*-ISOMORPHISM OF LEAVITT PATH ALGEBRAS OVER $\mathbb Z$

TOKE MEIER CARLSEN

ABSTRACT. We characterise when the Leavitt path algebras over \mathbb{Z} of two arbitrary countable directed graphs are *-isomorphic. We also prove that any *-homomorphism between two Leavitt path algebras over \mathbb{Z} maps the diagonal to the diagonal.

1. INTRODUCTION

*Graph C**-*algebras* were introduced in [11] and [12] as a generalisation of Cuntz-Kriger [9] and Cuntz algebras [8], and have since then attracted a lot of interest (see [18] and its references). It was later discovered that certain Leavitt algebras [13, 14, 15] could be considered as algebraic analogues of Cuntz algebras. This led to the introduction of *Leavitt path algebras* as algebraic analogues of graph *C**-algebras ([1] and [3]). Since then the connection between graph *C**-algebras and Leavitt path algebras has been thoroughly studied (see for example [2], [10], and [19]). Both the graph *C**-algebra and the Leavitt path algebra of a directed graph can be constructed from the *graph groupoid* of the graph (see [4], [5], [7], [12], [17], and [21]).

The purpose of this paper is to describe, in terms of the graph C^* -algebras and the graph groupoids, when the Leavitt path algebras over \mathbb{Z} of two arbitrary countable directed graphs are *-isomorphic. This is done in Theorem 1 in Section 3. We also remark on how this is related to *orbit equivalence* of graphs (Remark 2), and prove that all projections in a Leavitt path algebra over \mathbb{Z} belong to the *diagonal* of the Leavitt path algebra (Proposition 3). It follows as a corollary that any *-homomorphism between two Leavitt path algebras over \mathbb{Z} maps the diagonal to the diagonal (Corollary 4).

2. DEFINITIONS AND NOTATION

We recall in this section the definition of a directed graph, as well as the definitions of the Leavitt path algebra, the graph C^* -algebra, and the graph groupoid of a graph; and introduce some notation. Most of this section is copied from [5].

A *directed graph* is a quadruple $E = (E^0, E^1, s, r)$ where E^0 and E^1 are sets, and s and r are maps from E^1 to E^0 . A graph E is said to be *countable* if E^0 and E^1 are countable. A *path* μ of length n in E is a sequence of edges $\mu = \mu_1 \dots \mu_n$ such that $r(\mu_i) = s(\mu_{i+1})$ for all $1 \le i \le n-1$. The set of paths of length n is denoted E^n . We denote by $|\mu|$ the length of μ . The range and source maps extend naturally to paths: $s(\mu) := s(\mu_1)$ and $r(\mu) := r(\mu_n)$. We regard the elements of E^0 as path of length 0, and for $v \in E^0$ we set s(v) := r(v) := v. For $v \in E^0$ and $n \in \mathbb{N}_0$ we denote by vE^n the set of paths of length

Date: January 6, 2016.

n with source *v*. We define $E^* := \bigcup_{n \in \mathbb{N}_0} E^n$ to be the collection of all paths with finite length. We define $E_{\text{reg}}^0 := \{v \in E^0 : vE^1 \text{ is finite and nonempty}\}$ and $E_{\text{sing}}^0 := E^0 \setminus E_{\text{reg}}^0$. If $\mu = \mu_1 \mu_2 \cdots \mu_m, v = v_1 v_2 \cdots v_n \in E^*$ and $r(\mu) = s(\nu)$, then we let $\mu \nu$ denote the path $\mu_1 \mu_2 \cdots \mu_m v_1 v_2 \cdots v_n$. A *loop* (also called a *cycle*) in *E* is a path $\mu \in E^*$ such that $|\mu| \ge 1$ and $s(\mu) = r(\mu)$. An edge *e* is an *exit* to the loop μ if there exists *i* such that $s(e) = s(\mu_i)$ and $e \neq \mu_i$. A graph is said to satisfy *condition* (*L*) if every loop has an exit.

An *infinite path* in *E* is an infinite sequence $x_1x_2...$ of edges in *E* such that $r(e_i) = s(e_{i+1})$ for all *i*. We let E^{∞} be the set of all infinite paths in *E*. The source map extends to E^{∞} in the obvious way. We let $|x| = \infty$ for $x \in E^{\infty}$. The *boundary path space* of *E* is the space

$$\partial E := E^{\infty} \cup \{ \mu \in E^* : r(\mu) \in E^0_{\mathrm{sing}} \}.$$

If $\mu = \mu_1 \mu_2 \cdots \mu_m \in E^*$, $x = x_1 x_2 \cdots \in E^\infty$ and $r(\mu) = s(x)$, then we let μx denote the infinite path $\mu_1 \mu_2 \cdots \mu_m x_1 x_2 \cdots \in E^\infty$.

For $\mu \in E^*$, the *cylinder set* of μ is the set

$$Z(\boldsymbol{\mu}) := \{ \boldsymbol{\mu} \boldsymbol{x} \in \partial E : \boldsymbol{x} \in r(\boldsymbol{\mu}) \partial E \},\$$

where $r(\mu)\partial E := \{x \in \partial E : r(\mu) = s(x)\}$. Given $\mu \in E^*$ and a finite subset $F \subseteq r(\mu)E^1$ we define

$$Z(\mu \setminus F) := Z(\mu) \setminus \left(\bigcup_{e \in F} Z(\mu e) \right).$$

The boundary path space ∂E is a locally compact Hausdorff space with the topology given by the basis $\{Z(\mu \setminus F) : \mu \in E^*, F \text{ is a finite subset of } r(\mu)E^1\}$, and each such $Z(\mu \setminus F)$ is compact and open (see [20, Theorem 2.1 and Theorem 2.2]).

The graph C^* -algebra of a directed graph E is the universal C^* -algebra $C^*(E)$ generated by mutually orthogonal projections $\{p_v : v \in E^0\}$ and partial isometries $\{s_e : e \in E^1\}$ satisfying

(CK1) $s_e^* s_e = p_{r(e)}$ for all $e \in E^1$; (CK2) $s_e s_e^* \le p_{s(e)}$ for all $e \in E^1$; (CK3) $p_v = \sum_{e \in vE^1} s_e s_e^*$ for all $v \in E_{\text{reg}}^0$.

If $\mu = \mu_1 \cdots \mu_n \in E^n$ and $n \ge 2$, then we let $s_\mu := s_{\mu_1} \cdots s_{\mu_n}$. Likewise, we let $s_\nu := p_\nu$ if $\nu \in E^0$. Then span $\{s_\mu s_\nu^* : \mu, \nu \in E^*, r(\mu) = r(\nu)\}$ is dense in $C^*(E)$. We define $\mathscr{D}(E)$ to be the closure in $C^*(E)$ of span $\{s_\mu s_\mu^* : \mu \in E^*\}$. Then $\mathscr{D}(E)$ is an abelian C^* -subalgebra of $C^{(E)}$, and it is isomorphic to the C^* -algebra $C_0(\partial E)$. We furthermore have that $\mathscr{D}(E)$ is a maximal abelian sub-algebra of $C^*(E)$ if and only if E satisfies condition (L) (see [16, Example 3.3]).

Let *E* be a directed graph and *R* a commutative ring with a unit. The *Leavitt path* algebra of *E* over *R* is the universal *R*-algebra $L_R(E)$ generated by pairwise orthogonal idempotents $\{v : v \in E^0\}$ and elements $\{e, e^* : e \in E^1\}$ satisfying

(LP1) $e^* f = 0$ if $e \neq f$; (LP2) $e^* e = r(e)$;

(LP3)
$$s(e)e = e = er(e);$$

(LP4) $e^*s(e) = e^* = r(e)e^*;$
(LP5) $v = \sum_{e \in vE^1} ee^*$ if $v \in E^0_{reg}$.

If $\mu = \mu_1 \cdots \mu_n \in E^n$ and $n \ge 2$, then we let μ be the element $\mu_1 \cdots \mu_n \in L_R(E)$. Then $L_R(E) = \operatorname{span}\{\mu v^* : \mu, v \in E^*, r(\mu) = r(v)\}$. We define $D_R(E) := \operatorname{span}\{\mu \mu^* : \mu \in E^*\}$. Then $D_R(E)$ is an abelian subalgebra of $L_R(E)$, and it is maximal abelian if and only if *E* satisfies condition (L) (see [6, Proposition 3.14 and Theorem 3.22]). If *R* is a a subring of \mathbb{C} that is closed under complex conjugation, then $\mu v^* \mapsto v \mu^*$ extends to a conjugate linear involution on $L_R(E)$, i.e. $L_R(E)$ is a *-algebra. There is an injective *-homomorphism $\iota_{L_R(E)} \to C^*(E)$ mapping *v* to p_v and *e* to s_e for $v \in E^0$ and $e \in E^1$ (see [19, Theorem 7.3]).

For $n \in \mathbb{N}_0$, let $\partial E^{\geq n} := \{x \in \partial E : |x| \geq n\}$. Then $\partial E^{\geq n} = \bigcup_{\mu \in E^n} Z(\mu)$ is an open subset of ∂E . We define the *shift map* on E to be the map $\sigma_E : \partial E^{\geq 1} \to \partial E$ given by $\sigma_E(x_1x_2x_3\cdots) = x_2x_3\cdots$ for $x_1x_2x_3\cdots \in \partial E^{\geq 2}$ and $\sigma_E(e) = r(e)$ for $e \in \partial E \cap E^1$. For $n \geq 1$, we let σ_E^n be the *n*-fold composition of σ_E with itself. We let σ_E^0 denote the identity map on ∂E . Then σ_E^n is a local homeomorphism for all $n \in \mathbb{N}$. When we write $\sigma_E^n(x)$, we implicitly assume that $x \in \partial E^{\geq n}$.

The *graph groupoid* of a countable directed graph is the locally compact, Hausdorff, étale topological groupoid

$$\mathscr{G}_E = \{(x, m-n, y) : x, y \in \partial E, m, n \in \mathbb{N}_0, \text{ and } \sigma^m(x) = \sigma^n(y)\},\$$

with product (x,k,y)(w,l,z) := (x,k+l,z) if y = w and undefined otherwise, and inverse given by $(x,k,y)^{-1} := (y,-k,x)$. The topology of \mathscr{G}_E is generated by subsets of the form $Z(U,m,n,V) := \{(x,k,y) \in \mathscr{G}_E : x \in U, k = m-n, y \in V, \sigma_E^m(x) = \sigma_E^n(y)\}$ where $m,n \in \mathbb{N}_0$, U is an open subset of $\partial E^{\geq m}$ such that the restriction of σ_E^m to U is injective, and Vis an open subset of $\partial E^{\geq m}$ such that the restriction of σ_E^m to U is injective, and $\sigma_E^m(U) = \sigma_E^n(V)$. The map $x \mapsto (x,0,x)$ is a homeomorphism from ∂E to the unit space \mathscr{G}_E^0 of \mathscr{G}_E . There is a *-isomorphism from the C^* -algebra of \mathscr{G}_E to $C^*(E)$ that maps $C_0(\mathscr{G}_E^0)$ onto $\mathscr{D}(E)$ (see [5, Proposition 2.2] and [12, Proposition 4.1]), and a *-isomorphism from the Steinberg algebra $A_R(\mathscr{G}_E)$ of \mathscr{G}_E to $L_R(E)$ that maps $\operatorname{span}_R\{1_{Z(Z(\mu),0,0,Z(\mu))} : \mu \in E^*\}$ onto $D_R(E)$ (see [4, Theorem 2.2] and [7, Example 3.2]).

3. The result

Theorem 1. *Let E and F be countable directed graphs. Then the following are equiva-lent.*

- (1) The Leavitt path algebras $L_{\mathbb{Z}}(E)$ and $L_{\mathbb{Z}}(F)$ of E and F over \mathbb{Z} are *-isomorphic.
- (2) There is a *-isomorphism $\pi : L_{\mathbb{Z}}(E) \to L_{\mathbb{Z}}(F)$ such that $\pi(D_{\mathbb{Z}}(E)) = D_{\mathbb{Z}}(F)$.
- (3) There is a *-isomorphism $\phi : C^*(E) \to C^*(F)$ such that $\phi(\mathscr{D}(E)) = \mathscr{D}(F)$
- (4) The graph groupoids \mathscr{G}_E and \mathscr{G}_F are isomorphic as topological groupoids.
- (5) There is a *-isomorphism $\pi : L_{\mathbb{Z}}(E) \to L_{\mathbb{Z}}(F)$ and a homeomorphism $\kappa : E^{\infty} \to F^{\infty}$ such that $\pi(d)(y) = d(\kappa^{-1}(y))$ for $y \in F^{\infty}$ and $d \in D(E)$.

Remark 2. It follows from [5] that the following two conditions are equivalent and implied by (3) and (4).

- (6) The pseudogroups \mathscr{P}_E and \mathscr{P}_F introduced in [5, Section 3] are isomorphic.
- (7) E and F are orbit equivalent as in [5, Definition 3.1].

It also follows from [5] that if E and F both satisfy condition (L), then (6) and (7) imply (3) and (4). Thus, if E and F both satisfy condition (L), then (1)–(7) are all equivalent.

As in [10], we say that $p \in L_{\mathbb{Z}}(E)$ is a *projection* if $p = p^* = p^2$. For the proof of Theorem 1 we need the following generalisation of [10, Theorem 5.6].

Proposition 3. *Let E be a directed graph. If* $p \in L_{\mathbb{Z}}(E)$ *is a projection, then* $p \in D_{\mathbb{Z}}(E)$ *.*

Proof. This proof is inspired by the proof of [10, Proposition 4.2] which is due to Chris Smith.

For $\mu, \nu \in E^*$, we shall write $\mu \leq \nu$ to indicate that there is an $\eta \in E^*$ such that $\mu\eta = \nu$, and $\mu < \nu$ to indicate that $\mu \leq \nu$ and $\mu \neq \nu$.

Since $L_{\mathbb{Z}}(E) = \operatorname{span}_{\mathbb{Z}} \{ \alpha \beta^* : \alpha, \beta \in E^* \}$, it follows that there are finite subsets A, B of E^* and a family $(\lambda_{(\alpha,\beta)})_{(\alpha,\beta)\in A\times B}$ of integers such that

$$p = \sum_{(\alpha,\beta)\in A imes B} \lambda_{(\alpha,\beta)} \alpha \beta^*$$

By repeatedly replacing $\alpha\beta^*$ by $\sum_{e\in r(\alpha)E^1} \alpha ee^*\beta^*$ if necessary, we can assume that there is a *k* such that $B \subseteq E^k \cup \{\mu \in E^* : |\mu| < k \text{ and } r(\mu) \in E_{sing}^0\}$. We can also, by letting some of the $\lambda_{(\alpha,\beta)}$ s be 0 if necessary, assume that $B \subseteq A$. We have that $\alpha\beta^* = 0$ unless $r(\alpha) = r(\beta)$. For $\beta \in B$, let $A_\beta := \{\alpha \in A : r(\alpha) = r(\beta)\}$. We shall also assume that if $\beta \in B$, then there is a least one $\alpha \in A_\beta$ such that $\lambda_{(\alpha,\beta)} \neq 0$ (otherwise we just remove β from *B*). We claim that $\lambda_{(\alpha,\beta)} = 0$ for all $(\alpha,\beta) \in A \times B$ with $\alpha \in A_\beta \setminus \{\beta\}$, and that $\lambda_{(\alpha,\beta)} = (-1)^{m_\beta}$ for all $\beta \in B$ where m_β is the number of β 's in *B* such that $\beta' < \beta$.

Let $B' = \{\beta \in B : \lambda_{(\alpha,\beta)} = 0 \text{ for all } \alpha \in A_{\beta} \setminus \{\beta\} \text{ and } \lambda_{(\beta,\beta)} = (-1)^{m_{\beta}}\}$, and suppose $B' \neq B$. Choose $\beta \in B \setminus B'$ such that $\beta' < \beta$ for no $\beta' \in B \setminus B'$. Let

$$F_{\beta} = \{ e \in r(\beta)E^1 : \beta e \leq \beta' \text{ for some } \beta' \in B \setminus \{\beta\} \}$$

and

$$\gamma_{eta} = eta - eta \sum_{e \in F_{eta}} ee^*$$

 $(F_{\beta} = \emptyset \text{ and } \gamma_{\beta} = \beta \text{ unless } |\beta| < k \text{ and } r(\beta)E^1 \text{ is infinite}).$ Then $\gamma_{\beta}^*\beta' = 0$ for $\beta' \in B$ unless $\beta' \leq \beta$.

Since $p = p^* p$, it follows that

(a)
$$\gamma_{\beta}^* p \gamma_{\beta} = \gamma_{\beta}^* p^* p \gamma_{\beta}.$$

Recall that $L_{\mathbb{Z}}(E)$ is \mathbb{Z} -graded. The degree 0 part of the left-hand side of (a) is

(b)
$$\sum_{\beta' \in B^{\leq \beta}} \lambda_{(\beta',\beta')} \left(r(\beta) - \sum_{e \in F_{\beta}} ee^* \right)$$

where $B^{\leq\beta} := \{\beta' \in B : \beta' \leq \beta\}$, and the degree 0 part of the right-hand side of (a) is

(c)
$$\left(\left(\sum_{\beta'\in B^{<\beta}}\lambda_{(\beta',\beta')}\right)^2 + 2\sum_{\beta'\in B^{<\beta}}\lambda_{(\beta',\beta')}\lambda_{(\beta,\beta)} + \sum_{\alpha\in A_{\beta}}\lambda_{(\alpha,\beta)}^2\right)\left(r(\beta) - \sum_{e\in F_{\beta}}ee^*\right)$$

where $B^{<\beta} := \{\beta' \in B : \beta' < \beta\}$ (we are using here that $\lambda_{(\alpha,\beta')} = 0$ for $\beta' \in B^{<\beta}$ and $\alpha \in A \setminus \{\beta'\}$).

Suppose m_{β} is even. Then $\sum_{\beta' \in B^{<\beta}} \lambda_{(\beta',\beta')} = 0$ (because $\lambda_{(\beta',\beta')} = (-1)^{m'_{\beta}}$ for each $\beta' \in B^{<\beta}$). Since (b) = (c), it follows that $\lambda_{(\beta,\beta)} = \sum_{\alpha \in A_{\beta}} \lambda_{(\alpha,\beta)}^2$. The fact that the $\lambda_{(\beta,\beta)}$ s are integers, means that we must have that $\lambda_{(\alpha,\beta)} = 0$ for $\alpha \in A_{\beta} \setminus \{\beta\}$ and $\lambda_{(\beta,\beta)} = 1$ (recall that $\lambda_{(\alpha,\beta)} \neq 0$ for at least one $\alpha \in A_{\beta}$), but this contradicts the assumption that $\beta \notin B'$.

If m_{β} is uneven, then $\sum_{\beta' \in B^{<\beta}} \lambda_{(\beta',\beta')} = 1$, so it follows from the equality of (b) and (c) that $1 + 2\lambda_{(\beta,\beta)} + \sum_{\alpha_{\beta} \in A} \lambda_{(\alpha,\beta)}^2 = 1 + \lambda_{(\beta,\beta)}$ from which we deduce that $\lambda_{(\alpha,\beta)} = 0$ for $\alpha \in A_{\beta} \setminus \{\beta\}$ and $\lambda_{(\beta,\beta)} = -1$, and thus that $\beta \in B'$. So we also reach a contradiction in this case.

We conclude that we must have that B' = B, and thus that $\lambda_{(\alpha,\beta)} = 0$ for all $(\alpha,\beta) \in A \times B$ with $\alpha \in A_{\beta} \setminus \{\beta\}$. Since $\alpha\beta^* = 0$ for $\alpha \notin A_{\beta}$, it follows that $p = \sum_{\beta \in B} \lambda_{(\beta,\beta)}\beta\beta^* \in D_{\mathbb{Z}}(E)$.

Corollary 4. Let *E* and *F* be directed graphs and $\pi : L_{\mathbb{Z}}(E) \to L_{\mathbb{Z}}(F)$ a *-homomorphism. *Then* $\pi(D_{\mathbb{Z}}(E)) \subseteq D_{\mathbb{Z}}(F)$.

Proof. The proof is similar to the proof of [10, Proposition 6.1]. Let $\mu \in E^*$. Then $\pi(\mu\mu^*)$ is a projection, so it follows from Proposition 3 that $\pi(\mu\mu^*) \in D_{\mathbb{Z}}(F)$. Since $D_{\mathbb{Z}}(E) = \operatorname{span}_{\mathbb{Z}} \{\mu\mu^* : \mu \in E^*\}$, it follows that $\pi(D_{\mathbb{Z}}(E)) \subseteq D_{\mathbb{Z}}(F)$.

Proof of Theorem 1. It is obvious that (5) implies (1). The implication $(1) \implies (2)$ follows directly from Corollary 4. The equivalence of (3) and (4) is proved in [5].

Next, we shall prove that $(2) \implies (3)$. We shall closely follow the proof of [10, Lemma 3.5]. Let $\pi : L_{\mathbb{Z}}(E) \to L_{\mathbb{Z}}(F)$ be a *-isomorphism such that $\pi(D_{\mathbb{Z}}(E)) = D_{\mathbb{Z}}(F)$. As in the proof of [2, Theorem 4.4], π extends to a *-isomorphism $\phi : C^*(E) \to C^*(F)$ satisfying $\phi \circ \iota_{L_{\mathbb{Z}}(E)} = \iota_{L_{\mathbb{Z}}(F)} \circ \pi$. If $\mu \in E^*$, then

$$\phi(s_{\mu}s_{\mu}^*) = \phi(\iota_{L_{\mathbb{Z}}(E)}(\mu\mu^*)) = \iota_{L_{\mathbb{Z}}(F)}(\pi(\mu\mu^*)) \in \iota_{L_{\mathbb{Z}}(F)}(D_{\mathbb{Z}}(F)) \subseteq \mathscr{D}(F).$$

Since $\mathscr{D}(E)$ is generated by $\{s_{\mu}s_{\mu}^*: \mu \in E^*\}$, it follows that $\phi(\mathscr{D}(E)) \subseteq \mathscr{D}(F)$. That $\phi(\mathscr{D}(F)) \subseteq \mathscr{D}(E)$ follows in a similarly way. Thus $\phi(\mathscr{D}(E)) = \mathscr{D}(F)$.

Finally the proof of $(2) \implies (1)$ in [4, Theorem 5.3] also works when *E* and *F* are not row-finite or have sinks, so this gives us $(4) \implies (5)$.

REFERENCES

- G. Abrams and G. Aranda-Pino, *The Leavitt path algebra of a graph*, J. Algebra 293 (2005) 319– 334.
- [2] G. Abrams and M. Tomforde, *Isomorphism and Morita equivalence of graph algebras*, arXiv:0810.2569v2, Trans. Amer. Math. Soc. **363** (2011), 3733–3767.
- [3] P. Ara, M. A. Moreno, and E. Pardo, Nonstable K-theory for graph algebras, Algebr. Represent. Theory 10 (2007) 157—178.
- [4] J.H. Brown, L. Clark, and A. an Huef, *Diagonal-preserving ring *-isomorphisms of Leavitt path algebras*, arXiv:1510.05309v1, 20 pages.
- [5] N. Brownlowe, T.M. Carlsen, and M.F. Whittaker, *Graph algebras and orbit equivalence*, arXiv:1410.2308v1, to appear in Ergodic Theory Dynam. Systems, doi:10.1017/etds.2015.52, 29 pages.
- [6] C. Gil Canto and A. Nasr-Isfahani, *The maximal commutative subalgebra of a Leavitt path algebra*, arXiv:1510.03992v2, 21 pages.
- [7] L.O. Clark and A. Sims, *Equivalent groupoids have Morita equivalent Steinberg algebras*, J. Pure Appl. Algebra 219 (2015), 2062—2075.
- [8] J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57 (1977) 173--185.
- [9] J. Cuntz and W. Krieger, A class of C*-algebras and topological Markov chains, Invent. Math. 56 (1980) 251-268.
- [10] R. Johansen, and A.P.W Søresen, *The Cuntz splice does not preserve *-isomorphism of Leavitt path algebras over* Z, arXiv:1507.01247v2, 16 pages.
- [11] A. Kumjian, D. Pask, and I. Raeburn, *Cuntz-Krieger algebras of directed graphs*, Pacific J. Math. 184 (1998) 161–174.
- [12] A. Kumjian, D. Pask, I. Raeburn, and J. Renault, Graphs, groupoids, and Cuntz-Krieger algebras, J. Funct. Anal. 144 (1997) 505--541.
- [13] W.G. Leavitt, Modules over rings of words, Proc. Amer. Math. Soc. 7 (1956) 188-193.
- [14] W.G. Leavitt, Modules without invariant basis number, Proc. Amer. Math. Soc. 8 (1957) 322--328.
- [15] W.G. Leavitt, The module type of a ring, Trans. Amer. Math. Soc. 42 (1962) 113--130.
- [16] G. Nagy and S. Reznikoff, Pseudo-diagonals and uniqueness theorems, Proc. Amer. Math. Soc. 142 (2014), 263-–275.
- [17] A.L.T Paterson, Graph Inverse Semigroups, Groupoids and their C*-Algebras, J. Operator Theory 48 (2002) 645--662.
- [18] I. Raeburn, *Graph Algebras*, CBMS Reg. Conf. Ser. Math., vol. 103, American Mathematical Society, Providence, RI, 2005, vi+113 pp. Published for the Conference Board of the Mathematical Sciences, Washington, DC.
- [19] M. Tomforde, Uniqueness theorems and ideal structure for Leavitt path algebras. J. Algebra 318 (2007) 270–299.
- [20] S. Webster, *The path space of a directed graph*, arXiv:1102.1225v1, Proc. Amer. Math. Soc. **142** (2014), 213–225.
- [21] T. Yeend, *Groupoid models for the C**-algebras of topological higher-rank graphs, J. Operator Theory **57** (2007) 95–120.

UNIVERSITY OF THE FAROE ISLANDS, NÁTTÚRUVÍSINDADEILDIN, NÓATÚN 3, FO-100 TÓR-SHAVN, FAROE ISLANDS

E-mail address: toke.carlsen@gmail.com