNNS) Note that the two
variants of tree-structured LSTM-RNNs by [Tai et
al. (2015) are not able to represent our target struc-
tures which have a variable number of typed chil-
dren: the Child-Sum Tree-LSTM does not deal with

"We also tried beam search but this did not show improve-
ments in initial experiments.

>We also tried to use one LSTM-RNN by connecting the
root (Paulus et al., 2014), but preparing two LSTM-RNNs
showed slightly better performance in our initial experiments.

types and the N-ary Tree assumes a fixed number
of children. We thus propose a new variant of tree-
structured LSTM-RNN that shares weight matrices
Us for same-type children and also allows variable
number of children. For this variant, we calculate
vectors in the LSTM unit at ¢-th node with C'(¢) chil-
dren using following equations:

i = o | Wz + Z Ur(r?(l)htl-}-b(i)), “4)
leC(t)
fiw = o Wz, + Z Ug()k)m(l)htl—i-b(f)),
1eC(t)
oo = o| W+ Y Ug()z)htﬂrb(o)),
1leC(t)
uy = tanh (W(u)$t+ Z Ué}bt()l)htl+b(u)),
leC(t)
e = uOQu+ Z Ju®cu,
leC(t)
ht = 0@ tanh(c),

where m(+) is a type mapping function.

To investigate appropriate structures to represent
relations between target word pairs, we experiment
with three structure options. We primarily employ
the shortest path structure (SPTree), which captures
the core dependency path between a target word pair
and is widely used in relation extraction models,
e.g., (Bunescu and Mooney, 2005; | Xu et al., 2015a).
We also try two other dependency structures: Sub-
Tree and FullTree. SubTree is the subtree under
the lowest common ancestor of the target word pair.
This provides additional modifier information to the
path and the word pair in SPTree. FullTree is the
full dependency tree. This captures context from
the entire sentence. While we use one node type for
SPTree, we define two node types for SubTree and
FullTree, i.e., one for nodes on shortest paths and
one for all other nodes. We use the type mapping
function m(+) to distinguish these two nodes types.

3.5 Stacking Sequence and Dependency Layers

We stack the dependency layer on top of the se-
quence layer to incorporate both word sequence and
dependency tree structure information into the out-
put. The dependency-layer LSTM unit at the ¢-th
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word receives as input x; = [st; vy }, ie., the
concatenation of its corresponding hidden state vec-
tors s; in the sequence layer, dependency type em-

bedding vt(d) (denotes the type of dependency to the
(

paren, and label embedding Ute) (corresponds to
the predicted entity label). Next, the output relation
candidate vector, which is passed to the subsequent
relation classification softmax layer, is constructed
as the concatenation dy, = [Thy,,; Lhp,; L hp,], where
Thy , is the hidden state vector of the top LSTM unit
in the bottom-up LSTM-RNN (representing the low-
est common ancestor of the target word pair p), and
Lhy,, Lhy, are the hidden state vectors of the two
LSTM units representing the first and second target
words in the top-down LSTM-RNNE] All the corre-
sponding arrows are shown in Fig.

3.6 Relation Classification

We build relation candidates using the last words of
entities, i.e., words with L or U labels in the BILOU
scheme. For instance, in Fig. |1} we build a rela-
tion candidate using Yates with an L-PER label and
Chicago with an U-LOC label. For each relation
candidate, the NN receives the output of the depen-
dency tree layer d,, (described above) corresponding
to the path between the word pair p in the candidate,
and predicts its relation labelE] Similarly to the en-
tity detection, we employ a two-layered NN with an
h,-dimensional hidden layer (") and a softmax out-
put layer (with weight matrices W, bias vectors b).

hl(f) = tanh (W(Th)dp + b(rh)) (5)
Yyp = softmax (W(Ty)hy) + b(?"y)) (6)

We construct the input d,, for relation classifica-
tion from both sequence and tree-structured LSTM-
RNNs, but the contribution of sequence layer to
the input is indirect. Furthermore, our model uses
words for representing entities, so it cannot fully
use the entity information. To alleviate these prob-
lems, we directly concatenate the average of hid-
den state vectors for each entity from the sequence

3We use the dependency to the parent since the number of
children varies. Dependency types can also be incorporated into
m(-), but this did not help in initial experiments.

“Note that the order of the target words corresponds to the
direction of the relation, not the positions in the sentence.

>We represent relation labels by type and direction, except
for negative relations that have no direction.

layer to the input d,, to relation classification, i.e.,
o | L1 . i
dp = dpa oy | Zie]pl Sis oy Zi61p2 51} (Pair),
where I, and I, represent sets of word indices in

the first and second entities ]

Also, we assign two labels to each word pair in
prediction since we consider both left-to-right and
right-to-left directions. When the predicted labels
are inconsistent, we select the positive and more
confident label, similar to Xu et al. (2015a)).

3.7 Training

We update the model parameters including weights,
biases, and embeddings by back-propagation
through time (BPTT) and Adam (Kingma and Ba,
2015) with gradient clipping, parameter averaging,
and L2-regularization (we regularize weights W
and U, not the bias terms b). We also apply
dropout (Srivastava et al., 2014) to the embedding
layer and to the final hidden layers for entity
detection and relation classification.

We employ scheduled sampling (Bengio et al.,
20135)) in entity detection. In scheduled sampling, we
use gold labels as prediction in the probability of €;
that depends on the number of epochs 7 during train-
ing if the gold labels are legal. As for ¢;, we choose
the inverse sigmoid decay ¢; = k/(k + exp(i/k)),
where k(> 1) is a hyper-parameter that adjusts how
often we use the gold labels as prediction.

We also incorporate curriculum learning (Ben-
gio et al., 2009), where we pretrain the entity de-
tection model using the training data to encour-
age building positive relation instances from the de-
tected entities in training.

4 Results and Discussion

4.1 Data and Task Settings

We evaluate on three datasets: ACE05 and ACE04
for end-to-end relation extraction, and SemEval-
2010 Task 8 for relation classification. We use the
first two datasets as our primary target, and use the
last one to thoroughly analyze and ablate the relation
classification part of our model.

SNote that we do not show this Pair in Fig for simplicity.



ACEO0S defines 7 coarse-grained entity type and
6 coarse-grained relation types between entities
We use the same data splits and preprocessing as L1
and Ji (2014)@ We report the micro precision, recall,
and F-scores on both entity and relation extraction to
better explain model performance. We treat an en-
tity as correct when its type and the region of its head
are correct, and we treat a relation as correct when
its type and argument entities are correct.

ACEO04 defines the same 7 coarse-grained entity
types as ACEOS5 (Doddington et al., 2004), but de-
fines 7 coarse-grained relation typesm We follow
the cross-validation setting of |Chan and Roth (2011))
and |Li and Ji (2014@ and the preprocessing and
evaluation metrics of ACEQS.

SemEval-2010 Task 8 defines 9 relation types be-
tween nominalg'%| and a tenth type Other when two
nouns have none of these relations (Hendrickx et al.,
2010). The dataset consists of 8,000 training and
2,717 test sentences, and each sentence is annotated
with a relation between two given nominals. We
randomly selected 800 sentences from the training
set as our development set. We followed the official
task setting, and report the official macro-averaged
F1 score (Macro-F1) on the 9 relation types.

4.2 Experimental Settings

We implemented our model using the cnn library
We parsed the texts using the Stanford neural depen-
dency parser (Chen and Manning, 2014) with the
original Stanford Dependencies. Based on prelim-

7Facility (FAC), Geo-Political Entities (GPE), Location
(LOC), Organization (ORG), Person (PER), Vehicle (VEH) and
Weapon (WEA).

8Artifact (ART), Gen-Affiliation (GEN-AFF), Org-
Affiliation (ORG-AFF), Part-Whole (PART-WHOLE), Person-
Social (PER-SOC) and Physical (PHYS).

We removed the cts, un subsets, and used a 351/80/80
train/dev/test split. We removed duplicated entities and rela-
tions, and resolved nested entities. We used head spans for en-
tities. We use entities and relations to refer to entity mentions
and relation mentions in ACE for brevity.

1°pys, PER-SOC, Employment / Membership / Subsidiary
(EMP-ORG), ART, PER/ORG Aaffiliation (Other-AFF), GPE af-
filiation (GPE-AFF), and Discourse (DISC).

U'We removed DISC and did 5-fold CV on bnews and nwire
subsets (348 documents).

12 Cause-Effect, Instrument-Agency, Product-Producer,
Content-Container, Entity-Origin, Entity-Destination,
Component-Whole, Member-Collection and Message-Topic

13https ://github.com/clab/cnn

inary tuning, we fixed embedding dimensions 7,
to 200, ny, ng, ne to 25, and dimensions of inter-
mediate layers (d of LSTM-RNNs and h., h, of
hidden layers) to 100. We initialized word vec-
tors via word2vec (Mikolov et al., 2013)) trained on
Wikjpedi and randomly initialized all other pa-
rameters. We tuned hyper-parameters using devel-
opment sets for SemEval-2010 Task 8 and ACEOS.
For ACE04, we directly employed the best parame-
ters for ACEOS. Such hyper-parameters include the
initial learning rate (5e-3, 2e-3, le-3, Se-4, 2e-4, le-
4), the regularization parameter (le-4, le-5, le-6,
le-7), dropout probabilities (0.0, 0.1, 0.2, 0.3, 0.4,
0.5), the size of gradient clipping (1, 5, 10, 50, 100),
scheduled sampling parameter k£ (1, 5, 10, 50, 100),
and the number of epochs for training and pretrain-
ing in curriculum learning (< 100) Our statistical
significance results are based on the Approximate
Randomization (AR) test (Noreen, 1989).

4.3 End-to-end Relation Extraction Results

Table[T|compares our model with the state-of-the-art
feature-based model of [Li and Ji (2014 on final test
sets, and shows that our model performs better than
the state-of-the-art model.

To analyze the contributions and effects of the
various components of our end-to-end relation ex-
traction model, we perform ablation tests on the
ACEO5 development set (Table [2). The perfor-
mance slightly degraded without curriculum learn-
ing or scheduled sampling, and the performance sig-
nificantly degraded when we removed both of them
(p<0.05). This is reasonable because the model can
only create relation instances when both of the en-
tities are found and, without these enhancements, it
may get too late to find some relations. Removing
label embeddings did not affect the entity detection
performance, but this degraded the recall in relation
extraction. This indicates that entity label informa-
tion is helpful in detecting relations.

We also show the performance without shar-
ing parameters for detecting entities and relations
(—Shared parameters); we first train the entity de-

Yhttps://dumps.wikimedia.org/enwiki/20150901/

'SHere, numbers in parentheses show the range tried for the
hyper-parameters. Also, for SemEval-2010 Task 8, we omitted
the entity detection layer and label embeddings since only target
nominals are annotated and the task defines no entity types.
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Corpus  Settings Entity Relation
P R F1 P R F1
ACEO5 Our Model (SpTree) 0.855 0.812 0.833 0.658 0.429 0.519
Li and Ji (2014) 0.852 0.769 0.808 0.654 0.398 0.495
ACE(04 Our Model (SpTree) 0.833 0.792 0.812 0.561 0.408 0.472
Li and Ji (2014) 0.835 0.762 0.797 0.608 0.361 0.453
Table 1: Comparison with the state-of-the-art on the ACEOS test set and ACE04 dataset.
Settings Entity Relation

P R F1 P R F1

Our Model (SpTree) 0.841 0.792 0.816 0.605 0.425 0.499
—Curriculum learning (CL) 0.816 0.778 0.797 0.598 0.402 0.481

—Scheduled sampling (SS) 0.833 0.782 0.807 0.606 0.392 0.476

—Label embeddings (LE) 0.844 0.792 0.817 0.648 0.374 0.475

—Shared parameters (Shared) 0.821 0.794 0.807 0.598 0.401 0.480

—CL, SS 0.807 0.766 0.786 0.579 0.390 0.466

—CL, SS, LE, Shared 0.815 0.778 0.796 0.602 0.342 0.436

Table 2: Ablation tests on the ACEOS development dataset.

Settings Macro-F1 Settings Macro-F1

Our Model (SpTree) 0.845 SPTree 0.848

dos Santos et al. (2015)) 0.841 SubTree 0.826

Xu et al. (2015a) 0.840 FullTree 0.823

Table 3: Comparison with state-of-the-art CNN models (no ex- Child-Sum 0.834
ternal knowledge resources) on SemEval-2010 Task 8 test-set. SPSeq 0.843
tection model, detect entities with the model, and SPXu 0.840

build a separate relation extraction model on the top
of the detected entities (note that we cannot use the
curriculum learning in this case). Without the shared
parameters, both the performance in entity detection
and relation extraction drops slightly, although the
differences are not significant. When we removed all
the enhancements, i.e. scheduled sampling, curricu-
lum learning, label embedding, and shared parame-
ters, the performance is significantly worse than Sp-
Tree (p<0.001), showing that these enhancements
provide complementary benefits to end-to-end rela-
tion extraction.

4.4 Relation Classification Analysis Results

To thoroughly analyze the relation classification part
alone, e.g., comparing different LSTM structures,
architecture components such as hidden layers and
input information, and classification task settings,
we use the SemEval-2010 Task 8. This dataset, of-
ten used to evaluate NN models for relation clas-
sification, annotates only relation-related nominals

Table 4: Comparison of LSTM-RNN structures on SemEval-
2010 Task 8 development set.

(unlike ACE datasets), so we can focus cleanly and
solely on the relation classification part.

We first report official test set results in Table [3]
where our novel LSTM-RNN model is comparable
to and better than both the state-of-the-art CNN-
based models on this task, whereas the previous
best LSTM-RNN model (even when using external
WordNet) achieved only 0.837 (Xu et al., 2015b)

Next, we compare different LSTM-RNN struc-
tures in Table 4} We first compare the three input
dependency structures (SPTree, SubTree, FullTree)
for tree-structured LSTM-RNNSs, which hints that
the information outside of the shortest path signif-

'®We only show previous work’s results without external
knowledge sources (e.g., WordNet, NER) for fair comparison.
With inclusion of such sources, previous work’s best reported
performance is 0.856 using WordNet (Xu et al., 2015a). The
reported best performance with LSTM-RNNSs is 0.837, but with
using WordNet (Xu et al., 2015b). The authors did not provide
results without using external resources.



icantly hurts the performance (p<0.05), even if we
distinguish the nodes in the shortest paths from other
nodes. We also compare our tree-structured LSTM-
RNN (SPTree) with the Child-Sum tree-LSTM on
the shortest path of Tai et al. (2015). Child-Sum per-
forms worse than our SPTree model, but not with as
big of a decrease as above. This may be because the
difference in the models appears only on nodes that
have multiple children and all the nodes except for
the least common node have one child.

We further show results with two counterparts
of sequence-based LSTM-RNNs using the shortest
path. SPSeq is bidirectional LSTM-RNN on the
shortest path. The LSTM unit receives input from
the sequence layer concatenated with embeddings
for surrounding dependency types and directions.
We concatenate the outputs of the two RNNs for
the relation candidate. SPXu is our adaptation of
the shortest path LSTM-RNN proposed by [Xu et al.
(2015b)) to match our sequence-layer based model
This has two LSTM-RNN:Ss for the left and right sub-
paths of the shortest path. We first calculate the
max pooling of the LSTM units for each of these
two RNNs, and then concatenate the outputs of the
pooling for the relation candidate. The comparison
with these sequence-based LSTM-RNNs indicates
that a tree-structured LSTM-RNN is comparable to
sequence-based ones in representing shortest paths.

Overall, the performance comparison of the
LSTM-RNN structures in Table i shows that for re-
lation classification, selecting the appropriate tree
structure representation of the input (i.e., SPTree
versus SubTree and FullTree) is more important than
the choice of the LSTM-RNN structure on that input
(i.e., sequential versus tree-based).

Table [3 summarizes the contribution of several
model components and training settings on SemEval
relation classification. We first remove the hidden
layer by directly connecting the LSTM-RNN layers
to the softmax layers. We also skip the sequence
layer and directly use the word and POS embeddings
for the dependency layerEg] Removing one of hidden

" This is different from the original one in that we use the se-
quence layer and we concatenate the embeddings for the input
while the original one prepared individual LSTM-RNNSs for dif-
ferent input and concatenated the outputs of the LSTM-RNNSs.

8Note that this setting still uses some sequence layer infor-
mation since it uses the entity-related information (Pair).

Settings Macro-F1
SPTree 0.848
—Hidden layer 0.835
—Sequence layer 0.841
—Hidden & Sequence layers 0.807
—Pair 0.844
—Pair, Sequence layer 0.827
Left-to-right candidates 0.836
Negative sampling (Xu et al., 2015al) 0.842

Table 5: Model setting ablations on SemEval-2010 dev-set.

and sequence layers slightly degraded performance,
and when removing of both layers, the performance
significantly dropped (p<0.001). Removing entity-
related information from the sequence layer (—Pair)
did not affect the performance much, but on remov-
ing it together with the sequence layer, the perfor-
mance dropped significantly (p<0.05). This indi-
cates that the sequence layer is necessary but the last
words of nominals are almost enough for expressing
the relations in this task.

Finally, for the generation of relation candidates,
generating only left-to-right candidates slightly de-
graded the performance, but the difference was
small and hence the creation of right-to-left can-
didates was not critical. Treating the inverse rela-
tion candidate as a negative instance (Negative sam-
pling) also performed comparably to other genera-
tion methods in our model (unlike [Xu et al. (2015a)),
which showed a significance improvement over gen-
erating only left-to-right candidates).

5 Conclusion

We presented an end-to-end relation extraction
model using bidirectional sequential and bidirec-
tional tree-structured LSTM-RNNs to represent both
word sequence and dependency tree structures. This
allowed us to represent both entities and relations
in a single model, achieving gains over the state-
of-the-art, feature-based system on end-to-end rela-
tion extraction (ACE04 and ACEQ5), and over re-
cent state-of-the-art CNN-based models on nominal
relation classification (SemEval-2010 Task 8).

Our evaluation and ablation led to three key find-
ings. First, the use of both word sequence and de-
pendency tree structures is effective. Second, train-
ing with the shared parameters improves relation ex-
traction accuracy, especially when employed with




curriculum learning, scheduled sampling, and label
embeddings. Finally, the shortest path, which has
been widely used in relation classification, is also
appropriate for representing tree structures in neural
LSTM models.
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