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*-|SOMORPHISM OF LEAVITT PATH ALGEBRAS OVER Z
TOKE MEIER CARLSEN

ABSTRACT. We characterise when the Leavitt path algebras @vef two arbitrary
countable directed graphs ardsomorphic. We also prove that anyhomomorphism
between two Leavitt path algebras ovemaps the diagonal to the diagonal.

1. INTRODUCTION

Graph C'-algebraswere introduced in [11] and [12] as a generalisation of Cuntz
Kriger [9] and Cuntz algebras|[8], and have since then a#tha lot of interest (see
[18] and its references). It was later discovered that oette@avitt algebras [13, 14, 15]
could be considered as algebraic analogues of Cuntz akyebnés led to the introduc-
tion of Leavitt path algebrags algebraic analogues of graphalgebras ([1] and |3]).
Since then the connection between gr@ptalgebras and Leavitt path algebras has been
thoroughly studied (see for example [2], [10], and [19]) tiBthe graplC*-algebra and
the Leavitt path algebra of a directed graph can be constldobm thegraph groupoid
of the graph (see [4], [5]/.[7].112], [17], and [21]).

The purpose of this paper is to describe, in terms of the g&iphlgebras and the
graph groupoids, when the Leavitt path algebras @ef two arbitrary countable di-
rected graphs areisomorphic. This is done in Theorém 1 in Secfidn 3. We alstarnk
on how this is related torbit equivalencef graphs (Remarkl 2), and prove that all pro-
jections in a Leavitt path algebra ovErbelong to thediagonal of the Leavitt path
algebra (Propositionl 3). It follows as a corollary that anaiomomorphism between
two Leavitt path algebras ov&r maps the diagonal to the diagonal (Corollary 4).

2. DEFINITIONS AND NOTATION

We recall in this section the definition of a directed grapghyall as the definitions of
the Leavitt path algebra, the gra@hi-algebra, and the graph groupoid of a graph; and
introduce some notation. Most of this section is copied ffjn

A directed graphis a quadrupl& = (E®, E*, s,r) whereE® andE! are sets, angand
r are maps fronE! to EC. A graphE is said to becountablef E® andE? are countable.

A path u of lengthn in E is a sequence of edges= ... Uy such thatr(y;) =
s(pi+1) forall 1 <i < n-—1. The set of paths of lengthis denotecE". We denote by
|u| the length ofu. The range and source maps extend naturally to patpg:= s(11)
andr(u) :=r(un). We regard the elements BP as path of length 0, and farc EC we
sets(v) :=r(v) := v. Forv € E® andn € Ny we denote byE" the set of paths of length
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n with sourcev. We defineE* := [Jn<n, E" to be the collection of all paths with finite
length. We defin€d:= {v e E0 vE! is finite and nonemptyandEg ;= E®\ EQq
If u=pillo-- m,V = V1Vo---vy € E* andr(u) = s(v), then we letuv denote the
pathp o - - - UmV1Va - - - Vi A loop (also called ayclg in E is a pathu € E* such that
|u| > 1 ands(u) =r(u). An edgeeis anexitto the loopu if there exists such that
s(e) = s(uj) ande+# L. A graph is said to satisfgondition (L)if every loop has an exit.

An infinite pathin E is an infinite sequencex,... of edges inE such that (g) =
S(g1) for alli. We letE™ be the set of all infinite paths . The source map extends
to E* in the obvious way. We lgik| = « for x € E®. Theboundary path spacef E is
the space

OE :=E”U{u € E":r(u) € Egg}-

If U= pato-- Um € E*, Xx=X1X2--- € E® andr(u) = s(x), then we letux denote the
infinite pathpy o - - - XX - - - € E®.

For u € E*, thecylinder setof u is the set

Z(u) :={uxedE :xer(u)oE},
wherer (1)0E := {x€ dE : r(u) = s(x)}. Givenu € E* and a finite subsét C r(u)E?

we define
Z(p\F) (U Z(pe )

ecF

The boundary path spad is a locally compact Hausdorff space with the topology
given by the basi§Z(u \F) : u € E*, F is a finite subset of(u)E'}, and each such
Z(u \ F) is compact and open (see [20, Theorem 2.1 and Theorem 2.2]).

Thegraph C'-algebraof a directed grapk is the universaC*-algebraC*(E) gener-
ated by mutually orthogonal projectiofip, : v € E®} and partial isometriefss: ec E1}
satisfying
(CK1) sse = pr(g) for all e E;
(CK2) sesi < pyg) for all e € E;
(CK3) py= Z sese forallve Ereg

ecvElL

If u=py---un € E"andn > 2, then we les, := sy, - --sy,. Likewise, we lets, := py
if ve E®. Then spafis,s; : W,v € E*, r(u) =r(v)} is dense irC*(E). We define
Z(E) to be the closure ilt*(E) of spar{su : U € E*}. ThenZ(E) is an abelian

C*-subalgebra o€ E), and itis |somorph|cto th€*-algebraCo(JE). We furthermore
have thatZ(E) is a maximal abelian sub-algebra ©f(E) if and only if E satisfies
condition (L) (see[16, Example 3.3]).

Let E be a directed graph arila commutative ring with a unit. Thieeavitt path
algebraof E overR is the universaR-algebralLr(E) generated by pairwise orthogonal
idempotentdv: v e E%} and elementge, & : e ¢ E'} satisfying

(LP1) e'f =0ife# f;
(LP2) e'e=r(e);
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(LP3) s(e)le=e=er(e);

(LP4) e's(e) = e* =r(e)e’;

(LP5) V=S 1 €€ if ve ER,

If U=y - pn € E" andn > 2, then we lefu be the elements; - - -y, € Lr(E). Then
Lr(E) = spaq{uv* : u,v € E*, r(u) =r(v)}. We defineDr(E) := spaquu* : u €
E*}. ThenDRr(E) is an abelian subalgebra bi(E), and it is maximal abelian if and
only if E satisfies condition (L) (se&€l[6, Proposition 3.14 and Theo3e22]). IfRis a
a subring ofC that is closed under complex conjugation, thern — vu* extends to
a conjugate linear involution onr(E), i.e. Lr(E) is ax-algebra. There is an injective
+-homomorphism ) — C*(E) mappingv to py ande to s for v € E? ande € E*
(seel[19, Theorem 7.3]).

Forn € Ny, let 9E=":= {x € dE : |x| > n}. ThendE=" = U,cenZ (1) is an open
subset ofdE. We define theshift mapon E to be the mawg : dEZ1 — JE given by
O (X1XoX3- -+ ) = XoX3- -~ fOr XgyXoX3- -+ € JE=2 andog(e) =r(e) forec JEN ELl. For
n> 1, we letog be then-fold composition ofog with itself. We Ietag denote the
identity map ordE. Thenog is a local homeomorphism for alle N. When we write
og(x), we implicitly assume that € JE=".

Thegraph groupoidof a countable directed graph is the locally compact, Haxi§do
étale topological groupoid

% ={(x,m—ny):x,y € dE, mne Ny, anda™(x) = a"(y)},

with product(x, k,y)(w,1,z) :== (x,k+1,2) if y=wand undefined otherwise, and inverse
given by(x,k,y) "1 := (y, —k,X). The topology of% is generated by subsets of the form
ZU,mnV):={(x,ky €4 :xeU, k=m—n,yeV, of'(x) = og(y)} wherem,n

No, U is an open subset GfE=" such that the restriction @ toU is injective, and/

is an open subset @E =" such that the restriction @ toV is injective, andoT'(U) =

o (V). The mapx — (x,0,x) is a homeomorphism fromlE to the unit space? of %.
There is ar-isomorphism from th€*-algebra of4e to C*(E) that map<Co(¥4) onto
2(E) (see [5, Proposition 2.2] and [12, Proposition 4.1]), andigomorphism from
the Steinberg algebmr(%e) of % to Lr(E) that maps spag{ 1z(z(u),00z(u)) - H € E*}
ontoDR(E) (seel[4, Theorem 2.2] and/[7, Example 3.2]).

3. THE RESULT

Theorem 1. Let E and F be countable directed graphs. Then the follownegeguiva-
lent.

(1) The Leavitt path algebragi(E) and Lz (F) of E and F ovefZ are x-isomorphic.

(2) There is ax-isomorphisnit: Ly (E) — Lz(F) such that(Dz(E)) = Dz (F).

(3) There is ax-isomorphismp : C*(E) — C*(F) such thatp(Z(E)) = Z(F)

(4) The graph groupoid¥: and%r are isomorphic as topological groupoids.

(5) There is as-isomorphisnrt: Lz(E) — Lz(F) and a homeomorphism: E* —
F* such thatr(d)(y) = d(k~1(y)) fory € F* and d D(E).
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Remark 2. It follows from [5] that the following two conditions are egmalent and
implied by (3) and (4).
(6) The pseudogroup®’e and Z introduced in[[5, Section 3] are isomorphic.
(7) E andF are orbit equivalent as in[[5, Definition 3.1].

It also follows from [5] that ifE andF both satisfy condition (L), then (6) and (7) imply
(3) and (4). Thus, iE andF both satisfy condition (L), then (1)—(7) are all equivalent

As in [10], we say thap € Ly(E) is aprojectionif p= p* = p?. For the proof of
Theoreni L we need the following generalisation of [10, The0b.6].

Proposition 3. Let E be a directed graph. If @ Lz(E) is a projection, then g Dz (E).

Proof. This proof is inspired by the proof df [10, Proposition 4.2jiah is due to Chris
Smith.

For u,v € E*, we shall writeu < v to indicate that there is an € E* such that
un = v, andu < v to indicate thajy <v andu # v.

Sincelz(E) = spa{aB*: a,B € E*}, it follows that there are finite subsetsB
of E* and a family(A 4 g)) (a,8)cAxs Of integers such that

p= Z )\(aﬁ)aB*.
(a,B)cAxB

By repeatedly replacing3* by > ecr(a)EL aee B* if necessary, we can assume that
there is ak such thatB C EXU {u € E* : |u| < kandr(u) € Eging}. We can also, by
letting some of the\ , g)s be 0 if necessary, assume tBat A. We have that/* =0
unlessr(a) =r(B). ForB € B, letAg :={a € A:r(a) =r(B)}. We shall also assume
that if B € B, then there is a least ore € Ag such thatA 4 g) # O (otherwise we just
removef3 from B). We claim that, gy = O for all (o, 3) € Ax Bwith a € Ag\ {B},
and thath 4 g) = (—1)™ for all B € B wheremg is the number of3’s in B such that
B’ < B.

LetB' = {B e€B:Agp =0forallacAg\{B} andAg g = (—1)™}, and suppose
B’ # B. Choosg3 € B\ B' such thai3’ < 3 forno’ € B\ B'. Let

Fs = {ec r(B)EL: Be< B’ for someB’ € B\ {B}}
and

yg =B—-PB Z e€
&g

(Fg = 0 andyg = B unless|B| < k andr(B)E! is infinite). Thenyéﬁ’ =0forpB eB
unlessB’ < B.
Sincep = p*p, it follows that

(a) Vs PYs = V3P PYs-
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Recall that_z(E) is Z-graded. The degree 0 part of the left-hand sideiof (a) is

(b) Z )\(B/:B/) (r(B)— Z eék>
B'cB<P ecFg

whereB=P := {B’ € B: B’ < B}, and the degree 0 part of the right-hand sidef (a) is

2
(9) (( Z )\(ﬁ/ﬁ/)) +2 Z )\(‘B/ﬁ/))\(‘g’ﬁ)-l- )\(2073)) (r(B)— Z eé*)
p'eB<F p'eB<B achg ecFy

whereB<P := {8’ € B: B’ < B} (we are using here tha 5 = 0 for 8’ € B<F and
a e A\{B'}).

Supposeng is even. Thergﬁ,qug App) = 0 (becaus@ p gy = (_1)% for each
B’ € B<P). Since [b)= (@), it follows thatA g g) = ZOIEAB)‘(ZO{.[;)- The fact that the
Ap,p)S are integers, means that we must have gl = 0 fo_r a€hg \_{B} and
AB.,B) = 1 (recall thatA 4 gy # O for at least onex € Ag), but this contradicts the as-
sumption thaf3 ¢ B'.

If mg is uneven, therzﬁ,qu; A gy = 1, so it follows from the equality of (b) and
[©) that 1+ 2A g g) + ZaﬁeA)\(za.B) =1+ Ag,p) from which we deduce thak, g) =0
for a € Ag\ {B} andA g gy = —1, and thus thgB € B". So we also reach a contradiction
in this case.

We conclude that we must have tigit= B, and thus thad 4 g) = 0 for all (a,3) €
AxBwith o € Ag\{B}. Sincea3* =0fora ¢ Ag, itfollowsthatp= 3y gcgA(g g)BB* €
Dz(E). O
Corollary 4. Let E and F be directed graphs amd Lz (E) — Lz (F) ax-homomorphism.
Thenm(Dy(E)) C Dy (F).

Proof. The proof is similar to the proof of [10, Proposition 6.1]. tye € E*. Then
r(up*) is a projection, so it follows from Propositih 3 thatup*) € Dz(F). Since
Dz (E) =span,{up* : u € E*}, it follows thatr(Dz(E)) C Dy (F). O

Proof of Theorerhl1lt is obvious that (5) implies (1). The implicatiofl) — (2)
follows directly from Corollary #. The equivalence of (3)da#) is proved in[[5].

Next, we shall prove that2) = (3). We shall closely follow the proof of [10,
Lemma3.5]. Lett: Ly (E) — Lz (F) be ax-isomorphism such that(Dz(E)) = Dz(F).
As in the proof of [2, Theorem 4.4} extends to &-isomorphismp : C*(E) — C*(F)
satisfying@o i, &) = I, F)o T If 4 € E", then

P(susy) = @I, E) (MHT)) = I, (T(HKT)) € 1, (Dz(F)) € 2(F).
SinceZ(E) is generated bys,s, : 4 € E*}, it follows that@(Z(E)) C Z(F). That
@(Z(F)) C Z(E) follows in a similarly way. Thusp(Z(E)) = 2(F).

Finally the proof of(2) = (1) in [4, Theorem 5.3] also works whéh andF are

not row-finite or have sinks, so this givesig — (5). O
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