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Abstract

We comment on the recent paper by Azzalini et al. (2015) on two different distributions
proposed in the literature for the modelling of data that have asymmetric and possibly
long-tailed clusters. They are referred to as the restricted and unrestricted skew normal
and skew t-distributions by Lee and McLachlan (2013a). We clarify an apparent misun-
derstanding in Azzalini et al. (2015) of this nomenclature to distinguish between these two
models. Also, we note that McLachlan and Lee (2014) have obtained improved results for
the unrestricted model over those reported in Azzalini et al. (2015) for the two datasets
that were analysed by them to form the basis of their claims on the relative superiority of
the restricted and unrestricted models. On this matter of the relative superiority of these
two models, Lee and McLachlan (2014b, 2016) have shown how a distribution belonging
to the broader class, the canonical fundamental skew ¢t (CFUST) class, can be fitted with
little additional computational effort than for the unrestricted distribution. The CFUST
class includes the restricted and unrestricted distributions as special cases. Thus the user
now has the option of letting the data decide as to which model is appropriate for their
particular dataset.

1 Introduction

In this paper, we provide some comments on Azzalini et al. (2015), which we shall refer to as
ABGM in the sequel. In ABGM a comparison is given of two different distributions proposed for
the modelling of data that have asymmetric and possibly long-tailed clusters. They refer to the
two models as the classical and SDB, the latter so named since it was proposed by Sahu, Dey,
and Branco (2003). These two distributions were referred to as the restricted multivariate skew
t (rMST) and unrestricted multivariate skew ¢ (uMST) distributions by Lee and McLachlan
(2013a). We shall continue to use this latter terminology in our comments below.

In our comments we first wish to respond to statements in ABGM that are apparently based
on a serious misunderstanding of the reporting of our results in Lee and McLachlan (2014a)
and, in particular, of the nomenclature used therein. The discussion of our work in ABGM
is limited to Lee and McLachlan (2014a), and so it does not consider the results presented in
our other papers, in particular, Lee and McLachlan (2013a, 2013b, 2013c, 2013d, 2014b, 2015,
2016), although the first two of the latter seven papers are cited in ABGM. It is particularly
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unfortunate that these papers are not included in the comparison in ABGM as they contain
a comparison of the restricted and unrestricted models applied to nine datasets from various
fields.

Also, explicit cautionary notes are made in them to guard against any potential misun-
derstanding of our terminology. For example, in Lee and McLachlan (2013a, Page 244) it is
stated that “Note that the use of ‘restricted” here refers to restrictions on the random vector in
the (conditioning-type) stochastic definition of the skew distribution. It is not a restriction on
the parameter space, and so a ‘restricted” form of a skew distribution is not necessarily nested
within its corresponding ‘unrestricted’ form.” In Lee and McLachlan (2013c), it is cautioned
in the last two lines of Page 431 that “It should be stressed that the rMST family and uMST
family match only in the univariate case, and one cannot obtain (7) [the restricted distribution]
from (9) [the unrestricted distribution] when p > 1.”

We also note that McLachlan and Lee (2014) have obtained improved results for the unre-
stricted model over those reported in Azzalini et al. (2015) and in their earlier paper Azzalini
et al. (2014) for the two real datasets that were analysed by them to form the basis of their
claims on the relative superiority of the restricted and unrestricted models.

The deficiencies in these two models have been demonstrated in Lee and McLachlan (2014b,
2016). Briefly, the restricted distribution is limited essentially to modelling skewness concen-
trated in a single direction in the feature space. This is because it is uses a univariate skewing
function; that is, a single latent skewing variable is used in its convolution formulation. As a
consequence, the realizations of the latent term used in the formulation of the model to rep-
resent skewness are confined to lie on a line in the p-dimensional feature space regardless of
the value of p. This effectively means that the restricted distribution is limited to modelling
skewness that is concentrated in a single direction in the feature space.

The unrestricted distribution on the other hand uses a multivariate skewing function with
the feature-specific skewing variables that allow for skewness in the model taken to be uncor-
related. In its formulation, the p-dimensional vector of these skewing variables is premultiplied
by a (diagonal) matrix of skewness parameters. The consequent net effect is that the feature-
specific latent terms representing skewness in the model are uncorrelated. Thus it is suitable to
model skew data with feature variables that are uncorrelated or approximately so. However, as
the vector of skewing variables is premultiplied by a diagonal rather than an arbitrary matrix of
skewness parameters, it may not model adequately skew data with strongly correlated features.

Lee and McLachlan (2014b, 2016) have shown how a distribution belonging to the broader
class, the CFUST class, can be fitted with essentially no additional computational effort than
for the unrestricted distribution. The CFUST distribution, which includes the restricted and
unrestricted distributions as special cases, can model skewness in multivariate data with corre-
lated feature variables since it uses an arbitrary matrix of skew parameters in its formulation.

With the availability of software for the fitting of mixtures of CFUST distributions (Lee
and McLachlan, 2015), users now have the option for letting the data decide as to which model
is appropriate for their particular dataset. Or they can fit all three models rMST, uMST, and
CFUST (or mixtures of them), and make their own choice between the three using, say, an
information-based criterion such as BIC.

Several of the claims in Azzalini et al. (2015) were made in their earlier paper Azzalini et
al. (2014) and were commented on in McLachlan and Lee (2014).

2 Explanation of nomenclature for skew t-distributions

In an attempt to provide an automated approach to the clustering of flow cytometry data,



Pyne et al. (2009) considered the fitting of mixtures of skew ¢-distributions that belonged to the
family of skew ¢-distributions proposed by Sahu et al. (2003). Members of the latter family have
the following convolution-type characterization. The p x 1 random vector Y can be expressed
as
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In the above, p is a p-dimensional vector, A is a p x p diagonal matrix, I, denotes the
p X p identity matrix, X is a positive definite matrix, and 0 is a vector/matrix of zeros with
appropriate dimensions. Also, w is the realization of the random variable W distributed as
gamma(s, %), and |Ug| denotes the vector whose ith element is the magnitude of the ith
element of the vector Uy.

In order to simplify the application of the EM algorithm to fit mixtures of these skew

t-distributions, Pyne et al. (2009) imposed the restriction

where

U01:U02:...:U0p (3)

on the p latent skewing variables, where Uy, = (Uy); (i = 1, ..., p). This produces a distribu-
tion equivalent to the skew ¢-distribution formulated by Branco and Dey (2001) and Azzalini
and Capitanio (2003) after reparameterization. Lee and McLachlan (2013a) termed this dis-
tribution the restricted multivariate skew ¢ (rMST) distribution to distinguish it from the
distribution proposed by Sahu et al. (2003). By default, the latter was referred to as the un-
restricted multivariate skew ¢ (uUMST) distribution since it can be characterized without any
restrictions on the p latent skewing variables in the convolution-type stochastic formulation (1).

By letting the degrees of freedom v go to infinity in (1), we obtain a similar formulation
for the restricted multivariate skew normal (rMSN) and unrestricted multivariate skew normal
(uMSN) distributions. In the sequel we focus only on skew t-distributions since the situation is
similar for skew normal distributions. One slight difference is that although the joint distribu-
tion of independent univariate skew normal random variables is the unrestricted skew normal
distribution, the joint distribution of independent univariate skew t-random variables is only
equal to the unrestricted skew t-distribution in the limit as the degrees of freedom v in the
marginal skew t-distributions becomes infinite.

3 Canonical fundamental skew t-distribution

The CFUST distribution was introduced (and so named) as a canonical version (special case) of
the fundamental skew ¢-distribution by Arellano-Valle and Genton (2005). Its density is given
by (1) where the vector |Uy| of latent skewing variables is taken to be of dimension ¢(¢ < p)
and where now the matrix A of skewness parameters is a p X ¢ matrix; ¢ is not necessarily
restricted to being less than p.

An attractive feature of the CFUST distribution is that it includes the restricted and unre-
stricted distributions as special cases. And it can be fitted with little additional effort over the
fitting of the unrestricted skew ¢-distributions (Lee and McLachlan, 2015, 2016).

We would like to point out that in our preprint Lee and McLachlan (2014b) and our subse-
quent paper Lee and McLachlan (2016), which was published online in February of last year,
we have provided the EM equations for the fitting of a mixture of CFUST distributions. Lee
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and McLachlan (2015) have since given an R package for the fitting of a mixture of canonical
fundamental skew t-distributions.

4 Unrestricted versus restricted skew t-distribution

The imposition of the restriction (3) on the p latent skewing variables led Lee and McLachlan
(2014a) to state that “the uMST distribution can be viewed as a simple extension of the rMST
distribution.” The use of “simple” there referred to the formulation of the models and was not
meant to convey that the actual fitting of the unrestricted model is a relatively simple matter
compared to the restricted model. The additional computational effort in fitting a mixture of
uMST component distributions is perhaps best illustrated by the need for the calculation of the
complicated multi-dimensional integrals arising on the E-step of the EM algorithm as described
in Lee and McLachlan (2014b, 2016).

Also, we wish to stress that the use of “extension” in Lee and McLachlan (2014a) does not
necessarily imply that the restricted distribution is a special case of the unrestricted version.
Thus we do not follow the statement in ABGM that “Furthermore, the use of ‘extension’ is
clearly inappropriate because neither one of the two families is a subset of the other for p > 1.”

Concerning the theoretical results in ABGM to show that the amount of skewness in the
rMST distribution is unlimited, we are not saying there is a limit on the amount of skewness
under the restricted model; rather the limitation refers to having only a univariate skewing
function. As a consequence, it is limited to modelling skewness concentrated in a single direction
in the feature space.

More specifically, under the restriction (3) with the restricted skew t¢-distribution, realiza-
tions of the p-dimensional skewness term A|U,| in the formulation (1) are confined to lie on a
line regardless of the value of p. For example, in the case of p = 2 feature variables, the real-
izations of A|Ug| under the restriction (3) will lie on the line yo = (d2/01)y1, where §; = (A);;.
It can be seen that the restriction (3) ensuring a univariate skewing function effectively means
that the restricted t-distribution is limited to modelling skewness that is concentrated in a
single direction in the feature space.

The unrestricted model can allow for skewness in more than one direction such as occurring
with independent or uncorrelated skew feature variables. Although the unrestricted model has
only the same number of skewness parameters as the restricted model, it has a multivariate
skewing function with a p-dimensional latent vector of skewing variables in its formulation (1).
Concerning the role of this skewing vector, it is claimed in ABGM on Page 5 that “In reality,
the use of a multivariate latent error term in place of a single random component does not
add any level of generality because this multivariate latent variable ... has a highly restricted
structure.” But this latent skewing vector (|Uy| in our notation here) does not have a highly
restricted structure since U represents white noise (having mean zero and scale matrix equal
to the identity matrix). However, as the absolute values of U are premultiplied by a diagonal
matrix A of skewness parameters in the formulation (1) of the unrestricted ¢-distribution, the
feature-specific terms allowing for skewness in the feature variables are uncorrelated. Thus it
is best suited to modelling skew data with uncorrelated features. For correlated feature data,
a non-diagonal matrix A is usually needed as illustrated in a series of examples in Lee and
McLachlan (2014b, 2016) on the CFUST distribution.



5 Existence of improved fits for unrestricted skew i-
mixtures

As the restricted skew t-distribution is not nested within the unrestricted skew ¢-family, one can
generate datasets where one will be preferable to the other. To this end, Lee and McLachlan
(2014b, 2016) have provided a series of examples to demonstrate situations where either one
or both of the restricted and unrestricted skew t-distributions do not provide adequate models
for skew data.

ABGM compared the relative clustering performance of the restricted and unrestricted skew
t-distributions by using them to cluster two real datasets, the so-called crab dataset and the
AIS dataset. It represented their claim that “The goal of the analyses herein is to present
an extensive comparison ...” This would not appear to be an “extensive comparison” given
only two datasets were considered and then only two- and three-dimensional subsets of them.
Although the consideration of all possible such subsets resulted in 480 clusterings, they relate to
only two datasets. Also, as explained in Section 4, the restricted model should be appropriate
at least for bivariate skew data provided the features are not independent or weakly correlated.

Concerning the crab dataset as considered in ABGM, the correlations between any two of
the five variables is very high (the lowest is 0.89). So this represents an ideal situation for the
restricted model. More precisely, in the context of bivariate combinations of the variables for
these data, it effectively means that bivariate datasets will lie almost on a straight line and so
the restricted model with its univariate skewing function should not be disadvantaged. Thus on
bivariate datasets of the crab dataset, the restricted model cannot perform too far below that
of the unrestricted model and indeed should be better for those at least with highly correlated
features.

In ABGM (Page 7), it is stated with respect to both the crab and AIS datasets that “The
results (Figure 1) very clearly indicate that neither formulation is markedly superior and, if these
results were to be taken in favour of either formulation, it would be the classical (restricted)
formulation.” However, in their analysis of all sets of the crab dataset, McLachlan and Lee
(2014) found that the unrestricted version performs slightly better than the restricted. For
example, on considering all 26 sets corresponding to the 26 different combinations of the five
variables, they found that the restricted model gave a better fit for only 3 of the 26 sets. The
differences were generally small with there being 13 ties. The EMMIXskew and EMMIXuskew
packages were modified so that the two models could be started using the same values. The
known class labels for these two datasets were not used as starting values in our cluster analyses.

As for the AIS dataset, it is not surprising that the performances of the restricted and
unrestricted models are quite similar for the two- and three-dimensional combinations of the
variables considered in ABGM, particularly for the bivariate combinations of the variables that
have high correlations. On considering all 220 datasets corresponding to the 220 combinations
consisting of all pairs and triplets of the 11 variables, McLachlan and Lee (2014) found that
the unrestricted model gave a better fit for 105 versus 100 combinations for the restricted. The
differences were generally small with there being 15 ties. But it is in contrast to the result above
as reported in ABGM. McLachlan and Lee (2014) also found on using all of the 11 available
variables that the unrestricted model gave a misclassification rate of 0.0198 compared to 0.0297
for the restricted model (that is, two fewer misallocations).



6 Concluding remarks

We have explained the motivation and the context in which Lee and McLachlan (2013a) adopted
the terminology of restricted and unrestricted to describe two particular skew ¢-distributions.
On their applicability as models, we have pointed out how Lee and McLachlan (2014b, 2016)
have presented a series of examples to demonstrate the differences between the three models,
the restricted, the unrestricted, and the so-called CFUST models.

Under the formulation (1) of these models, the restricted model is severely limited by having
only a single latent skewing variable under its restriction (3). It is effectively limited to mod-
elling skewness concentrated in a single direction in the feature space, whereas the unrestricted
model allows for skewness in more than one direction such as with independent or uncorrelated
feature variables.

The restricted and unrestricted models are special cases of the more general CFUST model,
which also can model adequately multivariate data with correlated features since in its formu-
lation it uses an arbitrary matrix of skewness parameters in conjunction with a multivariate
skewing function.

We have also noted that McLachlan and Lee (2014) reported improved clustering perfor-
mance of the unrestricted t-mixture model compared to that reported in ABGM for the crab
dataset, which was one of two real datasets that they analysed. Concerning the other dataset
analysed in ABGM, the AIS dataset, we note that McLachlan and Lee (2014) found for the
two- and three-dimensional combinations of the variables in this dataset considered in ABGM
that the unrestricted and restricted models perform very similarly but with the former slightly
shading the restricted. This is in contrast to the result reported in ABGM.
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