∗**-ISOMORPHISM OF LEAVITT PATH ALGEBRAS OVER** Z

TOKE MEIER CARLSEN

ABSTRACT. We characterise when the Leavitt path algebras over $\mathbb Z$ of two arbitrary countable directed graphs are ∗-isomorphic. We also prove that any ∗-homomorphism between two Leavitt path algebras over $\mathbb Z$ maps the diagonal to the diagonal.

1. INTRODUCTION

Graph C[∗]-algebras were introduced in [\[11\]](#page-5-0) and [\[12\]](#page-5-1) as a generalisation of Cuntz-Kriger [\[9\]](#page-5-2) and Cuntz algebras [\[8\]](#page-5-3), and have since then attracted a lot of interest (see [\[18\]](#page-5-4) and its references). It was later discovered that certain Leavitt algebras [\[13,](#page-5-5) [14,](#page-5-6) [15\]](#page-5-7) could be considered as algebraic analogues of Cuntz algebras. This led to the introduction of *Leavitt path algebras* as algebraic analogues of graph *C* ∗ -algebras ([\[1\]](#page-5-8) and [\[3\]](#page-5-9)). Since then the connection between graph*C* ∗ -algebras and Leavitt path algebras has been thoroughly studied (see for example [\[2\]](#page-5-10), [\[10\]](#page-5-11), and [\[19\]](#page-5-12)). Both the graph C^* -algebra and the Leavitt path algebra of a directed graph can be constructed from the *graph groupoid* of the graph (see [\[4\]](#page-5-13), [\[5\]](#page-5-14), [\[7\]](#page-5-15), [\[12\]](#page-5-1), [\[17\]](#page-5-16), and [\[21\]](#page-5-17)).

The purpose of this paper is to describe, in terms of the graph C^* -algebras and the graph groupoids, when the Leavitt path algebras over $\mathbb Z$ of two arbitrary countable directed graphs are ∗-isomorphic. This is done in Theorem [1](#page-2-0) in Section [3.](#page-2-1) We also remark on how this is related to *orbit equivalence* of graphs (Remark [2\)](#page-3-0), and prove that all projections in a Leavitt path algebra over Z belong to the *diagonal* of the Leavitt path algebra (Proposition [3\)](#page-3-1). It follows as a corollary that any ∗-homomorphism between two Leavitt path algebras over $\mathbb Z$ maps the diagonal to the diagonal (Corollary [4\)](#page-4-0).

2. DEFINITIONS AND NOTATION

We recall in this section the definition of a directed graph, as well as the definitions of the Leavitt path algebra, the graph C^* -algebra, and the graph groupoid of a graph; and introduce some notation. Most of this section is copied from [\[5\]](#page-5-14).

A *directed graph* is a quadruple $E = (E^0, E^1, s, r)$ where E^0 and E^1 are sets, and *s* and *r* are maps from E^1 to E^0 . A graph *E* is said to be *countable* if E^0 and E^1 are countable. A *path* μ of length *n* in *E* is a sequence of edges $\mu = \mu_1 \dots \mu_n$ such that $r(\mu_i)$ *s*(μ _{*i*+1}) for all 1 ≤ *i* ≤ *n* − 1. The set of paths of length *n* is denoted *E*^{*n*}. We denote by | $|\mu|$ the length of μ . The range and source maps extend naturally to paths: $s(\mu) := s(\mu_1)$ and $r(\mu) := r(\mu_n).$ We regard the elements of E^0 as path of length 0, and for $v \in E^0$ we set $s(v) := r(v) := v$. For $v \in E^0$ and $n \in \mathbb{N}_0$ we denote by vE^n the set of paths of length

Date: January 6, 2016.

n with source *v*. We define $E^* := \bigcup_{n \in \mathbb{N}_0} E^n$ to be the collection of all paths with finite length. We define $E_{\text{reg}}^0 := \{v \in E^0 : vE^1 \text{ is finite and nonempty} \}$ and $E_{\text{sing}}^0 := E^0 \setminus E_{\text{reg}}^0$. If $\mu = \mu_1 \mu_2 \cdots \mu_m$, $\nu = \nu_1 \nu_2 \cdots \nu_n \in E^*$ and $r(\mu) = s(\nu)$, then we let $\mu \nu$ denote the path $\mu_1\mu_2\cdots\mu_m\nu_1\nu_2\cdots\nu_n$. A *loop* (also called a *cycle*) in *E* is a path $\mu \in E^*$ such that $|\mu| > 1$ and $s(\mu) = r(\mu)$. An edge *e* is an *exit* to the loop μ if there exists *i* such that $s(e) = s(\mu_i)$ and $e \neq \mu_i$. A graph is said to satisfy *condition* (*L*) if every loop has an exit.

An *infinite path* in *E* is an infinite sequence $x_1x_2...$ of edges in *E* such that $r(e_i)$ = $s(e_{i+1})$ for all *i*. We let E^{∞} be the set of all infinite paths in *E*. The source map extends to E^{∞} in the obvious way. We let $|x| = \infty$ for $x \in E^{\infty}$. The *boundary path space* of *E* is the space

$$
\partial E := E^{\infty} \cup \{ \mu \in E^* : r(\mu) \in E^0_{sing} \}.
$$

If $\mu = \mu_1 \mu_2 \cdots \mu_m \in E^*$, $x = x_1 x_2 \cdots \in E^{\infty}$ and $r(\mu) = s(x)$, then we let μx denote the infinite path $\mu_1 \mu_2 \cdots \mu_m x_1 x_2 \cdots \in E^{\infty}$.

For $\mu \in E^*$, the *cylinder set* of μ is the set

$$
Z(\mu) := \{ \mu x \in \partial E : x \in r(\mu) \partial E \},
$$

where $r(\mu)\partial E := \{x \in \partial E : r(\mu) = s(x)\}\$. Given $\mu \in E^*$ and a finite subset $F \subseteq r(\mu)E^1$ we define

$$
Z(\mu \setminus F) := Z(\mu) \setminus \left(\bigcup_{e \in F} Z(\mu e) \right).
$$

The boundary path space ∂*E* is a locally compact Hausdorff space with the topology given by the basis $\{Z(\mu \setminus F) : \mu \in E^*, F$ is a finite subset of $r(\mu)E^1\}$, and each such $Z(\mu \setminus F)$ is compact and open (see [\[20,](#page-5-18) Theorem 2.1 and Theorem 2.2]).

The *graph* C^* -*algebra* of a directed graph *E* is the universal C^* -algebra $C^*(E)$ generated by mutually orthogonal projections $\{p_\nu : \nu \in E^0\}$ and partial isometries $\{s_e : e \in E^1\}$ satisfying

(CK1) $s_e^* s_e = p_{r(e)}$ for all $e \in E^1$; (CK2) $s_e s_e^* \leq p_{s(e)}$ for all $e \in E^1$; (CK3) $p_v = \sum$ *e*∈*vE*¹ $s_e s_e^*$ for all $v \in E_{\text{reg}}^0$.

If $\mu = \mu_1 \cdots \mu_n \in E^n$ and $n \ge 2$, then we let $s_{\mu} := s_{\mu_1} \cdots s_{\mu_n}$. Likewise, we let $s_{\nu} := p_{\nu}$ if $v \in E^0$. Then span $\{s_\mu s_\nu^* : \mu, \nu \in E^*$, $r(\mu) = r(\nu)\}$ is dense in $C^*(E)$. We define $\mathscr{D}(E)$ to be the closure in $C^*(E)$ of span $\{s_\mu s_\mu^*: \mu \in E^*\}$. Then $\mathscr{D}(E)$ is an abelian C^* -subalgebra of $C(E)$, and it is isomorphic to the C^* -algebra $C_0(\partial E)$. We furthermore have that $\mathscr{D}(E)$ is a maximal abelian sub-algebra of $C^*(E)$ if and only if *E* satisfies condition (L) (see [\[16,](#page-5-19) Example 3.3]).

Let *E* be a directed graph and *R* a commutative ring with a unit. The *Leavitt path algebra* of *E* over *R* is the universal *R*-algebra $L_R(E)$ generated by pairwise orthogonal idempotents $\{v : v \in E^0\}$ and elements $\{e, e^* : e \in E^1\}$ satisfying

 $(LP1)$ $e^*f = 0$ if $e \neq f$; (LP2) $e^*e = r(e);$

(LP3) $s(e)e = e = er(e);$ $(LP4)$ $e^*s(e) = e^* = r(e)e^*;$ (LP5) $v = \sum_{e \in vE^1} ee^*$ if $v \in E^0_{reg}$.

If $\mu = \mu_1 \cdots \mu_n \in E^n$ and $n \ge 2$, then we let μ be the element $\mu_1 \cdots \mu_n \in L_R(E)$. Then $L_R(E) = \text{span}\{\mu v^* : \mu, v \in E^*, r(\mu) = r(v)\}.$ We define $D_R(E) := \text{span}\{\mu \mu^* : \mu \in E^* \}$ E^* . Then $D_R(E)$ is an abelian subalgebra of $L_R(E)$, and it is maximal abelian if and only if *E* satisfies condition (L) (see [\[6,](#page-5-20) Proposition 3.14 and Theorem 3.22]). If *R* is a a subring of $\mathbb C$ that is closed under complex conjugation, then $\mu v^* \mapsto v\mu^*$ extends to a conjugate linear involution on $L_R(E)$, i.e. $L_R(E)$ is a *-algebra. There is an injective *-homomorphism $\iota_{L_R(E)} \to C^*(E)$ mapping *v* to p_ν and *e* to s_e for $\nu \in E^0$ and $e \in E^1$ (see [\[19,](#page-5-12) Theorem 7.3]).

For $n \in \mathbb{N}_0$, let $\partial E^{\ge n} := \{x \in \partial E : |x| \ge n\}$. Then $\partial E^{\ge n} = \bigcup_{\mu \in E^n} Z(\mu)$ is an open subset of ∂E . We define the *shift map* on *E* to be the map $\sigma_E : \partial E^{\geq 1} \to \partial E$ given by $\sigma_E(x_1x_2x_3\cdots) = x_2x_3\cdots$ for $x_1x_2x_3\cdots \in \partial E^{\geq 2}$ and $\sigma_E(e) = r(e)$ for $e \in \partial E \cap E^1$. For $n \geq 1$, we let σ_E^n be the *n*-fold composition of σ_E with itself. We let σ_E^0 denote the identity map on $\overline{\partial}E$. Then σ_E^n is a local homeomorphism for all $n \in \mathbb{N}$. When we write $\sigma_E^n(x)$, we implicitly assume that $x \in \partial E^{\geq n}$.

The *graph groupoid* of a countable directed graph is the locally compact, Hausdorff, étale topological groupoid

$$
\mathscr{G}_E = \{ (x, m-n, y) : x, y \in \partial E, m, n \in \mathbb{N}_0, \text{ and } \sigma^m(x) = \sigma^n(y) \},
$$

with product $(x, k, y)(w, l, z) := (x, k + l, z)$ if $y = w$ and undefined otherwise, and inverse given by $(x, k, y)^{-1} := (y, -k, x)$. The topology of \mathscr{G}_E is generated by subsets of the form $Z(U,m,n,V) := \{(x,k,y) \in \mathscr{G}_{E}: x \in U, k=m-n, y \in V, \sigma_{E}^{m}(x) = \sigma_{E}^{n}(y)\}\$ where $m, n \in$ \mathbb{N}_0 , *U* is an open subset of $\partial E^{\geq m}$ such that the restriction of σ_E^m to *U* is injective, and *V* is an open subset of $\partial E^{\geq n}$ such that the restriction of σ_E^n to *V* is injective, and $\sigma_E^m(U)$ = $\sigma_E^n(V)$. The map $x \mapsto (x,0,x)$ is a homeomorphism from ∂E to the unit space $\mathscr{G}_{E_\circ}^0$ of \mathscr{G}_E . There is a \ast -isomorphism from the *C*^{\ast}-algebra of \mathcal{G}_E to $C^*(E)$ that maps $C_0(\overline{\mathcal{G}}_E^0)$ onto $\mathscr{D}(E)$ (see [\[5,](#page-5-14) Proposition 2.2] and [\[12,](#page-5-1) Proposition 4.1]), and a \ast -isomorphism from the Steinberg algebra $A_R(\mathscr{G}_E)$ of \mathscr{G}_E to $L_R(E)$ that maps $\text{span}_R\{1_{Z(Z(\mu),0,0,Z(\mu))} : \mu \in E^*\}$ onto $D_R(E)$ (see [\[4,](#page-5-13) Theorem 2.2] and [\[7,](#page-5-15) Example 3.2]).

3. THE RESULT

Theorem 1. *Let E and F be countable directed graphs. Then the following are equivalent.*

- *(1) The Leavitt path algebras* $L_{\mathbb{Z}}(E)$ *and* $L_{\mathbb{Z}}(F)$ *of* E *and* F *over* \mathbb{Z} *are* $*$ *-isomorphic.*
- *(2) There is a* **-isomorphism* π : $L_{\mathbb{Z}}(E) \to L_{\mathbb{Z}}(F)$ *such that* $\pi(D_{\mathbb{Z}}(E)) = D_{\mathbb{Z}}(F)$ *.*
- *(3) There is a* $*$ *-isomorphism* ϕ : $C^*(E) \to C^*(F)$ such that $\phi(\mathscr{D}(E)) = \mathscr{D}(F)$
- *(4) The graph groupoids* \mathcal{G}_E *and* \mathcal{G}_F *are isomorphic as topological groupoids.*
- *(5) There is a* $*$ *-isomorphism* $\pi : L_{\mathbb{Z}}(E) \to L_{\mathbb{Z}}(F)$ *and a homeomorphism* $\kappa : E^{\infty} \to$ *F*^{∞} *such that* $\pi(d)(y) = d(\kappa^{-1}(y))$ *for* $y \in F^{\infty}$ *and* $d \in D(E)$ *.*

Remark 2. It follows from [\[5\]](#page-5-14) that the following two conditions are equivalent and implied by (3) and (4).

- (6) The pseudogroups \mathcal{P}_E and \mathcal{P}_F introduced in [\[5,](#page-5-14) Section 3] are isomorphic.
- (7) *E* and *F* are orbit equivalent as in [\[5,](#page-5-14) Definition 3.1].

It also follows from [\[5\]](#page-5-14) that if *E* and *F* both satisfy condition (L), then (6) and (7) imply (3) and (4). Thus, if E and F both satisfy condition (L), then (1)–(7) are all equivalent.

As in [\[10\]](#page-5-11), we say that $p \in L_{\mathbb{Z}}(E)$ is a *projection* if $p = p^* = p^2$. For the proof of Theorem [1](#page-2-0) we need the following generalisation of [\[10,](#page-5-11) Theorem 5.6].

Proposition 3. *Let E be a directed graph. If* $p \in L_{\mathbb{Z}}(E)$ *is a projection, then* $p \in D_{\mathbb{Z}}(E)$ *.*

Proof. This proof is inspired by the proof of [\[10,](#page-5-11) Proposition 4.2] which is due to Chris Smith.

For $\mu, \nu \in E^*$, we shall write $\mu \leq \nu$ to indicate that there is an $\eta \in E^*$ such that $\mu \eta = v$, and $\mu < v$ to indicate that $\mu < v$ and $\mu \neq v$.

Since $L_{\mathbb{Z}}(E) = \text{span}_{\mathbb{Z}}\{\alpha\beta^* : \alpha, \beta \in E^*\}$, it follows that there are finite subsets A, B of E^* and a family $(\lambda_{(\alpha,\beta)})_{(\alpha,\beta)\in A\times B}$ of integers such that

$$
p = \sum_{(\alpha,\beta)\in A\times B} \lambda_{(\alpha,\beta)} \alpha \beta^*.
$$

By repeatedly replacing $\alpha\beta^*$ by $\sum_{e \in r(\alpha)E} \alpha ee^*\beta^*$ if necessary, we can assume that there is a *k* such that $B \subseteq E^k \cup \{ \mu \in E^* : |\mu| < k \text{ and } r(\mu) \in E^0_{sing} \}$. We can also, by letting some of the $\lambda_{(\alpha,\beta)}$ s be 0 if necessary, assume that $B\subseteq A.$ We have that $\alpha\beta^*=0$ unless $r(\alpha) = r(\beta)$. For $\beta \in B$, let $A_\beta := \{ \alpha \in A : r(\alpha) = r(\beta) \}$. We shall also assume that if $\beta \in B$, then there is a least one $\alpha \in A_\beta$ such that $\lambda_{(\alpha,\beta)} \neq 0$ (otherwise we just remove β from B). We claim that $\lambda_{(\alpha,\beta)} = 0$ for all $(\alpha,\beta) \in A \times B$ with $\alpha \in A_{\beta} \setminus \{\beta\},$ and that $\lambda_{(\alpha,\beta)} = (-1)^{m_\beta}$ for all $\beta \in B$ where m_β is the number of β' s in *B* such that $\beta' < \beta$.

Let $B' = \{ \beta \in B : \lambda_{(\alpha,\beta)} = 0 \text{ for all } \alpha \in A_{\beta} \setminus \{ \beta \} \text{ and } \lambda_{(\beta,\beta)} = (-1)^{m_{\beta}} \},\$ and suppose $B' \neq B$. Choose $\beta \in B \setminus B'$ such that $\beta' < \beta$ for no $\beta' \in B \setminus B'$. Let

$$
F_{\beta} = \{ e \in r(\beta)E^1 : \beta e \le \beta' \text{ for some } \beta' \in B \setminus \{ \beta \} \}
$$

and

$$
\gamma_{\beta} = \beta - \beta \sum_{e \in F_{\beta}} ee^*
$$

 $(F_\beta = 0 \text{ and } \gamma_\beta = \beta \text{ unless } |\beta| < k \text{ and } r(\beta)E^1 \text{ is infinite). Then } \gamma_\beta^*$ $\beta^*_\beta\beta' = 0 \text{ for } \beta' \in B$ unless $\beta' \leq \beta$.

Since $p = p^*p$, it follows that

(a)
$$
\gamma_{\beta}^* p \gamma_{\beta} = \gamma_{\beta}^* p^* p \gamma_{\beta}.
$$

Recall that $L_{\mathbb{Z}}(E)$ is Z-graded. The degree 0 part of the left-hand side of [\(a\)](#page-3-2) is

(b)
$$
\sum_{\beta' \in B^{\leq \beta}} \lambda_{(\beta', \beta')} \left(r(\beta) - \sum_{e \in F_{\beta}} ee^* \right)
$$

where $B^{\leq \beta} := \{ \beta' \in B : \beta' \leq \beta \}$, and the degree 0 part of the right-hand side of [\(a\)](#page-3-2) is

$$
\text{(c)} \quad \left(\left(\sum_{\beta' \in B^{<\beta}} \lambda_{(\beta',\beta')} \right)^2 + 2 \sum_{\beta' \in B^{<\beta}} \lambda_{(\beta',\beta')} \lambda_{(\beta,\beta)} + \sum_{\alpha \in A_{\beta}} \lambda_{(\alpha,\beta)}^2 \right) \left(r(\beta) - \sum_{e \in F_{\beta}} ee^* \right)
$$

where $B^{<\beta} := \{\beta' \in B : \beta' < \beta\}$ (we are using here that $\lambda_{(\alpha,\beta')} = 0$ for $\beta' \in B^{<\beta}$ and $\alpha \in A \setminus {\{\beta'\}}).$

Suppose m_{β} is even. Then $\sum_{\beta' \in B \leq \beta} \lambda_{(\beta', \beta')} = 0$ (because $\lambda_{(\beta', \beta')} = (-1)^{m'_{\beta}}$ for each $\beta' \in B^{<\beta}$). Since [\(b\)](#page-4-1) = [\(c\)](#page-4-2), it follows that $\lambda_{(\beta,\beta)} = \sum_{\alpha \in A_{\beta}} \lambda_{(\alpha)}^2$ $\binom{2}{(\alpha,\beta)}$. The fact that the $\lambda_{(\beta,\beta)}$ s are integers, means that we must have that $\lambda_{(\alpha,\beta)} = 0$ for $\alpha \in A_{\beta} \setminus \{\beta\}$ and $\lambda_{(\beta,\beta)} = 1$ (recall that $\lambda_{(\alpha,\beta)} \neq 0$ for at least one $\alpha \in A_{\beta}$), but this contradicts the assumption that $\beta \notin B'$.

If m_{β} is uneven, then $\sum_{\beta' \in B \leq \beta} \lambda_{(\beta', \beta')} = 1$, so it follows from the equality of [\(b\)](#page-4-1) and [\(c\)](#page-4-2) that $1+2\lambda_{(\beta,\beta)} + \sum_{\alpha_\beta \in A} \lambda_{(\alpha,\beta)}^2 = 1 + \lambda_{(\beta,\beta)}$ from which we deduce that $\lambda_{(\alpha,\beta)} = 0$ for $\alpha\in A_\beta\setminus\{\beta\}$ and $\lambda_{(\beta,\beta)}=-1,$ and thus that $\beta\in B'.$ So we also reach a contradiction in this case.

We conclude that we must have that $B' = B$, and thus that $\lambda_{(\alpha,\beta)} = 0$ for all $(\alpha,\beta) \in$ $A\times B$ with $\alpha \in A_\beta\setminus\{\beta\}$. Since $\alpha\beta^* = 0$ for $\alpha \notin A_\beta$, it follows that $p = \sum_{\beta \in B}\lambda_{(\beta,\beta)}\beta\beta^* \in A_\beta$ $D_{\mathbb{Z}}(E).$

Corollary 4. Let E and F be directed graphs and $\pi : L_{\mathbb{Z}}(E) \to L_{\mathbb{Z}}(F)$ a **-homomorphism. Then* $\pi(D_{\mathbb{Z}}(E)) \subseteq D_{\mathbb{Z}}(F)$ *.*

Proof. The proof is similar to the proof of [\[10,](#page-5-11) Proposition 6.1]. Let $\mu \in E^*$. Then $\pi(\mu\mu^*)$ is a projection, so it follows from Proposition [3](#page-3-1) that $\pi(\mu\mu^*) \in D_{\mathbb{Z}}(F)$. Since $D_{\mathbb{Z}}(E) = \text{span}_{\mathbb{Z}}\{\mu\mu^* : \mu \in E^*\},\$ it follows that $\pi(D_{\mathbb{Z}}(E)) \subseteq D_{\mathbb{Z}}(F)$.

Proof of Theorem [1.](#page-2-0) It is obvious that (5) implies (1). The implication $(1) \implies (2)$ follows directly from Corollary [4.](#page-4-0) The equivalence of (3) and (4) is proved in [\[5\]](#page-5-14).

Next, we shall prove that $(2) \implies (3)$. We shall closely follow the proof of [\[10,](#page-5-11) Lemma 3.5]. Let $\pi: L_{\mathbb{Z}}(E) \to L_{\mathbb{Z}}(F)$ be a $*$ -isomorphism such that $\pi(D_{\mathbb{Z}}(E)) = D_{\mathbb{Z}}(F)$. As in the proof of [\[2,](#page-5-10) Theorem 4.4], π extends to a *-isomorphism $\phi : C^*(E) \to C^*(F)$ satisfying $\phi \circ \iota_{L_{\mathbb{Z}}(E)} = \iota_{L_{\mathbb{Z}}(F)} \circ \pi$. If $\mu \in E^*$, then

$$
\phi(s_\mu s_\mu^*) = \phi(\iota_{L_\mathbb{Z}(E)}(\mu\mu^*)) = \iota_{L_\mathbb{Z}(F)}(\pi(\mu\mu^*)) \in \iota_{L_\mathbb{Z}(F)}(D_\mathbb{Z}(F)) \subseteq \mathscr{D}(F).
$$

Since $\mathscr{D}(E)$ is generated by $\{s_\mu s^*_\mu : \mu \in E^*\}$, it follows that $\phi(\mathscr{D}(E)) \subseteq \mathscr{D}(F)$. That $\phi(\mathcal{D}(F)) \subseteq \mathcal{D}(E)$ follows in a similarly way. Thus $\phi(\mathcal{D}(E)) = \mathcal{D}(F)$.

Finally the proof of (2) \implies (1) in [\[4,](#page-5-13) Theorem 5.3] also works when *E* and *F* are not row-finite or have sinks, so this gives us $(4) \implies (5)$.

REFERENCES

- [1] G. Abrams and G. Aranda-Pino, *The Leavitt path algebra of a graph*, J. Algebra **293** (2005) 319— 334.
- [2] G. Abrams and M. Tomforde, *Isomorphism and Morita equivalence of graph algebras*, arXiv:0810.2569v2, Trans. Amer. Math. Soc. **363** (2011), 3733–3767.
- [3] P. Ara, M. A. Moreno, and E. Pardo, *Nonstable K-theory for graph algebras*, Algebr. Represent. Theory **10** (2007) 157—178.
- [4] J.H. Brown, L. Clark, and A. an Huef, *Diagonal-preserving ring* ∗*-isomorphisms of Leavitt path algebras*, arXiv:1510.05309v1, 20 pages.
- [5] N. Brownlowe, T.M. Carlsen, and M.F. Whittaker, *Graph algebras and orbit equivalence*, arXiv:1410.2308v1, to appear in Ergodic Theory Dynam. Systems, doi:10.1017/etds.2015.52, 29 pages.
- [6] C. Gil Canto and A. Nasr-Isfahani, *The maximal commutative subalgebra of a Leavitt path algebra*, arXiv:1510.03992v2, 21 pages.
- [7] L.O. Clark and A. Sims, *Equivalent groupoids have Morita equivalent Steinberg algebras*, J. Pure Appl. Algebra **219** (2015), 2062—2075.
- [8] J. Cuntz, *Simple C*[∗] *-algebras generated by isometries*, Comm. Math. Phys. **57** (1977) 173-–185.
- [9] J. Cuntz and W. Krieger, *A class of C*[∗] *-algebras and topological Markov chains*, Invent. Math. **56** (1980) 251—268.
- [10] R. Johansen, and A.P.W Søresen, *The Cuntz splice does not preserve* ∗*-isomorphism of Leavitt path algebras over* Z, arXiv:1507.01247v2, 16 pages.
- [11] A. Kumjian, D. Pask, and I. Raeburn, *Cuntz-Krieger algebras of directed graphs*, Pacific J. Math. **184** (1998) 161-–174.
- [12] A. Kumjian, D. Pask, I. Raeburn, and J. Renault, *Graphs, groupoids, and Cuntz-Krieger algebras*, J. Funct. Anal. **144** (1997) 505-–541.
- [13] W.G. Leavitt, *Modules over rings of words*, Proc. Amer. Math. Soc. **7** (1956) 188—193.
- [14] W.G. Leavitt, *Modules without invariant basis number*, Proc. Amer. Math. Soc. **8** (1957) 322-–328.
- [15] W.G. Leavitt, *The module type of a ring*, Trans. Amer. Math. Soc. **42** (1962) 113-–130.
- [16] G. Nagy and S. Reznikoff, *Pseudo-diagonals and uniqueness theorems*, Proc. Amer. Math. Soc. **142** (2014), 263-–275.
- [17] A.L.T Paterson, *Graph Inverse Semigroups, Groupoids and their C*[∗] *-Algebras*, J. Operator Theory **48** (2002) 645-–662.
- [18] I. Raeburn, *Graph Algebras*, CBMS Reg. Conf. Ser. Math., vol. 103, American Mathematical Society, Providence, RI, 2005, vi+113 pp. Published for the Conference Board of the Mathematical Sciences, Washington, DC.
- [19] M. Tomforde, *Uniqueness theorems and ideal structure for Leavitt path algebras.* J. Algebra **318** (2007) 270-–299.
- [20] S. Webster, *The path space of a directed graph*, [arXiv:1102.1225v](http://arxiv.org/abs/1102.1225)1, Proc. Amer. Math. Soc. **142** (2014), 213–225.
- [21] T. Yeend, *Groupoid models for the C*[∗] *-algebras of topological higher-rank graphs*, J. Operator Theory **57** (2007) 95-–120.

UNIVERSITY OF THE FAROE ISLANDS, NÁTTÚRUVÍSINDADEILDIN, NÓATÚN 3, FO-100 TÓR-SHAVN, FAROE ISLANDS

E-mail address: toke.carlsen@gmail.com